]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / CodeGen / RegAllocLinearScan.cpp
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
19 #include "RegisterClassInfo.h"
20 #include "Spiller.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Function.h"
23 #include "llvm/CodeGen/CalcSpillWeights.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <queue>
44 #include <memory>
45 #include <cmath>
46
47 using namespace llvm;
48
49 STATISTIC(NumIters     , "Number of iterations performed");
50 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
51 STATISTIC(NumCoalesce,   "Number of copies coalesced");
52 STATISTIC(NumDowngrade,  "Number of registers downgraded");
53
54 static cl::opt<bool>
55 NewHeuristic("new-spilling-heuristic",
56              cl::desc("Use new spilling heuristic"),
57              cl::init(false), cl::Hidden);
58
59 static cl::opt<bool>
60 TrivCoalesceEnds("trivial-coalesce-ends",
61                   cl::desc("Attempt trivial coalescing of interval ends"),
62                   cl::init(false), cl::Hidden);
63
64 static cl::opt<bool>
65 AvoidWAWHazard("avoid-waw-hazard",
66                cl::desc("Avoid write-write hazards for some register classes"),
67                cl::init(false), cl::Hidden);
68
69 static RegisterRegAlloc
70 linearscanRegAlloc("linearscan", "linear scan register allocator",
71                    createLinearScanRegisterAllocator);
72
73 namespace {
74   // When we allocate a register, add it to a fixed-size queue of
75   // registers to skip in subsequent allocations. This trades a small
76   // amount of register pressure and increased spills for flexibility in
77   // the post-pass scheduler.
78   //
79   // Note that in a the number of registers used for reloading spills
80   // will be one greater than the value of this option.
81   //
82   // One big limitation of this is that it doesn't differentiate between
83   // different register classes. So on x86-64, if there is xmm register
84   // pressure, it can caused fewer GPRs to be held in the queue.
85   static cl::opt<unsigned>
86   NumRecentlyUsedRegs("linearscan-skip-count",
87                       cl::desc("Number of registers for linearscan to remember"
88                                "to skip."),
89                       cl::init(0),
90                       cl::Hidden);
91
92   struct RALinScan : public MachineFunctionPass {
93     static char ID;
94     RALinScan() : MachineFunctionPass(ID) {
95       initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
96       initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97       initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
98       initializeRegisterCoalescerPass(
99         *PassRegistry::getPassRegistry());
100       initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
101       initializeLiveStacksPass(*PassRegistry::getPassRegistry());
102       initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
103       initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
104       initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
105       initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
106       
107       // Initialize the queue to record recently-used registers.
108       if (NumRecentlyUsedRegs > 0)
109         RecentRegs.resize(NumRecentlyUsedRegs, 0);
110       RecentNext = RecentRegs.begin();
111       avoidWAW_ = 0;
112     }
113
114     typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
115     typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
116   private:
117     /// RelatedRegClasses - This structure is built the first time a function is
118     /// compiled, and keeps track of which register classes have registers that
119     /// belong to multiple classes or have aliases that are in other classes.
120     EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
121     DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
122
123     // NextReloadMap - For each register in the map, it maps to the another
124     // register which is defined by a reload from the same stack slot and
125     // both reloads are in the same basic block.
126     DenseMap<unsigned, unsigned> NextReloadMap;
127
128     // DowngradedRegs - A set of registers which are being "downgraded", i.e.
129     // un-favored for allocation.
130     SmallSet<unsigned, 8> DowngradedRegs;
131
132     // DowngradeMap - A map from virtual registers to physical registers being
133     // downgraded for the virtual registers.
134     DenseMap<unsigned, unsigned> DowngradeMap;
135
136     MachineFunction* mf_;
137     MachineRegisterInfo* mri_;
138     const TargetMachine* tm_;
139     const TargetRegisterInfo* tri_;
140     const TargetInstrInfo* tii_;
141     BitVector allocatableRegs_;
142     BitVector reservedRegs_;
143     LiveIntervals* li_;
144     MachineLoopInfo *loopInfo;
145     RegisterClassInfo RegClassInfo;
146
147     /// handled_ - Intervals are added to the handled_ set in the order of their
148     /// start value.  This is uses for backtracking.
149     std::vector<LiveInterval*> handled_;
150
151     /// fixed_ - Intervals that correspond to machine registers.
152     ///
153     IntervalPtrs fixed_;
154
155     /// active_ - Intervals that are currently being processed, and which have a
156     /// live range active for the current point.
157     IntervalPtrs active_;
158
159     /// inactive_ - Intervals that are currently being processed, but which have
160     /// a hold at the current point.
161     IntervalPtrs inactive_;
162
163     typedef std::priority_queue<LiveInterval*,
164                                 SmallVector<LiveInterval*, 64>,
165                                 greater_ptr<LiveInterval> > IntervalHeap;
166     IntervalHeap unhandled_;
167
168     /// regUse_ - Tracks register usage.
169     SmallVector<unsigned, 32> regUse_;
170     SmallVector<unsigned, 32> regUseBackUp_;
171
172     /// vrm_ - Tracks register assignments.
173     VirtRegMap* vrm_;
174
175     std::auto_ptr<VirtRegRewriter> rewriter_;
176
177     std::auto_ptr<Spiller> spiller_;
178
179     // The queue of recently-used registers.
180     SmallVector<unsigned, 4> RecentRegs;
181     SmallVector<unsigned, 4>::iterator RecentNext;
182
183     // Last write-after-write register written.
184     unsigned avoidWAW_;
185
186     // Record that we just picked this register.
187     void recordRecentlyUsed(unsigned reg) {
188       assert(reg != 0 && "Recently used register is NOREG!");
189       if (!RecentRegs.empty()) {
190         *RecentNext++ = reg;
191         if (RecentNext == RecentRegs.end())
192           RecentNext = RecentRegs.begin();
193       }
194     }
195
196   public:
197     virtual const char* getPassName() const {
198       return "Linear Scan Register Allocator";
199     }
200
201     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
202       AU.setPreservesCFG();
203       AU.addRequired<AliasAnalysis>();
204       AU.addPreserved<AliasAnalysis>();
205       AU.addRequired<LiveIntervals>();
206       AU.addPreserved<SlotIndexes>();
207       if (StrongPHIElim)
208         AU.addRequiredID(StrongPHIEliminationID);
209       // Make sure PassManager knows which analyses to make available
210       // to coalescing and which analyses coalescing invalidates.
