]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Transforms / InstCombine / InstCombineCasts.cpp
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Support/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20
21 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
22 /// expression.  If so, decompose it, returning some value X, such that Val is
23 /// X*Scale+Offset.
24 ///
25 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
26                                         uint64_t &Offset) {
27   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
28     Offset = CI->getZExtValue();
29     Scale  = 0;
30     return ConstantInt::get(Val->getType(), 0);
31   }
32   
33   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
34     // Cannot look past anything that might overflow.
35     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
36     if (OBI && !OBI->hasNoUnsignedWrap()) {
37       Scale = 1;
38       Offset = 0;
39       return Val;
40     }
41
42     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
43       if (I->getOpcode() == Instruction::Shl) {
44         // This is a value scaled by '1 << the shift amt'.
45         Scale = UINT64_C(1) << RHS->getZExtValue();
46         Offset = 0;
47         return I->getOperand(0);
48       }
49       
50       if (I->getOpcode() == Instruction::Mul) {
51         // This value is scaled by 'RHS'.
52         Scale = RHS->getZExtValue();
53         Offset = 0;
54         return I->getOperand(0);
55       }
56       
57       if (I->getOpcode() == Instruction::Add) {
58         // We have X+C.  Check to see if we really have (X*C2)+C1, 
59         // where C1 is divisible by C2.
60         unsigned SubScale;
61         Value *SubVal = 
62           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
63         Offset += RHS->getZExtValue();
64         Scale = SubScale;
65         return SubVal;
66       }
67     }
68   }
69
70   // Otherwise, we can't look past this.
71   Scale = 1;
72   Offset = 0;
73   return Val;
74 }
75
76 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
77 /// try to eliminate the cast by moving the type information into the alloc.
78 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
79                                                    AllocaInst &AI) {
80   // This requires TargetData to get the alloca alignment and size information.
81   if (!TD) return 0;
82
83   PointerType *PTy = cast<PointerType>(CI.getType());
84   
85   BuilderTy AllocaBuilder(*Builder);
86   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
87
88   // Get the type really allocated and the type casted to.
89   Type *AllocElTy = AI.getAllocatedType();
90   Type *CastElTy = PTy->getElementType();
91   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
92
93   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
94   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
95   if (CastElTyAlign < AllocElTyAlign) return 0;
96
97   // If the allocation has multiple uses, only promote it if we are strictly
98   // increasing the alignment of the resultant allocation.  If we keep it the
99   // same, we open the door to infinite loops of various kinds.
100   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
101
102   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
103   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
104   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
105
106   // See if we can satisfy the modulus by pulling a scale out of the array
107   // size argument.
108   unsigned ArraySizeScale;
109   uint64_t ArrayOffset;
110   Value *NumElements = // See if the array size is a decomposable linear expr.
111     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
112  
113   // If we can now satisfy the modulus, by using a non-1 scale, we really can
114   // do the xform.
115   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
116       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
117
118   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
119   Value *Amt = 0;
120   if (Scale == 1) {
121     Amt = NumElements;
122   } else {
123     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
124     // Insert before the alloca, not before the cast.
125     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
126   }
127   
128   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
129     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
130                                   Offset, true);
131     Amt = AllocaBuilder.CreateAdd(Amt, Off);
132   }
133   
134   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
135   New->setAlignment(AI.getAlignment());
136   New->takeName(&AI);
137   
138   // If the allocation has multiple real uses, insert a cast and change all
139   // things that used it to use the new cast.  This will also hack on CI, but it
140   // will die soon.
141   if (!AI.hasOneUse()) {
142     // New is the allocation instruction, pointer typed. AI is the original
143     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
144     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
145     ReplaceInstUsesWith(AI, NewCast);
146   }
147   return ReplaceInstUsesWith(CI, New);
148 }
149
150
151
152 /// EvaluateInDifferentType - Given an expression that 
153 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
154 /// insert the code to evaluate the expression.
