]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "ppc-codegen"
16 #include "PPC.h"
17 #include "PPCTargetMachine.h"
18 #include "MCTargetDesc/PPCPredicates.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/Target/TargetOptions.h"
26 #include "llvm/Constants.h"
27 #include "llvm/Function.h"
28 #include "llvm/GlobalValue.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 using namespace llvm;
35
36 namespace {
37   //===--------------------------------------------------------------------===//
38   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
39   /// instructions for SelectionDAG operations.
40   ///
41   class PPCDAGToDAGISel : public SelectionDAGISel {
42     const PPCTargetMachine &TM;
43     const PPCTargetLowering &PPCLowering;
44     const PPCSubtarget &PPCSubTarget;
45     unsigned GlobalBaseReg;
46   public:
47     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
48       : SelectionDAGISel(tm), TM(tm),
49         PPCLowering(*TM.getTargetLowering()),
50         PPCSubTarget(*TM.getSubtargetImpl()) {}
51
52     virtual bool runOnMachineFunction(MachineFunction &MF) {
53       // Make sure we re-emit a set of the global base reg if necessary
54       GlobalBaseReg = 0;
55       SelectionDAGISel::runOnMachineFunction(MF);
56
57       InsertVRSaveCode(MF);
58       return true;
59     }
60
61     /// getI32Imm - Return a target constant with the specified value, of type
62     /// i32.
63     inline SDValue getI32Imm(unsigned Imm) {
64       return CurDAG->getTargetConstant(Imm, MVT::i32);
65     }
66
67     /// getI64Imm - Return a target constant with the specified value, of type
68     /// i64.
69     inline SDValue getI64Imm(uint64_t Imm) {
70       return CurDAG->getTargetConstant(Imm, MVT::i64);
71     }
72
73     /// getSmallIPtrImm - Return a target constant of pointer type.
74     inline SDValue getSmallIPtrImm(unsigned Imm) {
75       return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
76     }
77
78     /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
79     /// with any number of 0s on either side.  The 1s are allowed to wrap from
80     /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
81     /// 0x0F0F0000 is not, since all 1s are not contiguous.
82     static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
83
84
85     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
86     /// rotate and mask opcode and mask operation.
87     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
88                                 unsigned &SH, unsigned &MB, unsigned &ME);
89
90     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
91     /// base register.  Return the virtual register that holds this value.
92     SDNode *getGlobalBaseReg();
93
94     // Select - Convert the specified operand from a target-independent to a
95     // target-specific node if it hasn't already been changed.
96     SDNode *Select(SDNode *N);
97
98     SDNode *SelectBitfieldInsert(SDNode *N);
99
100     /// SelectCC - Select a comparison of the specified values with the
101     /// specified condition code, returning the CR# of the expression.
102     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
103
104     /// SelectAddrImm - Returns true if the address N can be represented by
105     /// a base register plus a signed 16-bit displacement [r+imm].
106     bool SelectAddrImm(SDValue N, SDValue &Disp,
107                        SDValue &Base) {
108       return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
109     }
110
111     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
112     /// immediate field.  Because preinc imms have already been validated, just
113     /// accept it.
114     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
115       Out = N;
116       return true;
117     }
118
119     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
120     /// represented as an indexed [r+r] operation.  Returns false if it can
121     /// be represented by [r+imm], which are preferred.
122     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
123       return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
124     }
125
126     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
127     /// represented as an indexed [r+r] operation.
128     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
129       return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
130     }
131
132     /// SelectAddrImmShift - Returns true if the address N can be represented by
133     /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
134     /// for use by STD and friends.
135     bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) {
136       return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
137     }
138
139     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
140     /// inline asm expressions.  It is always correct to compute the value into
141     /// a register.  The case of adding a (possibly relocatable) constant to a
142     /// register can be improved, but it is wrong to substitute Reg+Reg for
143     /// Reg in an asm, because the load or store opcode would have to change.
144    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
145                                               char ConstraintCode,
146                                               std::vector<SDValue> &OutOps) {
147       OutOps.push_back(Op);
148       return false;
149     }
150
151     void InsertVRSaveCode(MachineFunction &MF);
152
153     virtual const char *getPassName() const {
154       return "PowerPC DAG->DAG Pattern Instruction Selection";
155     }
156
157 // Include the pieces autogenerated from the target description.
