]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Target/MBlaze/MBlazeISelLowering.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Target / MBlaze / MBlazeISelLowering.cpp
1 //===-- MBlazeISelLowering.cpp - MBlaze DAG Lowering Implementation -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that MBlaze uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "mblaze-lower"
16 #include "MBlazeISelLowering.h"
17 #include "MBlazeMachineFunction.h"
18 #include "MBlazeTargetMachine.h"
19 #include "MBlazeTargetObjectFile.h"
20 #include "MBlazeSubtarget.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/CallingConv.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37
38 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
39                                 CCValAssign::LocInfo &LocInfo,
40                                 ISD::ArgFlagsTy &ArgFlags,
41                                 CCState &State);
42
43 const char *MBlazeTargetLowering::getTargetNodeName(unsigned Opcode) const {
44   switch (Opcode) {
45     case MBlazeISD::JmpLink    : return "MBlazeISD::JmpLink";
46     case MBlazeISD::GPRel      : return "MBlazeISD::GPRel";
47     case MBlazeISD::Wrap       : return "MBlazeISD::Wrap";
48     case MBlazeISD::ICmp       : return "MBlazeISD::ICmp";
49     case MBlazeISD::Ret        : return "MBlazeISD::Ret";
50     case MBlazeISD::Select_CC  : return "MBlazeISD::Select_CC";
51     default                    : return NULL;
52   }
53 }
54
55 MBlazeTargetLowering::MBlazeTargetLowering(MBlazeTargetMachine &TM)
56   : TargetLowering(TM, new MBlazeTargetObjectFile()) {
57   Subtarget = &TM.getSubtarget<MBlazeSubtarget>();
58
59   // MBlaze does not have i1 type, so use i32 for
60   // setcc operations results (slt, sgt, ...).
61   setBooleanContents(ZeroOrOneBooleanContent);
62   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
63
64   // Set up the register classes
65   addRegisterClass(MVT::i32, MBlaze::GPRRegisterClass);
66   if (Subtarget->hasFPU()) {
67     addRegisterClass(MVT::f32, MBlaze::GPRRegisterClass);
68     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
69   }
70
71   // Floating point operations which are not supported
72   setOperationAction(ISD::FREM,       MVT::f32, Expand);
73   setOperationAction(ISD::FMA,        MVT::f32, Expand);
74   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Expand);
75   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Expand);
76   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
77   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
78   setOperationAction(ISD::FP_ROUND,   MVT::f32, Expand);
79   setOperationAction(ISD::FP_ROUND,   MVT::f64, Expand);
80   setOperationAction(ISD::FCOPYSIGN,  MVT::f32, Expand);
81   setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
82   setOperationAction(ISD::FSIN,       MVT::f32, Expand);
83   setOperationAction(ISD::FCOS,       MVT::f32, Expand);
84   setOperationAction(ISD::FPOWI,      MVT::f32, Expand);
85   setOperationAction(ISD::FPOW,       MVT::f32, Expand);
86   setOperationAction(ISD::FLOG,       MVT::f32, Expand);
87   setOperationAction(ISD::FLOG2,      MVT::f32, Expand);
88   setOperationAction(ISD::FLOG10,     MVT::f32, Expand);
89   setOperationAction(ISD::FEXP,       MVT::f32, Expand);
90
91   // Load extented operations for i1 types must be promoted
92   setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
93   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
94   setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
95
96   // Sign extended loads must be expanded
97   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
98   setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
99
100   // MBlaze has no REM or DIVREM operations.
101   setOperationAction(ISD::UREM,    MVT::i32, Expand);
102   setOperationAction(ISD::SREM,    MVT::i32, Expand);
103   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
104   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
105
106   // If the processor doesn't support multiply then expand it
107   if (!Subtarget->hasMul()) {
108     setOperationAction(ISD::MUL, MVT::i32, Expand);
109   }
110
111   // If the processor doesn't support 64-bit multiply then expand
112   if (!Subtarget->hasMul() || !Subtarget->hasMul64()) {
113     setOperationAction(ISD::MULHS, MVT::i32, Expand);
114     setOperationAction(ISD::MULHS, MVT::i64, Expand);
115     setOperationAction(ISD::MULHU, MVT::i32, Expand);
116     setOperationAction(ISD::MULHU, MVT::i64, Expand);
117   }
118
119   // If the processor doesn't support division then expand
120   if (!Subtarget->hasDiv()) {
121     setOperationAction(ISD::UDIV, MVT::i32, Expand);
122     setOperationAction(ISD::SDIV, MVT::i32, Expand);
123   }
124
125   // Expand unsupported conversions
126   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
127   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
128
129   // Expand SELECT_CC
130   setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
131
132   // MBlaze doesn't have MUL_LOHI
133   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
134   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
135   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
136   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
137
138   // Used by legalize types to correctly generate the setcc result.
139   // Without this, every float setcc comes with a AND/OR with the result,
140   // we don't want this, since the fpcmp result goes to a flag register,
141   // which is used implicitly by brcond and select operations.
142   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
143   AddPromotedToType(ISD::SELECT, MVT::i1, MVT::i32);
144   AddPromotedToType(ISD::SELECT_CC, MVT::i1, MVT::i32);
145
146   // MBlaze Custom Operations
147   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
148   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
149   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
150   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
151
152   // Variable Argument support
153   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
154   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
155   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
156   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
157
158
159   // Operations not directly supported by MBlaze.
