]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / CodeGen / RegAllocGreedy.cpp
1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "AllocationOrder.h"
17 #include "InterferenceCache.h"
18 #include "LiveDebugVariables.h"
19 #include "LiveRangeEdit.h"
20 #include "RegAllocBase.h"
21 #include "Spiller.h"
22 #include "SpillPlacement.h"
23 #include "SplitKit.h"
24 #include "VirtRegMap.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Function.h"
28 #include "llvm/PassAnalysisSupport.h"
29 #include "llvm/CodeGen/CalcSpillWeights.h"
30 #include "llvm/CodeGen/EdgeBundles.h"
31 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
32 #include "llvm/CodeGen/LiveStackAnalysis.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/RegAllocRegistry.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Support/Timer.h"
45
46 #include <queue>
47
48 using namespace llvm;
49
50 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52 STATISTIC(NumEvicted,      "Number of interferences evicted");
53
54 static cl::opt<SplitEditor::ComplementSpillMode>
55 SplitSpillMode("split-spill-mode", cl::Hidden,
56   cl::desc("Spill mode for splitting live ranges"),
57   cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
58              clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
59              clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
60              clEnumValEnd),
61   cl::init(SplitEditor::SM_Partition));
62
63 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
64                                        createGreedyRegisterAllocator);
65
66 namespace {
67 class RAGreedy : public MachineFunctionPass,
68                  public RegAllocBase,
69                  private LiveRangeEdit::Delegate {
70
71   // context
72   MachineFunction *MF;
73
74   // analyses
75   SlotIndexes *Indexes;
76   LiveStacks *LS;
77   MachineDominatorTree *DomTree;
78   MachineLoopInfo *Loops;
79   EdgeBundles *Bundles;
80   SpillPlacement *SpillPlacer;
81   LiveDebugVariables *DebugVars;
82
83   // state
84   std::auto_ptr<Spiller> SpillerInstance;
85   std::priority_queue<std::pair<unsigned, unsigned> > Queue;
86   unsigned NextCascade;
87
88   // Live ranges pass through a number of stages as we try to allocate them.
89   // Some of the stages may also create new live ranges:
90   //
91   // - Region splitting.
92   // - Per-block splitting.
93   // - Local splitting.
94   // - Spilling.
95   //
96   // Ranges produced by one of the stages skip the previous stages when they are
97   // dequeued. This improves performance because we can skip interference checks
98   // that are unlikely to give any results. It also guarantees that the live
99   // range splitting algorithm terminates, something that is otherwise hard to
100   // ensure.
101   enum LiveRangeStage {
102     /// Newly created live range that has never been queued.
103     RS_New,
104
105     /// Only attempt assignment and eviction. Then requeue as RS_Split.
106     RS_Assign,
107
108     /// Attempt live range splitting if assignment is impossible.
109     RS_Split,
110
111     /// Attempt more aggressive live range splitting that is guaranteed to make
112     /// progress.  This is used for split products that may not be making
113     /// progress.
114     RS_Split2,
115
116     /// Live range will be spilled.  No more splitting will be attempted.
117     RS_Spill,
118
119     /// There is nothing more we can do to this live range.  Abort compilation
120     /// if it can't be assigned.
121     RS_Done
122   };
123
124   static const char *const StageName[];
125
126   // RegInfo - Keep additional information about each live range.
127   struct RegInfo {
128     LiveRangeStage Stage;
129
130     // Cascade - Eviction loop prevention. See canEvictInterference().
131     unsigned Cascade;
132
133     RegInfo() : Stage(RS_New), Cascade(0) {}
134   };
135
136   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
137
138   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
139     return ExtraRegInfo[VirtReg.reg].Stage;
140   }
141
142   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
143     ExtraRegInfo.resize(MRI->getNumVirtRegs());
144     ExtraRegInfo[VirtReg.reg].Stage = Stage;
145   }
146
147   template<typename Iterator>
148   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
149     ExtraRegInfo.resize(MRI->getNumVirtRegs());
150     for (;Begin != End; ++Begin) {
151       unsigned Reg = (*Begin)->reg;
152       if (ExtraRegInfo[Reg].Stage == RS_New)
153         ExtraRegInfo[Reg].Stage = NewStage;
154     }
155   }
156
157   /// Cost of evicting interference.
158   struct EvictionCost {
159     unsigned BrokenHints; ///< Total number of broken hints.
160     float MaxWeight;      ///< Maximum spill weight evicted.
161
162     EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
163
164     bool operator<(const EvictionCost &O) const {
165       if (BrokenHints != O.BrokenHints)
166         return BrokenHints < O.BrokenHints;
167       return MaxWeight < O.MaxWeight;
168     }
169   };
170
171   // splitting state.
172   std::auto_ptr<SplitAnalysis> SA;
173   std::auto_ptr<SplitEditor> SE;
174
175   /// Cached per-block interference maps
176   InterferenceCache IntfCache;
177
178   /// All basic blocks where the current register has uses.
179   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
180
181   /// Global live range splitting candidate info.
182   struct GlobalSplitCandidate {
183     // Register intended for assignment, or 0.
184     unsigned PhysReg;
185
186     // SplitKit interval index for this candidate.
187     unsigned IntvIdx;
188
189     // Interference for PhysReg.
190     InterferenceCache::Cursor Intf;
191
192     // Bundles where this candidate should be live.
193     BitVector LiveBundles;
194     SmallVector<unsigned, 8> ActiveBlocks;
195
196     void reset(InterferenceCache &Cache, unsigned Reg) {
197       PhysReg = Reg;
198       IntvIdx = 0;
199       Intf.setPhysReg(Cache, Reg);
200       LiveBundles.clear();
201       ActiveBlocks.clear();
202     }
203
204     // Set B[i] = C for every live bundle where B[i] was NoCand.
205     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
206       unsigned Count = 0;
207       for (int i = LiveBundles.find_first(); i >= 0;
208            i = LiveBundles.find_next(i))
209         if (B[i] == NoCand) {
210           B[i] = C;
211           Count++;
212         }
213       return Count;
214     }
215   };
216
217   /// Candidate info for for each PhysReg in AllocationOrder.
218   /// This vector never shrinks, but grows to the size of the largest register
219   /// class.
220   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
221
222   enum { NoCand = ~0u };
223
224   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
225   /// NoCand which indicates the stack interval.
226   SmallVector<unsigned, 32> BundleCand;
227
228 public:
229   RAGreedy();
230
231   /// Return the pass name.
