]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Target/X86/X86ISelLowering.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Target / X86 / X86ISelLowering.h
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
17
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26
27 namespace llvm {
28   namespace X86ISD {
29     // X86 Specific DAG Nodes
30     enum NodeType {
31       // Start the numbering where the builtin ops leave off.
32       FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34       /// BSF - Bit scan forward.
35       /// BSR - Bit scan reverse.
36       BSF,
37       BSR,
38
39       /// SHLD, SHRD - Double shift instructions. These correspond to
40       /// X86::SHLDxx and X86::SHRDxx instructions.
41       SHLD,
42       SHRD,
43
44       /// FAND - Bitwise logical AND of floating point values. This corresponds
45       /// to X86::ANDPS or X86::ANDPD.
46       FAND,
47
48       /// FOR - Bitwise logical OR of floating point values. This corresponds
49       /// to X86::ORPS or X86::ORPD.
50       FOR,
51
52       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53       /// to X86::XORPS or X86::XORPD.
54       FXOR,
55
56       /// FSRL - Bitwise logical right shift of floating point values. These
57       /// corresponds to X86::PSRLDQ.
58       FSRL,
59
60       /// CALL - These operations represent an abstract X86 call
61       /// instruction, which includes a bunch of information.  In particular the
62       /// operands of these node are:
63       ///
64       ///     #0 - The incoming token chain
65       ///     #1 - The callee
66       ///     #2 - The number of arg bytes the caller pushes on the stack.
67       ///     #3 - The number of arg bytes the callee pops off the stack.
68       ///     #4 - The value to pass in AL/AX/EAX (optional)
69       ///     #5 - The value to pass in DL/DX/EDX (optional)
70       ///
71       /// The result values of these nodes are:
72       ///
73       ///     #0 - The outgoing token chain
74       ///     #1 - The first register result value (optional)
75       ///     #2 - The second register result value (optional)
76       ///
77       CALL,
78
79       /// RDTSC_DAG - This operation implements the lowering for
80       /// readcyclecounter
81       RDTSC_DAG,
82
83       /// X86 compare and logical compare instructions.
84       CMP, COMI, UCOMI,
85
86       /// X86 bit-test instructions.
87       BT,
88
89       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90       /// operand, usually produced by a CMP instruction.
91       SETCC,
92
93       // Same as SETCC except it's materialized with a sbb and the value is all
94       // one's or all zero's.
95       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
96
97       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
98       /// Operands are two FP values to compare; result is a mask of
99       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
100       FSETCCss, FSETCCsd,
101
102       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
103       /// result in an integer GPR.  Needs masking for scalar result.
104       FGETSIGNx86,
105
106       /// X86 conditional moves. Operand 0 and operand 1 are the two values
107       /// to select from. Operand 2 is the condition code, and operand 3 is the
108       /// flag operand produced by a CMP or TEST instruction. It also writes a
109       /// flag result.
110       CMOV,
111
112       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
113       /// is the block to branch if condition is true, operand 2 is the
114       /// condition code, and operand 3 is the flag operand produced by a CMP
115       /// or TEST instruction.
116       BRCOND,
117
118       /// Return with a flag operand. Operand 0 is the chain operand, operand
119       /// 1 is the number of bytes of stack to pop.
120       RET_FLAG,
121
122       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
123       REP_STOS,
124
125       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
126       REP_MOVS,
127
128       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
129       /// at function entry, used for PIC code.
130       GlobalBaseReg,
131
132       /// Wrapper - A wrapper node for TargetConstantPool,
133       /// TargetExternalSymbol, and TargetGlobalAddress.
134       Wrapper,
135
136       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
137       /// relative displacements.
138       WrapperRIP,
139
140       /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
141       /// of an XMM vector, with the high word zero filled.
142       MOVQ2DQ,
143
144       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
145       /// to an MMX vector.  If you think this is too close to the previous
146       /// mnemonic, so do I; blame Intel.
147       MOVDQ2Q,
148
149       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
150       /// i32, corresponds to X86::PEXTRB.
151       PEXTRB,
152
153       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
154       /// i32, corresponds to X86::PEXTRW.
155       PEXTRW,
156
157       /// INSERTPS - Insert any element of a 4 x float vector into any element
158       /// of a destination 4 x floatvector.
159       INSERTPS,
160
161       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
162       /// corresponds to X86::PINSRB.