155 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 
156                                              bool isSigned) {
157   if (Constant *C = dyn_cast<Constant>(V)) {
158     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
159     // If we got a constantexpr back, try to simplify it with TD info.
160     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
161       C = ConstantFoldConstantExpression(CE, TD);
162     return C;
163   }
164
165   // Otherwise, it must be an instruction.
166   Instruction *I = cast<Instruction>(V);
167   Instruction *Res = 0;
168   unsigned Opc = I->getOpcode();
169   switch (Opc) {
170   case Instruction::Add:
171   case Instruction::Sub:
172   case Instruction::Mul:
173   case Instruction::And:
174   case Instruction::Or:
175   case Instruction::Xor:
176   case Instruction::AShr:
177   case Instruction::LShr:
178   case Instruction::Shl:
179   case Instruction::UDiv:
180   case Instruction::URem: {
181     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
182     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
183     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
184     break;
185   }    
186   case Instruction::Trunc:
187   case Instruction::ZExt:
188   case Instruction::SExt:
189     // If the source type of the cast is the type we're trying for then we can
190     // just return the source.  There's no need to insert it because it is not
191     // new.
192     if (I->getOperand(0)->getType() == Ty)
193       return I->getOperand(0);
194     
195     // Otherwise, must be the same type of cast, so just reinsert a new one.
196     // This also handles the case of zext(trunc(x)) -> zext(x).
197     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
198                                       Opc == Instruction::SExt);
199     break;
200   case Instruction::Select: {
201     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
202     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
203     Res = SelectInst::Create(I->getOperand(0), True, False);
204     break;
205   }
206   case Instruction::PHI: {
207     PHINode *OPN = cast<PHINode>(I);
208     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
209     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
210       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
211       NPN->addIncoming(V, OPN->getIncomingBlock(i));
212     }
213     Res = NPN;
214     break;
215   }
216   default: 
217     // TODO: Can handle more cases here.
218     llvm_unreachable("Unreachable!");
219     break;
220   }
221   
222   Res->takeName(I);
223   return InsertNewInstWith(Res, *I);
224 }
225
226
227 /// This function is a wrapper around CastInst::isEliminableCastPair. It
228 /// simply extracts arguments and returns what that function returns.
229 static Instruction::CastOps 
230 isEliminableCastPair(
231   const CastInst *CI, ///< The first cast instruction
232   unsigned opcode,       ///< The opcode of the second cast instruction
233   Type *DstTy,     ///< The target type for the second cast instruction
234   TargetData *TD         ///< The target data for pointer size
235 ) {
236
237   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
238   Type *MidTy = CI->getType();                  // B from above
239
240   // Get the opcodes of the two Cast instructions
241   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
242   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
243
244   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
245                                                 DstTy,
246                                   TD ? TD->getIntPtrType(CI->getContext()) : 0);
247   
248   // We don't want to form an inttoptr or ptrtoint that converts to an integer
249   // type that differs from the pointer size.
250   if ((Res == Instruction::IntToPtr &&
251           (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
252       (Res == Instruction::PtrToInt &&
253           (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
254     Res = 0;
255   
256   return Instruction::CastOps(Res);
257 }
258
259 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
260 /// results in any code being generated and is interesting to optimize out. If
261 /// the cast can be eliminated by some other simple transformation, we prefer
262 /// to do the simplification first.
263 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
264                                       Type *Ty) {
265   // Noop casts and casts of constants should be eliminated trivially.
266   if (V->getType() == Ty || isa<Constant>(V)) return false;
267   
268   // If this is another cast that can be eliminated, we prefer to have it
269   // eliminated.
270   if (const CastInst *CI = dyn_cast<CastInst>(V))
271     if (isEliminableCastPair(CI, opc, Ty, TD))
272       return false;
273   
274   // If this is a vector sext from a compare, then we don't want to break the
275   // idiom where each element of the extended vector is either zero or all ones.
