]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Target / X86 / MCTargetDesc / X86MCCodeEmitter.cpp
1 //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86MCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "mccodeemitter"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "MCTargetDesc/X86FixupKinds.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 namespace {
30 class X86MCCodeEmitter : public MCCodeEmitter {
31   X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
32   void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
33   const MCInstrInfo &MCII;
34   const MCSubtargetInfo &STI;
35   MCContext &Ctx;
36 public:
37   X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
38                    MCContext &ctx)
39     : MCII(mcii), STI(sti), Ctx(ctx) {
40   }
41
42   ~X86MCCodeEmitter() {}
43
44   bool is64BitMode() const {
45     // FIXME: Can tablegen auto-generate this?
46     return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
47   }
48
49   static unsigned GetX86RegNum(const MCOperand &MO) {
50     return X86_MC::getX86RegNum(MO.getReg());
51   }
52
53   // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
54   // 0-7 and the difference between the 2 groups is given by the REX prefix.
55   // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
56   // in 1's complement form, example:
57   //
58   //  ModRM field => XMM9 => 1
59   //  VEX.VVVV    => XMM9 => ~9
60   //
61   // See table 4-35 of Intel AVX Programming Reference for details.
62   static unsigned char getVEXRegisterEncoding(const MCInst &MI,
63                                               unsigned OpNum) {
64     unsigned SrcReg = MI.getOperand(OpNum).getReg();
65     unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
66     if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
67         (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
68       SrcRegNum += 8;
69
70     // The registers represented through VEX_VVVV should
71     // be encoded in 1's complement form.
72     return (~SrcRegNum) & 0xf;
73   }
74
75   void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
76     OS << (char)C;
77     ++CurByte;
78   }
79
80   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
81                     raw_ostream &OS) const {
82     // Output the constant in little endian byte order.
83     for (unsigned i = 0; i != Size; ++i) {
84       EmitByte(Val & 255, CurByte, OS);
85       Val >>= 8;
86     }
87   }
88
89   void EmitImmediate(const MCOperand &Disp,
90                      unsigned ImmSize, MCFixupKind FixupKind,
91                      unsigned &CurByte, raw_ostream &OS,
92                      SmallVectorImpl<MCFixup> &Fixups,
93                      int ImmOffset = 0) const;
94
95   inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
96                                         unsigned RM) {
97     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
98     return RM | (RegOpcode << 3) | (Mod << 6);
99   }
100
101   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
102                         unsigned &CurByte, raw_ostream &OS) const {
103     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
104   }
105
106   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
107                    unsigned &CurByte, raw_ostream &OS) const {
108     // SIB byte is in the same format as the ModRMByte.
109     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
110   }
111
112
113   void EmitMemModRMByte(const MCInst &MI, unsigned Op,
114                         unsigned RegOpcodeField,
115                         uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
116                         SmallVectorImpl<MCFixup> &Fixups) const;
117
118   void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
119                          SmallVectorImpl<MCFixup> &Fixups) const;
120
121   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
122                            const MCInst &MI, const MCInstrDesc &Desc,
123                            raw_ostream &OS) const;
124
125   void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
126                                  int MemOperand, const MCInst &MI,
127                                  raw_ostream &OS) const;
128
129   void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
130                         const MCInst &MI, const MCInstrDesc &Desc,
131                         raw_ostream &OS) const;
132 };
133
134 } // end anonymous namespace
135
136
137 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
138                                             const MCSubtargetInfo &STI,
139                                             MCContext &Ctx) {
140   return new X86MCCodeEmitter(MCII, STI, Ctx);
141 }
142
143 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
144 /// sign-extended field.
145 static bool isDisp8(int Value) {
146   return Value == (signed char)Value;
147 }
148
149 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
150 /// in an instruction with the specified TSFlags.
151 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
152   unsigned Size = X86II::getSizeOfImm(TSFlags);
153   bool isPCRel = X86II::isImmPCRel(TSFlags);
154
155   return MCFixup::getKindForSize(Size, isPCRel);
156 }
157
158 /// Is32BitMemOperand - Return true if the specified instruction with a memory
159 /// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
160 /// memory operand.  Op specifies the operand # of the memoperand.