163       PINSRB,
164
165       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
166       /// corresponds to X86::PINSRW.
167       PINSRW, MMX_PINSRW,
168
169       /// PSHUFB - Shuffle 16 8-bit values within a vector.
170       PSHUFB,
171
172       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
173       ANDNP,
174
175       /// PSIGNB/W/D - Copy integer sign.
176       PSIGNB, PSIGNW, PSIGND,
177
178       /// BLEND family of opcodes
179       BLENDV,
180
181       /// FHADD - Floating point horizontal add.
182       FHADD,
183
184       /// FHSUB - Floating point horizontal sub.
185       FHSUB,
186
187       /// FMAX, FMIN - Floating point max and min.
188       ///
189       FMAX, FMIN,
190
191       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
192       /// approximation.  Note that these typically require refinement
193       /// in order to obtain suitable precision.
194       FRSQRT, FRCP,
195
196       // TLSADDR - Thread Local Storage.
197       TLSADDR,
198
199       // TLSCALL - Thread Local Storage.  When calling to an OS provided
200       // thunk at the address from an earlier relocation.
201       TLSCALL,
202
203       // EH_RETURN - Exception Handling helpers.
204       EH_RETURN,
205
206       /// TC_RETURN - Tail call return.
207       ///   operand #0 chain
208       ///   operand #1 callee (register or absolute)
209       ///   operand #2 stack adjustment
210       ///   operand #3 optional in flag
211       TC_RETURN,
212
213       // VZEXT_MOVL - Vector move low and zero extend.
214       VZEXT_MOVL,
215
216       // VSHL, VSRL - Vector logical left / right shift.
217       VSHL, VSRL,
218
219       // CMPPD, CMPPS - Vector double/float comparison.
220       // CMPPD, CMPPS - Vector double/float comparison.
221       CMPPD, CMPPS,
222
223       // PCMP* - Vector integer comparisons.
224       PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
225       PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
226
227       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
228       ADD, SUB, ADC, SBB, SMUL,
229       INC, DEC, OR, XOR, AND,
230
231       ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
232
233       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
234
235       // MUL_IMM - X86 specific multiply by immediate.
236       MUL_IMM,
237
238       // PTEST - Vector bitwise comparisons
239       PTEST,
240
241       // TESTP - Vector packed fp sign bitwise comparisons
242       TESTP,
243
244       // Several flavors of instructions with vector shuffle behaviors.
245       PALIGN,
246       PSHUFD,
247       PSHUFHW,
248       PSHUFLW,
249       PSHUFHW_LD,
250       PSHUFLW_LD,
251       SHUFPD,
252       SHUFPS,
253       MOVDDUP,
254       MOVSHDUP,
255       MOVSLDUP,
256       MOVSHDUP_LD,
257       MOVSLDUP_LD,
258       MOVLHPS,
259       MOVLHPD,
260       MOVHLPS,
261       MOVHLPD,
262       MOVLPS,
263       MOVLPD,
264       MOVSD,
265       MOVSS,
266       UNPCKLPS,
267       UNPCKLPD,
268       VUNPCKLPSY,
269       VUNPCKLPDY,
270       UNPCKHPS,
271       UNPCKHPD,
272       VUNPCKHPSY,
273       VUNPCKHPDY,
274       PUNPCKLBW,
275       PUNPCKLWD,
276       PUNPCKLDQ,
277       PUNPCKLQDQ,
278       PUNPCKHBW,
279       PUNPCKHWD,
280       PUNPCKHDQ,
281       PUNPCKHQDQ,
282       VPERMILPS,
283       VPERMILPSY,
284       VPERMILPD,
285       VPERMILPDY,
286       VPERM2F128,
287       VBROADCAST,
288
289       // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
290       // according to %al. An operator is needed so that this can be expanded
291       // with control flow.
292       VASTART_SAVE_XMM_REGS,
293
294       // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
295       WIN_ALLOCA,
296
297       // SEG_ALLOCA - For allocating variable amounts of stack space when using
298       // segmented stacks. Check if the current stacklet has enough space, and
299       // falls back to heap allocation if not.
300       SEG_ALLOCA,
301
302       // Memory barrier
303       MEMBARRIER,
304       MFENCE,
305       SFENCE,
306       LFENCE,
307
308       // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
309       // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
310       // Atomic 64-bit binary operations.