276   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
277     return false;
278   
279   return true;
280 }
281
282
283 /// @brief Implement the transforms common to all CastInst visitors.
284 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
285   Value *Src = CI.getOperand(0);
286
287   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
288   // eliminate it now.
289   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
290     if (Instruction::CastOps opc = 
291         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
292       // The first cast (CSrc) is eliminable so we need to fix up or replace
293       // the second cast (CI). CSrc will then have a good chance of being dead.
294       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
295     }
296   }
297
298   // If we are casting a select then fold the cast into the select
299   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
300     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
301       return NV;
302
303   // If we are casting a PHI then fold the cast into the PHI
304   if (isa<PHINode>(Src)) {
305     // We don't do this if this would create a PHI node with an illegal type if
306     // it is currently legal.
307     if (!Src->getType()->isIntegerTy() ||
308         !CI.getType()->isIntegerTy() ||
309         ShouldChangeType(CI.getType(), Src->getType()))
310       if (Instruction *NV = FoldOpIntoPhi(CI))
311         return NV;
312   }
313   
314   return 0;
315 }
316
317 /// CanEvaluateTruncated - Return true if we can evaluate the specified
318 /// expression tree as type Ty instead of its larger type, and arrive with the
319 /// same value.  This is used by code that tries to eliminate truncates.
320 ///
321 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
322 /// can be computed by computing V in the smaller type.  If V is an instruction,
323 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
324 /// makes sense if x and y can be efficiently truncated.
325 ///
326 /// This function works on both vectors and scalars.
327 ///
328 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
329   // We can always evaluate constants in another type.
330   if (isa<Constant>(V))
331     return true;
332   
333   Instruction *I = dyn_cast<Instruction>(V);
334   if (!I) return false;
335   
336   Type *OrigTy = V->getType();
337   
338   // If this is an extension from the dest type, we can eliminate it, even if it
339   // has multiple uses.
340   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 
341       I->getOperand(0)->getType() == Ty)
342     return true;
343
344   // We can't extend or shrink something that has multiple uses: doing so would
345   // require duplicating the instruction in general, which isn't profitable.
346   if (!I->hasOneUse()) return false;
347
348   unsigned Opc = I->getOpcode();
349   switch (Opc) {
350   case Instruction::Add:
351   case Instruction::Sub:
352   case Instruction::Mul:
353   case Instruction::And:
354   case Instruction::Or:
355   case Instruction::Xor:
356     // These operators can all arbitrarily be extended or truncated.
357     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
358            CanEvaluateTruncated(I->getOperand(1), Ty);
359
360   case Instruction::UDiv:
361   case Instruction::URem: {
362     // UDiv and URem can be truncated if all the truncated bits are zero.
363     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
364     uint32_t BitWidth = Ty->getScalarSizeInBits();
365     if (BitWidth < OrigBitWidth) {
366       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
367       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
368           MaskedValueIsZero(I->getOperand(1), Mask)) {
369         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
370                CanEvaluateTruncated(I->getOperand(1), Ty);
371       }
372     }
373     break;
374   }
375   case Instruction::Shl:
376     // If we are truncating the result of this SHL, and if it's a shift of a
377     // constant amount, we can always perform a SHL in a smaller type.
378     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
379       uint32_t BitWidth = Ty->getScalarSizeInBits();
380       if (CI->getLimitedValue(BitWidth) < BitWidth)
381         return CanEvaluateTruncated(I->getOperand(0), Ty);
382     }
383     break;
384   case Instruction::LShr:
385     // If this is a truncate of a logical shr, we can truncate it to a smaller
386     // lshr iff we know that the bits we would otherwise be shifting in are
387     // already zeros.