211       AU.addRequiredTransitiveID(RegisterCoalescerPassID);
212       AU.addRequired<CalculateSpillWeights>();
213       AU.addRequiredID(LiveStacksID);
214       AU.addPreservedID(LiveStacksID);
215       AU.addRequired<MachineLoopInfo>();
216       AU.addPreserved<MachineLoopInfo>();
217       AU.addRequired<VirtRegMap>();
218       AU.addPreserved<VirtRegMap>();
219       AU.addRequired<LiveDebugVariables>();
220       AU.addPreserved<LiveDebugVariables>();
221       AU.addRequiredID(MachineDominatorsID);
222       AU.addPreservedID(MachineDominatorsID);
223       MachineFunctionPass::getAnalysisUsage(AU);
224     }
225
226     /// runOnMachineFunction - register allocate the whole function
227     bool runOnMachineFunction(MachineFunction&);
228
229     // Determine if we skip this register due to its being recently used.
230     bool isRecentlyUsed(unsigned reg) const {
231       return reg == avoidWAW_ ||
232        std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
233     }
234
235   private:
236     /// linearScan - the linear scan algorithm
237     void linearScan();
238
239     /// initIntervalSets - initialize the interval sets.
240     ///
241     void initIntervalSets();
242
243     /// processActiveIntervals - expire old intervals and move non-overlapping
244     /// ones to the inactive list.
245     void processActiveIntervals(SlotIndex CurPoint);
246
247     /// processInactiveIntervals - expire old intervals and move overlapping
248     /// ones to the active list.
249     void processInactiveIntervals(SlotIndex CurPoint);
250
251     /// hasNextReloadInterval - Return the next liveinterval that's being
252     /// defined by a reload from the same SS as the specified one.
253     LiveInterval *hasNextReloadInterval(LiveInterval *cur);
254
255     /// DowngradeRegister - Downgrade a register for allocation.
256     void DowngradeRegister(LiveInterval *li, unsigned Reg);
257
258     /// UpgradeRegister - Upgrade a register for allocation.
259     void UpgradeRegister(unsigned Reg);
260
261     /// assignRegOrStackSlotAtInterval - assign a register if one
262     /// is available, or spill.
263     void assignRegOrStackSlotAtInterval(LiveInterval* cur);
264
265     void updateSpillWeights(std::vector<float> &Weights,
266                             unsigned reg, float weight,
267                             const TargetRegisterClass *RC);
268
269     /// findIntervalsToSpill - Determine the intervals to spill for the
270     /// specified interval. It's passed the physical registers whose spill
271     /// weight is the lowest among all the registers whose live intervals
272     /// conflict with the interval.
273     void findIntervalsToSpill(LiveInterval *cur,
274                             std::vector<std::pair<unsigned,float> > &Candidates,
275                             unsigned NumCands,
276                             SmallVector<LiveInterval*, 8> &SpillIntervals);
277
278     /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
279     /// try to allocate the definition to the same register as the source,
280     /// if the register is not defined during the life time of the interval.
281     /// This eliminates a copy, and is used to coalesce copies which were not
282     /// coalesced away before allocation either due to dest and src being in
283     /// different register classes or because the coalescer was overly
284     /// conservative.
285     unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
286
287     ///
288     /// Register usage / availability tracking helpers.
289     ///
290
291     void initRegUses() {
292       regUse_.resize(tri_->getNumRegs(), 0);
293       regUseBackUp_.resize(tri_->getNumRegs(), 0);
294     }
295
296     void finalizeRegUses() {
297 #ifndef NDEBUG
298       // Verify all the registers are "freed".
299       bool Error = false;
300       for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
301         if (regUse_[i] != 0) {
302           dbgs() << tri_->getName(i) << " is still in use!\n";
303           Error = true;
304         }
305       }
306       if (Error)
307         llvm_unreachable(0);
308 #endif
309       regUse_.clear();
310       regUseBackUp_.clear();
311     }
312
313     void addRegUse(unsigned physReg) {
314       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
315              "should be physical register!");
316       ++regUse_[physReg];
317       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
318         ++regUse_[*as];
319     }
320
321     void delRegUse(unsigned physReg) {
322       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
323              "should be physical register!");
324       assert(regUse_[physReg] != 0);
325       --regUse_[physReg];
326       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
327         assert(regUse_[*as] != 0);
328         --regUse_[*as];
329       }
330     }
331
332     bool isRegAvail(unsigned physReg) const {
333       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
334              "should be physical register!");
335       return regUse_[physReg] == 0;
336     }
337
338     void backUpRegUses() {
339       regUseBackUp_ = regUse_;
340     }
341
342     void restoreRegUses() {
343       regUse_ = regUseBackUp_;
344     }
345
346     ///
347     /// Register handling helpers.
348     ///
349
350     /// getFreePhysReg - return a free physical register for this virtual
351     /// register interval if we have one, otherwise return 0.
352     unsigned getFreePhysReg(LiveInterval* cur);
353     unsigned getFreePhysReg(LiveInterval* cur,
354                             const TargetRegisterClass *RC,
355                             unsigned MaxInactiveCount,
356                             SmallVector<unsigned, 256> &inactiveCounts,
357                             bool SkipDGRegs);
358
359     /// getFirstNonReservedPhysReg - return the first non-reserved physical
360     /// register in the register class.
361     unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
362       ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
363       assert(!O.empty() && "All registers reserved?!");
364       return O.front();
365     }
366
367     void ComputeRelatedRegClasses();
368
369     template <typename ItTy>
370     void printIntervals(const char* const str, ItTy i, ItTy e) const {
371       DEBUG({
372           if (str)
373             dbgs() << str << " intervals:\n";
374
375           for (; i != e; ++i) {
376             dbgs() << '\t' << *i->first << " -> ";
377
378             unsigned reg = i->first->reg;
379             if (TargetRegisterInfo::isVirtualRegister(reg))
380               reg = vrm_->getPhys(reg);
381
382             dbgs() << tri_->getName(reg) << '\n';
383           }
384         });
385     }
386   };
387   char RALinScan::ID = 0;
388 }
389
390 INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
391                       "Linear Scan Register Allocator", false, false)
392 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
393 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
394 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
395 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
396 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
397 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
398 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
399 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
400 INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
401                     "Linear Scan Register Allocator", false, false)
402
403 void RALinScan::ComputeRelatedRegClasses() {
404   // First pass, add all reg classes to the union, and determine at least one
405   // reg class that each register is in.