311       ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
312       ATOMSUB64_DAG,
313       ATOMOR64_DAG,
314       ATOMXOR64_DAG,
315       ATOMAND64_DAG,
316       ATOMNAND64_DAG,
317       ATOMSWAP64_DAG,
318
319       // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
320       LCMPXCHG_DAG,
321       LCMPXCHG8_DAG,
322       LCMPXCHG16_DAG,
323
324       // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
325       VZEXT_LOAD,
326
327       // FNSTCW16m - Store FP control world into i16 memory.
328       FNSTCW16m,
329
330       /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
331       /// integer destination in memory and a FP reg source.  This corresponds
332       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
333       /// has two inputs (token chain and address) and two outputs (int value
334       /// and token chain).
335       FP_TO_INT16_IN_MEM,
336       FP_TO_INT32_IN_MEM,
337       FP_TO_INT64_IN_MEM,
338
339       /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
340       /// integer source in memory and FP reg result.  This corresponds to the
341       /// X86::FILD*m instructions. It has three inputs (token chain, address,
342       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
343       /// also produces a flag).
344       FILD,
345       FILD_FLAG,
346
347       /// FLD - This instruction implements an extending load to FP stack slots.
348       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
349       /// operand, ptr to load from, and a ValueType node indicating the type
350       /// to load to.
351       FLD,
352
353       /// FST - This instruction implements a truncating store to FP stack
354       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
355       /// chain operand, value to store, address, and a ValueType to store it
356       /// as.
357       FST,
358
359       /// VAARG_64 - This instruction grabs the address of the next argument
360       /// from a va_list. (reads and modifies the va_list in memory)
361       VAARG_64
362
363       // WARNING: Do not add anything in the end unless you want the node to
364       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
365       // thought as target memory ops!
366     };
367   }
368
369   /// Define some predicates that are used for node matching.
370   namespace X86 {
371     /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
372     /// specifies a shuffle of elements that is suitable for input to PSHUFD.
373     bool isPSHUFDMask(ShuffleVectorSDNode *N);
374
375     /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
376     /// specifies a shuffle of elements that is suitable for input to PSHUFD.
377     bool isPSHUFHWMask(ShuffleVectorSDNode *N);
378
379     /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
380     /// specifies a shuffle of elements that is suitable for input to PSHUFD.
381     bool isPSHUFLWMask(ShuffleVectorSDNode *N);
382
383     /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
384     /// specifies a shuffle of elements that is suitable for input to SHUFP*.
385     bool isSHUFPMask(ShuffleVectorSDNode *N);
386
387     /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
388     /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
389     bool isMOVHLPSMask(ShuffleVectorSDNode *N);
390
391     /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
392     /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
393     /// <2, 3, 2, 3>
394     bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
395
396     /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
397     /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
398     bool isMOVLPMask(ShuffleVectorSDNode *N);
399
400     /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
401     /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
402     /// as well as MOVLHPS.
403     bool isMOVLHPSMask(ShuffleVectorSDNode *N);
404
405     /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
406     /// specifies a shuffle of elements that is suitable for input to UNPCKL.
407     bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
408
409     /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
410     /// specifies a shuffle of elements that is suitable for input to UNPCKH.
411     bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
412
413     /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
414     /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
415     /// <0, 0, 1, 1>
416     bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
417
418     /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
419     /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
420     /// <2, 2, 3, 3>
421     bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
422
423     /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
424     /// specifies a shuffle of elements that is suitable for input to MOVSS,
425     /// MOVSD, and MOVD, i.e. setting the lowest element.
426     bool isMOVLMask(ShuffleVectorSDNode *N);
427
428     /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
429     /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
430     bool isMOVSHDUPMask(ShuffleVectorSDNode *N, const X86Subtarget *Subtarget);
431
432     /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
433     /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
434     bool isMOVSLDUPMask(ShuffleVectorSDNode *N, const X86Subtarget *Subtarget);
435
436     /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
437     /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
438     bool isMOVDDUPMask(ShuffleVectorSDNode *N);
439
440     /// isVEXTRACTF128Index - Return true if the specified
441     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
442     /// suitable for input to VEXTRACTF128.
443     bool isVEXTRACTF128Index(SDNode *N);
444
445     /// isVINSERTF128Index - Return true if the specified
446     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
447     /// suitable for input to VINSERTF128.
448     bool isVINSERTF128Index(SDNode *N);
449
450     /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
451     /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
452     /// instructions.