388     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
389       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
390       uint32_t BitWidth = Ty->getScalarSizeInBits();
391       if (MaskedValueIsZero(I->getOperand(0),
392             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
393           CI->getLimitedValue(BitWidth) < BitWidth) {
394         return CanEvaluateTruncated(I->getOperand(0), Ty);
395       }
396     }
397     break;
398   case Instruction::Trunc:
399     // trunc(trunc(x)) -> trunc(x)
400     return true;
401   case Instruction::ZExt:
402   case Instruction::SExt:
403     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
404     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
405     return true;
406   case Instruction::Select: {
407     SelectInst *SI = cast<SelectInst>(I);
408     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
409            CanEvaluateTruncated(SI->getFalseValue(), Ty);
410   }
411   case Instruction::PHI: {
412     // We can change a phi if we can change all operands.  Note that we never
413     // get into trouble with cyclic PHIs here because we only consider
414     // instructions with a single use.
415     PHINode *PN = cast<PHINode>(I);
416     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
417       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
418         return false;
419     return true;
420   }
421   default:
422     // TODO: Can handle more cases here.
423     break;
424   }
425   
426   return false;
427 }
428
429 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
430   if (Instruction *Result = commonCastTransforms(CI))
431     return Result;
432   
433   // See if we can simplify any instructions used by the input whose sole 
434   // purpose is to compute bits we don't care about.
435   if (SimplifyDemandedInstructionBits(CI))
436     return &CI;
437   
438   Value *Src = CI.getOperand(0);
439   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
440   
441   // Attempt to truncate the entire input expression tree to the destination
442   // type.   Only do this if the dest type is a simple type, don't convert the
443   // expression tree to something weird like i93 unless the source is also
444   // strange.
445   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
446       CanEvaluateTruncated(Src, DestTy)) {
447       
448     // If this cast is a truncate, evaluting in a different type always
449     // eliminates the cast, so it is always a win.
450     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
451           " to avoid cast: " << CI << '\n');
452     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
453     assert(Res->getType() == DestTy);
454     return ReplaceInstUsesWith(CI, Res);
455   }
456
457   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
458   if (DestTy->getScalarSizeInBits() == 1) {
459     Constant *One = ConstantInt::get(Src->getType(), 1);
460     Src = Builder->CreateAnd(Src, One);
461     Value *Zero = Constant::getNullValue(Src->getType());
462     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
463   }
464   
465   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
466   Value *A = 0; ConstantInt *Cst = 0;
467   if (Src->hasOneUse() &&
468       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
469     // We have three types to worry about here, the type of A, the source of
470     // the truncate (MidSize), and the destination of the truncate. We know that
471     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
472     // between ASize and ResultSize.
473     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
474     
475     // If the shift amount is larger than the size of A, then the result is
476     // known to be zero because all the input bits got shifted out.
477     if (Cst->getZExtValue() >= ASize)
478       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
479
480     // Since we're doing an lshr and a zero extend, and know that the shift
481     // amount is smaller than ASize, it is always safe to do the shift in A's
482     // type, then zero extend or truncate to the result.
483     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
484     Shift->takeName(Src);
485     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
486   }
487   
488   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
489   // type isn't non-native.
490   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
491       ShouldChangeType(Src->getType(), CI.getType()) &&
492       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
493     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
494     return BinaryOperator::CreateAnd(NewTrunc,
495                                      ConstantExpr::getTrunc(Cst, CI.getType()));
496   }
497
498   return 0;
499 }
500
501 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
502 /// in order to eliminate the icmp.
503 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
504                                              bool DoXform) {
505   // If we are just checking for a icmp eq of a single bit and zext'ing it
506   // to an integer, then shift the bit to the appropriate place and then
507   // cast to integer to avoid the comparison.