406   bool HasAliases = false;
407   for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
408        E = tri_->regclass_end(); RCI != E; ++RCI) {
409     RelatedRegClasses.insert(*RCI);
410     for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
411          I != E; ++I) {
412       HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
413
414       const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
415       if (PRC) {
416         // Already processed this register.  Just make sure we know that
417         // multiple register classes share a register.
418         RelatedRegClasses.unionSets(PRC, *RCI);
419       } else {
420         PRC = *RCI;
421       }
422     }
423   }
424
425   // Second pass, now that we know conservatively what register classes each reg
426   // belongs to, add info about aliases.  We don't need to do this for targets
427   // without register aliases.
428   if (HasAliases)
429     for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
430          I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
431          I != E; ++I)
432       for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
433         const TargetRegisterClass *AliasClass = 
434           OneClassForEachPhysReg.lookup(*AS);
435         if (AliasClass)
436           RelatedRegClasses.unionSets(I->second, AliasClass);
437       }
438 }
439
440 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
441 /// allocate the definition the same register as the source register if the
442 /// register is not defined during live time of the interval. If the interval is
443 /// killed by a copy, try to use the destination register. This eliminates a
444 /// copy. This is used to coalesce copies which were not coalesced away before
445 /// allocation either due to dest and src being in different register classes or
446 /// because the coalescer was overly conservative.
447 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
448   unsigned Preference = vrm_->getRegAllocPref(cur.reg);
449   if ((Preference && Preference == Reg) || !cur.containsOneValue())
450     return Reg;
451
452   // We cannot handle complicated live ranges. Simple linear stuff only.
453   if (cur.ranges.size() != 1)
454     return Reg;
455
456   const LiveRange &range = cur.ranges.front();
457
458   VNInfo *vni = range.valno;
459   if (vni->isUnused() || !vni->def.isValid())
460     return Reg;
461
462   unsigned CandReg;
463   {
464     MachineInstr *CopyMI;
465     if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
466       // Defined by a copy, try to extend SrcReg forward
467       CandReg = CopyMI->getOperand(1).getReg();
468     else if (TrivCoalesceEnds &&
469             (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
470              CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
471       // Only used by a copy, try to extend DstReg backwards
472       CandReg = CopyMI->getOperand(0).getReg();
473     else
474       return Reg;
475
476     // If the target of the copy is a sub-register then don't coalesce.
477     if(CopyMI->getOperand(0).getSubReg())
478       return Reg;
479   }
480
481   if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
482     if (!vrm_->isAssignedReg(CandReg))
483       return Reg;
484     CandReg = vrm_->getPhys(CandReg);
485   }
486   if (Reg == CandReg)
487     return Reg;
488
489   const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
490   if (!RC->contains(CandReg))
491     return Reg;
492
493   if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
494     return Reg;
495
496   // Try to coalesce.
497   DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
498         << '\n');
499   vrm_->clearVirt(cur.reg);
500   vrm_->assignVirt2Phys(cur.reg, CandReg);
501
502   ++NumCoalesce;
503   return CandReg;
504 }
505
506 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
507   mf_ = &fn;
508   mri_ = &fn.getRegInfo();
509   tm_ = &fn.getTarget();
510   tri_ = tm_->getRegisterInfo();
511   tii_ = tm_->getInstrInfo();
512   allocatableRegs_ = tri_->getAllocatableSet(fn);
513   reservedRegs_ = tri_->getReservedRegs(fn);
514   li_ = &getAnalysis<LiveIntervals>();
515   loopInfo = &getAnalysis<MachineLoopInfo>();
516   RegClassInfo.runOnMachineFunction(fn);
517
518   // We don't run the coalescer here because we have no reason to
519   // interact with it.  If the coalescer requires interaction, it
520   // won't do anything.  If it doesn't require interaction, we assume
521   // it was run as a separate pass.
522
523   // If this is the first function compiled, compute the related reg classes.
524   if (RelatedRegClasses.empty())
525     ComputeRelatedRegClasses();
526
527   // Also resize register usage trackers.
528   initRegUses();
529
530   vrm_ = &getAnalysis<VirtRegMap>();
531   if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
532
533   spiller_.reset(createSpiller(*this, *mf_, *vrm_));
534
535   initIntervalSets();
536
537   linearScan();
538
539   // Rewrite spill code and update the PhysRegsUsed set.
540   rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
541
542   // Write out new DBG_VALUE instructions.
543   getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
544
545   assert(unhandled_.empty() && "Unhandled live intervals remain!");
546
547   finalizeRegUses();
548
549   fixed_.clear();
550   active_.clear();
551   inactive_.clear();
552   handled_.clear();
553   NextReloadMap.clear();
554   DowngradedRegs.clear();
555   DowngradeMap.clear();
556   spiller_.reset(0);
557
558   return true;
559 }
560
561 /// initIntervalSets - initialize the interval sets.
562 ///
563 void RALinScan::initIntervalSets()
564 {
565   assert(unhandled_.empty() && fixed_.empty() &&
566          active_.empty() && inactive_.empty() &&
567          "interval sets should be empty on initialization");
568
569   handled_.reserve(li_->getNumIntervals());
570
571   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
572     if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
573       if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
574         mri_->setPhysRegUsed(i->second->reg);
575         fixed_.push_back(std::make_pair(i->second, i->second->begin()));
576       }
577     } else {
578       if (i->second->empty()) {
579         assignRegOrStackSlotAtInterval(i->second);
580       }
581       else
582         unhandled_.push(i->second);
583     }
584   }
585 }
586
587 void RALinScan::linearScan() {
588   // linear scan algorithm
589   DEBUG({
590       dbgs() << "********** LINEAR SCAN **********\n"
591              << "********** Function: "
592              << mf_->getFunction()->getName() << '\n';
593       printIntervals("fixed", fixed_.begin(), fixed_.end());
594     });
595
596   while (!unhandled_.empty()) {
597     // pick the interval with the earliest start point
598     LiveInterval* cur = unhandled_.top();
599     unhandled_.pop();
600     ++NumIters;
601     DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
602
603     assert(!cur->empty() && "Empty interval in unhandled set.");
604
605     processActiveIntervals(cur->beginIndex());
606     processInactiveIntervals(cur->beginIndex());
607
608     assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
609            "Can only allocate virtual registers!");
610
611     // Allocating a virtual register. try to find a free
612     // physical register or spill an interval (possibly this one) in order to
613     // assign it one.