453     unsigned getShuffleSHUFImmediate(SDNode *N);
454
455     /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
456     /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
457     unsigned getShufflePSHUFHWImmediate(SDNode *N);
458
459     /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
460     /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
461     unsigned getShufflePSHUFLWImmediate(SDNode *N);
462
463     /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
464     /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
465     unsigned getShufflePALIGNRImmediate(SDNode *N);
466
467     /// getExtractVEXTRACTF128Immediate - Return the appropriate
468     /// immediate to extract the specified EXTRACT_SUBVECTOR index
469     /// with VEXTRACTF128 instructions.
470     unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
471
472     /// getInsertVINSERTF128Immediate - Return the appropriate
473     /// immediate to insert at the specified INSERT_SUBVECTOR index
474     /// with VINSERTF128 instructions.
475     unsigned getInsertVINSERTF128Immediate(SDNode *N);
476
477     /// isZeroNode - Returns true if Elt is a constant zero or a floating point
478     /// constant +0.0.
479     bool isZeroNode(SDValue Elt);
480
481     /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
482     /// fit into displacement field of the instruction.
483     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
484                                       bool hasSymbolicDisplacement = true);
485
486
487     /// isCalleePop - Determines whether the callee is required to pop its
488     /// own arguments. Callee pop is necessary to support tail calls.
489     bool isCalleePop(CallingConv::ID CallingConv,
490                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
491   }
492
493   //===--------------------------------------------------------------------===//
494   //  X86TargetLowering - X86 Implementation of the TargetLowering interface
495   class X86TargetLowering : public TargetLowering {
496   public:
497     explicit X86TargetLowering(X86TargetMachine &TM);
498
499     virtual unsigned getJumpTableEncoding() const;
500
501     virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
502
503     virtual const MCExpr *
504     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
505                               const MachineBasicBlock *MBB, unsigned uid,
506                               MCContext &Ctx) const;
507
508     /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
509     /// jumptable.
510     virtual SDValue getPICJumpTableRelocBase(SDValue Table,
511                                              SelectionDAG &DAG) const;
512     virtual const MCExpr *
513     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
514                                  unsigned JTI, MCContext &Ctx) const;
515
516     /// getStackPtrReg - Return the stack pointer register we are using: either
517     /// ESP or RSP.
518     unsigned getStackPtrReg() const { return X86StackPtr; }
519
520     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
521     /// function arguments in the caller parameter area. For X86, aggregates
522     /// that contains are placed at 16-byte boundaries while the rest are at
523     /// 4-byte boundaries.
524     virtual unsigned getByValTypeAlignment(Type *Ty) const;
525
526     /// getOptimalMemOpType - Returns the target specific optimal type for load
527     /// and store operations as a result of memset, memcpy, and memmove
528     /// lowering. If DstAlign is zero that means it's safe to destination
529     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
530     /// means there isn't a need to check it against alignment requirement,
531     /// probably because the source does not need to be loaded. If
532     /// 'NonScalarIntSafe' is true, that means it's safe to return a
533     /// non-scalar-integer type, e.g. empty string source, constant, or loaded
534     /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
535     /// constant so it does not need to be loaded.
536     /// It returns EVT::Other if the type should be determined using generic
537     /// target-independent logic.
538     virtual EVT
539     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
540                         bool NonScalarIntSafe, bool MemcpyStrSrc,
541                         MachineFunction &MF) const;
542
543     /// allowsUnalignedMemoryAccesses - Returns true if the target allows
544     /// unaligned memory accesses. of the specified type.
545     virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
546       return true;
547     }
548
549     /// LowerOperation - Provide custom lowering hooks for some operations.
550     ///
551     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
552
553     /// ReplaceNodeResults - Replace the results of node with an illegal result
554     /// type with new values built out of custom code.
555     ///
556     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
557                                     SelectionDAG &DAG) const;
558
559
560     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
561
562     /// isTypeDesirableForOp - Return true if the target has native support for
563     /// the specified value type and it is 'desirable' to use the type for the
564     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
565     /// instruction encodings are longer and some i16 instructions are slow.
566     virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
567
568     /// isTypeDesirable - Return true if the target has native support for the
569     /// specified value type and it is 'desirable' to use the type. e.g. On x86
570     /// i16 is legal, but undesirable since i16 instruction encodings are longer
571     /// and some i16 instructions are slow.