161 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
162   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
163   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
164
165   if ((BaseReg.getReg() != 0 &&
166        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
167       (IndexReg.getReg() != 0 &&
168        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
169     return true;
170   return false;
171 }
172
173 /// StartsWithGlobalOffsetTable - Return true for the simple cases where this
174 /// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
175 /// PIC on ELF i386 as that symbol is magic. We check only simple case that
176 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
177 /// of a binary expression.
178 static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
179   if (Expr->getKind() == MCExpr::Binary) {
180     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
181     Expr = BE->getLHS();
182   }
183
184   if (Expr->getKind() != MCExpr::SymbolRef)
185     return false;
186
187   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
188   const MCSymbol &S = Ref->getSymbol();
189   return S.getName() == "_GLOBAL_OFFSET_TABLE_";
190 }
191
192 void X86MCCodeEmitter::
193 EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
194               unsigned &CurByte, raw_ostream &OS,
195               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
196   const MCExpr *Expr = NULL;
197   if (DispOp.isImm()) {
198     // If this is a simple integer displacement that doesn't require a
199     // relocation, emit it now.
200     if (FixupKind != FK_PCRel_1 &&
201         FixupKind != FK_PCRel_2 &&
202         FixupKind != FK_PCRel_4) {
203       EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
204       return;
205     }
206     Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
207   } else {
208     Expr = DispOp.getExpr();
209   }
210
211   // If we have an immoffset, add it to the expression.
212   if ((FixupKind == FK_Data_4 ||
213        FixupKind == MCFixupKind(X86::reloc_signed_4byte)) &&
214       StartsWithGlobalOffsetTable(Expr)) {
215     assert(ImmOffset == 0);
216
217     FixupKind = MCFixupKind(X86::reloc_global_offset_table);
218     ImmOffset = CurByte;
219   }
220
221   // If the fixup is pc-relative, we need to bias the value to be relative to
222   // the start of the field, not the end of the field.
223   if (FixupKind == FK_PCRel_4 ||
224       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
225       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
226     ImmOffset -= 4;
227   if (FixupKind == FK_PCRel_2)
228     ImmOffset -= 2;
229   if (FixupKind == FK_PCRel_1)
230     ImmOffset -= 1;
231
232   if (ImmOffset)
233     Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
234                                    Ctx);
235
236   // Emit a symbolic constant as a fixup and 4 zeros.
237   Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
238   EmitConstant(0, Size, CurByte, OS);
239 }
240
241 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
242                                         unsigned RegOpcodeField,
243                                         uint64_t TSFlags, unsigned &CurByte,
244                                         raw_ostream &OS,
245                                         SmallVectorImpl<MCFixup> &Fixups) const{
246   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
247   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
248   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
249   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
250   unsigned BaseReg = Base.getReg();
251
252   // Handle %rip relative addressing.
253   if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
254     assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
255     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
256     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
257
258     unsigned FixupKind = X86::reloc_riprel_4byte;
259
260     // movq loads are handled with a special relocation form which allows the
261     // linker to eliminate some loads for GOT references which end up in the
262     // same linkage unit.
263     if (MI.getOpcode() == X86::MOV64rm)
264       FixupKind = X86::reloc_riprel_4byte_movq_load;
265
266     // rip-relative addressing is actually relative to the *next* instruction.
267     // Since an immediate can follow the mod/rm byte for an instruction, this
268     // means that we need to bias the immediate field of the instruction with
269     // the size of the immediate field.  If we have this case, add it into the
270     // expression to emit.
271     int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
272
273     EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
274                   CurByte, OS, Fixups, -ImmSize);
275     return;
276   }
277
278   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
279
280   // Determine whether a SIB byte is needed.
281   // If no BaseReg, issue a RIP relative instruction only if the MCE can
282   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
283   // 2-7) and absolute references.
284
285   if (// The SIB byte must be used if there is an index register.
286       IndexReg.getReg() == 0 &&
287       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
288       // encode to an R/M value of 4, which indicates that a SIB byte is
289       // present.
290       BaseRegNo != N86::ESP &&
291       // If there is no base register and we're in 64-bit mode, we need a SIB
292       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
293       (!is64BitMode() || BaseReg != 0)) {
294
295     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
296       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
297       EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
298       return;
299     }
300
301     // If the base is not EBP/ESP and there is no displacement, use simple
302     // indirect register encoding, this handles addresses like [EAX].  The
303     // encoding for [EBP] with no displacement means [disp32] so we handle it
304     // by emitting a displacement of 0 below.