158 #include "PPCGenDAGISel.inc"
159
160 private:
161     SDNode *SelectSETCC(SDNode *N);
162   };
163 }
164
165 /// InsertVRSaveCode - Once the entire function has been instruction selected,
166 /// all virtual registers are created and all machine instructions are built,
167 /// check to see if we need to save/restore VRSAVE.  If so, do it.
168 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
169   // Check to see if this function uses vector registers, which means we have to
170   // save and restore the VRSAVE register and update it with the regs we use.
171   //
172   // In this case, there will be virtual registers of vector type created
173   // by the scheduler.  Detect them now.
174   bool HasVectorVReg = false;
175   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
176     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
177     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
178       HasVectorVReg = true;
179       break;
180     }
181   }
182   if (!HasVectorVReg) return;  // nothing to do.
183
184   // If we have a vector register, we want to emit code into the entry and exit
185   // blocks to save and restore the VRSAVE register.  We do this here (instead
186   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
187   //
188   // 1. This (trivially) reduces the load on the register allocator, by not
189   //    having to represent the live range of the VRSAVE register.
190   // 2. This (more significantly) allows us to create a temporary virtual
191   //    register to hold the saved VRSAVE value, allowing this temporary to be
192   //    register allocated, instead of forcing it to be spilled to the stack.
193
194   // Create two vregs - one to hold the VRSAVE register that is live-in to the
195   // function and one for the value after having bits or'd into it.
196   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
197   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
198
199   const TargetInstrInfo &TII = *TM.getInstrInfo();
200   MachineBasicBlock &EntryBB = *Fn.begin();
201   DebugLoc dl;
202   // Emit the following code into the entry block:
203   // InVRSAVE = MFVRSAVE
204   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
205   // MTVRSAVE UpdatedVRSAVE
206   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
207   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
208   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
209           UpdatedVRSAVE).addReg(InVRSAVE);
210   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
211
212   // Find all return blocks, outputting a restore in each epilog.
213   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
214     if (!BB->empty() && BB->back().getDesc().isReturn()) {
215       IP = BB->end(); --IP;
216
217       // Skip over all terminator instructions, which are part of the return
218       // sequence.
219       MachineBasicBlock::iterator I2 = IP;
220       while (I2 != BB->begin() && (--I2)->getDesc().isTerminator())
221         IP = I2;
222
223       // Emit: MTVRSAVE InVRSave
224       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
225     }
226   }
227 }
228
229
230 /// getGlobalBaseReg - Output the instructions required to put the
231 /// base address to use for accessing globals into a register.
232 ///
233 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
234   if (!GlobalBaseReg) {
235     const TargetInstrInfo &TII = *TM.getInstrInfo();
236     // Insert the set of GlobalBaseReg into the first MBB of the function
237     MachineBasicBlock &FirstMBB = MF->front();
238     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
239     DebugLoc dl;
240
241     if (PPCLowering.getPointerTy() == MVT::i32) {
242       GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass);
243       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
244       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
245     } else {
246       GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass);
247       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
248       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
249     }
250   }
251   return CurDAG->getRegister(GlobalBaseReg,
252                              PPCLowering.getPointerTy()).getNode();
253 }
254
255 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
256 /// or 64-bit immediate, and if the value can be accurately represented as a
257 /// sign extension from a 16-bit value.  If so, this returns true and the
258 /// immediate.
259 static bool isIntS16Immediate(SDNode *N, short &Imm) {
260   if (N->getOpcode() != ISD::Constant)
261     return false;
262
263   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
264   if (N->getValueType(0) == MVT::i32)
265     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
266   else
267     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
268 }
269
270 static bool isIntS16Immediate(SDValue Op, short &Imm) {
271   return isIntS16Immediate(Op.getNode(), Imm);
272 }
273
274
275 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
276 /// operand. If so Imm will receive the 32-bit value.
277 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
278   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
279     Imm = cast<ConstantSDNode>(N)->getZExtValue();
280     return true;
281   }
282   return false;
283 }
284
285 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
286 /// operand.  If so Imm will receive the 64-bit value.