572     virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
573
574     virtual MachineBasicBlock *
575       EmitInstrWithCustomInserter(MachineInstr *MI,
576                                   MachineBasicBlock *MBB) const;
577
578
579     /// getTargetNodeName - This method returns the name of a target specific
580     /// DAG node.
581     virtual const char *getTargetNodeName(unsigned Opcode) const;
582
583     /// getSetCCResultType - Return the value type to use for ISD::SETCC.
584     virtual EVT getSetCCResultType(EVT VT) const;
585
586     /// computeMaskedBitsForTargetNode - Determine which of the bits specified
587     /// in Mask are known to be either zero or one and return them in the
588     /// KnownZero/KnownOne bitsets.
589     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
590                                                 const APInt &Mask,
591                                                 APInt &KnownZero,
592                                                 APInt &KnownOne,
593                                                 const SelectionDAG &DAG,
594                                                 unsigned Depth = 0) const;
595
596     // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
597     // operation that are sign bits.
598     virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
599                                                      unsigned Depth) const;
600
601     virtual bool
602     isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
603
604     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
605
606     virtual bool ExpandInlineAsm(CallInst *CI) const;
607
608     ConstraintType getConstraintType(const std::string &Constraint) const;
609
610     /// Examine constraint string and operand type and determine a weight value.
611     /// The operand object must already have been set up with the operand type.
612     virtual ConstraintWeight getSingleConstraintMatchWeight(
613       AsmOperandInfo &info, const char *constraint) const;
614
615     virtual const char *LowerXConstraint(EVT ConstraintVT) const;
616
617     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
618     /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
619     /// true it means one of the asm constraint of the inline asm instruction
620     /// being processed is 'm'.
621     virtual void LowerAsmOperandForConstraint(SDValue Op,
622                                               std::string &Constraint,
623                                               std::vector<SDValue> &Ops,
624                                               SelectionDAG &DAG) const;
625
626     /// getRegForInlineAsmConstraint - Given a physical register constraint
627     /// (e.g. {edx}), return the register number and the register class for the
628     /// register.  This should only be used for C_Register constraints.  On
629     /// error, this returns a register number of 0.
630     std::pair<unsigned, const TargetRegisterClass*>
631       getRegForInlineAsmConstraint(const std::string &Constraint,
632                                    EVT VT) const;
633
634     /// isLegalAddressingMode - Return true if the addressing mode represented
635     /// by AM is legal for this target, for a load/store of the specified type.
636     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
637
638     /// isTruncateFree - Return true if it's free to truncate a value of
639     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
640     /// register EAX to i16 by referencing its sub-register AX.
641     virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
642     virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
643
644     /// isZExtFree - Return true if any actual instruction that defines a
645     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
646     /// register. This does not necessarily include registers defined in
647     /// unknown ways, such as incoming arguments, or copies from unknown
648     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
649     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
650     /// all instructions that define 32-bit values implicit zero-extend the
651     /// result out to 64 bits.
652     virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
653     virtual bool isZExtFree(EVT VT1, EVT VT2) const;
654
655     /// isNarrowingProfitable - Return true if it's profitable to narrow
656     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
657     /// from i32 to i8 but not from i32 to i16.
658     virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
659
660     /// isFPImmLegal - Returns true if the target can instruction select the
661     /// specified FP immediate natively. If false, the legalizer will
662     /// materialize the FP immediate as a load from a constant pool.
663     virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
664
665     /// isShuffleMaskLegal - Targets can use this to indicate that they only
666     /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
667     /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
668     /// values are assumed to be legal.
669     virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
670                                     EVT VT) const;
671
672     /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
673     /// used by Targets can use this to indicate if there is a suitable
674     /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
675     /// pool entry.
676     virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
677                                         EVT VT) const;
678
679     /// ShouldShrinkFPConstant - If true, then instruction selection should
680     /// seek to shrink the FP constant of the specified type to a smaller type
681     /// in order to save space and / or reduce runtime.
682     virtual bool ShouldShrinkFPConstant(EVT VT) const {
683       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
684       // expensive than a straight movsd. On the other hand, it's important to
685       // shrink long double fp constant since fldt is very slow.
686       return !X86ScalarSSEf64 || VT == MVT::f80;
687     }
688
689     const X86Subtarget* getSubtarget() const {
690       return Subtarget;
691     }
692
693     /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
694     /// computed in an SSE register, not on the X87 floating point stack.