305     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
306       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
307       return;
308     }
309
310     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
311     if (Disp.isImm() && isDisp8(Disp.getImm())) {
312       EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
313       EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
314       return;
315     }
316
317     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
318     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
319     EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
320                   Fixups);
321     return;
322   }
323
324   // We need a SIB byte, so start by outputting the ModR/M byte first
325   assert(IndexReg.getReg() != X86::ESP &&
326          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
327
328   bool ForceDisp32 = false;
329   bool ForceDisp8  = false;
330   if (BaseReg == 0) {
331     // If there is no base register, we emit the special case SIB byte with
332     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
333     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
334     ForceDisp32 = true;
335   } else if (!Disp.isImm()) {
336     // Emit the normal disp32 encoding.
337     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
338     ForceDisp32 = true;
339   } else if (Disp.getImm() == 0 &&
340              // Base reg can't be anything that ends up with '5' as the base
341              // reg, it is the magic [*] nomenclature that indicates no base.
342              BaseRegNo != N86::EBP) {
343     // Emit no displacement ModR/M byte
344     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
345   } else if (isDisp8(Disp.getImm())) {
346     // Emit the disp8 encoding.
347     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
348     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
349   } else {
350     // Emit the normal disp32 encoding.
351     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
352   }
353
354   // Calculate what the SS field value should be...
355   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
356   unsigned SS = SSTable[Scale.getImm()];
357
358   if (BaseReg == 0) {
359     // Handle the SIB byte for the case where there is no base, see Intel
360     // Manual 2A, table 2-7. The displacement has already been output.
361     unsigned IndexRegNo;
362     if (IndexReg.getReg())
363       IndexRegNo = GetX86RegNum(IndexReg);
364     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
365       IndexRegNo = 4;
366     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
367   } else {
368     unsigned IndexRegNo;
369     if (IndexReg.getReg())
370       IndexRegNo = GetX86RegNum(IndexReg);
371     else
372       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
373     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
374   }
375
376   // Do we need to output a displacement?
377   if (ForceDisp8)
378     EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
379   else if (ForceDisp32 || Disp.getImm() != 0)
380     EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
381                   Fixups);
382 }
383
384 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
385 /// called VEX.
386 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
387                                            int MemOperand, const MCInst &MI,
388                                            const MCInstrDesc &Desc,
389                                            raw_ostream &OS) const {
390   bool HasVEX_4V = false;
391   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
392     HasVEX_4V = true;
393
394   // VEX_R: opcode externsion equivalent to REX.R in
395   // 1's complement (inverted) form
396   //
397   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
398   //  0: Same as REX_R=1 (64 bit mode only)
399   //
400   unsigned char VEX_R = 0x1;
401
402   // VEX_X: equivalent to REX.X, only used when a
403   // register is used for index in SIB Byte.
404   //
405   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
406   //  0: Same as REX.X=1 (64-bit mode only)
407   unsigned char VEX_X = 0x1;
408
409   // VEX_B:
410   //
411   //  1: Same as REX_B=0 (ignored in 32-bit mode)
412   //  0: Same as REX_B=1 (64 bit mode only)
413   //
414   unsigned char VEX_B = 0x1;
415
416   // VEX_W: opcode specific (use like REX.W, or used for
417   // opcode extension, or ignored, depending on the opcode byte)
418   unsigned char VEX_W = 0;
419
420   // VEX_5M (VEX m-mmmmm field):
421   //
422   //  0b00000: Reserved for future use
423   //  0b00001: implied 0F leading opcode
424   //  0b00010: implied 0F 38 leading opcode bytes
425   //  0b00011: implied 0F 3A leading opcode bytes
426   //  0b00100-0b11111: Reserved for future use
427   //
428   unsigned char VEX_5M = 0x1;
429
430   // VEX_4V (VEX vvvv field): a register specifier
431   // (in 1's complement form) or 1111 if unused.
432   unsigned char VEX_4V = 0xf;
433
434   // VEX_L (Vector Length):
435   //
436   //  0: scalar or 128-bit vector
437   //  1: 256-bit vector
438   //
439   unsigned char VEX_L = 0;
440
441   // VEX_PP: opcode extension providing equivalent
442   // functionality of a SIMD prefix
443   //
444   //  0b00: None
445   //  0b01: 66
446   //  0b10: F3
447   //  0b11: F2
448   //
449   unsigned char VEX_PP = 0;
450
451   // Encode the operand size opcode prefix as needed.