232   virtual const char* getPassName() const {
233     return "Greedy Register Allocator";
234   }
235
236   /// RAGreedy analysis usage.
237   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
238   virtual void releaseMemory();
239   virtual Spiller &spiller() { return *SpillerInstance; }
240   virtual void enqueue(LiveInterval *LI);
241   virtual LiveInterval *dequeue();
242   virtual unsigned selectOrSplit(LiveInterval&,
243                                  SmallVectorImpl<LiveInterval*>&);
244
245   /// Perform register allocation.
246   virtual bool runOnMachineFunction(MachineFunction &mf);
247
248   static char ID;
249
250 private:
251   void LRE_WillEraseInstruction(MachineInstr*);
252   bool LRE_CanEraseVirtReg(unsigned);
253   void LRE_WillShrinkVirtReg(unsigned);
254   void LRE_DidCloneVirtReg(unsigned, unsigned);
255
256   float calcSpillCost();
257   bool addSplitConstraints(InterferenceCache::Cursor, float&);
258   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
259   void growRegion(GlobalSplitCandidate &Cand);
260   float calcGlobalSplitCost(GlobalSplitCandidate&);
261   bool calcCompactRegion(GlobalSplitCandidate&);
262   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
263   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
264   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
265   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
266   void evictInterference(LiveInterval&, unsigned,
267                          SmallVectorImpl<LiveInterval*>&);
268
269   unsigned tryAssign(LiveInterval&, AllocationOrder&,
270                      SmallVectorImpl<LiveInterval*>&);
271   unsigned tryEvict(LiveInterval&, AllocationOrder&,
272                     SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
273   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
274                           SmallVectorImpl<LiveInterval*>&);
275   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
276                          SmallVectorImpl<LiveInterval*>&);
277   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
278     SmallVectorImpl<LiveInterval*>&);
279   unsigned trySplit(LiveInterval&, AllocationOrder&,
280                     SmallVectorImpl<LiveInterval*>&);
281 };
282 } // end anonymous namespace
283
284 char RAGreedy::ID = 0;
285
286 #ifndef NDEBUG
287 const char *const RAGreedy::StageName[] = {
288     "RS_New",
289     "RS_Assign",
290     "RS_Split",
291     "RS_Split2",
292     "RS_Spill",
293     "RS_Done"
294 };
295 #endif
296
297 // Hysteresis to use when comparing floats.
298 // This helps stabilize decisions based on float comparisons.
299 const float Hysteresis = 0.98f;
300
301
302 FunctionPass* llvm::createGreedyRegisterAllocator() {
303   return new RAGreedy();
304 }
305
306 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
307   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
308   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
309   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
310   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
311   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
312   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
313   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
314   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
315   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
316   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
317   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
318   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
319   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
320 }
321
322 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
323   AU.setPreservesCFG();
324   AU.addRequired<AliasAnalysis>();
325   AU.addPreserved<AliasAnalysis>();
326   AU.addRequired<LiveIntervals>();
327   AU.addRequired<SlotIndexes>();
328   AU.addPreserved<SlotIndexes>();
329   AU.addRequired<LiveDebugVariables>();
330   AU.addPreserved<LiveDebugVariables>();
331   if (StrongPHIElim)
332     AU.addRequiredID(StrongPHIEliminationID);
333   AU.addRequiredTransitiveID(RegisterCoalescerPassID);
334   AU.addRequired<CalculateSpillWeights>();
335   AU.addRequired<LiveStacks>();
336   AU.addPreserved<LiveStacks>();
337   AU.addRequired<MachineDominatorTree>();
338   AU.addPreserved<MachineDominatorTree>();
339   AU.addRequired<MachineLoopInfo>();
340   AU.addPreserved<MachineLoopInfo>();
341   AU.addRequired<VirtRegMap>();
342   AU.addPreserved<VirtRegMap>();
343   AU.addRequired<EdgeBundles>();
344   AU.addRequired<SpillPlacement>();
345   MachineFunctionPass::getAnalysisUsage(AU);
346 }
347
348
349 //===----------------------------------------------------------------------===//
350 //                     LiveRangeEdit delegate methods
351 //===----------------------------------------------------------------------===//
352
353 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
354   // LRE itself will remove from SlotIndexes and parent basic block.
355   VRM->RemoveMachineInstrFromMaps(MI);
356 }
357
358 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
359   if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
360     unassign(LIS->getInterval(VirtReg), PhysReg);
361     return true;
362   }
363   // Unassigned virtreg is probably in the priority queue.
364   // RegAllocBase will erase it after dequeueing.
365   return false;
366 }
367
368 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
369   unsigned PhysReg = VRM->getPhys(VirtReg);
370   if (!PhysReg)
371     return;
372
373   // Register is assigned, put it back on the queue for reassignment.
374   LiveInterval &LI = LIS->getInterval(VirtReg);
375   unassign(LI, PhysReg);
376   enqueue(&LI);
377 }
378
379 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
380   // Cloning a register we haven't even heard about yet?  Just ignore it.
381   if (!ExtraRegInfo.inBounds(Old))
382     return;
383
384   // LRE may clone a virtual register because dead code elimination causes it to
385   // be split into connected components. The new components are much smaller
386   // than the original, so they should get a new chance at being assigned.
387   // same stage as the parent.
388   ExtraRegInfo[Old].Stage = RS_Assign;
389   ExtraRegInfo.grow(New);
390   ExtraRegInfo[New] = ExtraRegInfo[Old];
391 }
392
393 void RAGreedy::releaseMemory() {
394   SpillerInstance.reset(0);
395   ExtraRegInfo.clear();
396   GlobalCand.clear();
397   RegAllocBase::releaseMemory();
398 }
399
400 void RAGreedy::enqueue(LiveInterval *LI) {
401   // Prioritize live ranges by size, assigning larger ranges first.
402   // The queue holds (size, reg) pairs.
403   const unsigned Size = LI->getSize();
404   const unsigned Reg = LI->reg;
405   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
406          "Can only enqueue virtual registers");
407   unsigned Prio;
408
409   ExtraRegInfo.grow(Reg);
410   if (ExtraRegInfo[Reg].Stage == RS_New)
411     ExtraRegInfo[Reg].Stage = RS_Assign;
412
413   if (ExtraRegInfo[Reg].Stage == RS_Split) {
414     // Unsplit ranges that couldn't be allocated immediately are deferred until
415     // everything else has been allocated.
416     Prio = Size;
417   } else {
418     // Everything is allocated in long->short order. Long ranges that don't fit
419     // should be spilled (or split) ASAP so they don't create interference.