614     assignRegOrStackSlotAtInterval(cur);
615
616     DEBUG({
617         printIntervals("active", active_.begin(), active_.end());
618         printIntervals("inactive", inactive_.begin(), inactive_.end());
619       });
620   }
621
622   // Expire any remaining active intervals
623   while (!active_.empty()) {
624     IntervalPtr &IP = active_.back();
625     unsigned reg = IP.first->reg;
626     DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
627     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
628            "Can only allocate virtual registers!");
629     reg = vrm_->getPhys(reg);
630     delRegUse(reg);
631     active_.pop_back();
632   }
633
634   // Expire any remaining inactive intervals
635   DEBUG({
636       for (IntervalPtrs::reverse_iterator
637              i = inactive_.rbegin(); i != inactive_.rend(); ++i)
638         dbgs() << "\tinterval " << *i->first << " expired\n";
639     });
640   inactive_.clear();
641
642   // Add live-ins to every BB except for entry. Also perform trivial coalescing.
643   MachineFunction::iterator EntryMBB = mf_->begin();
644   SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
645   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
646     LiveInterval &cur = *i->second;
647     unsigned Reg = 0;
648     bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
649     if (isPhys)
650       Reg = cur.reg;
651     else if (vrm_->isAssignedReg(cur.reg))
652       Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
653     if (!Reg)
654       continue;
655     // Ignore splited live intervals.
656     if (!isPhys && vrm_->getPreSplitReg(cur.reg))
657       continue;
658
659     for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
660          I != E; ++I) {
661       const LiveRange &LR = *I;
662       if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
663         for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
664           if (LiveInMBBs[i] != EntryMBB) {
665             assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
666                    "Adding a virtual register to livein set?");
667             LiveInMBBs[i]->addLiveIn(Reg);
668           }
669         LiveInMBBs.clear();
670       }
671     }
672   }
673
674   DEBUG(dbgs() << *vrm_);
675
676   // Look for physical registers that end up not being allocated even though
677   // register allocator had to spill other registers in its register class.
678   if (!vrm_->FindUnusedRegisters(li_))
679     return;
680 }
681
682 /// processActiveIntervals - expire old intervals and move non-overlapping ones
683 /// to the inactive list.
684 void RALinScan::processActiveIntervals(SlotIndex CurPoint)
685 {
686   DEBUG(dbgs() << "\tprocessing active intervals:\n");
687
688   for (unsigned i = 0, e = active_.size(); i != e; ++i) {
689     LiveInterval *Interval = active_[i].first;
690     LiveInterval::iterator IntervalPos = active_[i].second;
691     unsigned reg = Interval->reg;
692
693     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
694
695     if (IntervalPos == Interval->end()) {     // Remove expired intervals.
696       DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
697       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
698              "Can only allocate virtual registers!");
699       reg = vrm_->getPhys(reg);
700       delRegUse(reg);
701
702       // Pop off the end of the list.
703       active_[i] = active_.back();
704       active_.pop_back();
705       --i; --e;
706
707     } else if (IntervalPos->start > CurPoint) {
708       // Move inactive intervals to inactive list.
709       DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
710       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
711              "Can only allocate virtual registers!");
712       reg = vrm_->getPhys(reg);
713       delRegUse(reg);
714       // add to inactive.
715       inactive_.push_back(std::make_pair(Interval, IntervalPos));
716
717       // Pop off the end of the list.
718       active_[i] = active_.back();
719       active_.pop_back();
720       --i; --e;
721     } else {
722       // Otherwise, just update the iterator position.
723       active_[i].second = IntervalPos;
724     }
725   }
726 }
727
728 /// processInactiveIntervals - expire old intervals and move overlapping
729 /// ones to the active list.
730 void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
731 {
732   DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
733
734   for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
735     LiveInterval *Interval = inactive_[i].first;
736     LiveInterval::iterator IntervalPos = inactive_[i].second;
737     unsigned reg = Interval->reg;
738
739     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
740
741     if (IntervalPos == Interval->end()) {       // remove expired intervals.
742       DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
743
744       // Pop off the end of the list.
745       inactive_[i] = inactive_.back();
746       inactive_.pop_back();
747       --i; --e;
748     } else if (IntervalPos->start <= CurPoint) {
749       // move re-activated intervals in active list
750       DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
751       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
752              "Can only allocate virtual registers!");
753       reg = vrm_->getPhys(reg);
754       addRegUse(reg);
755       // add to active
756       active_.push_back(std::make_pair(Interval, IntervalPos));
757
758       // Pop off the end of the list.
759       inactive_[i] = inactive_.back();
760       inactive_.pop_back();
761       --i; --e;
762     } else {
763       // Otherwise, just update the iterator position.
764       inactive_[i].second = IntervalPos;
765     }
766   }
767 }
768
769 /// updateSpillWeights - updates the spill weights of the specifed physical
770 /// register and its weight.
771 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
772                                    unsigned reg, float weight,
773                                    const TargetRegisterClass *RC) {
774   SmallSet<unsigned, 4> Processed;
775   SmallSet<unsigned, 4> SuperAdded;
776   SmallVector<unsigned, 4> Supers;
777   Weights[reg] += weight;
778   Processed.insert(reg);
779   for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
780     Weights[*as] += weight;
781     Processed.insert(*as);
782     if (tri_->isSubRegister(*as, reg) &&
783         SuperAdded.insert(*as) &&
784         RC->contains(*as)) {
785       Supers.push_back(*as);
786     }
787   }
788
789   // If the alias is a super-register, and the super-register is in the
790   // register class we are trying to allocate. Then add the weight to all
791   // sub-registers of the super-register even if they are not aliases.
792   // e.g. allocating for GR32, bh is not used, updating bl spill weight.
793   //      bl should get the same spill weight otherwise it will be chosen
794   //      as a spill candidate since spilling bh doesn't make ebx available.