287 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
288   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
289     Imm = cast<ConstantSDNode>(N)->getZExtValue();
290     return true;
291   }
292   return false;
293 }
294
295 // isInt32Immediate - This method tests to see if a constant operand.
296 // If so Imm will receive the 32 bit value.
297 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
298   return isInt32Immediate(N.getNode(), Imm);
299 }
300
301
302 // isOpcWithIntImmediate - This method tests to see if the node is a specific
303 // opcode and that it has a immediate integer right operand.
304 // If so Imm will receive the 32 bit value.
305 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
306   return N->getOpcode() == Opc
307          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
308 }
309
310 bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
311   if (isShiftedMask_32(Val)) {
312     // look for the first non-zero bit
313     MB = CountLeadingZeros_32(Val);
314     // look for the first zero bit after the run of ones
315     ME = CountLeadingZeros_32((Val - 1) ^ Val);
316     return true;
317   } else {
318     Val = ~Val; // invert mask
319     if (isShiftedMask_32(Val)) {
320       // effectively look for the first zero bit
321       ME = CountLeadingZeros_32(Val) - 1;
322       // effectively look for the first one bit after the run of zeros
323       MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
324       return true;
325     }
326   }
327   // no run present
328   return false;
329 }
330
331 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
332                                       bool isShiftMask, unsigned &SH,
333                                       unsigned &MB, unsigned &ME) {
334   // Don't even go down this path for i64, since different logic will be
335   // necessary for rldicl/rldicr/rldimi.
336   if (N->getValueType(0) != MVT::i32)
337     return false;
338
339   unsigned Shift  = 32;
340   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
341   unsigned Opcode = N->getOpcode();
342   if (N->getNumOperands() != 2 ||
343       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
344     return false;
345
346   if (Opcode == ISD::SHL) {
347     // apply shift left to mask if it comes first
348     if (isShiftMask) Mask = Mask << Shift;
349     // determine which bits are made indeterminant by shift
350     Indeterminant = ~(0xFFFFFFFFu << Shift);
351   } else if (Opcode == ISD::SRL) {
352     // apply shift right to mask if it comes first
353     if (isShiftMask) Mask = Mask >> Shift;
354     // determine which bits are made indeterminant by shift
355     Indeterminant = ~(0xFFFFFFFFu >> Shift);
356     // adjust for the left rotate
357     Shift = 32 - Shift;
358   } else if (Opcode == ISD::ROTL) {
359     Indeterminant = 0;
360   } else {
361     return false;
362   }
363
364   // if the mask doesn't intersect any Indeterminant bits
365   if (Mask && !(Mask & Indeterminant)) {
366     SH = Shift & 31;
367     // make sure the mask is still a mask (wrap arounds may not be)
368     return isRunOfOnes(Mask, MB, ME);
369   }
370   return false;
371 }
372
373 /// SelectBitfieldInsert - turn an or of two masked values into
374 /// the rotate left word immediate then mask insert (rlwimi) instruction.
375 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
376   SDValue Op0 = N->getOperand(0);
377   SDValue Op1 = N->getOperand(1);
378   DebugLoc dl = N->getDebugLoc();
379
380   APInt LKZ, LKO, RKZ, RKO;
381   CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO);
382   CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO);
383
384   unsigned TargetMask = LKZ.getZExtValue();
385   unsigned InsertMask = RKZ.getZExtValue();
386
387   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
388     unsigned Op0Opc = Op0.getOpcode();
389     unsigned Op1Opc = Op1.getOpcode();
390     unsigned Value, SH = 0;
391     TargetMask = ~TargetMask;
392     InsertMask = ~InsertMask;
393
394     // If the LHS has a foldable shift and the RHS does not, then swap it to the
395     // RHS so that we can fold the shift into the insert.