695     bool isScalarFPTypeInSSEReg(EVT VT) const {
696       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
697       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
698     }
699
700     /// createFastISel - This method returns a target specific FastISel object,
701     /// or null if the target does not support "fast" ISel.
702     virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
703
704     /// getStackCookieLocation - Return true if the target stores stack
705     /// protector cookies at a fixed offset in some non-standard address
706     /// space, and populates the address space and offset as
707     /// appropriate.
708     virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
709
710     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
711                       SelectionDAG &DAG) const;
712
713   protected:
714     std::pair<const TargetRegisterClass*, uint8_t>
715     findRepresentativeClass(EVT VT) const;
716
717   private:
718     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
719     /// make the right decision when generating code for different targets.
720     const X86Subtarget *Subtarget;
721     const X86RegisterInfo *RegInfo;
722     const TargetData *TD;
723
724     /// X86StackPtr - X86 physical register used as stack ptr.
725     unsigned X86StackPtr;
726
727     /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
728     /// floating point ops.
729     /// When SSE is available, use it for f32 operations.
730     /// When SSE2 is available, use it for f64 operations.
731     bool X86ScalarSSEf32;
732     bool X86ScalarSSEf64;
733
734     /// LegalFPImmediates - A list of legal fp immediates.
735     std::vector<APFloat> LegalFPImmediates;
736
737     /// addLegalFPImmediate - Indicate that this x86 target can instruction
738     /// select the specified FP immediate natively.
739     void addLegalFPImmediate(const APFloat& Imm) {
740       LegalFPImmediates.push_back(Imm);
741     }
742
743     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
744                             CallingConv::ID CallConv, bool isVarArg,
745                             const SmallVectorImpl<ISD::InputArg> &Ins,
746                             DebugLoc dl, SelectionDAG &DAG,
747                             SmallVectorImpl<SDValue> &InVals) const;
748     SDValue LowerMemArgument(SDValue Chain,
749                              CallingConv::ID CallConv,
750                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
751                              DebugLoc dl, SelectionDAG &DAG,
752                              const CCValAssign &VA,  MachineFrameInfo *MFI,
753                               unsigned i) const;
754     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
755                              DebugLoc dl, SelectionDAG &DAG,
756                              const CCValAssign &VA,
757                              ISD::ArgFlagsTy Flags) const;
758
759     // Call lowering helpers.
760
761     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
762     /// for tail call optimization. Targets which want to do tail call
763     /// optimization should implement this function.
764     bool IsEligibleForTailCallOptimization(SDValue Callee,
765                                            CallingConv::ID CalleeCC,
766                                            bool isVarArg,
767                                            bool isCalleeStructRet,
768                                            bool isCallerStructRet,
769                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
770                                     const SmallVectorImpl<SDValue> &OutVals,
771                                     const SmallVectorImpl<ISD::InputArg> &Ins,
772                                            SelectionDAG& DAG) const;
773     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
774     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
775                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
776                                 int FPDiff, DebugLoc dl) const;
777
778     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
779                                          SelectionDAG &DAG) const;
780
781     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
782                                                bool isSigned) const;
783
784     SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
785                                    SelectionDAG &DAG) const;
786     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
787     SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
788     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
789     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
790     SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
791     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
792     SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
793     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
794     SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
795     SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
796     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
797     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
798     SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
799                                int64_t Offset, SelectionDAG &DAG) const;
800     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
801     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
802     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
803     SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
804     SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
805     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
806     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
807     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
808     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
809     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
810     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
811     SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
812     SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
813     SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
814     SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
815     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
816                       DebugLoc dl, SelectionDAG &DAG) const;
817     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
818     SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
819     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
820     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
821     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
822     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
823     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
824     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
825     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
826     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
827     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
828     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
829     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
830     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
831     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
832     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
833     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
834     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