508   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
509     const APInt &Op1CV = Op1C->getValue();
510       
511     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
512     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
513     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
514         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
515       if (!DoXform) return ICI;
516
517       Value *In = ICI->getOperand(0);
518       Value *Sh = ConstantInt::get(In->getType(),
519                                    In->getType()->getScalarSizeInBits()-1);
520       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
521       if (In->getType() != CI.getType())
522         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
523
524       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
525         Constant *One = ConstantInt::get(In->getType(), 1);
526         In = Builder->CreateXor(In, One, In->getName()+".not");
527       }
528
529       return ReplaceInstUsesWith(CI, In);
530     }
531       
532       
533       
534     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
535     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
536     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
537     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
538     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
539     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
540     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
541     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
542     if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 
543         // This only works for EQ and NE
544         ICI->isEquality()) {
545       // If Op1C some other power of two, convert:
546       uint32_t BitWidth = Op1C->getType()->getBitWidth();
547       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
548       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
549       ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
550         
551       APInt KnownZeroMask(~KnownZero);
552       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
553         if (!DoXform) return ICI;
554
555         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
556         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
557           // (X&4) == 2 --> false
558           // (X&4) != 2 --> true
559           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
560                                            isNE);
561           Res = ConstantExpr::getZExt(Res, CI.getType());
562           return ReplaceInstUsesWith(CI, Res);
563         }
564           
565         uint32_t ShiftAmt = KnownZeroMask.logBase2();
566         Value *In = ICI->getOperand(0);
567         if (ShiftAmt) {
568           // Perform a logical shr by shiftamt.
569           // Insert the shift to put the result in the low bit.
570           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
571                                    In->getName()+".lobit");
572         }
573           
574         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
575           Constant *One = ConstantInt::get(In->getType(), 1);
576           In = Builder->CreateXor(In, One);
577         }
578           
579         if (CI.getType() == In->getType())
580           return ReplaceInstUsesWith(CI, In);
581         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
582       }
583     }
584   }
585
586   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
587   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
588   // may lead to additional simplifications.
589   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
590     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
591       uint32_t BitWidth = ITy->getBitWidth();
592       Value *LHS = ICI->getOperand(0);
593       Value *RHS = ICI->getOperand(1);
594
595       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
596       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
597       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
598       ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
599       ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
600
601       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
602         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
603         APInt UnknownBit = ~KnownBits;
604         if (UnknownBit.countPopulation() == 1) {
605           if (!DoXform) return ICI;
606
607           Value *Result = Builder->CreateXor(LHS, RHS);
608
609           // Mask off any bits that are set and won't be shifted away.
610           if (KnownOneLHS.uge(UnknownBit))
611             Result = Builder->CreateAnd(Result,
612                                         ConstantInt::get(ITy, UnknownBit));
613
614           // Shift the bit we're testing down to the lsb.
615           Result = Builder->CreateLShr(
616                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
617
618           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
619             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
620           Result->takeName(ICI);
621           return ReplaceInstUsesWith(CI, Result);
622         }
623       }
624     }
625   }
626
627   return 0;
628 }
629
630 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
631 /// specified wider type and produce the same low bits.  If not, return false.
632 ///
633 /// If this function returns true, it can also return a non-zero number of bits
634 /// (in BitsToClear) which indicates that the value it computes is correct for
635 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
636 /// out.  For example, to promote something like:
637 ///
638 ///   %B = trunc i64 %A to i32
639 ///   %C = lshr i32 %B, 8
640 ///   %E = zext i32 %C to i64
641 ///
642 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
643 /// set to 8 to indicate that the promoted value needs to have bits 24-31
644 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
645 /// clear the top bits anyway, doing this has no extra cost.
646 ///
647 /// This function works on both vectors and scalars.
648 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
649   BitsToClear = 0;
650   if (isa<Constant>(V))
651     return true;
652   
653   Instruction *I = dyn_cast<Instruction>(V);
654   if (!I) return false;
655   
656   // If the input is a truncate from the destination type, we can trivially
657   // eliminate it, even if it has multiple uses.
658   // FIXME: This is currently disabled until codegen can handle this without
659   // pessimizing code, PR5997.
660   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
661     return true;
662   
663   // We can't extend or shrink something that has multiple uses: doing so would
664   // require duplicating the instruction in general, which isn't profitable.