420     Prio = (1u << 31) + Size;
421
422     // Boost ranges that have a physical register hint.
423     if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
424       Prio |= (1u << 30);
425   }
426
427   Queue.push(std::make_pair(Prio, Reg));
428 }
429
430 LiveInterval *RAGreedy::dequeue() {
431   if (Queue.empty())
432     return 0;
433   LiveInterval *LI = &LIS->getInterval(Queue.top().second);
434   Queue.pop();
435   return LI;
436 }
437
438
439 //===----------------------------------------------------------------------===//
440 //                            Direct Assignment
441 //===----------------------------------------------------------------------===//
442
443 /// tryAssign - Try to assign VirtReg to an available register.
444 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
445                              AllocationOrder &Order,
446                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
447   Order.rewind();
448   unsigned PhysReg;
449   while ((PhysReg = Order.next()))
450     if (!checkPhysRegInterference(VirtReg, PhysReg))
451       break;
452   if (!PhysReg || Order.isHint(PhysReg))
453     return PhysReg;
454
455   // PhysReg is available, but there may be a better choice.
456
457   // If we missed a simple hint, try to cheaply evict interference from the
458   // preferred register.
459   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
460     if (Order.isHint(Hint)) {
461       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
462       EvictionCost MaxCost(1);
463       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
464         evictInterference(VirtReg, Hint, NewVRegs);
465         return Hint;
466       }
467     }
468
469   // Try to evict interference from a cheaper alternative.
470   unsigned Cost = TRI->getCostPerUse(PhysReg);
471
472   // Most registers have 0 additional cost.
473   if (!Cost)
474     return PhysReg;
475
476   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
477                << '\n');
478   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
479   return CheapReg ? CheapReg : PhysReg;
480 }
481
482
483 //===----------------------------------------------------------------------===//
484 //                         Interference eviction
485 //===----------------------------------------------------------------------===//
486
487 /// shouldEvict - determine if A should evict the assigned live range B. The
488 /// eviction policy defined by this function together with the allocation order
489 /// defined by enqueue() decides which registers ultimately end up being split
490 /// and spilled.
491 ///
492 /// Cascade numbers are used to prevent infinite loops if this function is a
493 /// cyclic relation.
494 ///
495 /// @param A          The live range to be assigned.
496 /// @param IsHint     True when A is about to be assigned to its preferred
497 ///                   register.
498 /// @param B          The live range to be evicted.
499 /// @param BreaksHint True when B is already assigned to its preferred register.
500 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
501                            LiveInterval &B, bool BreaksHint) {
502   bool CanSplit = getStage(B) < RS_Spill;
503
504   // Be fairly aggressive about following hints as long as the evictee can be
505   // split.
506   if (CanSplit && IsHint && !BreaksHint)
507     return true;
508
509   return A.weight > B.weight;
510 }
511
512 /// canEvictInterference - Return true if all interferences between VirtReg and
513 /// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
514 ///
515 /// @param VirtReg Live range that is about to be assigned.
516 /// @param PhysReg Desired register for assignment.
517 /// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
518 /// @param MaxCost Only look for cheaper candidates and update with new cost
519 ///                when returning true.
520 /// @returns True when interference can be evicted cheaper than MaxCost.
521 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
522                                     bool IsHint, EvictionCost &MaxCost) {
523   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
524   // involved in an eviction before. If a cascade number was assigned, deny
525   // evicting anything with the same or a newer cascade number. This prevents
526   // infinite eviction loops.
527   //
528   // This works out so a register without a cascade number is allowed to evict
529   // anything, and it can be evicted by anything.
530   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
531   if (!Cascade)
532     Cascade = NextCascade;
533
534   EvictionCost Cost;
535   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
536     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
537     // If there is 10 or more interferences, chances are one is heavier.
538     if (Q.collectInterferingVRegs(10) >= 10)
539       return false;
540
541     // Check if any interfering live range is heavier than MaxWeight.
542     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
543       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
544       if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
545         return false;
546       // Never evict spill products. They cannot split or spill.
547       if (getStage(*Intf) == RS_Done)
548         return false;
549       // Once a live range becomes small enough, it is urgent that we find a
550       // register for it. This is indicated by an infinite spill weight. These
551       // urgent live ranges get to evict almost anything.
552       bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
553       // Only evict older cascades or live ranges without a cascade.
554       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
555       if (Cascade <= IntfCascade) {
556         if (!Urgent)
557           return false;
558         // We permit breaking cascades for urgent evictions. It should be the
559         // last resort, though, so make it really expensive.
560         Cost.BrokenHints += 10;
561       }
562       // Would this break a satisfied hint?
563       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
564       // Update eviction cost.
565       Cost.BrokenHints += BreaksHint;
566       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
567       // Abort if this would be too expensive.
568       if (!(Cost < MaxCost))
569         return false;
570       // Finally, apply the eviction policy for non-urgent evictions.
571       if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
572         return false;
573     }
574   }
575   MaxCost = Cost;
576   return true;
577 }
578
579 /// evictInterference - Evict any interferring registers that prevent VirtReg
580 /// from being assigned to Physreg. This assumes that canEvictInterference
581 /// returned true.
582 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
583                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
584   // Make sure that VirtReg has a cascade number, and assign that cascade
585   // number to every evicted register. These live ranges than then only be
586   // evicted by a newer cascade, preventing infinite loops.
587   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
588   if (!Cascade)
589     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
590
591   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
592                << " interference: Cascade " << Cascade << '\n');
593   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
594     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
595     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
596     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
597       LiveInterval *Intf = Q.interferingVRegs()[i];
598       unassign(*Intf, VRM->getPhys(Intf->reg));
599       assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
600               VirtReg.isSpillable() < Intf->isSpillable()) &&
601              "Cannot decrease cascade number, illegal eviction");
602       ExtraRegInfo[Intf->reg].Cascade = Cascade;
603       ++NumEvicted;
604       NewVRegs.push_back(Intf);
605     }
606   }
607 }
608
609 /// tryEvict - Try to evict all interferences for a physreg.
610 /// @param  VirtReg Currently unassigned virtual register.
611 /// @param  Order   Physregs to try.
612 /// @return         Physreg to assign VirtReg, or 0.
613 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
614                             AllocationOrder &Order,
615                             SmallVectorImpl<LiveInterval*> &NewVRegs,
616                             unsigned CostPerUseLimit) {
617   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
618
619   // Keep track of the cheapest interference seen so far.