396     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
397       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
398           Op0.getOperand(0).getOpcode() == ISD::SRL) {
399         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
400             Op1.getOperand(0).getOpcode() != ISD::SRL) {
401           std::swap(Op0, Op1);
402           std::swap(Op0Opc, Op1Opc);
403           std::swap(TargetMask, InsertMask);
404         }
405       }
406     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
407       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
408           Op1.getOperand(0).getOpcode() != ISD::SRL) {
409         std::swap(Op0, Op1);
410         std::swap(Op0Opc, Op1Opc);
411         std::swap(TargetMask, InsertMask);
412       }
413     }
414
415     unsigned MB, ME;
416     if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
417       SDValue Tmp1, Tmp2;
418
419       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
420           isInt32Immediate(Op1.getOperand(1), Value)) {
421         Op1 = Op1.getOperand(0);
422         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
423       }
424       if (Op1Opc == ISD::AND) {
425         unsigned SHOpc = Op1.getOperand(0).getOpcode();
426         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
427             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
428           Op1 = Op1.getOperand(0).getOperand(0);
429           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
430         } else {
431           Op1 = Op1.getOperand(0);
432         }
433       }
434
435       SH &= 31;
436       SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
437                           getI32Imm(ME) };
438       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
439     }
440   }
441   return 0;
442 }
443
444 /// SelectCC - Select a comparison of the specified values with the specified
445 /// condition code, returning the CR# of the expression.
446 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
447                                     ISD::CondCode CC, DebugLoc dl) {
448   // Always select the LHS.
449   unsigned Opc;
450
451   if (LHS.getValueType() == MVT::i32) {
452     unsigned Imm;
453     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
454       if (isInt32Immediate(RHS, Imm)) {
455         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
456         if (isUInt<16>(Imm))
457           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
458                                                 getI32Imm(Imm & 0xFFFF)), 0);
459         // If this is a 16-bit signed immediate, fold it.
460         if (isInt<16>((int)Imm))
461           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
462                                                 getI32Imm(Imm & 0xFFFF)), 0);
463
464         // For non-equality comparisons, the default code would materialize the
465         // constant, then compare against it, like this:
466         //   lis r2, 4660
467         //   ori r2, r2, 22136
468         //   cmpw cr0, r3, r2
469         // Since we are just comparing for equality, we can emit this instead:
470         //   xoris r0,r3,0x1234
471         //   cmplwi cr0,r0,0x5678
472         //   beq cr0,L6
473         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
474                                            getI32Imm(Imm >> 16)), 0);
475         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
476                                               getI32Imm(Imm & 0xFFFF)), 0);
477       }
478       Opc = PPC::CMPLW;
479     } else if (ISD::isUnsignedIntSetCC(CC)) {
480       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
481         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
482                                               getI32Imm(Imm & 0xFFFF)), 0);
483       Opc = PPC::CMPLW;
484     } else {
485       short SImm;
486       if (isIntS16Immediate(RHS, SImm))
487         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
488                                               getI32Imm((int)SImm & 0xFFFF)),
489                          0);
490       Opc = PPC::CMPW;
491     }
492   } else if (LHS.getValueType() == MVT::i64) {
493     uint64_t Imm;
494     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
495       if (isInt64Immediate(RHS.getNode(), Imm)) {
496         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
497         if (isUInt<16>(Imm))
498           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
499                                                 getI32Imm(Imm & 0xFFFF)), 0);
500         // If this is a 16-bit signed immediate, fold it.