835     SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
836     SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
837     SDValue LowerADD(SDValue Op, SelectionDAG &DAG) const;
838     SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) const;
839     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
840     SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
841     SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
842
843     SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
844     SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
845     SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
846     SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
847     SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
848     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
849
850     // Utility functions to help LowerVECTOR_SHUFFLE
851     SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
852
853     virtual SDValue
854       LowerFormalArguments(SDValue Chain,
855                            CallingConv::ID CallConv, bool isVarArg,
856                            const SmallVectorImpl<ISD::InputArg> &Ins,
857                            DebugLoc dl, SelectionDAG &DAG,
858                            SmallVectorImpl<SDValue> &InVals) const;
859     virtual SDValue
860       LowerCall(SDValue Chain, SDValue Callee,
861                 CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
862                 const SmallVectorImpl<ISD::OutputArg> &Outs,
863                 const SmallVectorImpl<SDValue> &OutVals,
864                 const SmallVectorImpl<ISD::InputArg> &Ins,
865                 DebugLoc dl, SelectionDAG &DAG,
866                 SmallVectorImpl<SDValue> &InVals) const;
867
868     virtual SDValue
869       LowerReturn(SDValue Chain,
870                   CallingConv::ID CallConv, bool isVarArg,
871                   const SmallVectorImpl<ISD::OutputArg> &Outs,
872                   const SmallVectorImpl<SDValue> &OutVals,
873                   DebugLoc dl, SelectionDAG &DAG) const;
874
875     virtual bool isUsedByReturnOnly(SDNode *N) const;
876
877     virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
878
879     virtual EVT
880     getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
881                              ISD::NodeType ExtendKind) const;
882
883     virtual bool
884     CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
885                    bool isVarArg,
886                    const SmallVectorImpl<ISD::OutputArg> &Outs,
887                    LLVMContext &Context) const;
888
889     void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
890                                  SelectionDAG &DAG, unsigned NewOp) const;
891
892     /// Utility function to emit string processing sse4.2 instructions
893     /// that return in xmm0.
894     /// This takes the instruction to expand, the associated machine basic
895     /// block, the number of args, and whether or not the second arg is
896     /// in memory or not.
897     MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
898                                 unsigned argNum, bool inMem) const;
899
900     /// Utility functions to emit monitor and mwait instructions. These
901     /// need to make sure that the arguments to the intrinsic are in the
902     /// correct registers.
903     MachineBasicBlock *EmitMonitor(MachineInstr *MI,
904                                    MachineBasicBlock *BB) const;
905     MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
906
907     /// Utility function to emit atomic bitwise operations (and, or, xor).
908     /// It takes the bitwise instruction to expand, the associated machine basic
909     /// block, and the associated X86 opcodes for reg/reg and reg/imm.
910     MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
911                                                     MachineInstr *BInstr,
912                                                     MachineBasicBlock *BB,
913                                                     unsigned regOpc,
914                                                     unsigned immOpc,
915                                                     unsigned loadOpc,
916                                                     unsigned cxchgOpc,
917                                                     unsigned notOpc,
918                                                     unsigned EAXreg,
919                                                     TargetRegisterClass *RC,
920                                                     bool invSrc = false) const;
921
922     MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
923                                                     MachineInstr *BInstr,
924                                                     MachineBasicBlock *BB,
925                                                     unsigned regOpcL,
926                                                     unsigned regOpcH,
927                                                     unsigned immOpcL,
928                                                     unsigned immOpcH,
929                                                     bool invSrc = false) const;
930
931     /// Utility function to emit atomic min and max.  It takes the min/max
932     /// instruction to expand, the associated basic block, and the associated
933     /// cmov opcode for moving the min or max value.
934     MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
935                                                           MachineBasicBlock *BB,
936                                                         unsigned cmovOpc) const;
937
938     // Utility function to emit the low-level va_arg code for X86-64.
939     MachineBasicBlock *EmitVAARG64WithCustomInserter(
940                        MachineInstr *MI,
941                        MachineBasicBlock *MBB) const;
942
943     /// Utility function to emit the xmm reg save portion of va_start.
944     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
945                                                    MachineInstr *BInstr,
946                                                    MachineBasicBlock *BB) const;
947
948     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
949                                          MachineBasicBlock *BB) const;
950
951     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
952                                               MachineBasicBlock *BB) const;
953
954     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
955                                             MachineBasicBlock *BB,
956                                             bool Is64Bit) const;
957
958     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
959                                           MachineBasicBlock *BB) const;
960
961     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
962                                           MachineBasicBlock *BB) const;
963
964     /// Emit nodes that will be selected as "test Op0,Op0", or something
965     /// equivalent, for use with the given x86 condition code.
966     SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
967
968     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
969     /// equivalent, for use with the given x86 condition code.
970     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
971                     SelectionDAG &DAG) const;
972   };
973
974   namespace X86 {
975     FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
976   }
977 }
978
979 #endif    // X86ISELLOWERING_H