]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Target / ARM / MCTargetDesc / ARMAddressingModes.h
1 //===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
15 #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
16
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21
22 namespace llvm {
23
24 /// ARM_AM - ARM Addressing Mode Stuff
25 namespace ARM_AM {
26   enum ShiftOpc {
27     no_shift = 0,
28     asr,
29     lsl,
30     lsr,
31     ror,
32     rrx
33   };
34
35   enum AddrOpc {
36     sub = 0,
37     add
38   };
39
40   static inline const char *getAddrOpcStr(AddrOpc Op) {
41     return Op == sub ? "-" : "";
42   }
43
44   static inline const char *getShiftOpcStr(ShiftOpc Op) {
45     switch (Op) {
46     default: assert(0 && "Unknown shift opc!");
47     case ARM_AM::asr: return "asr";
48     case ARM_AM::lsl: return "lsl";
49     case ARM_AM::lsr: return "lsr";
50     case ARM_AM::ror: return "ror";
51     case ARM_AM::rrx: return "rrx";
52     }
53   }
54
55   static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
56     switch (Op) {
57     default: assert(0 && "Unknown shift opc!");
58     case ARM_AM::asr: return 2;
59     case ARM_AM::lsl: return 0;
60     case ARM_AM::lsr: return 1;
61     case ARM_AM::ror: return 3;
62     }
63   }
64
65   enum AMSubMode {
66     bad_am_submode = 0,
67     ia,
68     ib,
69     da,
70     db
71   };
72
73   static inline const char *getAMSubModeStr(AMSubMode Mode) {
74     switch (Mode) {
75     default: assert(0 && "Unknown addressing sub-mode!");
76     case ARM_AM::ia: return "ia";
77     case ARM_AM::ib: return "ib";
78     case ARM_AM::da: return "da";
79     case ARM_AM::db: return "db";
80     }
81   }
82
83   /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
84   ///
85   static inline unsigned rotr32(unsigned Val, unsigned Amt) {
86     assert(Amt < 32 && "Invalid rotate amount");
87     return (Val >> Amt) | (Val << ((32-Amt)&31));
88   }
89
90   /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
91   ///
92   static inline unsigned rotl32(unsigned Val, unsigned Amt) {
93     assert(Amt < 32 && "Invalid rotate amount");
94     return (Val << Amt) | (Val >> ((32-Amt)&31));
95   }
96
97   //===--------------------------------------------------------------------===//
98   // Addressing Mode #1: shift_operand with registers
99   //===--------------------------------------------------------------------===//
100   //
101   // This 'addressing mode' is used for arithmetic instructions.  It can
102   // represent things like:
103   //   reg
104   //   reg [asr|lsl|lsr|ror|rrx] reg
105   //   reg [asr|lsl|lsr|ror|rrx] imm
106   //
107   // This is stored three operands [rega, regb, opc].  The first is the base
108   // reg, the second is the shift amount (or reg0 if not present or imm).  The
109   // third operand encodes the shift opcode and the imm if a reg isn't present.
110   //
111   static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
112     return ShOp | (Imm << 3);
113   }
114   static inline unsigned getSORegOffset(unsigned Op) {
115     return Op >> 3;
116   }
117   static inline ShiftOpc getSORegShOp(unsigned Op) {
118     return (ShiftOpc)(Op & 7);
119   }
120
121   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
122   /// the 8-bit imm value.
123   static inline unsigned getSOImmValImm(unsigned Imm) {
124     return Imm & 0xFF;
125   }
126   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
127   /// the rotate amount.
128   static inline unsigned getSOImmValRot(unsigned Imm) {
129     return (Imm >> 8) * 2;
130   }
131
132   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
133   /// computing the rotate amount to use.  If this immediate value cannot be
134   /// handled with a single shifter-op, determine a good rotate amount that will
135   /// take a maximal chunk of bits out of the immediate.
136   static inline unsigned getSOImmValRotate(unsigned Imm) {
137     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
138     // of zero.
139     if ((Imm & ~255U) == 0) return 0;
140
141     // Use CTZ to compute the rotate amount.
142     unsigned TZ = CountTrailingZeros_32(Imm);
143
144     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
145     // not 9.
146     unsigned RotAmt = TZ & ~1;
147
148     // If we can handle this spread, return it.
149     if ((rotr32(Imm, RotAmt) & ~255U) == 0)
150       return (32-RotAmt)&31;  // HW rotates right, not left.