452   if (TSFlags & X86II::OpSize)
453     VEX_PP = 0x01;
454
455   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
456     VEX_W = 1;
457
458   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
459     VEX_L = 1;
460
461   switch (TSFlags & X86II::Op0Mask) {
462   default: assert(0 && "Invalid prefix!");
463   case X86II::T8:  // 0F 38
464     VEX_5M = 0x2;
465     break;
466   case X86II::TA:  // 0F 3A
467     VEX_5M = 0x3;
468     break;
469   case X86II::TF:  // F2 0F 38
470     VEX_PP = 0x3;
471     VEX_5M = 0x2;
472     break;
473   case X86II::XS:  // F3 0F
474     VEX_PP = 0x2;
475     break;
476   case X86II::XD:  // F2 0F
477     VEX_PP = 0x3;
478     break;
479   case X86II::A6:  // Bypass: Not used by VEX
480   case X86II::A7:  // Bypass: Not used by VEX
481   case X86II::TB:  // Bypass: Not used by VEX
482   case 0:
483     break;  // No prefix!
484   }
485
486   // Set the vector length to 256-bit if YMM0-YMM15 is used
487   for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
488     if (!MI.getOperand(i).isReg())
489       continue;
490     unsigned SrcReg = MI.getOperand(i).getReg();
491     if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
492       VEX_L = 1;
493   }
494
495   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
496   unsigned CurOp = 0;
497   switch (TSFlags & X86II::FormMask) {
498   case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
499   case X86II::MRMDestMem: {
500     // MRMDestMem instructions forms:
501     //  MemAddr, src1(ModR/M)
502     //  MemAddr, src1(VEX_4V), src2(ModR/M)
503     //  MemAddr, src1(ModR/M), imm8
504     //
505     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
506       VEX_B = 0x0;
507     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
508       VEX_X = 0x0;
509
510     CurOp = X86::AddrNumOperands;
511     if (HasVEX_4V)
512       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
513
514     const MCOperand &MO = MI.getOperand(CurOp);
515     if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
516       VEX_R = 0x0;
517     break;
518   }
519   case X86II::MRMSrcMem: {
520     // MRMSrcMem instructions forms:
521     //  src1(ModR/M), MemAddr
522     //  src1(ModR/M), src2(VEX_4V), MemAddr
523     //  src1(ModR/M), MemAddr, imm8
524     //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
525     //
526     if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
527       VEX_R = 0x0;
528
529     unsigned MemAddrOffset = 1;
530     if (HasVEX_4V) {
531       VEX_4V = getVEXRegisterEncoding(MI, 1);
532       MemAddrOffset++;
533     }
534
535     if (X86II::isX86_64ExtendedReg(
536                MI.getOperand(MemAddrOffset+X86::AddrBaseReg).getReg()))
537       VEX_B = 0x0;
538     if (X86II::isX86_64ExtendedReg(
539                MI.getOperand(MemAddrOffset+X86::AddrIndexReg).getReg()))
540       VEX_X = 0x0;
541     break;
542   }
543   case X86II::MRM0m: case X86II::MRM1m:
544   case X86II::MRM2m: case X86II::MRM3m:
545   case X86II::MRM4m: case X86II::MRM5m:
546   case X86II::MRM6m: case X86II::MRM7m:
547     // MRM[0-9]m instructions forms:
548     //  MemAddr
549     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
550       VEX_B = 0x0;
551     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
552       VEX_X = 0x0;
553     break;
554   case X86II::MRMSrcReg:
555     // MRMSrcReg instructions forms:
556     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
557     //  dst(ModR/M), src1(ModR/M)
558     //  dst(ModR/M), src1(ModR/M), imm8
559     //
560     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
561       VEX_R = 0x0;
562     CurOp++;
563
564     if (HasVEX_4V)
565       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
566     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
567       VEX_B = 0x0;
568     break;
569   case X86II::MRMDestReg:
570     // MRMDestReg instructions forms:
571     //  dst(ModR/M), src(ModR/M)
572     //  dst(ModR/M), src(ModR/M), imm8
573     if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
574       VEX_B = 0x0;
575     if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
576       VEX_R = 0x0;
577     break;
578   case X86II::MRM0r: case X86II::MRM1r:
579   case X86II::MRM2r: case X86II::MRM3r:
580   case X86II::MRM4r: case X86II::MRM5r:
581   case X86II::MRM6r: case X86II::MRM7r:
582     // MRM0r-MRM7r instructions forms:
583     //  dst(VEX_4V), src(ModR/M), imm8
584     VEX_4V = getVEXRegisterEncoding(MI, 0);
585     if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
586       VEX_B = 0x0;
587     break;
588   default: // RawFrm
589     break;
590   }
591
592   // Emit segment override opcode prefix as needed.