620   EvictionCost BestCost(~0u);
621   unsigned BestPhys = 0;
622
623   // When we are just looking for a reduced cost per use, don't break any
624   // hints, and only evict smaller spill weights.
625   if (CostPerUseLimit < ~0u) {
626     BestCost.BrokenHints = 0;
627     BestCost.MaxWeight = VirtReg.weight;
628   }
629
630   Order.rewind();
631   while (unsigned PhysReg = Order.next()) {
632     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
633       continue;
634     // The first use of a callee-saved register in a function has cost 1.
635     // Don't start using a CSR when the CostPerUseLimit is low.
636     if (CostPerUseLimit == 1)
637      if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
638        if (!MRI->isPhysRegUsed(CSR)) {
639          DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
640                       << PrintReg(CSR, TRI) << '\n');
641          continue;
642        }
643
644     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
645       continue;
646
647     // Best so far.
648     BestPhys = PhysReg;
649
650     // Stop if the hint can be used.
651     if (Order.isHint(PhysReg))
652       break;
653   }
654
655   if (!BestPhys)
656     return 0;
657
658   evictInterference(VirtReg, BestPhys, NewVRegs);
659   return BestPhys;
660 }
661
662
663 //===----------------------------------------------------------------------===//
664 //                              Region Splitting
665 //===----------------------------------------------------------------------===//
666
667 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
668 /// interference pattern in Physreg and its aliases. Add the constraints to
669 /// SpillPlacement and return the static cost of this split in Cost, assuming
670 /// that all preferences in SplitConstraints are met.
671 /// Return false if there are no bundles with positive bias.
672 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
673                                    float &Cost) {
674   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
675
676   // Reset interference dependent info.
677   SplitConstraints.resize(UseBlocks.size());
678   float StaticCost = 0;
679   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
680     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
681     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
682
683     BC.Number = BI.MBB->getNumber();
684     Intf.moveToBlock(BC.Number);
685     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
686     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
687     BC.ChangesValue = BI.FirstDef;
688
689     if (!Intf.hasInterference())
690       continue;
691
692     // Number of spill code instructions to insert.
693     unsigned Ins = 0;
694
695     // Interference for the live-in value.
696     if (BI.LiveIn) {
697       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
698         BC.Entry = SpillPlacement::MustSpill, ++Ins;
699       else if (Intf.first() < BI.FirstInstr)
700         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
701       else if (Intf.first() < BI.LastInstr)
702         ++Ins;
703     }
704
705     // Interference for the live-out value.
706     if (BI.LiveOut) {
707       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
708         BC.Exit = SpillPlacement::MustSpill, ++Ins;
709       else if (Intf.last() > BI.LastInstr)
710         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
711       else if (Intf.last() > BI.FirstInstr)
712         ++Ins;
713     }
714
715     // Accumulate the total frequency of inserted spill code.
716     if (Ins)
717       StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
718   }
719   Cost = StaticCost;
720
721   // Add constraints for use-blocks. Note that these are the only constraints
722   // that may add a positive bias, it is downhill from here.
723   SpillPlacer->addConstraints(SplitConstraints);
724   return SpillPlacer->scanActiveBundles();
725 }
726
727
728 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
729 /// live-through blocks in Blocks.
730 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
731                                      ArrayRef<unsigned> Blocks) {
732   const unsigned GroupSize = 8;
733   SpillPlacement::BlockConstraint BCS[GroupSize];
734   unsigned TBS[GroupSize];
735   unsigned B = 0, T = 0;
736
737   for (unsigned i = 0; i != Blocks.size(); ++i) {
738     unsigned Number = Blocks[i];
739     Intf.moveToBlock(Number);
740
741     if (!Intf.hasInterference()) {
742       assert(T < GroupSize && "Array overflow");
743       TBS[T] = Number;
744       if (++T == GroupSize) {
745         SpillPlacer->addLinks(makeArrayRef(TBS, T));
746         T = 0;
747       }
748       continue;
749     }
750
751     assert(B < GroupSize && "Array overflow");
752     BCS[B].Number = Number;
753
754     // Interference for the live-in value.
755     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
756       BCS[B].Entry = SpillPlacement::MustSpill;
757     else
758       BCS[B].Entry = SpillPlacement::PrefSpill;
759
760     // Interference for the live-out value.
761     if (Intf.last() >= SA->getLastSplitPoint(Number))
762       BCS[B].Exit = SpillPlacement::MustSpill;
763     else
764       BCS[B].Exit = SpillPlacement::PrefSpill;
765
766     if (++B == GroupSize) {
767       ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
768       SpillPlacer->addConstraints(Array);
769       B = 0;
770     }
771   }
772
773   ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
774   SpillPlacer->addConstraints(Array);
775   SpillPlacer->addLinks(makeArrayRef(TBS, T));
776 }
777
778 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
779   // Keep track of through blocks that have not been added to SpillPlacer.
780   BitVector Todo = SA->getThroughBlocks();
781   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
782   unsigned AddedTo = 0;
783 #ifndef NDEBUG
784   unsigned Visited = 0;
785 #endif
786
787   for (;;) {
788     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
789     // Find new through blocks in the periphery of PrefRegBundles.
790     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
791       unsigned Bundle = NewBundles[i];
792       // Look at all blocks connected to Bundle in the full graph.
793       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
794       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
795            I != E; ++I) {
796         unsigned Block = *I;
797         if (!Todo.test(Block))
798           continue;
799         Todo.reset(Block);
800         // This is a new through block. Add it to SpillPlacer later.
801         ActiveBlocks.push_back(Block);
802 #ifndef NDEBUG
803         ++Visited;
804 #endif
805       }
806     }
807     // Any new blocks to add?
808     if (ActiveBlocks.size() == AddedTo)
809       break;
810
811     // Compute through constraints from the interference, or assume that all
812     // through blocks prefer spilling when forming compact regions.
813     ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
814     if (Cand.PhysReg)
815       addThroughConstraints(Cand.Intf, NewBlocks);
816     else
817       // Provide a strong negative bias on through blocks to prevent unwanted
818       // liveness on loop backedges.
819       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
820     AddedTo = ActiveBlocks.size();
821
822     // Perhaps iterating can enable more bundles?
823     SpillPlacer->iterate();
824   }
825   DEBUG(dbgs() << ", v=" << Visited);
826 }
827
828 /// calcCompactRegion - Compute the set of edge bundles that should be live
829 /// when splitting the current live range into compact regions.  Compact
830 /// regions can be computed without looking at interference.  They are the
831 /// regions formed by removing all the live-through blocks from the live range.
832 ///
833 /// Returns false if the current live range is already compact, or if the
834 /// compact regions would form single block regions anyway.
