]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Target/TargetRegisterInfo.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Target / TargetRegisterInfo.cpp
1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetMachine.h"
15 #include "llvm/Target/TargetRegisterInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 using namespace llvm;
22
23 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
24                              regclass_iterator RCB, regclass_iterator RCE,
25                              const char *const *subregindexnames)
26   : InfoDesc(ID), SubRegIndexNames(subregindexnames),
27     RegClassBegin(RCB), RegClassEnd(RCE) {
28 }
29
30 TargetRegisterInfo::~TargetRegisterInfo() {}
31
32 void PrintReg::print(raw_ostream &OS) const {
33   if (!Reg)
34     OS << "%noreg";
35   else if (TargetRegisterInfo::isStackSlot(Reg))
36     OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
37   else if (TargetRegisterInfo::isVirtualRegister(Reg))
38     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
39   else if (TRI && Reg < TRI->getNumRegs())
40     OS << '%' << TRI->getName(Reg);
41   else
42     OS << "%physreg" << Reg;
43   if (SubIdx) {
44     if (TRI)
45       OS << ':' << TRI->getSubRegIndexName(SubIdx);
46     else
47       OS << ":sub(" << SubIdx << ')';
48   }
49 }
50
51 /// getMinimalPhysRegClass - Returns the Register Class of a physical
52 /// register of the given type, picking the most sub register class of
53 /// the right type that contains this physreg.
54 const TargetRegisterClass *
55 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
56   assert(isPhysicalRegister(reg) && "reg must be a physical register");
57
58   // Pick the most sub register class of the right type that contains
59   // this physreg.
60   const TargetRegisterClass* BestRC = 0;
61   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
62     const TargetRegisterClass* RC = *I;
63     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
64         (!BestRC || BestRC->hasSubClass(RC)))
65       BestRC = RC;
66   }
67
68   assert(BestRC && "Couldn't find the register class");
69   return BestRC;
70 }
71
72 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
73 /// registers for the specific register class.
74 static void getAllocatableSetForRC(const MachineFunction &MF,
75                                    const TargetRegisterClass *RC, BitVector &R){
76   ArrayRef<unsigned> Order = RC->getRawAllocationOrder(MF);
77   for (unsigned i = 0; i != Order.size(); ++i)
78     R.set(Order[i]);
79 }
80
81 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
82                                           const TargetRegisterClass *RC) const {
83   BitVector Allocatable(getNumRegs());
84   if (RC) {
85     getAllocatableSetForRC(MF, RC, Allocatable);
86   } else {
87     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
88          E = regclass_end(); I != E; ++I)
89       if ((*I)->isAllocatable())
90         getAllocatableSetForRC(MF, *I, Allocatable);
91   }
92
93   // Mask out the reserved registers
94   BitVector Reserved = getReservedRegs(MF);
95   Allocatable &= Reserved.flip();
96
97   return Allocatable;
98 }
99
100 const TargetRegisterClass *
101 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
102                                       const TargetRegisterClass *B) const {
103   // First take care of the trivial cases.
104   if (A == B)
105     return A;
106   if (!A || !B)
107     return 0;
108
109   // Register classes are ordered topologically, so the largest common
110   // sub-class it the common sub-class with the smallest ID.
111   const unsigned *SubA = A->getSubClassMask();
112   const unsigned *SubB = B->getSubClassMask();
113
114   // We could start the search from max(A.ID, B.ID), but we are only going to
115   // execute 2-3 iterations anyway.
116   for (unsigned Base = 0, BaseE = getNumRegClasses(); Base < BaseE; Base += 32)
117     if (unsigned Common = *SubA++ & *SubB++)
118       return getRegClass(Base + CountTrailingZeros_32(Common));
119
120   // No common sub-class exists.
121   return NULL;
122 }