160   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Expand);
161   setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
162   setOperationAction(ISD::BR_CC,              MVT::Other, Expand);
163   setOperationAction(ISD::SIGN_EXTEND_INREG,  MVT::i1,    Expand);
164   setOperationAction(ISD::ROTL,               MVT::i32,   Expand);
165   setOperationAction(ISD::ROTR,               MVT::i32,   Expand);
166   setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Expand);
167   setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Expand);
168   setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Expand);
169   setOperationAction(ISD::CTLZ,               MVT::i32,   Expand);
170   setOperationAction(ISD::CTTZ,               MVT::i32,   Expand);
171   setOperationAction(ISD::CTPOP,              MVT::i32,   Expand);
172   setOperationAction(ISD::BSWAP,              MVT::i32,   Expand);
173
174   // We don't have line number support yet.
175   setOperationAction(ISD::EH_LABEL,          MVT::Other, Expand);
176
177   // Use the default for now
178   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
179   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
180
181   // MBlaze doesn't have extending float->double load/store
182   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
183   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
184
185   setMinFunctionAlignment(2);
186
187   setStackPointerRegisterToSaveRestore(MBlaze::R1);
188   computeRegisterProperties();
189 }
190
191 EVT MBlazeTargetLowering::getSetCCResultType(EVT VT) const {
192   return MVT::i32;
193 }
194
195 SDValue MBlazeTargetLowering::LowerOperation(SDValue Op,
196                                              SelectionDAG &DAG) const {
197   switch (Op.getOpcode())
198   {
199     case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
200     case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
201     case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
202     case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
203     case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
204     case ISD::VASTART:            return LowerVASTART(Op, DAG);
205   }
206   return SDValue();
207 }
208
209 //===----------------------------------------------------------------------===//
210 //  Lower helper functions
211 //===----------------------------------------------------------------------===//
212 MachineBasicBlock*
213 MBlazeTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
214                                                   MachineBasicBlock *MBB)
215                                                   const {
216   switch (MI->getOpcode()) {
217   default: assert(false && "Unexpected instr type to insert");
218
219   case MBlaze::ShiftRL:
220   case MBlaze::ShiftRA:
221   case MBlaze::ShiftL:
222     return EmitCustomShift(MI, MBB);
223
224   case MBlaze::Select_FCC:
225   case MBlaze::Select_CC:
226     return EmitCustomSelect(MI, MBB);
227
228   case MBlaze::CAS32:
229   case MBlaze::SWP32:
230   case MBlaze::LAA32:
231   case MBlaze::LAS32:
232   case MBlaze::LAD32:
233   case MBlaze::LAO32:
234   case MBlaze::LAX32:
235   case MBlaze::LAN32:
236     return EmitCustomAtomic(MI, MBB);
237
238   case MBlaze::MEMBARRIER:
239     // The Microblaze does not need memory barriers. Just delete the pseudo
240     // instruction and finish.
241     MI->eraseFromParent();
242     return MBB;
243   }
244 }
245
246 MachineBasicBlock*
247 MBlazeTargetLowering::EmitCustomShift(MachineInstr *MI,
248                                       MachineBasicBlock *MBB) const {
249   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
250   DebugLoc dl = MI->getDebugLoc();
251
252   // To "insert" a shift left instruction, we actually have to insert a
253   // simple loop.  The incoming instruction knows the destination vreg to
254   // set, the source vreg to operate over and the shift amount.
255   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
256   MachineFunction::iterator It = MBB;
257   ++It;
258
259   // start:
260   //   andi     samt, samt, 31
261   //   beqid    samt, finish
262   //   add      dst, src, r0
263   // loop:
264   //   addik    samt, samt, -1
265   //   sra      dst, dst
266   //   bneid    samt, loop
267   //   nop
268   // finish:
269   MachineFunction *F = MBB->getParent();
270   MachineRegisterInfo &R = F->getRegInfo();
271   MachineBasicBlock *loop = F->CreateMachineBasicBlock(LLVM_BB);
272   MachineBasicBlock *finish = F->CreateMachineBasicBlock(LLVM_BB);
273   F->insert(It, loop);
274   F->insert(It, finish);
275
276   // Update machine-CFG edges by transferring adding all successors and
277   // remaining instructions from the current block to the new block which
278   // will contain the Phi node for the select.
279   finish->splice(finish->begin(), MBB,
280                  llvm::next(MachineBasicBlock::iterator(MI)),
281                  MBB->end());
282   finish->transferSuccessorsAndUpdatePHIs(MBB);
283
284   // Add the true and fallthrough blocks as its successors.