795   for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
796     for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
797       if (!Processed.count(*sr))
798         Weights[*sr] += weight;
799   }
800 }
801
802 static
803 RALinScan::IntervalPtrs::iterator
804 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
805   for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
806        I != E; ++I)
807     if (I->first == LI) return I;
808   return IP.end();
809 }
810
811 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
812                                     SlotIndex Point){
813   for (unsigned i = 0, e = V.size(); i != e; ++i) {
814     RALinScan::IntervalPtr &IP = V[i];
815     LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
816                                                 IP.second, Point);
817     if (I != IP.first->begin()) --I;
818     IP.second = I;
819   }
820 }
821
822 /// getConflictWeight - Return the number of conflicts between cur
823 /// live interval and defs and uses of Reg weighted by loop depthes.
824 static
825 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
826                         MachineRegisterInfo *mri_,
827                         MachineLoopInfo *loopInfo) {
828   float Conflicts = 0;
829   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
830          E = mri_->reg_end(); I != E; ++I) {
831     MachineInstr *MI = &*I;
832     if (cur->liveAt(li_->getInstructionIndex(MI))) {
833       unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
834       Conflicts += std::pow(10.0f, (float)loopDepth);
835     }
836   }
837   return Conflicts;
838 }
839
840 /// findIntervalsToSpill - Determine the intervals to spill for the
841 /// specified interval. It's passed the physical registers whose spill
842 /// weight is the lowest among all the registers whose live intervals
843 /// conflict with the interval.
844 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
845                             std::vector<std::pair<unsigned,float> > &Candidates,
846                             unsigned NumCands,
847                             SmallVector<LiveInterval*, 8> &SpillIntervals) {
848   // We have figured out the *best* register to spill. But there are other
849   // registers that are pretty good as well (spill weight within 3%). Spill
850   // the one that has fewest defs and uses that conflict with cur.
851   float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
852   SmallVector<LiveInterval*, 8> SLIs[3];
853
854   DEBUG({
855       dbgs() << "\tConsidering " << NumCands << " candidates: ";
856       for (unsigned i = 0; i != NumCands; ++i)
857         dbgs() << tri_->getName(Candidates[i].first) << " ";
858       dbgs() << "\n";
859     });
860
861   // Calculate the number of conflicts of each candidate.
862   for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
863     unsigned Reg = i->first->reg;
864     unsigned PhysReg = vrm_->getPhys(Reg);
865     if (!cur->overlapsFrom(*i->first, i->second))
866       continue;
867     for (unsigned j = 0; j < NumCands; ++j) {
868       unsigned Candidate = Candidates[j].first;
869       if (tri_->regsOverlap(PhysReg, Candidate)) {
870         if (NumCands > 1)
871           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
872         SLIs[j].push_back(i->first);
873       }
874     }
875   }
876
877   for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
878     unsigned Reg = i->first->reg;
879     unsigned PhysReg = vrm_->getPhys(Reg);
880     if (!cur->overlapsFrom(*i->first, i->second-1))
881       continue;
882     for (unsigned j = 0; j < NumCands; ++j) {
883       unsigned Candidate = Candidates[j].first;
884       if (tri_->regsOverlap(PhysReg, Candidate)) {
885         if (NumCands > 1)
886           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
887         SLIs[j].push_back(i->first);
888       }
889     }
890   }
891
892   // Which is the best candidate?
893   unsigned BestCandidate = 0;
894   float MinConflicts = Conflicts[0];
895   for (unsigned i = 1; i != NumCands; ++i) {
896     if (Conflicts[i] < MinConflicts) {
897       BestCandidate = i;
898       MinConflicts = Conflicts[i];
899     }
900   }
901
902   std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
903             std::back_inserter(SpillIntervals));
904 }
905
906 namespace {
907   struct WeightCompare {
908   private:
909     const RALinScan &Allocator;
910
911   public:
912     WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
913
914     typedef std::pair<unsigned, float> RegWeightPair;
915     bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
916       return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
917     }
918   };
919 }
920
921 static bool weightsAreClose(float w1, float w2) {
922   if (!NewHeuristic)
923     return false;
924
925   float diff = w1 - w2;
926   if (diff <= 0.02f)  // Within 0.02f
927     return true;
928   return (diff / w2) <= 0.05f;  // Within 5%.
929 }
930
931 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
932   DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
933   if (I == NextReloadMap.end())
934     return 0;
935   return &li_->getInterval(I->second);
936 }
937
938 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
939   for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
940     bool isNew = DowngradedRegs.insert(*AS);
941     (void)isNew; // Silence compiler warning.
942     assert(isNew && "Multiple reloads holding the same register?");
943     DowngradeMap.insert(std::make_pair(li->reg, *AS));
944   }
945   ++NumDowngrade;
946 }
947
948 void RALinScan::UpgradeRegister(unsigned Reg) {
949   if (Reg) {
950     DowngradedRegs.erase(Reg);
951     for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
952       DowngradedRegs.erase(*AS);
953   }
954 }
955
956 namespace {
957   struct LISorter {
958     bool operator()(LiveInterval* A, LiveInterval* B) {
959       return A->beginIndex() < B->beginIndex();
960     }
961   };
962 }
963
964 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
965 /// spill.
966 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
967   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
968   DEBUG(dbgs() << "\tallocating current interval from "
969                << RC->getName() << ": ");
970
971   // This is an implicitly defined live interval, just assign any register.
972   if (cur->empty()) {
973     unsigned physReg = vrm_->getRegAllocPref(cur->reg);
974     if (!physReg)
975       physReg = getFirstNonReservedPhysReg(RC);
976     DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
977     // Note the register is not really in use.
978     vrm_->assignVirt2Phys(cur->reg, physReg);
979     return;
980   }
981
982   backUpRegUses();
983
984   std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
985   SlotIndex StartPosition = cur->beginIndex();
986   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
987
988   // If start of this live interval is defined by a move instruction and its
989   // source is assigned a physical register that is compatible with the target
990   // register class, then we should try to assign it the same register.
991   // This can happen when the move is from a larger register class to a smaller
992   // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
993   if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
994     VNInfo *vni = cur->begin()->valno;
995     if (!vni->isUnused() && vni->def.isValid()) {
996       MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
997       if (CopyMI && CopyMI->isCopy()) {
998         unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
999         unsigned SrcReg = CopyMI->getOperand(1).getReg();
1000         unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
1001         unsigned Reg = 0;
1002         if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1003           Reg = SrcReg;
1004         else if (vrm_->isAssignedReg(SrcReg))
1005           Reg = vrm_->getPhys(SrcReg);
1006         if (Reg) {
1007           if (SrcSubReg)
1008             Reg = tri_->getSubReg(Reg, SrcSubReg);
1009           if (DstSubReg)
1010             Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
1011           if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
1012             mri_->setRegAllocationHint(cur->reg, 0, Reg);
1013         }
1014       }
1015     }
1016   }
1017
1018   // For every interval in inactive we overlap with, mark the
1019   // register as not free and update spill weights.