593   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
594
595   // VEX opcode prefix can have 2 or 3 bytes
596   //
597   //  3 bytes:
598   //    +-----+ +--------------+ +-------------------+
599   //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
600   //    +-----+ +--------------+ +-------------------+
601   //  2 bytes:
602   //    +-----+ +-------------------+
603   //    | C5h | | R | vvvv | L | pp |
604   //    +-----+ +-------------------+
605   //
606   unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
607
608   if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
609     EmitByte(0xC5, CurByte, OS);
610     EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
611     return;
612   }
613
614   // 3 byte VEX prefix
615   EmitByte(0xC4, CurByte, OS);
616   EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
617   EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
618 }
619
620 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
621 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
622 /// size, and 3) use of X86-64 extended registers.
623 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
624                                    const MCInstrDesc &Desc) {
625   unsigned REX = 0;
626   if (TSFlags & X86II::REX_W)
627     REX |= 1 << 3; // set REX.W
628
629   if (MI.getNumOperands() == 0) return REX;
630
631   unsigned NumOps = MI.getNumOperands();
632   // FIXME: MCInst should explicitize the two-addrness.
633   bool isTwoAddr = NumOps > 1 &&
634                       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
635
636   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
637   unsigned i = isTwoAddr ? 1 : 0;
638   for (; i != NumOps; ++i) {
639     const MCOperand &MO = MI.getOperand(i);
640     if (!MO.isReg()) continue;
641     unsigned Reg = MO.getReg();
642     if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
643     // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
644     // that returns non-zero.
645     REX |= 0x40; // REX fixed encoding prefix
646     break;
647   }
648
649   switch (TSFlags & X86II::FormMask) {
650   case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
651   case X86II::MRMSrcReg:
652     if (MI.getOperand(0).isReg() &&
653         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
654       REX |= 1 << 2; // set REX.R
655     i = isTwoAddr ? 2 : 1;
656     for (; i != NumOps; ++i) {
657       const MCOperand &MO = MI.getOperand(i);
658       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
659         REX |= 1 << 0; // set REX.B
660     }
661     break;
662   case X86II::MRMSrcMem: {
663     if (MI.getOperand(0).isReg() &&
664         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
665       REX |= 1 << 2; // set REX.R
666     unsigned Bit = 0;
667     i = isTwoAddr ? 2 : 1;
668     for (; i != NumOps; ++i) {
669       const MCOperand &MO = MI.getOperand(i);
670       if (MO.isReg()) {
671         if (X86II::isX86_64ExtendedReg(MO.getReg()))
672           REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
673         Bit++;
674       }
675     }
676     break;
677   }
678   case X86II::MRM0m: case X86II::MRM1m:
679   case X86II::MRM2m: case X86II::MRM3m:
680   case X86II::MRM4m: case X86II::MRM5m:
681   case X86II::MRM6m: case X86II::MRM7m:
682   case X86II::MRMDestMem: {
683     unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
684     i = isTwoAddr ? 1 : 0;
685     if (NumOps > e && MI.getOperand(e).isReg() &&
686         X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
687       REX |= 1 << 2; // set REX.R
688     unsigned Bit = 0;
689     for (; i != e; ++i) {
690       const MCOperand &MO = MI.getOperand(i);
691       if (MO.isReg()) {
692         if (X86II::isX86_64ExtendedReg(MO.getReg()))
693           REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
694         Bit++;
695       }
696     }
697     break;
698   }
699   default:
700     if (MI.getOperand(0).isReg() &&
701         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
702       REX |= 1 << 0; // set REX.B
703     i = isTwoAddr ? 2 : 1;
704     for (unsigned e = NumOps; i != e; ++i) {
705       const MCOperand &MO = MI.getOperand(i);
706       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
707         REX |= 1 << 2; // set REX.R
708     }
709     break;
710   }
711   return REX;
712 }
713
714 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
715 void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
716                                         unsigned &CurByte, int MemOperand,
717                                         const MCInst &MI,
718                                         raw_ostream &OS) const {
719   switch (TSFlags & X86II::SegOvrMask) {
720   default: assert(0 && "Invalid segment!");
721   case 0:
722     // No segment override, check for explicit one on memory operand.
