]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Target / PowerPC / PPCISelLowering.h
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18 #include "llvm/Target/TargetLowering.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "PPC.h"
21 #include "PPCSubtarget.h"
22
23 namespace llvm {
24   namespace PPCISD {
25     enum NodeType {
26       // Start the numbering where the builtin ops and target ops leave off.
27       FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29       /// FSEL - Traditional three-operand fsel node.
30       ///
31       FSEL,
32
33       /// FCFID - The FCFID instruction, taking an f64 operand and producing
34       /// and f64 value containing the FP representation of the integer that
35       /// was temporarily in the f64 operand.
36       FCFID,
37
38       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39       /// operand, producing an f64 value containing the integer representation
40       /// of that FP value.
41       FCTIDZ, FCTIWZ,
42
43       /// STFIWX - The STFIWX instruction.  The first operand is an input token
44       /// chain, then an f64 value to store, then an address to store it to.
45       STFIWX,
46
47       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
48       // three v4f32 operands and producing a v4f32 result.
49       VMADDFP, VNMSUBFP,
50
51       /// VPERM - The PPC VPERM Instruction.
52       ///
53       VPERM,
54
55       /// Hi/Lo - These represent the high and low 16-bit parts of a global
56       /// address respectively.  These nodes have two operands, the first of
57       /// which must be a TargetGlobalAddress, and the second of which must be a
58       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
59       /// though these are usually folded into other nodes.
60       Hi, Lo,
61
62       TOC_ENTRY,
63
64       /// The following three target-specific nodes are used for calls through
65       /// function pointers in the 64-bit SVR4 ABI.
66
67       /// Restore the TOC from the TOC save area of the current stack frame.
68       /// This is basically a hard coded load instruction which additionally
69       /// takes/produces a flag.
70       TOC_RESTORE,
71
72       /// Like a regular LOAD but additionally taking/producing a flag.
73       LOAD,
74
75       /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
76       /// a hard coded load instruction.
77       LOAD_TOC,
78
79       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
80       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
81       /// compute an allocation on the stack.
82       DYNALLOC,
83
84       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
85       /// at function entry, used for PIC code.
86       GlobalBaseReg,
87
88       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
89       /// shift amounts.  These nodes are generated by the multi-precision shift
90       /// code.
91       SRL, SRA, SHL,
92
93       /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
94       /// registers.
95       EXTSW_32,
96
97       /// CALL - A direct function call.
98       CALL_Darwin, CALL_SVR4,
99
100       /// NOP - Special NOP which follows 64-bit SVR4 calls.
101       NOP,
102
103       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
104       /// MTCTR instruction.
105       MTCTR,
106
107       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
108       /// BCTRL instruction.
109       BCTRL_Darwin, BCTRL_SVR4,
110
111       /// Return with a flag operand, matched by 'blr'
112       RET_FLAG,
113
114       /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
115       /// instructions.  This copies the bits corresponding to the specified
116       /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
117       /// are undefined.
118       MFCR,
119
120       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
121       /// instructions.  For lack of better number, we use the opcode number
122       /// encoding for the OPC field to identify the compare.  For example, 838
123       /// is VCMPGTSH.
124       VCMP,
125
126       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
127       /// altivec VCMP*o instructions.  For lack of better number, we use the
128       /// opcode number encoding for the OPC field to identify the compare.  For
129       /// example, 838 is VCMPGTSH.
130       VCMPo,
131
132       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
133       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
134       /// condition register to branch on, OPC is the branch opcode to use (e.g.
135       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
136       /// an optional input flag argument.
137       COND_BRANCH,
138
139       // The following 5 instructions are used only as part of the
140       // long double-to-int conversion sequence.
141
142       /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
143       /// register.
144       MFFS,
145
146       /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
147       MTFSB0,
148
149       /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
150       MTFSB1,
151
152       /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
153       /// rounding towards zero.  It has flags added so it won't move past the
154       /// FPSCR-setting instructions.
155       FADDRTZ,
156
157       /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
158       MTFSF,
159
160       /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
161       /// reserve indexed. This is used to implement atomic operations.
162       LARX,
163
164       /// STCX = This corresponds to PPC stcx. instrcution: store conditional
165       /// indexed. This is used to implement atomic operations.
166       STCX,
167
168       /// TC_RETURN - A tail call return.
169       ///   operand #0 chain
170       ///   operand #1 callee (register or absolute)
171       ///   operand #2 stack adjustment
172       ///   operand #3 optional in flag
173       TC_RETURN,
174
175       /// STD_32 - This is the STD instruction for use with "32-bit" registers.
176       STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
177
178       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
179       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
180       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
181       /// i32.
182       STBRX,
183
184       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
185       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
186       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
187       /// or i32.
188       LBRX
189     };
190   }
191
192   /// Define some predicates that are used for node matching.
193   namespace PPC {
194     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
195     /// VPKUHUM instruction.
196     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
197
198     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
199     /// VPKUWUM instruction.
200     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
201
202     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
203     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
204     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
205                             bool isUnary);
206
207     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
208     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
209     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
210                             bool isUnary);
211
212     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
213     /// amount, otherwise return -1.