1020   for (IntervalPtrs::const_iterator i = inactive_.begin(),
1021          e = inactive_.end(); i != e; ++i) {
1022     unsigned Reg = i->first->reg;
1023     assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
1024            "Can only allocate virtual registers!");
1025     const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
1026     // If this is not in a related reg class to the register we're allocating,
1027     // don't check it.
1028     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1029         cur->overlapsFrom(*i->first, i->second-1)) {
1030       Reg = vrm_->getPhys(Reg);
1031       addRegUse(Reg);
1032       SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
1033     }
1034   }
1035
1036   // Speculatively check to see if we can get a register right now.  If not,
1037   // we know we won't be able to by adding more constraints.  If so, we can
1038   // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
1039   // is very bad (it contains all callee clobbered registers for any functions
1040   // with a call), so we want to avoid doing that if possible.
1041   unsigned physReg = getFreePhysReg(cur);
1042   unsigned BestPhysReg = physReg;
1043   if (physReg) {
1044     // We got a register.  However, if it's in the fixed_ list, we might
1045     // conflict with it.  Check to see if we conflict with it or any of its
1046     // aliases.
1047     SmallSet<unsigned, 8> RegAliases;
1048     for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
1049       RegAliases.insert(*AS);
1050
1051     bool ConflictsWithFixed = false;
1052     for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1053       IntervalPtr &IP = fixed_[i];
1054       if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
1055         // Okay, this reg is on the fixed list.  Check to see if we actually
1056         // conflict.
1057         LiveInterval *I = IP.first;
1058         if (I->endIndex() > StartPosition) {
1059           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1060           IP.second = II;
1061           if (II != I->begin() && II->start > StartPosition)
1062             --II;
1063           if (cur->overlapsFrom(*I, II)) {
1064             ConflictsWithFixed = true;
1065             break;
1066           }
1067         }
1068       }
1069     }
1070
1071     // Okay, the register picked by our speculative getFreePhysReg call turned
1072     // out to be in use.  Actually add all of the conflicting fixed registers to
1073     // regUse_ so we can do an accurate query.
1074     if (ConflictsWithFixed) {
1075       // For every interval in fixed we overlap with, mark the register as not
1076       // free and update spill weights.
1077       for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1078         IntervalPtr &IP = fixed_[i];
1079         LiveInterval *I = IP.first;
1080
1081         const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1082         if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1083             I->endIndex() > StartPosition) {
1084           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1085           IP.second = II;
1086           if (II != I->begin() && II->start > StartPosition)
1087             --II;
1088           if (cur->overlapsFrom(*I, II)) {
1089             unsigned reg = I->reg;
1090             addRegUse(reg);
1091             SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1092           }
1093         }
1094       }
1095
1096       // Using the newly updated regUse_ object, which includes conflicts in the
1097       // future, see if there are any registers available.
1098       physReg = getFreePhysReg(cur);
1099     }
1100   }
1101
1102   // Restore the physical register tracker, removing information about the
1103   // future.
1104   restoreRegUses();
1105
1106   // If we find a free register, we are done: assign this virtual to
1107   // the free physical register and add this interval to the active
1108   // list.
1109   if (physReg) {
1110     DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
1111     assert(RC->contains(physReg) && "Invalid candidate");
1112     vrm_->assignVirt2Phys(cur->reg, physReg);
1113     addRegUse(physReg);
1114     active_.push_back(std::make_pair(cur, cur->begin()));
1115     handled_.push_back(cur);
1116
1117     // Remember physReg for avoiding a write-after-write hazard in the next
1118     // instruction.
1119     if (AvoidWAWHazard &&
1120         tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
1121       avoidWAW_ = physReg;
1122
1123     // "Upgrade" the physical register since it has been allocated.
1124     UpgradeRegister(physReg);
1125     if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1126       // "Downgrade" physReg to try to keep physReg from being allocated until
1127       // the next reload from the same SS is allocated.
1128       mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1129       DowngradeRegister(cur, physReg);
1130     }
1131     return;
1132   }
1133   DEBUG(dbgs() << "no free registers\n");
1134
1135   // Compile the spill weights into an array that is better for scanning.
1136   std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1137   for (std::vector<std::pair<unsigned, float> >::iterator
1138        I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1139     updateSpillWeights(SpillWeights, I->first, I->second, RC);
1140
1141   // for each interval in active, update spill weights.
1142   for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1143        i != e; ++i) {
1144     unsigned reg = i->first->reg;
1145     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1146            "Can only allocate virtual registers!");
1147     reg = vrm_->getPhys(reg);
1148     updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1149   }
1150
1151   DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1152
1153   // Find a register to spill.
1154   float minWeight = HUGE_VALF;
1155   unsigned minReg = 0;
1156
1157   bool Found = false;
1158   std::vector<std::pair<unsigned,float> > RegsWeights;
1159   ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
1160   if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1161     for (unsigned i = 0; i != Order.size(); ++i) {
1162       unsigned reg = Order[i];
1163       float regWeight = SpillWeights[reg];
1164       // Skip recently allocated registers and reserved registers.
1165       if (minWeight > regWeight && !isRecentlyUsed(reg))
1166         Found = true;
1167       RegsWeights.push_back(std::make_pair(reg, regWeight));
1168     }
1169
1170   // If we didn't find a register that is spillable, try aliases?
1171   if (!Found) {
1172     for (unsigned i = 0; i != Order.size(); ++i) {
1173       unsigned reg = Order[i];
1174       // No need to worry about if the alias register size < regsize of RC.
1175       // We are going to spill all registers that alias it anyway.
1176       for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1177         RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1178     }
1179   }
1180
1181   // Sort all potential spill candidates by weight.
1182   std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
1183   minReg = RegsWeights[0].first;
1184   minWeight = RegsWeights[0].second;
1185   if (minWeight == HUGE_VALF) {
1186     // All registers must have inf weight. Just grab one!