151
152     // For values like 0xF000000F, we should ignore the low 6 bits, then
153     // retry the hunt.
154     if (Imm & 63U) {
155       unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
156       unsigned RotAmt2 = TZ2 & ~1;
157       if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
158         return (32-RotAmt2)&31;  // HW rotates right, not left.
159     }
160
161     // Otherwise, we have no way to cover this span of bits with a single
162     // shifter_op immediate.  Return a chunk of bits that will be useful to
163     // handle.
164     return (32-RotAmt)&31;  // HW rotates right, not left.
165   }
166
167   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
168   /// into an shifter_operand immediate operand, return the 12-bit encoding for
169   /// it.  If not, return -1.
170   static inline int getSOImmVal(unsigned Arg) {
171     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
172     // of zero.
173     if ((Arg & ~255U) == 0) return Arg;
174
175     unsigned RotAmt = getSOImmValRotate(Arg);
176
177     // If this cannot be handled with a single shifter_op, bail out.
178     if (rotr32(~255U, RotAmt) & Arg)
179       return -1;
180
181     // Encode this correctly.
182     return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
183   }
184
185   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
186   /// or'ing together two SOImmVal's.
187   static inline bool isSOImmTwoPartVal(unsigned V) {
188     // If this can be handled with a single shifter_op, bail out.
189     V = rotr32(~255U, getSOImmValRotate(V)) & V;
190     if (V == 0)
191       return false;
192
193     // If this can be handled with two shifter_op's, accept.
194     V = rotr32(~255U, getSOImmValRotate(V)) & V;
195     return V == 0;
196   }
197
198   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
199   /// return the first chunk of it.
200   static inline unsigned getSOImmTwoPartFirst(unsigned V) {
201     return rotr32(255U, getSOImmValRotate(V)) & V;
202   }
203
204   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
205   /// return the second chunk of it.
206   static inline unsigned getSOImmTwoPartSecond(unsigned V) {
207     // Mask out the first hunk.
208     V = rotr32(~255U, getSOImmValRotate(V)) & V;
209
210     // Take what's left.
211     assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
212     return V;
213   }
214
215   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
216   /// by a left shift. Returns the shift amount to use.
217   static inline unsigned getThumbImmValShift(unsigned Imm) {
218     // 8-bit (or less) immediates are trivially immediate operand with a shift
219     // of zero.
220     if ((Imm & ~255U) == 0) return 0;
221
222     // Use CTZ to compute the shift amount.
223     return CountTrailingZeros_32(Imm);
224   }
225
226   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
227   /// by left shifting a 8-bit immediate.
228   static inline bool isThumbImmShiftedVal(unsigned V) {
229     // If this can be handled with
230     V = (~255U << getThumbImmValShift(V)) & V;
231     return V == 0;
232   }
233
234   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
235   /// by a left shift. Returns the shift amount to use.
236   static inline unsigned getThumbImm16ValShift(unsigned Imm) {
237     // 16-bit (or less) immediates are trivially immediate operand with a shift
238     // of zero.
239     if ((Imm & ~65535U) == 0) return 0;
240
241     // Use CTZ to compute the shift amount.
242     return CountTrailingZeros_32(Imm);
243   }
244
245   /// isThumbImm16ShiftedVal - Return true if the specified value can be
246   /// obtained by left shifting a 16-bit immediate.
247   static inline bool isThumbImm16ShiftedVal(unsigned V) {
248     // If this can be handled with
249     V = (~65535U << getThumbImm16ValShift(V)) & V;
250     return V == 0;
251   }
252
253   /// getThumbImmNonShiftedVal - If V is a value that satisfies
254   /// isThumbImmShiftedVal, return the non-shiftd value.
255   static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
256     return V >> getThumbImmValShift(V);
257   }
258
259
260   /// getT2SOImmValSplat - Return the 12-bit encoded representation
261   /// if the specified value can be obtained by splatting the low 8 bits
262   /// into every other byte or every byte of a 32-bit value. i.e.,
263   ///     00000000 00000000 00000000 abcdefgh    control = 0
264   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
265   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
266   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
267   /// Return -1 if none of the above apply.
268   /// See ARM Reference Manual A6.3.2.