285   MBB->addSuccessor(loop);
286   MBB->addSuccessor(finish);
287
288   // Next, add the finish block as a successor of the loop block
289   loop->addSuccessor(finish);
290   loop->addSuccessor(loop);
291
292   unsigned IAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
293   BuildMI(MBB, dl, TII->get(MBlaze::ANDI), IAMT)
294     .addReg(MI->getOperand(2).getReg())
295     .addImm(31);
296
297   unsigned IVAL = R.createVirtualRegister(MBlaze::GPRRegisterClass);
298   BuildMI(MBB, dl, TII->get(MBlaze::ADDIK), IVAL)
299     .addReg(MI->getOperand(1).getReg())
300     .addImm(0);
301
302   BuildMI(MBB, dl, TII->get(MBlaze::BEQID))
303     .addReg(IAMT)
304     .addMBB(finish);
305
306   unsigned DST = R.createVirtualRegister(MBlaze::GPRRegisterClass);
307   unsigned NDST = R.createVirtualRegister(MBlaze::GPRRegisterClass);
308   BuildMI(loop, dl, TII->get(MBlaze::PHI), DST)
309     .addReg(IVAL).addMBB(MBB)
310     .addReg(NDST).addMBB(loop);
311
312   unsigned SAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
313   unsigned NAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
314   BuildMI(loop, dl, TII->get(MBlaze::PHI), SAMT)
315     .addReg(IAMT).addMBB(MBB)
316     .addReg(NAMT).addMBB(loop);
317
318   if (MI->getOpcode() == MBlaze::ShiftL)
319     BuildMI(loop, dl, TII->get(MBlaze::ADD), NDST).addReg(DST).addReg(DST);
320   else if (MI->getOpcode() == MBlaze::ShiftRA)
321     BuildMI(loop, dl, TII->get(MBlaze::SRA), NDST).addReg(DST);
322   else if (MI->getOpcode() == MBlaze::ShiftRL)
323     BuildMI(loop, dl, TII->get(MBlaze::SRL), NDST).addReg(DST);
324   else
325     llvm_unreachable("Cannot lower unknown shift instruction");
326
327   BuildMI(loop, dl, TII->get(MBlaze::ADDIK), NAMT)
328     .addReg(SAMT)
329     .addImm(-1);
330
331   BuildMI(loop, dl, TII->get(MBlaze::BNEID))
332     .addReg(NAMT)
333     .addMBB(loop);
334
335   BuildMI(*finish, finish->begin(), dl,
336           TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
337     .addReg(IVAL).addMBB(MBB)
338     .addReg(NDST).addMBB(loop);
339
340   // The pseudo instruction is no longer needed so remove it
341   MI->eraseFromParent();
342   return finish;
343 }
344
345 MachineBasicBlock*
346 MBlazeTargetLowering::EmitCustomSelect(MachineInstr *MI,
347                                        MachineBasicBlock *MBB) const {
348   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
349   DebugLoc dl = MI->getDebugLoc();
350
351   // To "insert" a SELECT_CC instruction, we actually have to insert the
352   // diamond control-flow pattern.  The incoming instruction knows the
353   // destination vreg to set, the condition code register to branch on, the
354   // true/false values to select between, and a branch opcode to use.
355   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
356   MachineFunction::iterator It = MBB;
357   ++It;
358
359   //  thisMBB:
360   //  ...
361   //   TrueVal = ...
362   //   setcc r1, r2, r3
363   //   bNE   r1, r0, copy1MBB
364   //   fallthrough --> copy0MBB
365   MachineFunction *F = MBB->getParent();
366   MachineBasicBlock *flsBB = F->CreateMachineBasicBlock(LLVM_BB);
367   MachineBasicBlock *dneBB = F->CreateMachineBasicBlock(LLVM_BB);
368
369   unsigned Opc;
370   switch (MI->getOperand(4).getImm()) {
371   default: llvm_unreachable("Unknown branch condition");
372   case MBlazeCC::EQ: Opc = MBlaze::BEQID; break;
373   case MBlazeCC::NE: Opc = MBlaze::BNEID; break;
374   case MBlazeCC::GT: Opc = MBlaze::BGTID; break;
375   case MBlazeCC::LT: Opc = MBlaze::BLTID; break;
376   case MBlazeCC::GE: Opc = MBlaze::BGEID; break;
377   case MBlazeCC::LE: Opc = MBlaze::BLEID; break;
378   }
379
380   F->insert(It, flsBB);
381   F->insert(It, dneBB);
382
383   // Transfer the remainder of MBB and its successor edges to dneBB.
384   dneBB->splice(dneBB->begin(), MBB,
385                 llvm::next(MachineBasicBlock::iterator(MI)),
386                 MBB->end());
387   dneBB->transferSuccessorsAndUpdatePHIs(MBB);
388
389   MBB->addSuccessor(flsBB);
390   MBB->addSuccessor(dneBB);
391   flsBB->addSuccessor(dneBB);
392
393   BuildMI(MBB, dl, TII->get(Opc))
394     .addReg(MI->getOperand(3).getReg())
395     .addMBB(dneBB);
396
397   //  sinkMBB:
398   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
399   //  ...
400   //BuildMI(dneBB, dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
401   //  .addReg(MI->getOperand(1).getReg()).addMBB(flsBB)
402   //  .addReg(MI->getOperand(2).getReg()).addMBB(BB);
403
404   BuildMI(*dneBB, dneBB->begin(), dl,
405           TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
406     .addReg(MI->getOperand(2).getReg()).addMBB(flsBB)
407     .addReg(MI->getOperand(1).getReg()).addMBB(MBB);
408
409   MI->eraseFromParent();   // The pseudo instruction is gone now.
410   return dneBB;
411 }
412
413 MachineBasicBlock*
414 MBlazeTargetLowering::EmitCustomAtomic(MachineInstr *MI,
415                                        MachineBasicBlock *MBB) const {
416   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
417   DebugLoc dl = MI->getDebugLoc();
418
419   // All atomic instructions on the Microblaze are implemented using the
420   // load-linked / store-conditional style atomic instruction sequences.