723     if (MemOperand != -1) {   // If the instruction has a memory operand.
724       switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
725       default: assert(0 && "Unknown segment register!");
726       case 0: break;
727       case X86::CS: EmitByte(0x2E, CurByte, OS); break;
728       case X86::SS: EmitByte(0x36, CurByte, OS); break;
729       case X86::DS: EmitByte(0x3E, CurByte, OS); break;
730       case X86::ES: EmitByte(0x26, CurByte, OS); break;
731       case X86::FS: EmitByte(0x64, CurByte, OS); break;
732       case X86::GS: EmitByte(0x65, CurByte, OS); break;
733       }
734     }
735     break;
736   case X86II::FS:
737     EmitByte(0x64, CurByte, OS);
738     break;
739   case X86II::GS:
740     EmitByte(0x65, CurByte, OS);
741     break;
742   }
743 }
744
745 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
746 ///
747 /// MemOperand is the operand # of the start of a memory operand if present.  If
748 /// Not present, it is -1.
749 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
750                                         int MemOperand, const MCInst &MI,
751                                         const MCInstrDesc &Desc,
752                                         raw_ostream &OS) const {
753
754   // Emit the lock opcode prefix as needed.
755   if (TSFlags & X86II::LOCK)
756     EmitByte(0xF0, CurByte, OS);
757
758   // Emit segment override opcode prefix as needed.
759   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
760
761   // Emit the repeat opcode prefix as needed.
762   if ((TSFlags & X86II::Op0Mask) == X86II::REP)
763     EmitByte(0xF3, CurByte, OS);
764
765   // Emit the address size opcode prefix as needed.
766   if ((TSFlags & X86II::AdSize) ||
767       (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
768     EmitByte(0x67, CurByte, OS);
769
770   // Emit the operand size opcode prefix as needed.
771   if (TSFlags & X86II::OpSize)
772     EmitByte(0x66, CurByte, OS);
773
774   bool Need0FPrefix = false;
775   switch (TSFlags & X86II::Op0Mask) {
776   default: assert(0 && "Invalid prefix!");
777   case 0: break;  // No prefix!
778   case X86II::REP: break; // already handled.
779   case X86II::TB:  // Two-byte opcode prefix
780   case X86II::T8:  // 0F 38
781   case X86II::TA:  // 0F 3A
782   case X86II::A6:  // 0F A6
783   case X86II::A7:  // 0F A7
784     Need0FPrefix = true;
785     break;
786   case X86II::TF: // F2 0F 38
787     EmitByte(0xF2, CurByte, OS);
788     Need0FPrefix = true;
789     break;
790   case X86II::XS:   // F3 0F
791     EmitByte(0xF3, CurByte, OS);
792     Need0FPrefix = true;
793     break;
794   case X86II::XD:   // F2 0F
795     EmitByte(0xF2, CurByte, OS);
796     Need0FPrefix = true;
797     break;
798   case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
799   case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
800   case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
801   case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
802   case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
803   case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
804   case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
805   case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
806   }
807
808   // Handle REX prefix.
809   // FIXME: Can this come before F2 etc to simplify emission?
810   if (is64BitMode()) {
811     if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
812       EmitByte(0x40 | REX, CurByte, OS);
813   }
814
815   // 0x0F escape code must be emitted just before the opcode.
816   if (Need0FPrefix)
817     EmitByte(0x0F, CurByte, OS);
818
819   // FIXME: Pull this up into previous switch if REX can be moved earlier.