1187     minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
1188     if (cur->weight == HUGE_VALF ||
1189         li_->getApproximateInstructionCount(*cur) == 0) {
1190       // Spill a physical register around defs and uses.
1191       if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1192         // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1193         // in fixed_. Reset them.
1194         for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1195           IntervalPtr &IP = fixed_[i];
1196           LiveInterval *I = IP.first;
1197           if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1198             IP.second = I->advanceTo(I->begin(), StartPosition);
1199         }
1200
1201         DowngradedRegs.clear();
1202         assignRegOrStackSlotAtInterval(cur);
1203       } else {
1204         assert(false && "Ran out of registers during register allocation!");
1205         report_fatal_error("Ran out of registers during register allocation!");
1206       }
1207       return;
1208     }
1209   }
1210
1211   // Find up to 3 registers to consider as spill candidates.
1212   unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1213   while (LastCandidate > 1) {
1214     if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1215       break;
1216     --LastCandidate;
1217   }
1218
1219   DEBUG({
1220       dbgs() << "\t\tregister(s) with min weight(s): ";
1221
1222       for (unsigned i = 0; i != LastCandidate; ++i)
1223         dbgs() << tri_->getName(RegsWeights[i].first)
1224                << " (" << RegsWeights[i].second << ")\n";
1225     });
1226
1227   // If the current has the minimum weight, we need to spill it and
1228   // add any added intervals back to unhandled, and restart
1229   // linearscan.
1230   if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1231     DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
1232     SmallVector<LiveInterval*, 8> added;
1233     LiveRangeEdit LRE(*cur, added);
1234     spiller_->spill(LRE);
1235
1236     std::sort(added.begin(), added.end(), LISorter());
1237     if (added.empty())
1238       return;  // Early exit if all spills were folded.
1239
1240     // Merge added with unhandled.  Note that we have already sorted
1241     // intervals returned by addIntervalsForSpills by their starting
1242     // point.
1243     // This also update the NextReloadMap. That is, it adds mapping from a
1244     // register defined by a reload from SS to the next reload from SS in the
1245     // same basic block.
1246     MachineBasicBlock *LastReloadMBB = 0;
1247     LiveInterval *LastReload = 0;
1248     int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1249     for (unsigned i = 0, e = added.size(); i != e; ++i) {
1250       LiveInterval *ReloadLi = added[i];
1251       if (ReloadLi->weight == HUGE_VALF &&
1252           li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1253         SlotIndex ReloadIdx = ReloadLi->beginIndex();
1254         MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1255         int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1256         if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1257           // Last reload of same SS is in the same MBB. We want to try to
1258           // allocate both reloads the same register and make sure the reg
1259           // isn't clobbered in between if at all possible.
1260           assert(LastReload->beginIndex() < ReloadIdx);
1261           NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1262         }
1263         LastReloadMBB = ReloadMBB;
1264         LastReload = ReloadLi;
1265         LastReloadSS = ReloadSS;
1266       }
1267       unhandled_.push(ReloadLi);
1268     }
1269     return;
1270   }
1271
1272   ++NumBacktracks;
1273
1274   // Push the current interval back to unhandled since we are going
1275   // to re-run at least this iteration. Since we didn't modify it it
1276   // should go back right in the front of the list
1277   unhandled_.push(cur);
1278
1279   assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1280          "did not choose a register to spill?");
1281
1282   // We spill all intervals aliasing the register with
1283   // minimum weight, rollback to the interval with the earliest
1284   // start point and let the linear scan algorithm run again
1285   SmallVector<LiveInterval*, 8> spillIs;
1286
1287   // Determine which intervals have to be spilled.
1288   findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1289
1290   // Set of spilled vregs (used later to rollback properly)
1291   SmallSet<unsigned, 8> spilled;
1292
1293   // The earliest start of a Spilled interval indicates up to where
1294   // in handled we need to roll back
1295   assert(!spillIs.empty() && "No spill intervals?");
1296   SlotIndex earliestStart = spillIs[0]->beginIndex();
1297
1298   // Spill live intervals of virtual regs mapped to the physical register we
1299   // want to clear (and its aliases).  We only spill those that overlap with the
1300   // current interval as the rest do not affect its allocation. we also keep
1301   // track of the earliest start of all spilled live intervals since this will
1302   // mark our rollback point.
1303   SmallVector<LiveInterval*, 8> added;
1304   while (!spillIs.empty()) {
1305     LiveInterval *sli = spillIs.back();
1306     spillIs.pop_back();
1307     DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
1308     if (sli->beginIndex() < earliestStart)
1309       earliestStart = sli->beginIndex();
1310     LiveRangeEdit LRE(*sli, added, 0, &spillIs);
1311     spiller_->spill(LRE);
1312     spilled.insert(sli->reg);
1313   }
1314
1315   // Include any added intervals in earliestStart.
1316   for (unsigned i = 0, e = added.size(); i != e; ++i) {
1317     SlotIndex SI = added[i]->beginIndex();
1318     if (SI < earliestStart)
1319       earliestStart = SI;
1320   }
1321
1322   DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
1323
1324   // Scan handled in reverse order up to the earliest start of a
1325   // spilled live interval and undo each one, restoring the state of
1326   // unhandled.
1327   while (!handled_.empty()) {
1328     LiveInterval* i = handled_.back();
1329     // If this interval starts before t we are done.
1330     if (!i->empty() && i->beginIndex() < earliestStart)
1331       break;
1332     DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
1333     handled_.pop_back();
1334
1335     // When undoing a live interval allocation we must know if it is active or
1336     // inactive to properly update regUse_ and the VirtRegMap.
1337     IntervalPtrs::iterator it;
1338     if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1339       active_.erase(it);
1340       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1341       if (!spilled.count(i->reg))
1342         unhandled_.push(i);
1343       delRegUse(vrm_->getPhys(i->reg));
1344       vrm_->clearVirt(i->reg);
1345     } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1346       inactive_.erase(it);
1347       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1348       if (!spilled.count(i->reg))
1349         unhandled_.push(i);
1350       vrm_->clearVirt(i->reg);
1351     } else {
1352       assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1353              "Can only allocate virtual registers!");
1354       vrm_->clearVirt(i->reg);
1355       unhandled_.push(i);
1356     }
1357
1358     DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1359     if (ii == DowngradeMap.end())
1360       // It interval has a preference, it must be defined by a copy. Clear the
1361       // preference now since the source interval allocation may have been
1362       // undone as well.