421   // Thus, all operations will look something like the following:
422   //
423   //  start:
424   //    lwx     RV, RP, 0
425   //    <do stuff>
426   //    swx     RV, RP, 0
427   //    addic   RC, R0, 0
428   //    bneid   RC, start
429   //
430   //  exit:
431   //
432   // To "insert" a shift left instruction, we actually have to insert a
433   // simple loop.  The incoming instruction knows the destination vreg to
434   // set, the source vreg to operate over and the shift amount.
435   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
436   MachineFunction::iterator It = MBB;
437   ++It;
438
439   // start:
440   //   andi     samt, samt, 31
441   //   beqid    samt, finish
442   //   add      dst, src, r0
443   // loop:
444   //   addik    samt, samt, -1
445   //   sra      dst, dst
446   //   bneid    samt, loop
447   //   nop
448   // finish:
449   MachineFunction *F = MBB->getParent();
450   MachineRegisterInfo &R = F->getRegInfo();
451
452   // Create the start and exit basic blocks for the atomic operation
453   MachineBasicBlock *start = F->CreateMachineBasicBlock(LLVM_BB);
454   MachineBasicBlock *exit = F->CreateMachineBasicBlock(LLVM_BB);
455   F->insert(It, start);
456   F->insert(It, exit);
457
458   // Update machine-CFG edges by transferring adding all successors and
459   // remaining instructions from the current block to the new block which
460   // will contain the Phi node for the select.
461   exit->splice(exit->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)),
462                MBB->end());
463   exit->transferSuccessorsAndUpdatePHIs(MBB);
464
465   // Add the fallthrough block as its successors.
466   MBB->addSuccessor(start);
467
468   BuildMI(start, dl, TII->get(MBlaze::LWX), MI->getOperand(0).getReg())
469     .addReg(MI->getOperand(1).getReg())
470     .addReg(MBlaze::R0);
471
472   MachineBasicBlock *final = start;
473   unsigned finalReg = 0;
474
475   switch (MI->getOpcode()) {
476   default: llvm_unreachable("Cannot lower unknown atomic instruction!");
477
478   case MBlaze::SWP32:
479     finalReg = MI->getOperand(2).getReg();
480     start->addSuccessor(exit);
481     start->addSuccessor(start);
482     break;
483
484   case MBlaze::LAN32:
485   case MBlaze::LAX32:
486   case MBlaze::LAO32:
487   case MBlaze::LAD32:
488   case MBlaze::LAS32:
489   case MBlaze::LAA32: {
490     unsigned opcode = 0;
491     switch (MI->getOpcode()) {
492     default: llvm_unreachable("Cannot lower unknown atomic load!");
493     case MBlaze::LAA32: opcode = MBlaze::ADDIK; break;
494     case MBlaze::LAS32: opcode = MBlaze::RSUBIK; break;
495     case MBlaze::LAD32: opcode = MBlaze::AND; break;
496     case MBlaze::LAO32: opcode = MBlaze::OR; break;
497     case MBlaze::LAX32: opcode = MBlaze::XOR; break;
498     case MBlaze::LAN32: opcode = MBlaze::AND; break;
499     }
500
501     finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass);
502     start->addSuccessor(exit);
503     start->addSuccessor(start);
504
505     BuildMI(start, dl, TII->get(opcode), finalReg)
506       .addReg(MI->getOperand(0).getReg())
507       .addReg(MI->getOperand(2).getReg());
508
509     if (MI->getOpcode() == MBlaze::LAN32) {
510       unsigned tmp = finalReg;
511       finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass);
512       BuildMI(start, dl, TII->get(MBlaze::XORI), finalReg)
513         .addReg(tmp)
514         .addImm(-1);
515     }
516     break;
517   }
518
519   case MBlaze::CAS32: {
520     finalReg = MI->getOperand(3).getReg();
521     final = F->CreateMachineBasicBlock(LLVM_BB);
522
523     F->insert(It, final);
524     start->addSuccessor(exit);
525     start->addSuccessor(final);
526     final->addSuccessor(exit);
527     final->addSuccessor(start);
528
529     unsigned CMP = R.createVirtualRegister(MBlaze::GPRRegisterClass);
530     BuildMI(start, dl, TII->get(MBlaze::CMP), CMP)
531       .addReg(MI->getOperand(0).getReg())
532       .addReg(MI->getOperand(2).getReg());
533
534     BuildMI(start, dl, TII->get(MBlaze::BNEID))
535       .addReg(CMP)
536       .addMBB(exit);
537
538     final->moveAfter(start);
539     exit->moveAfter(final);
540     break;
541   }
542   }
543
544   unsigned CHK = R.createVirtualRegister(MBlaze::GPRRegisterClass);
545   BuildMI(final, dl, TII->get(MBlaze::SWX))
546     .addReg(finalReg)
547     .addReg(MI->getOperand(1).getReg())
548     .addReg(MBlaze::R0);
549
550   BuildMI(final, dl, TII->get(MBlaze::ADDIC), CHK)
551     .addReg(MBlaze::R0)
552     .addImm(0);
553
554   BuildMI(final, dl, TII->get(MBlaze::BNEID))
555     .addReg(CHK)
556     .addMBB(start);
557
558   // The pseudo instruction is no longer needed so remove it
559   MI->eraseFromParent();
560   return exit;
561 }
562
563 //===----------------------------------------------------------------------===//
564 //  Misc Lower Operation implementation
565 //===----------------------------------------------------------------------===//
566 //
567
568 SDValue MBlazeTargetLowering::LowerSELECT_CC(SDValue Op,
569                                              SelectionDAG &DAG) const {
570   SDValue LHS = Op.getOperand(0);
571   SDValue RHS = Op.getOperand(1);
572   SDValue TrueVal = Op.getOperand(2);
573   SDValue FalseVal = Op.getOperand(3);
574   DebugLoc dl = Op.getDebugLoc();
575   unsigned Opc;
576
577   SDValue CompareFlag;