820   switch (TSFlags & X86II::Op0Mask) {
821   case X86II::TF:    // F2 0F 38
822   case X86II::T8:    // 0F 38
823     EmitByte(0x38, CurByte, OS);
824     break;
825   case X86II::TA:    // 0F 3A
826     EmitByte(0x3A, CurByte, OS);
827     break;
828   case X86II::A6:    // 0F A6
829     EmitByte(0xA6, CurByte, OS);
830     break;
831   case X86II::A7:    // 0F A7
832     EmitByte(0xA7, CurByte, OS);
833     break;
834   }
835 }
836
837 void X86MCCodeEmitter::
838 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
839                   SmallVectorImpl<MCFixup> &Fixups) const {
840   unsigned Opcode = MI.getOpcode();
841   const MCInstrDesc &Desc = MCII.get(Opcode);
842   uint64_t TSFlags = Desc.TSFlags;
843
844   // Pseudo instructions don't get encoded.
845   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
846     return;
847
848   // If this is a two-address instruction, skip one of the register operands.
849   // FIXME: This should be handled during MCInst lowering.
850   unsigned NumOps = Desc.getNumOperands();
851   unsigned CurOp = 0;
852   if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
853     ++CurOp;
854   else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
855     // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
856     --NumOps;
857
858   // Keep track of the current byte being emitted.
859   unsigned CurByte = 0;
860
861   // Is this instruction encoded using the AVX VEX prefix?
862   bool HasVEXPrefix = false;
863
864   // It uses the VEX.VVVV field?
865   bool HasVEX_4V = false;
866
867   if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
868     HasVEXPrefix = true;
869   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
870     HasVEX_4V = true;
871
872   // Determine where the memory operand starts, if present.
873   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
874   if (MemoryOperand != -1) MemoryOperand += CurOp;
875
876   if (!HasVEXPrefix)
877     EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
878   else
879     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
880
881   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
882
883   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
884     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
885
886   unsigned SrcRegNum = 0;
887   switch (TSFlags & X86II::FormMask) {
888   case X86II::MRMInitReg:
889     assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
890   default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
891     assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
892   case X86II::Pseudo:
893     assert(0 && "Pseudo instruction shouldn't be emitted");
894   case X86II::RawFrm:
895     EmitByte(BaseOpcode, CurByte, OS);
896     break;
897   case X86II::RawFrmImm8:
898     EmitByte(BaseOpcode, CurByte, OS);
899     EmitImmediate(MI.getOperand(CurOp++),
900                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
901                   CurByte, OS, Fixups);
902     EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
903     break;
904   case X86II::RawFrmImm16:
905     EmitByte(BaseOpcode, CurByte, OS);
906     EmitImmediate(MI.getOperand(CurOp++),
907                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
908                   CurByte, OS, Fixups);
909     EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
910     break;
911
912   case X86II::AddRegFrm:
913     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
914     break;
915
916   case X86II::MRMDestReg:
917     EmitByte(BaseOpcode, CurByte, OS);
918     EmitRegModRMByte(MI.getOperand(CurOp),
919                      GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
920     CurOp += 2;
921     break;
922
923   case X86II::MRMDestMem:
924     EmitByte(BaseOpcode, CurByte, OS);
925     SrcRegNum = CurOp + X86::AddrNumOperands;
926
927     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
928       SrcRegNum++;
929
930     EmitMemModRMByte(MI, CurOp,
931                      GetX86RegNum(MI.getOperand(SrcRegNum)),
932                      TSFlags, CurByte, OS, Fixups);
933     CurOp = SrcRegNum + 1;
934     break;
935
936   case X86II::MRMSrcReg:
937     EmitByte(BaseOpcode, CurByte, OS);
938     SrcRegNum = CurOp + 1;
939
940     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
941       SrcRegNum++;
942
943     EmitRegModRMByte(MI.getOperand(SrcRegNum),
944                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
945     CurOp = SrcRegNum + 1;
946     break;
947
948   case X86II::MRMSrcMem: {