269   static inline int getT2SOImmValSplatVal(unsigned V) {
270     unsigned u, Vs, Imm;
271     // control = 0
272     if ((V & 0xffffff00) == 0)
273       return V;
274
275     // If the value is zeroes in the first byte, just shift those off
276     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
277     // Any passing value only has 8 bits of payload, splatted across the word
278     Imm = Vs & 0xff;
279     // Likewise, any passing values have the payload splatted into the 3rd byte
280     u = Imm | (Imm << 16);
281
282     // control = 1 or 2
283     if (Vs == u)
284       return (((Vs == V) ? 1 : 2) << 8) | Imm;
285
286     // control = 3
287     if (Vs == (u | (u << 8)))
288       return (3 << 8) | Imm;
289
290     return -1;
291   }
292
293   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
294   /// specified value is a rotated 8-bit value. Return -1 if no rotation
295   /// encoding is possible.
296   /// See ARM Reference Manual A6.3.2.
297   static inline int getT2SOImmValRotateVal(unsigned V) {
298     unsigned RotAmt = CountLeadingZeros_32(V);
299     if (RotAmt >= 24)
300       return -1;
301
302     // If 'Arg' can be handled with a single shifter_op return the value.
303     if ((rotr32(0xff000000U, RotAmt) & V) == V)
304       return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
305
306     return -1;
307   }
308
309   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
310   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
311   /// encoding for it.  If not, return -1.
312   /// See ARM Reference Manual A6.3.2.
313   static inline int getT2SOImmVal(unsigned Arg) {
314     // If 'Arg' is an 8-bit splat, then get the encoded value.
315     int Splat = getT2SOImmValSplatVal(Arg);
316     if (Splat != -1)
317       return Splat;
318
319     // If 'Arg' can be handled with a single shifter_op return the value.
320     int Rot = getT2SOImmValRotateVal(Arg);
321     if (Rot != -1)
322       return Rot;
323
324     return -1;
325   }
326
327   static inline unsigned getT2SOImmValRotate(unsigned V) {
328     if ((V & ~255U) == 0) return 0;
329     // Use CTZ to compute the rotate amount.
330     unsigned RotAmt = CountTrailingZeros_32(V);
331     return (32 - RotAmt) & 31;
332   }
333
334   static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
335     unsigned V = Imm;
336     // Passing values can be any combination of splat values and shifter
337     // values. If this can be handled with a single shifter or splat, bail
338     // out. Those should be handled directly, not with a two-part val.
339     if (getT2SOImmValSplatVal(V) != -1)
340       return false;
341     V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
342     if (V == 0)
343       return false;
344
345     // If this can be handled as an immediate, accept.
346     if (getT2SOImmVal(V) != -1) return true;
347
348     // Likewise, try masking out a splat value first.
349     V = Imm;
350     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
351       V &= ~0xff00ff00U;
352     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
353       V &= ~0x00ff00ffU;
354     // If what's left can be handled as an immediate, accept.
355     if (getT2SOImmVal(V) != -1) return true;
356
357     // Otherwise, do not accept.
358     return false;
359   }
360
361   static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
362     assert (isT2SOImmTwoPartVal(Imm) &&
363             "Immedate cannot be encoded as two part immediate!");
364     // Try a shifter operand as one part
365     unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
366     // If the rest is encodable as an immediate, then return it.
367     if (getT2SOImmVal(V) != -1) return V;
368
369     // Try masking out a splat value first.
370     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
371       return Imm & 0xff00ff00U;
372
373     // The other splat is all that's left as an option.
374     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
375     return Imm & 0x00ff00ffU;
376   }
377
378   static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
379     // Mask out the first hunk
380     Imm ^= getT2SOImmTwoPartFirst(Imm);
381     // Return what's left
382     assert (getT2SOImmVal(Imm) != -1 &&
383             "Unable to encode second part of T2 two part SO immediate");
384     return Imm;
385   }
386
387
388   //===--------------------------------------------------------------------===//
389   // Addressing Mode #2
390   //===--------------------------------------------------------------------===//
391   //
392   // This is used for most simple load/store instructions.
393   //
394   // addrmode2 := reg +/- reg shop imm
395   // addrmode2 := reg +/- imm12
396   //
397   // The first operand is always a Reg.  The second operand is a reg if in
398   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
399   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
400   // fourth operand 16-17 encodes the index mode.
401   //
402   // If this addressing mode is a frame index (before prolog/epilog insertion
403   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
404   // with no shift amount for the frame offset.