835 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
836   // Without any through blocks, the live range is already compact.
837   if (!SA->getNumThroughBlocks())
838     return false;
839
840   // Compact regions don't correspond to any physreg.
841   Cand.reset(IntfCache, 0);
842
843   DEBUG(dbgs() << "Compact region bundles");
844
845   // Use the spill placer to determine the live bundles. GrowRegion pretends
846   // that all the through blocks have interference when PhysReg is unset.
847   SpillPlacer->prepare(Cand.LiveBundles);
848
849   // The static split cost will be zero since Cand.Intf reports no interference.
850   float Cost;
851   if (!addSplitConstraints(Cand.Intf, Cost)) {
852     DEBUG(dbgs() << ", none.\n");
853     return false;
854   }
855
856   growRegion(Cand);
857   SpillPlacer->finish();
858
859   if (!Cand.LiveBundles.any()) {
860     DEBUG(dbgs() << ", none.\n");
861     return false;
862   }
863
864   DEBUG({
865     for (int i = Cand.LiveBundles.find_first(); i>=0;
866          i = Cand.LiveBundles.find_next(i))
867     dbgs() << " EB#" << i;
868     dbgs() << ".\n";
869   });
870   return true;
871 }
872
873 /// calcSpillCost - Compute how expensive it would be to split the live range in
874 /// SA around all use blocks instead of forming bundle regions.
875 float RAGreedy::calcSpillCost() {
876   float Cost = 0;
877   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
878   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
879     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
880     unsigned Number = BI.MBB->getNumber();
881     // We normally only need one spill instruction - a load or a store.
882     Cost += SpillPlacer->getBlockFrequency(Number);
883
884     // Unless the value is redefined in the block.
885     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
886       Cost += SpillPlacer->getBlockFrequency(Number);
887   }
888   return Cost;
889 }
890
891 /// calcGlobalSplitCost - Return the global split cost of following the split
892 /// pattern in LiveBundles. This cost should be added to the local cost of the
893 /// interference pattern in SplitConstraints.
894 ///
895 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
896   float GlobalCost = 0;
897   const BitVector &LiveBundles = Cand.LiveBundles;
898   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
899   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
900     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
901     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
902     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
903     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
904     unsigned Ins = 0;
905
906     if (BI.LiveIn)
907       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
908     if (BI.LiveOut)
909       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
910     if (Ins)
911       GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
912   }
913
914   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
915     unsigned Number = Cand.ActiveBlocks[i];
916     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
917     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
918     if (!RegIn && !RegOut)
919       continue;
920     if (RegIn && RegOut) {
921       // We need double spill code if this block has interference.
922       Cand.Intf.moveToBlock(Number);
923       if (Cand.Intf.hasInterference())
924         GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
925       continue;
926     }
927     // live-in / stack-out or stack-in live-out.
928     GlobalCost += SpillPlacer->getBlockFrequency(Number);
929   }
930   return GlobalCost;
931 }
932
933 /// splitAroundRegion - Split the current live range around the regions
934 /// determined by BundleCand and GlobalCand.
935 ///
936 /// Before calling this function, GlobalCand and BundleCand must be initialized
937 /// so each bundle is assigned to a valid candidate, or NoCand for the
938 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
939 /// objects must be initialized for the current live range, and intervals
940 /// created for the used candidates.
941 ///
942 /// @param LREdit    The LiveRangeEdit object handling the current split.
943 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
944 ///                  must appear in this list.
945 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
946                                  ArrayRef<unsigned> UsedCands) {
947   // These are the intervals created for new global ranges. We may create more
948   // intervals for local ranges.
949   const unsigned NumGlobalIntvs = LREdit.size();
950   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
951   assert(NumGlobalIntvs && "No global intervals configured");
952
953   // Isolate even single instructions when dealing with a proper sub-class.
954   // That guarantees register class inflation for the stack interval because it
955   // is all copies.
956   unsigned Reg = SA->getParent().reg;
957   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
958
959   // First handle all the blocks with uses.
960   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
961   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
962     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
963     unsigned Number = BI.MBB->getNumber();
964     unsigned IntvIn = 0, IntvOut = 0;
965     SlotIndex IntfIn, IntfOut;
966     if (BI.LiveIn) {
967       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
968       if (CandIn != NoCand) {
969         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
970         IntvIn = Cand.IntvIdx;
971         Cand.Intf.moveToBlock(Number);
972         IntfIn = Cand.Intf.first();
973       }
974     }
975     if (BI.LiveOut) {
976       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
977       if (CandOut != NoCand) {
978         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
979         IntvOut = Cand.IntvIdx;
980         Cand.Intf.moveToBlock(Number);
981         IntfOut = Cand.Intf.last();
982       }
983     }
984
985     // Create separate intervals for isolated blocks with multiple uses.
986     if (!IntvIn && !IntvOut) {
987       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
988       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
989         SE->splitSingleBlock(BI);
990       continue;
991     }
992
993     if (IntvIn && IntvOut)
994       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
995     else if (IntvIn)
996       SE->splitRegInBlock(BI, IntvIn, IntfIn);
997     else
998       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
999   }
1000
1001   // Handle live-through blocks. The relevant live-through blocks are stored in
1002   // the ActiveBlocks list with each candidate. We need to filter out
1003   // duplicates.
1004   BitVector Todo = SA->getThroughBlocks();
1005   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1006     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1007     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1008       unsigned Number = Blocks[i];
1009       if (!Todo.test(Number))
1010         continue;
1011       Todo.reset(Number);
1012
1013       unsigned IntvIn = 0, IntvOut = 0;
1014       SlotIndex IntfIn, IntfOut;
1015
1016       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1017       if (CandIn != NoCand) {
1018         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1019         IntvIn = Cand.IntvIdx;
1020         Cand.Intf.moveToBlock(Number);
1021         IntfIn = Cand.Intf.first();
1022       }
1023
1024       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1025       if (CandOut != NoCand) {
1026         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1027         IntvOut = Cand.IntvIdx;
1028         Cand.Intf.moveToBlock(Number);
1029         IntfOut = Cand.Intf.last();
1030       }
1031       if (!IntvIn && !IntvOut)
1032         continue;
1033       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1034     }
1035   }
1036
1037   ++NumGlobalSplits;
1038
1039   SmallVector<unsigned, 8> IntvMap;
1040   SE->finish(&IntvMap);
1041   DebugVars->splitRegister(Reg, LREdit.regs());
1042
1043   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1044   unsigned OrigBlocks = SA->getNumLiveBlocks();
1045
1046   // Sort out the new intervals created by splitting. We get four kinds:
1047   // - Remainder intervals should not be split again.