949     int AddrOperands = X86::AddrNumOperands;
950     unsigned FirstMemOp = CurOp+1;
951     if (HasVEX_4V) {
952       ++AddrOperands;
953       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
954     }
955
956     EmitByte(BaseOpcode, CurByte, OS);
957
958     EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
959                      TSFlags, CurByte, OS, Fixups);
960     CurOp += AddrOperands + 1;
961     break;
962   }
963
964   case X86II::MRM0r: case X86II::MRM1r:
965   case X86II::MRM2r: case X86II::MRM3r:
966   case X86II::MRM4r: case X86II::MRM5r:
967   case X86II::MRM6r: case X86II::MRM7r:
968     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
969       CurOp++;
970     EmitByte(BaseOpcode, CurByte, OS);
971     EmitRegModRMByte(MI.getOperand(CurOp++),
972                      (TSFlags & X86II::FormMask)-X86II::MRM0r,
973                      CurByte, OS);
974     break;
975   case X86II::MRM0m: case X86II::MRM1m:
976   case X86II::MRM2m: case X86II::MRM3m:
977   case X86II::MRM4m: case X86II::MRM5m:
978   case X86II::MRM6m: case X86II::MRM7m:
979     EmitByte(BaseOpcode, CurByte, OS);
980     EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
981                      TSFlags, CurByte, OS, Fixups);
982     CurOp += X86::AddrNumOperands;
983     break;
984   case X86II::MRM_C1:
985     EmitByte(BaseOpcode, CurByte, OS);
986     EmitByte(0xC1, CurByte, OS);
987     break;
988   case X86II::MRM_C2:
989     EmitByte(BaseOpcode, CurByte, OS);
990     EmitByte(0xC2, CurByte, OS);
991     break;
992   case X86II::MRM_C3:
993     EmitByte(BaseOpcode, CurByte, OS);
994     EmitByte(0xC3, CurByte, OS);
995     break;
996   case X86II::MRM_C4:
997     EmitByte(BaseOpcode, CurByte, OS);
998     EmitByte(0xC4, CurByte, OS);
999     break;
1000   case X86II::MRM_C8:
1001     EmitByte(BaseOpcode, CurByte, OS);
1002     EmitByte(0xC8, CurByte, OS);
1003     break;
1004   case X86II::MRM_C9:
1005     EmitByte(BaseOpcode, CurByte, OS);
1006     EmitByte(0xC9, CurByte, OS);
1007     break;
1008   case X86II::MRM_E8:
1009     EmitByte(BaseOpcode, CurByte, OS);
1010     EmitByte(0xE8, CurByte, OS);
1011     break;
1012   case X86II::MRM_F0:
1013     EmitByte(BaseOpcode, CurByte, OS);
1014     EmitByte(0xF0, CurByte, OS);
1015     break;
1016   case X86II::MRM_F8:
1017     EmitByte(BaseOpcode, CurByte, OS);
1018     EmitByte(0xF8, CurByte, OS);
1019     break;
1020   case X86II::MRM_F9:
1021     EmitByte(BaseOpcode, CurByte, OS);
1022     EmitByte(0xF9, CurByte, OS);
1023     break;
1024   case X86II::MRM_D0:
1025     EmitByte(BaseOpcode, CurByte, OS);
1026     EmitByte(0xD0, CurByte, OS);
1027     break;
1028   case X86II::MRM_D1:
1029     EmitByte(BaseOpcode, CurByte, OS);
1030     EmitByte(0xD1, CurByte, OS);
1031     break;
1032   }
1033
1034   // If there is a remaining operand, it must be a trailing immediate.  Emit it
1035   // according to the right size for the instruction.
1036   if (CurOp != NumOps) {
1037     // The last source register of a 4 operand instruction in AVX is encoded
1038     // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
1039     if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1040       const MCOperand &MO = MI.getOperand(CurOp++);
1041       bool IsExtReg = X86II::isX86_64ExtendedReg(MO.getReg());
1042       unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1043       RegNum |= GetX86RegNum(MO) << 4;
1044       EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
1045                     Fixups);
1046     } else {
1047       unsigned FixupKind;
1048       // FIXME: Is there a better way to know that we need a signed relocation?
1049       if (MI.getOpcode() == X86::ADD64ri32 ||
1050           MI.getOpcode() == X86::MOV64ri32 ||
1051           MI.getOpcode() == X86::MOV64mi32 ||
1052           MI.getOpcode() == X86::PUSH64i32)
1053         FixupKind = X86::reloc_signed_4byte;
1054       else
1055         FixupKind = getImmFixupKind(TSFlags);
1056       EmitImmediate(MI.getOperand(CurOp++),
1057                     X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1058                     CurByte, OS, Fixups);
1059     }
1060   }
1061
1062   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1063     EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1064
1065 #ifndef NDEBUG
1066   // FIXME: Verify.
1067   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1068     errs() << "Cannot encode all operands of: ";
1069     MI.dump();
1070     errs() << '\n';
1071     abort();
1072   }
1073 #endif
1074 }