665   if (!I->hasOneUse()) return false;
666   
667   unsigned Opc = I->getOpcode(), Tmp;
668   switch (Opc) {
669   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
670   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
671   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
672     return true;
673   case Instruction::And:
674   case Instruction::Or:
675   case Instruction::Xor:
676   case Instruction::Add:
677   case Instruction::Sub:
678   case Instruction::Mul:
679   case Instruction::Shl:
680     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
681         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
682       return false;
683     // These can all be promoted if neither operand has 'bits to clear'.
684     if (BitsToClear == 0 && Tmp == 0)
685       return true;
686       
687     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
688     // other side, BitsToClear is ok.
689     if (Tmp == 0 &&
690         (Opc == Instruction::And || Opc == Instruction::Or ||
691          Opc == Instruction::Xor)) {
692       // We use MaskedValueIsZero here for generality, but the case we care
693       // about the most is constant RHS.
694       unsigned VSize = V->getType()->getScalarSizeInBits();
695       if (MaskedValueIsZero(I->getOperand(1),
696                             APInt::getHighBitsSet(VSize, BitsToClear)))
697         return true;
698     }
699       
700     // Otherwise, we don't know how to analyze this BitsToClear case yet.
701     return false;
702       
703   case Instruction::LShr:
704     // We can promote lshr(x, cst) if we can promote x.  This requires the
705     // ultimate 'and' to clear out the high zero bits we're clearing out though.
706     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
707       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
708         return false;
709       BitsToClear += Amt->getZExtValue();
710       if (BitsToClear > V->getType()->getScalarSizeInBits())
711         BitsToClear = V->getType()->getScalarSizeInBits();
712       return true;
713     }
714     // Cannot promote variable LSHR.
715     return false;
716   case Instruction::Select:
717     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
718         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
719         // TODO: If important, we could handle the case when the BitsToClear are
720         // known zero in the disagreeing side.
721         Tmp != BitsToClear)
722       return false;
723     return true;
724       
725   case Instruction::PHI: {
726     // We can change a phi if we can change all operands.  Note that we never
727     // get into trouble with cyclic PHIs here because we only consider
728     // instructions with a single use.
729     PHINode *PN = cast<PHINode>(I);
730     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
731       return false;
732     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
733       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
734           // TODO: If important, we could handle the case when the BitsToClear
735           // are known zero in the disagreeing input.
736           Tmp != BitsToClear)
737         return false;
738     return true;
739   }
740   default:
741     // TODO: Can handle more cases here.
742     return false;
743   }
744 }
745
746 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
747   // If this zero extend is only used by a truncate, let the truncate by
748   // eliminated before we try to optimize this zext.
749   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
750     return 0;
751   
752   // If one of the common conversion will work, do it.
753   if (Instruction *Result = commonCastTransforms(CI))
754     return Result;
755
756   // See if we can simplify any instructions used by the input whose sole 
757   // purpose is to compute bits we don't care about.
758   if (SimplifyDemandedInstructionBits(CI))
759     return &CI;
760   
761   Value *Src = CI.getOperand(0);
762   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
763   
764   // Attempt to extend the entire input expression tree to the destination
765   // type.   Only do this if the dest type is a simple type, don't convert the
766   // expression tree to something weird like i93 unless the source is also
767   // strange.
768   unsigned BitsToClear;
769   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
770       CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 
771     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
772            "Unreasonable BitsToClear");
773     
774     // Okay, we can transform this!  Insert the new expression now.
775     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
776           " to avoid zero extend: " << CI);
777     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
778     assert(Res->getType() == DestTy);
779     
780     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
781     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
782     
783     // If the high bits are already filled with zeros, just replace this
784     // cast with the result.
785     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
786                                                      DestBitSize-SrcBitsKept)))
787       return ReplaceInstUsesWith(CI, Res);
788     
789     // We need to emit an AND to clear the high bits.
790     Constant *C = ConstantInt::get(Res->getType(),
791                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
792     return BinaryOperator::CreateAnd(Res, C);
793   }
794
795   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
796   // types and if the sizes are just right we can convert this into a logical
797   // 'and' which will be much cheaper than the pair of casts.