214     int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
215
216     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
217     /// specifies a splat of a single element that is suitable for input to
218     /// VSPLTB/VSPLTH/VSPLTW.
219     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
220
221     /// isAllNegativeZeroVector - Returns true if all elements of build_vector
222     /// are -0.0.
223     bool isAllNegativeZeroVector(SDNode *N);
224
225     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
226     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
227     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
228
229     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
230     /// formed by using a vspltis[bhw] instruction of the specified element
231     /// size, return the constant being splatted.  The ByteSize field indicates
232     /// the number of bytes of each element [124] -> [bhw].
233     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
234   }
235
236   class PPCTargetLowering : public TargetLowering {
237     const PPCSubtarget &PPCSubTarget;
238
239   public:
240     explicit PPCTargetLowering(PPCTargetMachine &TM);
241
242     /// getTargetNodeName() - This method returns the name of a target specific
243     /// DAG node.
244     virtual const char *getTargetNodeName(unsigned Opcode) const;
245
246     virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
247
248     /// getSetCCResultType - Return the ISD::SETCC ValueType
249     virtual EVT getSetCCResultType(EVT VT) const;
250
251     /// getPreIndexedAddressParts - returns true by value, base pointer and
252     /// offset pointer and addressing mode by reference if the node's address
253     /// can be legally represented as pre-indexed load / store address.
254     virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
255                                            SDValue &Offset,
256                                            ISD::MemIndexedMode &AM,
257                                            SelectionDAG &DAG) const;
258
259     /// SelectAddressRegReg - Given the specified addressed, check to see if it
260     /// can be represented as an indexed [r+r] operation.  Returns false if it
261     /// can be more efficiently represented with [r+imm].
262     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
263                              SelectionDAG &DAG) const;
264
265     /// SelectAddressRegImm - Returns true if the address N can be represented
266     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
267     /// is not better represented as reg+reg.
268     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
269                              SelectionDAG &DAG) const;
270
271     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
272     /// represented as an indexed [r+r] operation.
273     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
274                                  SelectionDAG &DAG) const;
275
276     /// SelectAddressRegImmShift - Returns true if the address N can be
277     /// represented by a base register plus a signed 14-bit displacement
278     /// [r+imm*4].  Suitable for use by STD and friends.
279     bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
280                                   SelectionDAG &DAG) const;
281
282
283     /// LowerOperation - Provide custom lowering hooks for some operations.
284     ///
285     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
286
287     /// ReplaceNodeResults - Replace the results of node with an illegal result
288     /// type with new values built out of custom code.
289     ///
290     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
291                                     SelectionDAG &DAG) const;
292
293     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
294
295     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
296                                                 const APInt &Mask,
297                                                 APInt &KnownZero,
298                                                 APInt &KnownOne,
299                                                 const SelectionDAG &DAG,
300                                                 unsigned Depth = 0) const;
301
302     virtual MachineBasicBlock *
303       EmitInstrWithCustomInserter(MachineInstr *MI,
304                                   MachineBasicBlock *MBB) const;
305     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
306                                         MachineBasicBlock *MBB, bool is64Bit,
307                                         unsigned BinOpcode) const;
308     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
309                                                 MachineBasicBlock *MBB,
310                                             bool is8bit, unsigned Opcode) const;
311
312     ConstraintType getConstraintType(const std::string &Constraint) const;
313
314     /// Examine constraint string and operand type and determine a weight value.
315     /// The operand object must already have been set up with the operand type.
316     ConstraintWeight getSingleConstraintMatchWeight(
317       AsmOperandInfo &info, const char *constraint) const;
318
319     std::pair<unsigned, const TargetRegisterClass*>
320       getRegForInlineAsmConstraint(const std::string &Constraint,
321                                    EVT VT) const;
322
323     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
324     /// function arguments in the caller parameter area.  This is the actual
325     /// alignment, not its logarithm.
326     unsigned getByValTypeAlignment(Type *Ty) const;
327
328     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
329     /// vector.  If it is invalid, don't add anything to Ops.
330     virtual void LowerAsmOperandForConstraint(SDValue Op,
331                                               std::string &Constraint,
332                                               std::vector<SDValue> &Ops,
333                                               SelectionDAG &DAG) const;
334
335     /// isLegalAddressingMode - Return true if the addressing mode represented
336     /// by AM is legal for this target, for a load/store of the specified type.
337     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
338
339     /// isLegalAddressImmediate - Return true if the integer value can be used
340     /// as the offset of the target addressing mode for load / store of the
341     /// given type.
342     virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
343
344     /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
345     /// the offset of the target addressing mode.
346     virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
347
348     virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
349
350     /// getOptimalMemOpType - Returns the target specific optimal type for load
351     /// and store operations as a result of memset, memcpy, and memmove
352     /// lowering. If DstAlign is zero that means it's safe to destination
353     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
354     /// means there isn't a need to check it against alignment requirement,
355     /// probably because the source does not need to be loaded. If
356     /// 'NonScalarIntSafe' is true, that means it's safe to return a
357     /// non-scalar-integer type, e.g. empty string source, constant, or loaded
358     /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
359     /// constant so it does not need to be loaded.