1048   // - Candidate intervals can be assigned to Cand.PhysReg.
1049   // - Block-local splits are candidates for local splitting.
1050   // - DCE leftovers should go back on the queue.
1051   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1052     LiveInterval &Reg = *LREdit.get(i);
1053
1054     // Ignore old intervals from DCE.
1055     if (getStage(Reg) != RS_New)
1056       continue;
1057
1058     // Remainder interval. Don't try splitting again, spill if it doesn't
1059     // allocate.
1060     if (IntvMap[i] == 0) {
1061       setStage(Reg, RS_Spill);
1062       continue;
1063     }
1064
1065     // Global intervals. Allow repeated splitting as long as the number of live
1066     // blocks is strictly decreasing.
1067     if (IntvMap[i] < NumGlobalIntvs) {
1068       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1069         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1070                      << " blocks as original.\n");
1071         // Don't allow repeated splitting as a safe guard against looping.
1072         setStage(Reg, RS_Split2);
1073       }
1074       continue;
1075     }
1076
1077     // Other intervals are treated as new. This includes local intervals created
1078     // for blocks with multiple uses, and anything created by DCE.
1079   }
1080
1081   if (VerifyEnabled)
1082     MF->verify(this, "After splitting live range around region");
1083 }
1084
1085 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1086                                   SmallVectorImpl<LiveInterval*> &NewVRegs) {
1087   unsigned NumCands = 0;
1088   unsigned BestCand = NoCand;
1089   float BestCost;
1090   SmallVector<unsigned, 8> UsedCands;
1091
1092   // Check if we can split this live range around a compact region.
1093   bool HasCompact = calcCompactRegion(GlobalCand.front());
1094   if (HasCompact) {
1095     // Yes, keep GlobalCand[0] as the compact region candidate.
1096     NumCands = 1;
1097     BestCost = HUGE_VALF;
1098   } else {
1099     // No benefit from the compact region, our fallback will be per-block
1100     // splitting. Make sure we find a solution that is cheaper than spilling.
1101     BestCost = Hysteresis * calcSpillCost();
1102     DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1103   }
1104
1105   Order.rewind();
1106   while (unsigned PhysReg = Order.next()) {
1107     // Discard bad candidates before we run out of interference cache cursors.
1108     // This will only affect register classes with a lot of registers (>32).
1109     if (NumCands == IntfCache.getMaxCursors()) {
1110       unsigned WorstCount = ~0u;
1111       unsigned Worst = 0;
1112       for (unsigned i = 0; i != NumCands; ++i) {
1113         if (i == BestCand || !GlobalCand[i].PhysReg)
1114           continue;
1115         unsigned Count = GlobalCand[i].LiveBundles.count();
1116         if (Count < WorstCount)
1117           Worst = i, WorstCount = Count;
1118       }
1119       --NumCands;
1120       GlobalCand[Worst] = GlobalCand[NumCands];
1121     }
1122
1123     if (GlobalCand.size() <= NumCands)
1124       GlobalCand.resize(NumCands+1);
1125     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1126     Cand.reset(IntfCache, PhysReg);
1127
1128     SpillPlacer->prepare(Cand.LiveBundles);
1129     float Cost;
1130     if (!addSplitConstraints(Cand.Intf, Cost)) {
1131       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1132       continue;
1133     }
1134     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1135     if (Cost >= BestCost) {
1136       DEBUG({
1137         if (BestCand == NoCand)
1138           dbgs() << " worse than no bundles\n";
1139         else
1140           dbgs() << " worse than "
1141                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1142       });
1143       continue;
1144     }
1145     growRegion(Cand);
1146
1147     SpillPlacer->finish();
1148
1149     // No live bundles, defer to splitSingleBlocks().
1150     if (!Cand.LiveBundles.any()) {
1151       DEBUG(dbgs() << " no bundles.\n");
1152       continue;
1153     }
1154
1155     Cost += calcGlobalSplitCost(Cand);
1156     DEBUG({
1157       dbgs() << ", total = " << Cost << " with bundles";
1158       for (int i = Cand.LiveBundles.find_first(); i>=0;
1159            i = Cand.LiveBundles.find_next(i))
1160         dbgs() << " EB#" << i;
1161       dbgs() << ".\n";
1162     });
1163     if (Cost < BestCost) {
1164       BestCand = NumCands;
1165       BestCost = Hysteresis * Cost; // Prevent rounding effects.
1166     }
1167     ++NumCands;
1168   }
1169
1170   // No solutions found, fall back to single block splitting.
1171   if (!HasCompact && BestCand == NoCand)
1172     return 0;
1173
1174   // Prepare split editor.
1175   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1176   SE->reset(LREdit, SplitSpillMode);
1177
1178   // Assign all edge bundles to the preferred candidate, or NoCand.
1179   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1180
1181   // Assign bundles for the best candidate region.
1182   if (BestCand != NoCand) {
1183     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1184     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1185       UsedCands.push_back(BestCand);
1186       Cand.IntvIdx = SE->openIntv();
1187       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1188                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1189       (void)B;
1190     }
1191   }
1192
1193   // Assign bundles for the compact region.
1194   if (HasCompact) {
1195     GlobalSplitCandidate &Cand = GlobalCand.front();
1196     assert(!Cand.PhysReg && "Compact region has no physreg");
1197     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1198       UsedCands.push_back(0);
1199       Cand.IntvIdx = SE->openIntv();
1200       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1201                    << Cand.IntvIdx << ".\n");
1202       (void)B;
1203     }
1204   }
1205
1206   splitAroundRegion(LREdit, UsedCands);
1207   return 0;
1208 }
1209
1210
1211 //===----------------------------------------------------------------------===//
1212 //                            Per-Block Splitting
1213 //===----------------------------------------------------------------------===//
1214
1215 /// tryBlockSplit - Split a global live range around every block with uses. This
1216 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1217 /// they don't allocate.
1218 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1219                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1220   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1221   unsigned Reg = VirtReg.reg;
1222   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1223   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1224   SE->reset(LREdit, SplitSpillMode);
1225   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1226   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1227     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1228     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1229       SE->splitSingleBlock(BI);
1230   }
1231   // No blocks were split.
1232   if (LREdit.empty())
1233     return 0;
1234
1235   // We did split for some blocks.
1236   SmallVector<unsigned, 8> IntvMap;
1237   SE->finish(&IntvMap);
1238
1239   // Tell LiveDebugVariables about the new ranges.