798   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
799     // TODO: Subsume this into EvaluateInDifferentType.
800     
801     // Get the sizes of the types involved.  We know that the intermediate type
802     // will be smaller than A or C, but don't know the relation between A and C.
803     Value *A = CSrc->getOperand(0);
804     unsigned SrcSize = A->getType()->getScalarSizeInBits();
805     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
806     unsigned DstSize = CI.getType()->getScalarSizeInBits();
807     // If we're actually extending zero bits, then if
808     // SrcSize <  DstSize: zext(a & mask)
809     // SrcSize == DstSize: a & mask
810     // SrcSize  > DstSize: trunc(a) & mask
811     if (SrcSize < DstSize) {
812       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
813       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
814       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
815       return new ZExtInst(And, CI.getType());
816     }
817     
818     if (SrcSize == DstSize) {
819       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
820       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
821                                                            AndValue));
822     }
823     if (SrcSize > DstSize) {
824       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
825       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
826       return BinaryOperator::CreateAnd(Trunc, 
827                                        ConstantInt::get(Trunc->getType(),
828                                                         AndValue));
829     }
830   }
831
832   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
833     return transformZExtICmp(ICI, CI);
834
835   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
836   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
837     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
838     // of the (zext icmp) will be transformed.
839     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
840     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
841     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
842         (transformZExtICmp(LHS, CI, false) ||
843          transformZExtICmp(RHS, CI, false))) {
844       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
845       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
846       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
847     }
848   }
849
850   // zext(trunc(t) & C) -> (t & zext(C)).
851   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
852     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
853       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
854         Value *TI0 = TI->getOperand(0);
855         if (TI0->getType() == CI.getType())
856           return
857             BinaryOperator::CreateAnd(TI0,
858                                 ConstantExpr::getZExt(C, CI.getType()));
859       }
860
861   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
862   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
863     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
864       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
865         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
866             And->getOperand(1) == C)
867           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
868             Value *TI0 = TI->getOperand(0);
869             if (TI0->getType() == CI.getType()) {
870               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
871               Value *NewAnd = Builder->CreateAnd(TI0, ZC);
872               return BinaryOperator::CreateXor(NewAnd, ZC);
873             }
874           }
875
876   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
877   Value *X;
878   if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
879       match(SrcI, m_Not(m_Value(X))) &&
880       (!X->hasOneUse() || !isa<CmpInst>(X))) {
881     Value *New = Builder->CreateZExt(X, CI.getType());
882     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
883   }
884   
885   return 0;
886 }
887
888 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
889 /// in order to eliminate the icmp.
890 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
891   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
892   ICmpInst::Predicate Pred = ICI->getPredicate();
893
894   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
895     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
896     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
897     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
898         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
899
900       Value *Sh = ConstantInt::get(Op0->getType(),
901                                    Op0->getType()->getScalarSizeInBits()-1);
902       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
903       if (In->getType() != CI.getType())
904         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
905
906       if (Pred == ICmpInst::ICMP_SGT)
907         In = Builder->CreateNot(In, In->getName()+".not");
908       return ReplaceInstUsesWith(CI, In);
909     }
910
911     // If we know that only one bit of the LHS of the icmp can be set and we
912     // have an equality comparison with zero or a power of 2, we can transform
913     // the icmp and sext into bitwise/integer operations.
914     if (ICI->hasOneUse() &&
915         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
916       unsigned BitWidth = Op1C->getType()->getBitWidth();
917       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
918       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
919       ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
920
921       APInt KnownZeroMask(~KnownZero);
922       if (KnownZeroMask.isPowerOf2()) {
923         Value *In = ICI->getOperand(0);
924
925         // If the icmp tests for a known zero bit we can constant fold it.