405   //
406   static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
407                                    unsigned IdxMode = 0) {
408     assert(Imm12 < (1 << 12) && "Imm too large!");
409     bool isSub = Opc == sub;
410     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
411   }
412   static inline unsigned getAM2Offset(unsigned AM2Opc) {
413     return AM2Opc & ((1 << 12)-1);
414   }
415   static inline AddrOpc getAM2Op(unsigned AM2Opc) {
416     return ((AM2Opc >> 12) & 1) ? sub : add;
417   }
418   static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
419     return (ShiftOpc)((AM2Opc >> 13) & 7);
420   }
421   static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
422     return (AM2Opc >> 16);
423   }
424
425
426   //===--------------------------------------------------------------------===//
427   // Addressing Mode #3
428   //===--------------------------------------------------------------------===//
429   //
430   // This is used for sign-extending loads, and load/store-pair instructions.
431   //
432   // addrmode3 := reg +/- reg
433   // addrmode3 := reg +/- imm8
434   //
435   // The first operand is always a Reg.  The second operand is a reg if in
436   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
437   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
438   // index mode.
439
440   /// getAM3Opc - This function encodes the addrmode3 opc field.
441   static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
442                                    unsigned IdxMode = 0) {
443     bool isSub = Opc == sub;
444     return ((int)isSub << 8) | Offset | (IdxMode << 9);
445   }
446   static inline unsigned char getAM3Offset(unsigned AM3Opc) {
447     return AM3Opc & 0xFF;
448   }
449   static inline AddrOpc getAM3Op(unsigned AM3Opc) {
450     return ((AM3Opc >> 8) & 1) ? sub : add;
451   }
452   static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
453     return (AM3Opc >> 9);
454   }
455
456   //===--------------------------------------------------------------------===//
457   // Addressing Mode #4
458   //===--------------------------------------------------------------------===//
459   //
460   // This is used for load / store multiple instructions.
461   //
462   // addrmode4 := reg, <mode>
463   //
464   // The four modes are:
465   //    IA - Increment after
466   //    IB - Increment before
467   //    DA - Decrement after
468   //    DB - Decrement before
469   // For VFP instructions, only the IA and DB modes are valid.
470
471   static inline AMSubMode getAM4SubMode(unsigned Mode) {
472     return (AMSubMode)(Mode & 0x7);
473   }
474
475   static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
476     return (int)SubMode;
477   }
478
479   //===--------------------------------------------------------------------===//
480   // Addressing Mode #5
481   //===--------------------------------------------------------------------===//
482   //
483   // This is used for coprocessor instructions, such as FP load/stores.
484   //
485   // addrmode5 := reg +/- imm8*4
486   //
487   // The first operand is always a Reg.  The second operand encodes the
488   // operation in bit 8 and the immediate in bits 0-7.
489
490   /// getAM5Opc - This function encodes the addrmode5 opc field.
491   static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
492     bool isSub = Opc == sub;
493     return ((int)isSub << 8) | Offset;
494   }
495   static inline unsigned char getAM5Offset(unsigned AM5Opc) {
496     return AM5Opc & 0xFF;
497   }
498   static inline AddrOpc getAM5Op(unsigned AM5Opc) {
499     return ((AM5Opc >> 8) & 1) ? sub : add;
500   }
501
502   //===--------------------------------------------------------------------===//
503   // Addressing Mode #6
504   //===--------------------------------------------------------------------===//
505   //
506   // This is used for NEON load / store instructions.
507   //
508   // addrmode6 := reg with optional alignment
509   //
510   // This is stored in two operands [regaddr, align].  The first is the
511   // address register.  The second operand is the value of the alignment
512   // specifier in bytes or zero if no explicit alignment.
513   // Valid alignments depend on the specific instruction.
514
515   //===--------------------------------------------------------------------===//
516   // NEON Modified Immediates
517   //===--------------------------------------------------------------------===//
518   //
519   // Several NEON instructions (e.g., VMOV) take a "modified immediate"
520   // vector operand, where a small immediate encoded in the instruction
521   // specifies a full NEON vector value.  These modified immediates are
522   // represented here as encoded integers.  The low 8 bits hold the immediate
523   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
524   // the "Cmode" field of the instruction.  The interfaces below treat the
525   // Op and Cmode values as a single 5-bit value.
526
527   static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
528     return (OpCmode << 8) | Val;
529   }
530   static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
531     return (ModImm >> 8) & 0x1f;
532   }
533   static inline unsigned getNEONModImmVal(unsigned ModImm) {
534     return ModImm & 0xff;
535   }
536
537   /// decodeNEONModImm - Decode a NEON modified immediate value into the
538   /// element value and the element size in bits.  (If the element size is
539   /// smaller than the vector, it is splatted into all the elements.)