578   if (LHS.getValueType() == MVT::i32) {
579     Opc = MBlazeISD::Select_CC;
580     CompareFlag = DAG.getNode(MBlazeISD::ICmp, dl, MVT::i32, LHS, RHS)
581                     .getValue(1);
582   } else {
583     llvm_unreachable("Cannot lower select_cc with unknown type");
584   }
585
586   return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
587                      CompareFlag);
588 }
589
590 SDValue MBlazeTargetLowering::
591 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
592   // FIXME there isn't actually debug info here
593   DebugLoc dl = Op.getDebugLoc();
594   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
595   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
596
597   return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, GA);
598 }
599
600 SDValue MBlazeTargetLowering::
601 LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
602   llvm_unreachable("TLS not implemented for MicroBlaze.");
603   return SDValue(); // Not reached
604 }
605
606 SDValue MBlazeTargetLowering::
607 LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
608   SDValue ResNode;
609   SDValue HiPart;
610   // FIXME there isn't actually debug info here
611   DebugLoc dl = Op.getDebugLoc();
612
613   EVT PtrVT = Op.getValueType();
614   JumpTableSDNode *JT  = cast<JumpTableSDNode>(Op);
615
616   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 0);
617   return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, JTI);
618 }
619
620 SDValue MBlazeTargetLowering::
621 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
622   SDValue ResNode;
623   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
624   const Constant *C = N->getConstVal();
625   DebugLoc dl = Op.getDebugLoc();
626
627   SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
628                                          N->getOffset(), 0);
629   return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, CP);
630 }
631
632 SDValue MBlazeTargetLowering::LowerVASTART(SDValue Op,
633                                            SelectionDAG &DAG) const {
634   MachineFunction &MF = DAG.getMachineFunction();
635   MBlazeFunctionInfo *FuncInfo = MF.getInfo<MBlazeFunctionInfo>();
636
637   DebugLoc dl = Op.getDebugLoc();
638   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
639                                  getPointerTy());
640
641   // vastart just stores the address of the VarArgsFrameIndex slot into the
642   // memory location argument.
643   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
644   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
645                       MachinePointerInfo(SV),
646                       false, false, 0);
647 }
648
649 //===----------------------------------------------------------------------===//
650 //                      Calling Convention Implementation
651 //===----------------------------------------------------------------------===//
652
653 #include "MBlazeGenCallingConv.inc"
654
655 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
656                                 CCValAssign::LocInfo &LocInfo,
657                                 ISD::ArgFlagsTy &ArgFlags,
658                                 CCState &State) {
659   static const unsigned ArgRegs[] = {
660     MBlaze::R5, MBlaze::R6, MBlaze::R7,
661     MBlaze::R8, MBlaze::R9, MBlaze::R10
662   };
663
664   const unsigned NumArgRegs = array_lengthof(ArgRegs);
665   unsigned Reg = State.AllocateReg(ArgRegs, NumArgRegs);
666   if (!Reg) return false;
667
668   unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
669   State.AllocateStack(SizeInBytes, SizeInBytes);
670   State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
671
672   return true;
673 }
674
675 //===----------------------------------------------------------------------===//
676 //                  Call Calling Convention Implementation
677 //===----------------------------------------------------------------------===//
678
679 /// LowerCall - functions arguments are copied from virtual regs to
680 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
681 /// TODO: isVarArg, isTailCall.
682 SDValue MBlazeTargetLowering::
683 LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
684           bool isVarArg, bool &isTailCall,
685           const SmallVectorImpl<ISD::OutputArg> &Outs,
686           const SmallVectorImpl<SDValue> &OutVals,
687           const SmallVectorImpl<ISD::InputArg> &Ins,
688           DebugLoc dl, SelectionDAG &DAG,
689           SmallVectorImpl<SDValue> &InVals) const {
690   // MBlaze does not yet support tail call optimization
691   isTailCall = false;
692
693   // The MBlaze requires stack slots for arguments passed to var arg
694   // functions even if they are passed in registers.
695   bool needsRegArgSlots = isVarArg;
696
697   MachineFunction &MF = DAG.getMachineFunction();
698   MachineFrameInfo *MFI = MF.getFrameInfo();
699   const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
700
701   // Analyze operands of the call, assigning locations to each operand.
702   SmallVector<CCValAssign, 16> ArgLocs;
703   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
704                  getTargetMachine(), ArgLocs, *DAG.getContext());
705   CCInfo.AnalyzeCallOperands(Outs, CC_MBlaze);
706
707   // Get a count of how many bytes are to be pushed on the stack.