360     /// It returns EVT::Other if the type should be determined using generic
361     /// target-independent logic.
362     virtual EVT
363     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
364                         bool NonScalarIntSafe, bool MemcpyStrSrc,
365                         MachineFunction &MF) const;
366
367   private:
368     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
369     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
370
371     bool
372     IsEligibleForTailCallOptimization(SDValue Callee,
373                                       CallingConv::ID CalleeCC,
374                                       bool isVarArg,
375                                       const SmallVectorImpl<ISD::InputArg> &Ins,
376                                       SelectionDAG& DAG) const;
377
378     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
379                                          int SPDiff,
380                                          SDValue Chain,
381                                          SDValue &LROpOut,
382                                          SDValue &FPOpOut,
383                                          bool isDarwinABI,
384                                          DebugLoc dl) const;
385
386     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
387     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
388     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
389     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
390     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
391     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
392     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
393     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
394     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
395     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
396                          const PPCSubtarget &Subtarget) const;
397     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
398                        const PPCSubtarget &Subtarget) const;
399     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
400                                 const PPCSubtarget &Subtarget) const;
401     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
402                                       const PPCSubtarget &Subtarget) const;
403     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
404     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
405     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
406     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
407     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
408     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
409     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
410     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
411     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
412     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
413     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
414     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
415
416     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
417                             CallingConv::ID CallConv, bool isVarArg,
418                             const SmallVectorImpl<ISD::InputArg> &Ins,
419                             DebugLoc dl, SelectionDAG &DAG,
420                             SmallVectorImpl<SDValue> &InVals) const;
421     SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
422                        bool isVarArg,
423                        SelectionDAG &DAG,
424                        SmallVector<std::pair<unsigned, SDValue>, 8>
425                          &RegsToPass,
426                        SDValue InFlag, SDValue Chain,
427                        SDValue &Callee,
428                        int SPDiff, unsigned NumBytes,
429                        const SmallVectorImpl<ISD::InputArg> &Ins,
430                        SmallVectorImpl<SDValue> &InVals) const;
431
432     virtual SDValue
433       LowerFormalArguments(SDValue Chain,
434                            CallingConv::ID CallConv, bool isVarArg,
435                            const SmallVectorImpl<ISD::InputArg> &Ins,
436                            DebugLoc dl, SelectionDAG &DAG,
437                            SmallVectorImpl<SDValue> &InVals) const;
438
439     virtual SDValue
440       LowerCall(SDValue Chain, SDValue Callee,
441                 CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
442                 const SmallVectorImpl<ISD::OutputArg> &Outs,
443                 const SmallVectorImpl<SDValue> &OutVals,
444                 const SmallVectorImpl<ISD::InputArg> &Ins,
445                 DebugLoc dl, SelectionDAG &DAG,
446                 SmallVectorImpl<SDValue> &InVals) const;
447
448     virtual bool
449       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
450                    bool isVarArg,
451                    const SmallVectorImpl<ISD::OutputArg> &Outs,
452                    LLVMContext &Context) const;
453
454     virtual SDValue
455       LowerReturn(SDValue Chain,
456                   CallingConv::ID CallConv, bool isVarArg,
457                   const SmallVectorImpl<ISD::OutputArg> &Outs,
458                   const SmallVectorImpl<SDValue> &OutVals,
459                   DebugLoc dl, SelectionDAG &DAG) const;
460
461     SDValue
462       LowerFormalArguments_Darwin(SDValue Chain,
463                                   CallingConv::ID CallConv, bool isVarArg,
464                                   const SmallVectorImpl<ISD::InputArg> &Ins,
465                                   DebugLoc dl, SelectionDAG &DAG,
466                                   SmallVectorImpl<SDValue> &InVals) const;
467     SDValue
468       LowerFormalArguments_SVR4(SDValue Chain,
469                                 CallingConv::ID CallConv, bool isVarArg,
470                                 const SmallVectorImpl<ISD::InputArg> &Ins,
471                                 DebugLoc dl, SelectionDAG &DAG,
472                                 SmallVectorImpl<SDValue> &InVals) const;
473
474     SDValue
475       LowerCall_Darwin(SDValue Chain, SDValue Callee,
476                        CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
477                        const SmallVectorImpl<ISD::OutputArg> &Outs,
478                        const SmallVectorImpl<SDValue> &OutVals,
479                        const SmallVectorImpl<ISD::InputArg> &Ins,
480                        DebugLoc dl, SelectionDAG &DAG,
481                        SmallVectorImpl<SDValue> &InVals) const;
482     SDValue
483       LowerCall_SVR4(SDValue Chain, SDValue Callee,
484                      CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
485                      const SmallVectorImpl<ISD::OutputArg> &Outs,
486                      const SmallVectorImpl<SDValue> &OutVals,
487                      const SmallVectorImpl<ISD::InputArg> &Ins,
488                      DebugLoc dl, SelectionDAG &DAG,
489                      SmallVectorImpl<SDValue> &InVals) const;
490   };
491 }
492
493 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H