540   static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
541     unsigned OpCmode = getNEONModImmOpCmode(ModImm);
542     unsigned Imm8 = getNEONModImmVal(ModImm);
543     uint64_t Val = 0;
544
545     if (OpCmode == 0xe) {
546       // 8-bit vector elements
547       Val = Imm8;
548       EltBits = 8;
549     } else if ((OpCmode & 0xc) == 0x8) {
550       // 16-bit vector elements
551       unsigned ByteNum = (OpCmode & 0x6) >> 1;
552       Val = Imm8 << (8 * ByteNum);
553       EltBits = 16;
554     } else if ((OpCmode & 0x8) == 0) {
555       // 32-bit vector elements, zero with one byte set
556       unsigned ByteNum = (OpCmode & 0x6) >> 1;
557       Val = Imm8 << (8 * ByteNum);
558       EltBits = 32;
559     } else if ((OpCmode & 0xe) == 0xc) {
560       // 32-bit vector elements, one byte with low bits set
561       unsigned ByteNum = 1 + (OpCmode & 0x1);
562       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
563       EltBits = 32;
564     } else if (OpCmode == 0x1e) {
565       // 64-bit vector elements
566       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
567         if ((ModImm >> ByteNum) & 1)
568           Val |= (uint64_t)0xff << (8 * ByteNum);
569       }
570       EltBits = 64;
571     } else {
572       assert(false && "Unsupported NEON immediate");
573     }
574     return Val;
575   }
576
577   AMSubMode getLoadStoreMultipleSubMode(int Opcode);
578
579   //===--------------------------------------------------------------------===//
580   // Floating-point Immediates
581   //
582   static inline float getFPImmFloat(unsigned Imm) {
583     // We expect an 8-bit binary encoding of a floating-point number here.
584     union {
585       uint32_t I;
586       float F;
587     } FPUnion;
588
589     uint8_t Sign = (Imm >> 7) & 0x1;
590     uint8_t Exp = (Imm >> 4) & 0x7;
591     uint8_t Mantissa = Imm & 0xf;
592
593     //   8-bit FP    iEEEE Float Encoding
594     //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
595     //
596     // where B = NOT(b);
597
598     FPUnion.I = 0;
599     FPUnion.I |= Sign << 31;
600     FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
601     FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
602     FPUnion.I |= (Exp & 0x3) << 23;
603     FPUnion.I |= Mantissa << 19;
604     return FPUnion.F;
605   }
606
607   /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
608   /// floating-point value. If the value cannot be represented as an 8-bit
609   /// floating-point value, then return -1.
610   static inline int getFP32Imm(const APInt &Imm) {
611     uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
612     int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
613     int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
614
615     // We can handle 4 bits of mantissa.
616     // mantissa = (16+UInt(e:f:g:h))/16.
617     if (Mantissa & 0x7ffff)
618       return -1;
619     Mantissa >>= 19;
620     if ((Mantissa & 0xf) != Mantissa)
621       return -1;
622
623     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
624     if (Exp < -3 || Exp > 4)
625       return -1;
626     Exp = ((Exp+3) & 0x7) ^ 4;
627
628     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
629   }
630
631   static inline int getFP32Imm(const APFloat &FPImm) {
632     return getFP32Imm(FPImm.bitcastToAPInt());
633   }
634
635   /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
636   /// floating-point value. If the value cannot be represented as an 8-bit
637   /// floating-point value, then return -1.
638   static inline int getFP64Imm(const APInt &Imm) {
639     uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
640     int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
641     uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
642
643     // We can handle 4 bits of mantissa.
644     // mantissa = (16+UInt(e:f:g:h))/16.
645     if (Mantissa & 0xffffffffffffULL)
646       return -1;
647     Mantissa >>= 48;
648     if ((Mantissa & 0xf) != Mantissa)
649       return -1;
650
651     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
652     if (Exp < -3 || Exp > 4)
653       return -1;
654     Exp = ((Exp+3) & 0x7) ^ 4;
655
656     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
657   }
658
659   static inline int getFP64Imm(const APFloat &FPImm) {
660     return getFP64Imm(FPImm.bitcastToAPInt());
661   }
662
663 } // end namespace ARM_AM
664 } // end namespace llvm
665
666 #endif
667