708   unsigned NumBytes = CCInfo.getNextStackOffset();
709
710   // Variable argument function calls require a minimum of 24-bytes of stack
711   if (isVarArg && NumBytes < 24) NumBytes = 24;
712
713   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
714
715   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
716   SmallVector<SDValue, 8> MemOpChains;
717
718   // Walk the register/memloc assignments, inserting copies/loads.
719   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
720     CCValAssign &VA = ArgLocs[i];
721     MVT RegVT = VA.getLocVT();
722     SDValue Arg = OutVals[i];
723
724     // Promote the value if needed.
725     switch (VA.getLocInfo()) {
726     default: llvm_unreachable("Unknown loc info!");
727     case CCValAssign::Full: break;
728     case CCValAssign::SExt:
729       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
730       break;
731     case CCValAssign::ZExt:
732       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
733       break;
734     case CCValAssign::AExt:
735       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
736       break;
737     }
738
739     // Arguments that can be passed on register must be kept at
740     // RegsToPass vector
741     if (VA.isRegLoc()) {
742       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
743     } else {
744       // Register can't get to this point...
745       assert(VA.isMemLoc());
746
747       // Since we are alread passing values on the stack we don't
748       // need to worry about creating additional slots for the
749       // values passed via registers.
750       needsRegArgSlots = false;
751
752       // Create the frame index object for this incoming parameter
753       unsigned ArgSize = VA.getValVT().getSizeInBits()/8;
754       unsigned StackLoc = VA.getLocMemOffset() + 4;
755       int FI = MFI->CreateFixedObject(ArgSize, StackLoc, true);
756
757       SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
758
759       // emit ISD::STORE whichs stores the
760       // parameter value to a stack Location
761       MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
762                                          MachinePointerInfo(),
763                                          false, false, 0));
764     }
765   }
766
767   // If we need to reserve stack space for the arguments passed via registers
768   // then create a fixed stack object at the beginning of the stack.
769   if (needsRegArgSlots && TFI.hasReservedCallFrame(MF))
770     MFI->CreateFixedObject(28,0,true);
771
772   // Transform all store nodes into one single node because all store
773   // nodes are independent of each other.
774   if (!MemOpChains.empty())
775     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
776                         &MemOpChains[0], MemOpChains.size());
777
778   // Build a sequence of copy-to-reg nodes chained together with token
779   // chain and flag operands which copy the outgoing args into registers.
780   // The InFlag in necessary since all emitted instructions must be
781   // stuck together.
782   SDValue InFlag;
783   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
784     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
785                              RegsToPass[i].second, InFlag);
786     InFlag = Chain.getValue(1);
787   }
788
789   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
790   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
791   // node so that legalize doesn't hack it.
792   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
793     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
794                                 getPointerTy(), 0, 0);
795   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
796     Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
797                                 getPointerTy(), 0);
798
799   // MBlazeJmpLink = #chain, #target_address, #opt_in_flags...
800   //             = Chain, Callee, Reg#1, Reg#2, ...
801   //
802   // Returns a chain & a flag for retval copy to use.
803   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
804   SmallVector<SDValue, 8> Ops;
805   Ops.push_back(Chain);
806   Ops.push_back(Callee);
807
808   // Add argument registers to the end of the list so that they are
809   // known live into the call.
810   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
811     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
812                                   RegsToPass[i].second.getValueType()));
813   }
814
815   if (InFlag.getNode())
816     Ops.push_back(InFlag);
817
818   Chain  = DAG.getNode(MBlazeISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
819   InFlag = Chain.getValue(1);
820
821   // Create the CALLSEQ_END node.
822   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
823                              DAG.getIntPtrConstant(0, true), InFlag);
824   if (!Ins.empty())
825     InFlag = Chain.getValue(1);
826
827   // Handle result values, copying them out of physregs into vregs that we
828   // return.
829   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
830                          Ins, dl, DAG, InVals);
831 }
832
833 /// LowerCallResult - Lower the result values of a call into the
834 /// appropriate copies out of appropriate physical registers.
835 SDValue MBlazeTargetLowering::
836 LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv,
837                 bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins,
838                 DebugLoc dl, SelectionDAG &DAG,
839                 SmallVectorImpl<SDValue> &InVals) const {
840   // Assign locations to each value returned by this call.
841   SmallVector<CCValAssign, 16> RVLocs;
842   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
843                  getTargetMachine(), RVLocs, *DAG.getContext());
844
845   CCInfo.AnalyzeCallResult(Ins, RetCC_MBlaze);
846
847   // Copy all of the result registers out of their specified physreg.
848   for (unsigned i = 0; i != RVLocs.size(); ++i) {
849     Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
850                                RVLocs[i].getValVT(), InFlag).getValue(1);
851     InFlag = Chain.getValue(2);
852     InVals.push_back(Chain.getValue(0));
853   }
854
855   return Chain;
856 }
857
858 //===----------------------------------------------------------------------===//
859 //             Formal Arguments Calling Convention Implementation
860 //===----------------------------------------------------------------------===//
861
862 /// LowerFormalArguments - transform physical registers into
863 /// virtual registers and generate load operations for
864 /// arguments places on the stack.