501         if (isInt<16>(Imm))
502           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
503                                                 getI32Imm(Imm & 0xFFFF)), 0);
504
505         // For non-equality comparisons, the default code would materialize the
506         // constant, then compare against it, like this:
507         //   lis r2, 4660
508         //   ori r2, r2, 22136
509         //   cmpd cr0, r3, r2
510         // Since we are just comparing for equality, we can emit this instead:
511         //   xoris r0,r3,0x1234
512         //   cmpldi cr0,r0,0x5678
513         //   beq cr0,L6
514         if (isUInt<32>(Imm)) {
515           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
516                                              getI64Imm(Imm >> 16)), 0);
517           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
518                                                 getI64Imm(Imm & 0xFFFF)), 0);
519         }
520       }
521       Opc = PPC::CMPLD;
522     } else if (ISD::isUnsignedIntSetCC(CC)) {
523       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
524         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
525                                               getI64Imm(Imm & 0xFFFF)), 0);
526       Opc = PPC::CMPLD;
527     } else {
528       short SImm;
529       if (isIntS16Immediate(RHS, SImm))
530         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
531                                               getI64Imm(SImm & 0xFFFF)),
532                          0);
533       Opc = PPC::CMPD;
534     }
535   } else if (LHS.getValueType() == MVT::f32) {
536     Opc = PPC::FCMPUS;
537   } else {
538     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
539     Opc = PPC::FCMPUD;
540   }
541   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
542 }
543
544 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
545   switch (CC) {
546   case ISD::SETUEQ:
547   case ISD::SETONE:
548   case ISD::SETOLE:
549   case ISD::SETOGE:
550     llvm_unreachable("Should be lowered by legalize!");
551   default: llvm_unreachable("Unknown condition!");
552   case ISD::SETOEQ:
553   case ISD::SETEQ:  return PPC::PRED_EQ;
554   case ISD::SETUNE:
555   case ISD::SETNE:  return PPC::PRED_NE;
556   case ISD::SETOLT:
557   case ISD::SETLT:  return PPC::PRED_LT;
558   case ISD::SETULE:
559   case ISD::SETLE:  return PPC::PRED_LE;
560   case ISD::SETOGT:
561   case ISD::SETGT:  return PPC::PRED_GT;
562   case ISD::SETUGE:
563   case ISD::SETGE:  return PPC::PRED_GE;
564   case ISD::SETO:   return PPC::PRED_NU;
565   case ISD::SETUO:  return PPC::PRED_UN;
566     // These two are invalid for floating point.  Assume we have int.
567   case ISD::SETULT: return PPC::PRED_LT;
568   case ISD::SETUGT: return PPC::PRED_GT;
569   }
570 }
571
572 /// getCRIdxForSetCC - Return the index of the condition register field
573 /// associated with the SetCC condition, and whether or not the field is
574 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
575 ///
576 /// If this returns with Other != -1, then the returned comparison is an or of
577 /// two simpler comparisons.  In this case, Invert is guaranteed to be false.
578 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
579   Invert = false;
580   Other = -1;
581   switch (CC) {
582   default: llvm_unreachable("Unknown condition!");
583   case ISD::SETOLT:
584   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
585   case ISD::SETOGT:
586   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
587   case ISD::SETOEQ:
588   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
589   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
590   case ISD::SETUGE:
591   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
592   case ISD::SETULE:
593   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
594   case ISD::SETUNE:
595   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
596   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
597   case ISD::SETUEQ:
598   case ISD::SETOGE:
599   case ISD::SETOLE:
600   case ISD::SETONE:
601     llvm_unreachable("Invalid branch code: should be expanded by legalize");
602   // These are invalid for floating point.  Assume integer.
603   case ISD::SETULT: return 0;
604   case ISD::SETUGT: return 1;
605   }
606   return 0;
607 }
608
609 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
610   DebugLoc dl = N->getDebugLoc();
611   unsigned Imm;
612   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
613   EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
614   bool isPPC64 = (PtrVT == MVT::i64);
615
616   if (isInt32Immediate(N->getOperand(1), Imm)) {
617     // We can codegen setcc op, imm very efficiently compared to a brcond.
618     // Check for those cases here.
619     // setcc op, 0
620     if (Imm == 0) {
621       SDValue Op = N->getOperand(0);
622       switch (CC) {
623       default: break;
624       case ISD::SETEQ: {
625         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
626         SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
627         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
628       }
629       case ISD::SETNE: {
630         if (isPPC64) break;
631         SDValue AD =
632           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
633                                          Op, getI32Imm(~0U)), 0);
634         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
635                                     AD.getValue(1));
636       }
637       case ISD::SETLT: {
638         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
639         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
640       }
641       case ISD::SETGT: {
642         SDValue T =
643           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
644         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
645         SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
646         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
647       }
648       }
649     } else if (Imm == ~0U) {        // setcc op, -1
650       SDValue Op = N->getOperand(0);
651       switch (CC) {
652       default: break;
653       case ISD::SETEQ:
654         if (isPPC64) break;
655         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
656                                             Op, getI32Imm(1)), 0);
657         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
658                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
659                                                              MVT::i32,
660                                                              getI32Imm(0)), 0),
661                                       Op.getValue(1));
662       case ISD::SETNE: {
663         if (isPPC64) break;
664         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
665         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
666                                             Op, getI32Imm(~0U));
667         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
668                                     Op, SDValue(AD, 1));
669       }
670       case ISD::SETLT: {
671         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
672                                                     getI32Imm(1)), 0);
673         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
674                                                     Op), 0);
675         SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
676         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
677       }
678       case ISD::SETGT: {
679         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
680         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
681                      0);
682         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
683                                     getI32Imm(1));
684       }
685       }
686     }
687   }
688
689   bool Inv;
690   int OtherCondIdx;
691   unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
692   SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
693   SDValue IntCR;
694
695   // Force the ccreg into CR7.