1240   DebugVars->splitRegister(Reg, LREdit.regs());
1241
1242   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1243
1244   // Sort out the new intervals created by splitting. The remainder interval
1245   // goes straight to spilling, the new local ranges get to stay RS_New.
1246   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1247     LiveInterval &LI = *LREdit.get(i);
1248     if (getStage(LI) == RS_New && IntvMap[i] == 0)
1249       setStage(LI, RS_Spill);
1250   }
1251
1252   if (VerifyEnabled)
1253     MF->verify(this, "After splitting live range around basic blocks");
1254   return 0;
1255 }
1256
1257 //===----------------------------------------------------------------------===//
1258 //                             Local Splitting
1259 //===----------------------------------------------------------------------===//
1260
1261
1262 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1263 /// in order to use PhysReg between two entries in SA->UseSlots.
1264 ///
1265 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1266 ///
1267 void RAGreedy::calcGapWeights(unsigned PhysReg,
1268                               SmallVectorImpl<float> &GapWeight) {
1269   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1270   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1271   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1272   const unsigned NumGaps = Uses.size()-1;
1273
1274   // Start and end points for the interference check.
1275   SlotIndex StartIdx =
1276     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1277   SlotIndex StopIdx =
1278     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1279
1280   GapWeight.assign(NumGaps, 0.0f);
1281
1282   // Add interference from each overlapping register.
1283   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1284     if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1285            .checkInterference())
1286       continue;
1287
1288     // We know that VirtReg is a continuous interval from FirstInstr to
1289     // LastInstr, so we don't need InterferenceQuery.
1290     //
1291     // Interference that overlaps an instruction is counted in both gaps
1292     // surrounding the instruction. The exception is interference before
1293     // StartIdx and after StopIdx.
1294     //
1295     LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1296     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1297       // Skip the gaps before IntI.
1298       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1299         if (++Gap == NumGaps)
1300           break;
1301       if (Gap == NumGaps)
1302         break;
1303
1304       // Update the gaps covered by IntI.
1305       const float weight = IntI.value()->weight;
1306       for (; Gap != NumGaps; ++Gap) {
1307         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1308         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1309           break;
1310       }
1311       if (Gap == NumGaps)
1312         break;
1313     }
1314   }
1315 }
1316
1317 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1318 /// basic block.
1319 ///
1320 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1321                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1322   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1323   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1324
1325   // Note that it is possible to have an interval that is live-in or live-out
1326   // while only covering a single block - A phi-def can use undef values from
1327   // predecessors, and the block could be a single-block loop.
1328   // We don't bother doing anything clever about such a case, we simply assume
1329   // that the interval is continuous from FirstInstr to LastInstr. We should
1330   // make sure that we don't do anything illegal to such an interval, though.
1331
1332   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1333   if (Uses.size() <= 2)
1334     return 0;
1335   const unsigned NumGaps = Uses.size()-1;
1336
1337   DEBUG({
1338     dbgs() << "tryLocalSplit: ";
1339     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1340       dbgs() << ' ' << SA->UseSlots[i];
1341     dbgs() << '\n';
1342   });
1343
1344   // Since we allow local split results to be split again, there is a risk of
1345   // creating infinite loops. It is tempting to require that the new live
1346   // ranges have less instructions than the original. That would guarantee
1347   // convergence, but it is too strict. A live range with 3 instructions can be
1348   // split 2+3 (including the COPY), and we want to allow that.
1349   //
1350   // Instead we use these rules:
1351   //
1352   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1353   //    noop split, of course).
1354   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1355   //    the new ranges must have fewer instructions than before the split.
1356   // 3. New ranges with the same number of instructions are marked RS_Split2,
1357   //    smaller ranges are marked RS_New.
1358   //
1359   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1360   // excessive splitting and infinite loops.
1361   //
1362   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1363
1364   // Best split candidate.
1365   unsigned BestBefore = NumGaps;
1366   unsigned BestAfter = 0;
1367   float BestDiff = 0;
1368
1369   const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1370   SmallVector<float, 8> GapWeight;
1371
1372   Order.rewind();
1373   while (unsigned PhysReg = Order.next()) {
1374     // Keep track of the largest spill weight that would need to be evicted in
1375     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1376     calcGapWeights(PhysReg, GapWeight);
1377
1378     // Try to find the best sequence of gaps to close.
1379     // The new spill weight must be larger than any gap interference.
1380
1381     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1382     unsigned SplitBefore = 0, SplitAfter = 1;
1383
1384     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1385     // It is the spill weight that needs to be evicted.
1386     float MaxGap = GapWeight[0];
1387
1388     for (;;) {
1389       // Live before/after split?
1390       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1391       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1392
1393       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1394                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1395                    << " i=" << MaxGap);
1396
1397       // Stop before the interval gets so big we wouldn't be making progress.
1398       if (!LiveBefore && !LiveAfter) {
1399         DEBUG(dbgs() << " all\n");
1400         break;
1401       }
1402       // Should the interval be extended or shrunk?
1403       bool Shrink = true;
1404
1405       // How many gaps would the new range have?
1406       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1407
1408       // Legally, without causing looping?
1409       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1410
1411       if (Legal && MaxGap < HUGE_VALF) {
1412         // Estimate the new spill weight. Each instruction reads or writes the
1413         // register. Conservatively assume there are no read-modify-write
1414         // instructions.
1415         //
1416         // Try to guess the size of the new interval.
1417         const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1418                                  Uses[SplitBefore].distance(Uses[SplitAfter]) +
1419                                  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1420         // Would this split be possible to allocate?
1421         // Never allocate all gaps, we wouldn't be making progress.
1422         DEBUG(dbgs() << " w=" << EstWeight);
1423         if (EstWeight * Hysteresis >= MaxGap) {
1424           Shrink = false;
1425           float Diff = EstWeight - MaxGap;
1426           if (Diff > BestDiff) {
1427             DEBUG(dbgs() << " (best)");
1428             BestDiff = Hysteresis * Diff;
1429             BestBefore = SplitBefore;
1430             BestAfter = SplitAfter;
1431           }
1432         }
1433       }
1434
1435       // Try to shrink.
1436       if (Shrink) {
1437         if (++SplitBefore < SplitAfter) {
1438           DEBUG(dbgs() << " shrink\n");
1439           // Recompute the max when necessary.
1440           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1441             MaxGap = GapWeight[SplitBefore];
1442             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1443               MaxGap = std::max(MaxGap, GapWeight[i]);
1444           }
1445           continue;
1446         }
1447         MaxGap = 0;
1448       }
1449
1450       // Try to extend the interval.