865 SDValue MBlazeTargetLowering::
866 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
867                      const SmallVectorImpl<ISD::InputArg> &Ins,
868                      DebugLoc dl, SelectionDAG &DAG,
869                      SmallVectorImpl<SDValue> &InVals) const {
870   MachineFunction &MF = DAG.getMachineFunction();
871   MachineFrameInfo *MFI = MF.getFrameInfo();
872   MBlazeFunctionInfo *MBlazeFI = MF.getInfo<MBlazeFunctionInfo>();
873
874   unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
875   MBlazeFI->setVarArgsFrameIndex(0);
876
877   // Used with vargs to acumulate store chains.
878   std::vector<SDValue> OutChains;
879
880   // Keep track of the last register used for arguments
881   unsigned ArgRegEnd = 0;
882
883   // Assign locations to all of the incoming arguments.
884   SmallVector<CCValAssign, 16> ArgLocs;
885   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
886                  getTargetMachine(), ArgLocs, *DAG.getContext());
887
888   CCInfo.AnalyzeFormalArguments(Ins, CC_MBlaze);
889   SDValue StackPtr;
890
891   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
892     CCValAssign &VA = ArgLocs[i];
893
894     // Arguments stored on registers
895     if (VA.isRegLoc()) {
896       MVT RegVT = VA.getLocVT();
897       ArgRegEnd = VA.getLocReg();
898       TargetRegisterClass *RC = 0;
899
900       if (RegVT == MVT::i32)
901         RC = MBlaze::GPRRegisterClass;
902       else if (RegVT == MVT::f32)
903         RC = MBlaze::GPRRegisterClass;
904       else
905         llvm_unreachable("RegVT not supported by LowerFormalArguments");
906
907       // Transform the arguments stored on
908       // physical registers into virtual ones
909       unsigned Reg = MF.addLiveIn(ArgRegEnd, RC);
910       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
911
912       // If this is an 8 or 16-bit value, it has been passed promoted
913       // to 32 bits.  Insert an assert[sz]ext to capture this, then
914       // truncate to the right size. If if is a floating point value
915       // then convert to the correct type.
916       if (VA.getLocInfo() != CCValAssign::Full) {
917         unsigned Opcode = 0;
918         if (VA.getLocInfo() == CCValAssign::SExt)
919           Opcode = ISD::AssertSext;
920         else if (VA.getLocInfo() == CCValAssign::ZExt)
921           Opcode = ISD::AssertZext;
922         if (Opcode)
923           ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
924                                  DAG.getValueType(VA.getValVT()));
925         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
926       }
927
928       InVals.push_back(ArgValue);
929     } else { // VA.isRegLoc()
930       // sanity check
931       assert(VA.isMemLoc());
932
933       // The last argument is not a register
934       ArgRegEnd = 0;
935
936       // The stack pointer offset is relative to the caller stack frame.
937       // Since the real stack size is unknown here, a negative SPOffset
938       // is used so there's a way to adjust these offsets when the stack
939       // size get known (on EliminateFrameIndex). A dummy SPOffset is
940       // used instead of a direct negative address (which is recorded to
941       // be used on emitPrologue) to avoid mis-calc of the first stack
942       // offset on PEI::calculateFrameObjectOffsets.
943       // Arguments are always 32-bit.
944       unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
945       unsigned StackLoc = VA.getLocMemOffset() + 4;
946       int FI = MFI->CreateFixedObject(ArgSize, 0, true);
947       MBlazeFI->recordLoadArgsFI(FI, -StackLoc);
948       MBlazeFI->recordLiveIn(FI);
949
950       // Create load nodes to retrieve arguments from the stack
951       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
952       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
953                                    MachinePointerInfo::getFixedStack(FI),
954                                    false, false, 0));
955     }
956   }
957
958   // To meet ABI, when VARARGS are passed on registers, the registers
959   // must have their values written to the caller stack frame. If the last
960   // argument was placed in the stack, there's no need to save any register.
961   if ((isVarArg) && ArgRegEnd) {
962     if (StackPtr.getNode() == 0)
963       StackPtr = DAG.getRegister(StackReg, getPointerTy());
964
965     // The last register argument that must be saved is MBlaze::R10
966     TargetRegisterClass *RC = MBlaze::GPRRegisterClass;
967
968     unsigned Begin = getMBlazeRegisterNumbering(MBlaze::R5);
969     unsigned Start = getMBlazeRegisterNumbering(ArgRegEnd+1);
970     unsigned End   = getMBlazeRegisterNumbering(MBlaze::R10);
971     unsigned StackLoc = Start - Begin + 1;
972
973     for (; Start <= End; ++Start, ++StackLoc) {
974       unsigned Reg = getMBlazeRegisterFromNumbering(Start);
975       unsigned LiveReg = MF.addLiveIn(Reg, RC);
976       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, LiveReg, MVT::i32);
977
978       int FI = MFI->CreateFixedObject(4, 0, true);
979       MBlazeFI->recordStoreVarArgsFI(FI, -(StackLoc*4));
980       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
981       OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
982                                        MachinePointerInfo(),
983                                        false, false, 0));
984
985       // Record the frame index of the first variable argument
986       // which is a value necessary to VASTART.