696   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
697
698   SDValue InFlag(0, 0);  // Null incoming flag value.
699   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
700                                InFlag).getValue(1);
701
702   if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
703     IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
704                                            CCReg), 0);
705  else
706     IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
707                                            CR7Reg, CCReg), 0);
708
709   SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
710                       getI32Imm(31), getI32Imm(31) };
711   if (OtherCondIdx == -1 && !Inv)
712     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
713
714   // Get the specified bit.
715   SDValue Tmp =
716     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
717   if (Inv) {
718     assert(OtherCondIdx == -1 && "Can't have split plus negation");
719     return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
720   }
721
722   // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
723   // We already got the bit for the first part of the comparison (e.g. SETULE).
724
725   // Get the other bit of the comparison.
726   Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
727   SDValue OtherCond =
728     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
729
730   return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
731 }
732
733
734 // Select - Convert the specified operand from a target-independent to a
735 // target-specific node if it hasn't already been changed.
736 SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
737   DebugLoc dl = N->getDebugLoc();
738   if (N->isMachineOpcode())
739     return NULL;   // Already selected.
740
741   switch (N->getOpcode()) {
742   default: break;
743
744   case ISD::Constant: {
745     if (N->getValueType(0) == MVT::i64) {
746       // Get 64 bit value.
747       int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
748       // Assume no remaining bits.
749       unsigned Remainder = 0;
750       // Assume no shift required.
751       unsigned Shift = 0;
752
753       // If it can't be represented as a 32 bit value.
754       if (!isInt<32>(Imm)) {
755         Shift = CountTrailingZeros_64(Imm);
756         int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
757
758         // If the shifted value fits 32 bits.
759         if (isInt<32>(ImmSh)) {
760           // Go with the shifted value.
761           Imm = ImmSh;
762         } else {
763           // Still stuck with a 64 bit value.
764           Remainder = Imm;
765           Shift = 32;
766           Imm >>= 32;
767         }
768       }
769
770       // Intermediate operand.
771       SDNode *Result;
772
773       // Handle first 32 bits.
774       unsigned Lo = Imm & 0xFFFF;
775       unsigned Hi = (Imm >> 16) & 0xFFFF;
776
777       // Simple value.
778       if (isInt<16>(Imm)) {
779        // Just the Lo bits.
780         Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
781       } else if (Lo) {
782         // Handle the Hi bits.
783         unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
784         Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
785         // And Lo bits.
786         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
787                                         SDValue(Result, 0), getI32Imm(Lo));
788       } else {
789        // Just the Hi bits.
790         Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
791       }
792
793       // If no shift, we're done.
794       if (!Shift) return Result;
795
796       // Shift for next step if the upper 32-bits were not zero.
797       if (Imm) {
798         Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
799                                         SDValue(Result, 0),
800                                         getI32Imm(Shift),
801                                         getI32Imm(63 - Shift));
802       }
803
804       // Add in the last bits as required.
805       if ((Hi = (Remainder >> 16) & 0xFFFF)) {
806         Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
807                                         SDValue(Result, 0), getI32Imm(Hi));
808       }
809       if ((Lo = Remainder & 0xFFFF)) {
810         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
811                                         SDValue(Result, 0), getI32Imm(Lo));
812       }
813
814       return Result;
815     }
816     break;
817   }
818
819   case ISD::SETCC:
820     return SelectSETCC(N);
821   case PPCISD::GlobalBaseReg:
822     return getGlobalBaseReg();
823
824   case ISD::FrameIndex: {
825     int FI = cast<FrameIndexSDNode>(N)->getIndex();
826     SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
827     unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
828     if (N->hasOneUse())
829       return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
830                                   getSmallIPtrImm(0));
831     return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
832                                   getSmallIPtrImm(0));
833   }
834
835   case PPCISD::MFCR: {
836     SDValue InFlag = N->getOperand(1);
837     // Use MFOCRF if supported.