1451       if (SplitAfter >= NumGaps) {
1452         DEBUG(dbgs() << " end\n");
1453         break;
1454       }
1455
1456       DEBUG(dbgs() << " extend\n");
1457       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1458     }
1459   }
1460
1461   // Didn't find any candidates?
1462   if (BestBefore == NumGaps)
1463     return 0;
1464
1465   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1466                << '-' << Uses[BestAfter] << ", " << BestDiff
1467                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1468
1469   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1470   SE->reset(LREdit);
1471
1472   SE->openIntv();
1473   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1474   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1475   SE->useIntv(SegStart, SegStop);
1476   SmallVector<unsigned, 8> IntvMap;
1477   SE->finish(&IntvMap);
1478   DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1479
1480   // If the new range has the same number of instructions as before, mark it as
1481   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1482   // leave the new intervals as RS_New so they can compete.
1483   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1484   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1485   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1486   if (NewGaps >= NumGaps) {
1487     DEBUG(dbgs() << "Tagging non-progress ranges: ");
1488     assert(!ProgressRequired && "Didn't make progress when it was required.");
1489     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1490       if (IntvMap[i] == 1) {
1491         setStage(*LREdit.get(i), RS_Split2);
1492         DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1493       }
1494     DEBUG(dbgs() << '\n');
1495   }
1496   ++NumLocalSplits;
1497
1498   return 0;
1499 }
1500
1501 //===----------------------------------------------------------------------===//
1502 //                          Live Range Splitting
1503 //===----------------------------------------------------------------------===//
1504
1505 /// trySplit - Try to split VirtReg or one of its interferences, making it
1506 /// assignable.
1507 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1508 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1509                             SmallVectorImpl<LiveInterval*>&NewVRegs) {
1510   // Ranges must be Split2 or less.
1511   if (getStage(VirtReg) >= RS_Spill)
1512     return 0;
1513
1514   // Local intervals are handled separately.
1515   if (LIS->intervalIsInOneMBB(VirtReg)) {
1516     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1517     SA->analyze(&VirtReg);
1518     return tryLocalSplit(VirtReg, Order, NewVRegs);
1519   }
1520
1521   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1522
1523   SA->analyze(&VirtReg);
1524
1525   // FIXME: SplitAnalysis may repair broken live ranges coming from the
1526   // coalescer. That may cause the range to become allocatable which means that
1527   // tryRegionSplit won't be making progress. This check should be replaced with
1528   // an assertion when the coalescer is fixed.
1529   if (SA->didRepairRange()) {
1530     // VirtReg has changed, so all cached queries are invalid.
1531     invalidateVirtRegs();
1532     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1533       return PhysReg;
1534   }
1535
1536   // First try to split around a region spanning multiple blocks. RS_Split2
1537   // ranges already made dubious progress with region splitting, so they go
1538   // straight to single block splitting.
1539   if (getStage(VirtReg) < RS_Split2) {
1540     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1541     if (PhysReg || !NewVRegs.empty())
1542       return PhysReg;
1543   }
1544
1545   // Then isolate blocks.
1546   return tryBlockSplit(VirtReg, Order, NewVRegs);
1547 }
1548
1549
1550 //===----------------------------------------------------------------------===//
1551 //                            Main Entry Point
1552 //===----------------------------------------------------------------------===//
1553
1554 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1555                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1556   // First try assigning a free register.
1557   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1558   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1559     return PhysReg;
1560
1561   LiveRangeStage Stage = getStage(VirtReg);
1562   DEBUG(dbgs() << StageName[Stage]
1563                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1564
1565   // Try to evict a less worthy live range, but only for ranges from the primary
1566   // queue. The RS_Split ranges already failed to do this, and they should not
1567   // get a second chance until they have been split.
1568   if (Stage != RS_Split)
1569     if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1570       return PhysReg;
1571
1572   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1573
1574   // The first time we see a live range, don't try to split or spill.
1575   // Wait until the second time, when all smaller ranges have been allocated.
1576   // This gives a better picture of the interference to split around.
1577   if (Stage < RS_Split) {
1578     setStage(VirtReg, RS_Split);
1579     DEBUG(dbgs() << "wait for second round\n");
1580     NewVRegs.push_back(&VirtReg);
1581     return 0;
1582   }
1583
1584   // If we couldn't allocate a register from spilling, there is probably some
1585   // invalid inline assembly. The base class wil report it.
1586   if (Stage >= RS_Done || !VirtReg.isSpillable())
1587     return ~0u;
1588
1589   // Try splitting VirtReg or interferences.
1590   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1591   if (PhysReg || !NewVRegs.empty())
1592     return PhysReg;
1593
1594   // Finally spill VirtReg itself.
1595   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1596   LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1597   spiller().spill(LRE);
1598   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1599
1600   if (VerifyEnabled)
1601     MF->verify(this, "After spilling");
1602
1603   // The live virtual register requesting allocation was spilled, so tell
1604   // the caller not to allocate anything during this round.
1605   return 0;
1606 }
1607
1608 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1609   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1610                << "********** Function: "
1611                << ((Value*)mf.getFunction())->getName() << '\n');
1612
1613   MF = &mf;
1614   if (VerifyEnabled)
1615     MF->verify(this, "Before greedy register allocator");
1616
1617   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1618   Indexes = &getAnalysis<SlotIndexes>();
1619   DomTree = &getAnalysis<MachineDominatorTree>();
1620   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1621   Loops = &getAnalysis<MachineLoopInfo>();
1622   Bundles = &getAnalysis<EdgeBundles>();
1623   SpillPlacer = &getAnalysis<SpillPlacement>();
1624   DebugVars = &getAnalysis<LiveDebugVariables>();
1625
1626   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1627   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1628   ExtraRegInfo.clear();
1629   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1630   NextCascade = 1;
1631   IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1632   GlobalCand.resize(32);  // This will grow as needed.
1633
1634   allocatePhysRegs();
1635   addMBBLiveIns(MF);
1636   LIS->addKillFlags();
1637
1638   // Run rewriter
1639   {
1640     NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1641     VRM->rewrite(Indexes);
1642   }
1643
1644   // Write out new DBG_VALUE instructions.
1645   {
1646     NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled);
1647     DebugVars->emitDebugValues(VRM);
1648   }
1649
1650   // The pass output is in VirtRegMap. Release all the transient data.
1651   releaseMemory();
1652
1653   return true;
1654 }