1363       mri_->setRegAllocationHint(i->reg, 0, 0);
1364     else {
1365       UpgradeRegister(ii->second);
1366     }
1367   }
1368
1369   // Rewind the iterators in the active, inactive, and fixed lists back to the
1370   // point we reverted to.
1371   RevertVectorIteratorsTo(active_, earliestStart);
1372   RevertVectorIteratorsTo(inactive_, earliestStart);
1373   RevertVectorIteratorsTo(fixed_, earliestStart);
1374
1375   // Scan the rest and undo each interval that expired after t and
1376   // insert it in active (the next iteration of the algorithm will
1377   // put it in inactive if required)
1378   for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1379     LiveInterval *HI = handled_[i];
1380     if (!HI->expiredAt(earliestStart) &&
1381         HI->expiredAt(cur->beginIndex())) {
1382       DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
1383       active_.push_back(std::make_pair(HI, HI->begin()));
1384       assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1385       addRegUse(vrm_->getPhys(HI->reg));
1386     }
1387   }
1388
1389   // Merge added with unhandled.
1390   // This also update the NextReloadMap. That is, it adds mapping from a
1391   // register defined by a reload from SS to the next reload from SS in the
1392   // same basic block.
1393   MachineBasicBlock *LastReloadMBB = 0;
1394   LiveInterval *LastReload = 0;
1395   int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1396   std::sort(added.begin(), added.end(), LISorter());
1397   for (unsigned i = 0, e = added.size(); i != e; ++i) {
1398     LiveInterval *ReloadLi = added[i];
1399     if (ReloadLi->weight == HUGE_VALF &&
1400         li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1401       SlotIndex ReloadIdx = ReloadLi->beginIndex();
1402       MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1403       int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1404       if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1405         // Last reload of same SS is in the same MBB. We want to try to
1406         // allocate both reloads the same register and make sure the reg
1407         // isn't clobbered in between if at all possible.
1408         assert(LastReload->beginIndex() < ReloadIdx);
1409         NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1410       }
1411       LastReloadMBB = ReloadMBB;
1412       LastReload = ReloadLi;
1413       LastReloadSS = ReloadSS;
1414     }
1415     unhandled_.push(ReloadLi);
1416   }
1417 }
1418
1419 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1420                                    const TargetRegisterClass *RC,
1421                                    unsigned MaxInactiveCount,
1422                                    SmallVector<unsigned, 256> &inactiveCounts,
1423                                    bool SkipDGRegs) {
1424   unsigned FreeReg = 0;
1425   unsigned FreeRegInactiveCount = 0;
1426
1427   std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1428   // Resolve second part of the hint (if possible) given the current allocation.
1429   unsigned physReg = Hint.second;
1430   if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1431     physReg = vrm_->getPhys(physReg);
1432
1433   ArrayRef<unsigned> Order;
1434   if (Hint.first)
1435     Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
1436   else
1437     Order = RegClassInfo.getOrder(RC);
1438
1439   assert(!Order.empty() && "No allocatable register in this register class!");
1440
1441   // Scan for the first available register.
1442   for (unsigned i = 0; i != Order.size(); ++i) {
1443     unsigned Reg = Order[i];
1444     // Ignore "downgraded" registers.
1445     if (SkipDGRegs && DowngradedRegs.count(Reg))
1446       continue;
1447     // Skip reserved registers.
1448     if (reservedRegs_.test(Reg))
1449       continue;
1450     // Skip recently allocated registers.
1451     if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1452       FreeReg = Reg;
1453       if (FreeReg < inactiveCounts.size())
1454         FreeRegInactiveCount = inactiveCounts[FreeReg];
1455       else
1456         FreeRegInactiveCount = 0;
1457       break;
1458     }
1459   }
1460
1461   // If there are no free regs, or if this reg has the max inactive count,
1462   // return this register.
1463   if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
1464     // Remember what register we picked so we can skip it next time.
1465     if (FreeReg != 0) recordRecentlyUsed(FreeReg);
1466     return FreeReg;
1467   }
1468
1469   // Continue scanning the registers, looking for the one with the highest
1470   // inactive count.  Alkis found that this reduced register pressure very
1471   // slightly on X86 (in rev 1.94 of this file), though this should probably be
1472   // reevaluated now.
1473   for (unsigned i = 0; i != Order.size(); ++i) {
1474     unsigned Reg = Order[i];
1475     // Ignore "downgraded" registers.
1476     if (SkipDGRegs && DowngradedRegs.count(Reg))
1477       continue;
1478     // Skip reserved registers.
1479     if (reservedRegs_.test(Reg))
1480       continue;
1481     if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1482         FreeRegInactiveCount < inactiveCounts[Reg] &&
1483         (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1484       FreeReg = Reg;
1485       FreeRegInactiveCount = inactiveCounts[Reg];
1486       if (FreeRegInactiveCount == MaxInactiveCount)
1487         break;    // We found the one with the max inactive count.
1488     }
1489   }
1490
1491   // Remember what register we picked so we can skip it next time.
1492   recordRecentlyUsed(FreeReg);
1493
1494   return FreeReg;
1495 }
1496
1497 /// getFreePhysReg - return a free physical register for this virtual register
1498 /// interval if we have one, otherwise return 0.
1499 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1500   SmallVector<unsigned, 256> inactiveCounts;
1501   unsigned MaxInactiveCount = 0;
1502
1503   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1504   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1505
1506   for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1507        i != e; ++i) {
1508     unsigned reg = i->first->reg;
1509     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1510            "Can only allocate virtual registers!");
1511
1512     // If this is not in a related reg class to the register we're allocating,
1513     // don't check it.
1514     const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1515     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1516       reg = vrm_->getPhys(reg);
1517       if (inactiveCounts.size() <= reg)
1518         inactiveCounts.resize(reg+1);
1519       ++inactiveCounts[reg];
1520       MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1521     }
1522   }
1523
1524   // If copy coalescer has assigned a "preferred" register, check if it's
1525   // available first.
1526   unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1527   if (Preference) {
1528     DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
1529     if (isRegAvail(Preference) &&
1530         RC->contains(Preference))
1531       return Preference;
1532   }
1533
1534   unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1535                                     true);
1536   if (FreeReg)
1537     return FreeReg;
1538   return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1539 }
1540
1541 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1542   return new RALinScan();
1543 }