838     if (PPCSubTarget.isGigaProcessor())
839       return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
840                                     N->getOperand(0), InFlag);
841     else
842       return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
843                                     N->getOperand(0), InFlag);
844   }
845
846   case ISD::SDIV: {
847     // FIXME: since this depends on the setting of the carry flag from the srawi
848     //        we should really be making notes about that for the scheduler.
849     // FIXME: It sure would be nice if we could cheaply recognize the
850     //        srl/add/sra pattern the dag combiner will generate for this as
851     //        sra/addze rather than having to handle sdiv ourselves.  oh well.
852     unsigned Imm;
853     if (isInt32Immediate(N->getOperand(1), Imm)) {
854       SDValue N0 = N->getOperand(0);
855       if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
856         SDNode *Op =
857           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
858                                  N0, getI32Imm(Log2_32(Imm)));
859         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
860                                     SDValue(Op, 0), SDValue(Op, 1));
861       } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
862         SDNode *Op =
863           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
864                                  N0, getI32Imm(Log2_32(-Imm)));
865         SDValue PT =
866           SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
867                                          SDValue(Op, 0), SDValue(Op, 1)),
868                     0);
869         return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
870       }
871     }
872
873     // Other cases are autogenerated.
874     break;
875   }
876
877   case ISD::LOAD: {
878     // Handle preincrement loads.
879     LoadSDNode *LD = cast<LoadSDNode>(N);
880     EVT LoadedVT = LD->getMemoryVT();
881
882     // Normal loads are handled by code generated from the .td file.
883     if (LD->getAddressingMode() != ISD::PRE_INC)
884       break;
885
886     SDValue Offset = LD->getOffset();
887     if (isa<ConstantSDNode>(Offset) ||
888         Offset.getOpcode() == ISD::TargetGlobalAddress) {
889
890       unsigned Opcode;
891       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
892       if (LD->getValueType(0) != MVT::i64) {
893         // Handle PPC32 integer and normal FP loads.
894         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
895         switch (LoadedVT.getSimpleVT().SimpleTy) {
896           default: llvm_unreachable("Invalid PPC load type!");
897           case MVT::f64: Opcode = PPC::LFDU; break;
898           case MVT::f32: Opcode = PPC::LFSU; break;
899           case MVT::i32: Opcode = PPC::LWZU; break;
900           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
901           case MVT::i1:
902           case MVT::i8:  Opcode = PPC::LBZU; break;
903         }
904       } else {
905         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
906         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
907         switch (LoadedVT.getSimpleVT().SimpleTy) {
908           default: llvm_unreachable("Invalid PPC load type!");
909           case MVT::i64: Opcode = PPC::LDU; break;
910           case MVT::i32: Opcode = PPC::LWZU8; break;
911           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
912           case MVT::i1:
913           case MVT::i8:  Opcode = PPC::LBZU8; break;
914         }
915       }
916
917       SDValue Chain = LD->getChain();
918       SDValue Base = LD->getBasePtr();
919       SDValue Ops[] = { Offset, Base, Chain };
920       // FIXME: PPC64
921       return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
922                                     PPCLowering.getPointerTy(),
923                                     MVT::Other, Ops, 3);
924     } else {
925       llvm_unreachable("R+R preindex loads not supported yet!");
926     }
927   }
928
929   case ISD::AND: {
930     unsigned Imm, Imm2, SH, MB, ME;
931
932     // If this is an and of a value rotated between 0 and 31 bits and then and'd
933     // with a mask, emit rlwinm
934     if (isInt32Immediate(N->getOperand(1), Imm) &&
935         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
936       SDValue Val = N->getOperand(0).getOperand(0);
937       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
938       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
939     }
940     // If this is just a masked value where the input is not handled above, and
941     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
942     if (isInt32Immediate(N->getOperand(1), Imm) &&
943         isRunOfOnes(Imm, MB, ME) &&
944         N->getOperand(0).getOpcode() != ISD::ROTL) {
945       SDValue Val = N->getOperand(0);
946       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
947       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
948     }
949     // AND X, 0 -> 0, not "rlwinm 32".