987       if (!MBlazeFI->getVarArgsFrameIndex())
988         MBlazeFI->setVarArgsFrameIndex(FI);
989     }
990   }
991
992   // All stores are grouped in one node to allow the matching between
993   // the size of Ins and InVals. This only happens when on varg functions
994   if (!OutChains.empty()) {
995     OutChains.push_back(Chain);
996     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
997                         &OutChains[0], OutChains.size());
998   }
999
1000   return Chain;
1001 }
1002
1003 //===----------------------------------------------------------------------===//
1004 //               Return Value Calling Convention Implementation
1005 //===----------------------------------------------------------------------===//
1006
1007 SDValue MBlazeTargetLowering::
1008 LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1009             const SmallVectorImpl<ISD::OutputArg> &Outs,
1010             const SmallVectorImpl<SDValue> &OutVals,
1011             DebugLoc dl, SelectionDAG &DAG) const {
1012   // CCValAssign - represent the assignment of
1013   // the return value to a location
1014   SmallVector<CCValAssign, 16> RVLocs;
1015
1016   // CCState - Info about the registers and stack slot.
1017   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1018                  getTargetMachine(), RVLocs, *DAG.getContext());
1019
1020   // Analize return values.
1021   CCInfo.AnalyzeReturn(Outs, RetCC_MBlaze);
1022
1023   // If this is the first return lowered for this function, add
1024   // the regs to the liveout set for the function.
1025   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1026     for (unsigned i = 0; i != RVLocs.size(); ++i)
1027       if (RVLocs[i].isRegLoc())
1028         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1029   }
1030
1031   SDValue Flag;
1032
1033   // Copy the result values into the output registers.
1034   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1035     CCValAssign &VA = RVLocs[i];
1036     assert(VA.isRegLoc() && "Can only return in registers!");
1037
1038     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1039                              OutVals[i], Flag);
1040
1041     // guarantee that all emitted copies are
1042     // stuck together, avoiding something bad
1043     Flag = Chain.getValue(1);
1044   }
1045
1046   // If this function is using the interrupt_handler calling convention
1047   // then use "rtid r14, 0" otherwise use "rtsd r15, 8"
1048   unsigned Ret = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlazeISD::IRet
1049                                                               : MBlazeISD::Ret;
1050   unsigned Reg = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlaze::R14
1051                                                               : MBlaze::R15;
1052   SDValue DReg = DAG.getRegister(Reg, MVT::i32);
1053
1054   if (Flag.getNode())
1055     return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg, Flag);
1056
1057   return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg);
1058 }
1059
1060 //===----------------------------------------------------------------------===//
1061 //                           MBlaze Inline Assembly Support
1062 //===----------------------------------------------------------------------===//
1063
1064 /// getConstraintType - Given a constraint letter, return the type of
1065 /// constraint it is for this target.
1066 MBlazeTargetLowering::ConstraintType MBlazeTargetLowering::
1067 getConstraintType(const std::string &Constraint) const
1068 {
1069   // MBlaze specific constrainy
1070   //
1071   // 'd' : An address register. Equivalent to r.
1072   // 'y' : Equivalent to r; retained for
1073   //       backwards compatibility.
1074   // 'f' : Floating Point registers.
1075   if (Constraint.size() == 1) {
1076     switch (Constraint[0]) {
1077       default : break;
1078       case 'd':
1079       case 'y':
1080       case 'f':
1081         return C_RegisterClass;
1082         break;
1083     }
1084   }
1085   return TargetLowering::getConstraintType(Constraint);
1086 }
1087
1088 /// Examine constraint type and operand type and determine a weight value.
1089 /// This object must already have been set up with the operand type
1090 /// and the current alternative constraint selected.
1091 TargetLowering::ConstraintWeight
1092 MBlazeTargetLowering::getSingleConstraintMatchWeight(
1093     AsmOperandInfo &info, const char *constraint) const {
1094   ConstraintWeight weight = CW_Invalid;
1095   Value *CallOperandVal = info.CallOperandVal;
1096     // If we don't have a value, we can't do a match,
1097     // but allow it at the lowest weight.
1098   if (CallOperandVal == NULL)
1099     return CW_Default;
1100   Type *type = CallOperandVal->getType();
1101   // Look at the constraint type.
1102   switch (*constraint) {
1103   default:
1104     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1105     break;
1106   case 'd':
1107   case 'y':
1108     if (type->isIntegerTy())
1109       weight = CW_Register;
1110     break;
1111   case 'f':
1112     if (type->isFloatTy())
1113       weight = CW_Register;
1114     break;
1115   }
1116   return weight;
1117 }
1118
1119 /// Given a register class constraint, like 'r', if this corresponds directly
1120 /// to an LLVM register class, return a register of 0 and the register class
1121 /// pointer.
1122 std::pair<unsigned, const TargetRegisterClass*> MBlazeTargetLowering::
1123 getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const {
1124   if (Constraint.size() == 1) {
1125     switch (Constraint[0]) {
1126     case 'r':
1127       return std::make_pair(0U, MBlaze::GPRRegisterClass);
1128       // TODO: These can't possibly be right, but match what was in
1129       // getRegClassForInlineAsmConstraint.
1130     case 'd':
1131     case 'y':
1132     case 'f':
1133       if (VT == MVT::f32)
1134         return std::make_pair(0U, MBlaze::GPRRegisterClass);
1135     }
1136   }
1137   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1138 }
1139
1140 bool MBlazeTargetLowering::
1141 isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1142   // The MBlaze target isn't yet aware of offsets.
1143   return false;
1144 }
1145
1146 bool MBlazeTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1147   return VT != MVT::f32;
1148 }