950     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
951       ReplaceUses(SDValue(N, 0), N->getOperand(1));
952       return NULL;
953     }
954     // ISD::OR doesn't get all the bitfield insertion fun.
955     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
956     if (isInt32Immediate(N->getOperand(1), Imm) &&
957         N->getOperand(0).getOpcode() == ISD::OR &&
958         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
959       unsigned MB, ME;
960       Imm = ~(Imm^Imm2);
961       if (isRunOfOnes(Imm, MB, ME)) {
962         SDValue Ops[] = { N->getOperand(0).getOperand(0),
963                             N->getOperand(0).getOperand(1),
964                             getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
965         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
966       }
967     }
968
969     // Other cases are autogenerated.
970     break;
971   }
972   case ISD::OR:
973     if (N->getValueType(0) == MVT::i32)
974       if (SDNode *I = SelectBitfieldInsert(N))
975         return I;
976
977     // Other cases are autogenerated.
978     break;
979   case ISD::SHL: {
980     unsigned Imm, SH, MB, ME;
981     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
982         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
983       SDValue Ops[] = { N->getOperand(0).getOperand(0),
984                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
985       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
986     }
987
988     // Other cases are autogenerated.
989     break;
990   }
991   case ISD::SRL: {
992     unsigned Imm, SH, MB, ME;
993     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
994         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
995       SDValue Ops[] = { N->getOperand(0).getOperand(0),
996                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
997       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
998     }
999
1000     // Other cases are autogenerated.
1001     break;
1002   }
1003   case ISD::SELECT_CC: {
1004     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1005     EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
1006     bool isPPC64 = (PtrVT == MVT::i64);
1007
1008     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1009     if (!isPPC64)
1010       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1011         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1012           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1013             if (N1C->isNullValue() && N3C->isNullValue() &&
1014                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1015                 // FIXME: Implement this optzn for PPC64.
1016                 N->getValueType(0) == MVT::i32) {
1017               SDNode *Tmp =
1018                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
1019                                        N->getOperand(0), getI32Imm(~0U));
1020               return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1021                                           SDValue(Tmp, 0), N->getOperand(0),
1022                                           SDValue(Tmp, 1));
1023             }
1024
1025     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1026     unsigned BROpc = getPredicateForSetCC(CC);
1027
1028     unsigned SelectCCOp;
1029     if (N->getValueType(0) == MVT::i32)
1030       SelectCCOp = PPC::SELECT_CC_I4;
1031     else if (N->getValueType(0) == MVT::i64)
1032       SelectCCOp = PPC::SELECT_CC_I8;
1033     else if (N->getValueType(0) == MVT::f32)
1034       SelectCCOp = PPC::SELECT_CC_F4;
1035     else if (N->getValueType(0) == MVT::f64)
1036       SelectCCOp = PPC::SELECT_CC_F8;
1037     else
1038       SelectCCOp = PPC::SELECT_CC_VRRC;
1039
1040     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1041                         getI32Imm(BROpc) };
1042     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1043   }
1044   case PPCISD::COND_BRANCH: {
1045     // Op #0 is the Chain.
1046     // Op #1 is the PPC::PRED_* number.
1047     // Op #2 is the CR#
1048     // Op #3 is the Dest MBB
1049     // Op #4 is the Flag.
1050     // Prevent PPC::PRED_* from being selected into LI.
1051     SDValue Pred =
1052       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1053     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1054       N->getOperand(0), N->getOperand(4) };
1055     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1056   }
1057   case ISD::BR_CC: {
1058     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1059     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1060     SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1061                         N->getOperand(4), N->getOperand(0) };
1062     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1063   }
1064   case ISD::BRIND: {
1065     // FIXME: Should custom lower this.
1066     SDValue Chain = N->getOperand(0);
1067     SDValue Target = N->getOperand(1);
1068     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1069     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
1070     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Target,
1071                                            Chain), 0);
1072     return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
1073   }
1074   }
1075
1076   return SelectCode(N);
1077 }
1078
1079
1080
1081 /// createPPCISelDag - This pass converts a legalized DAG into a
1082 /// PowerPC-specific DAG, ready for instruction scheduling.
1083 ///
1084 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1085   return new PPCDAGToDAGISel(TM);
1086 }
1087