926         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
927           Value *V = Pred == ICmpInst::ICMP_NE ?
928                        ConstantInt::getAllOnesValue(CI.getType()) :
929                        ConstantInt::getNullValue(CI.getType());
930           return ReplaceInstUsesWith(CI, V);
931         }
932
933         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
934           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
935           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
936           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
937           // Perform a right shift to place the desired bit in the LSB.
938           if (ShiftAmt)
939             In = Builder->CreateLShr(In,
940                                      ConstantInt::get(In->getType(), ShiftAmt));
941
942           // At this point "In" is either 1 or 0. Subtract 1 to turn
943           // {1, 0} -> {0, -1}.
944           In = Builder->CreateAdd(In,
945                                   ConstantInt::getAllOnesValue(In->getType()),
946                                   "sext");
947         } else {
948           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
949           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
950           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
951           // Perform a left shift to place the desired bit in the MSB.
952           if (ShiftAmt)
953             In = Builder->CreateShl(In,
954                                     ConstantInt::get(In->getType(), ShiftAmt));
955
956           // Distribute the bit over the whole bit width.
957           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
958                                                         BitWidth - 1), "sext");
959         }
960
961         if (CI.getType() == In->getType())
962           return ReplaceInstUsesWith(CI, In);
963         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
964       }
965     }
966   }
967
968   // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
969   if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
970     if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
971         Op0->getType() == CI.getType()) {
972       Type *EltTy = VTy->getElementType();
973
974       // splat the shift constant to a constant vector.
975       Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
976       Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
977       return ReplaceInstUsesWith(CI, In);
978     }
979   }
980
981   return 0;
982 }
983
984 /// CanEvaluateSExtd - Return true if we can take the specified value
985 /// and return it as type Ty without inserting any new casts and without
986 /// changing the value of the common low bits.  This is used by code that tries
987 /// to promote integer operations to a wider types will allow us to eliminate
988 /// the extension.
989 ///
990 /// This function works on both vectors and scalars.
991 ///
992 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
993   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
994          "Can't sign extend type to a smaller type");
995   // If this is a constant, it can be trivially promoted.
996   if (isa<Constant>(V))
997     return true;
998   
999   Instruction *I = dyn_cast<Instruction>(V);
1000   if (!I) return false;
1001   
1002   // If this is a truncate from the dest type, we can trivially eliminate it,
1003   // even if it has multiple uses.
1004   // FIXME: This is currently disabled until codegen can handle this without
1005   // pessimizing code, PR5997.
1006   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1007     return true;
1008   
1009   // We can't extend or shrink something that has multiple uses: doing so would
1010   // require duplicating the instruction in general, which isn't profitable.
1011   if (!I->hasOneUse()) return false;
1012
1013   switch (I->getOpcode()) {
1014   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1015   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1016   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1017     return true;
1018   case Instruction::And:
1019   case Instruction::Or:
1020   case Instruction::Xor:
1021   case Instruction::Add:
1022   case Instruction::Sub:
1023   case Instruction::Mul:
1024     // These operators can all arbitrarily be extended if their inputs can.
1025     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1026            CanEvaluateSExtd(I->getOperand(1), Ty);
1027       
1028   //case Instruction::Shl:   TODO
1029   //case Instruction::LShr:  TODO
1030       
1031   case Instruction::Select:
1032     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1033            CanEvaluateSExtd(I->getOperand(2), Ty);
1034       
1035   case Instruction::PHI: {
1036     // We can change a phi if we can change all operands.  Note that we never
1037     // get into trouble with cyclic PHIs here because we only consider
1038     // instructions with a single use.
1039     PHINode *PN = cast<PHINode>(I);
1040     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1041       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1042     return true;
1043   }
1044   default:
1045     // TODO: Can handle more cases here.
1046     break;
1047   }
1048   
1049   return false;
1050 }
1051
1052 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1053   // If this sign extend is only used by a truncate, let the truncate by
1054   // eliminated before we try to optimize this zext.
1055   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
1056     return 0;
1057   
1058   if (Instruction *I = commonCastTransforms(CI))
1059     return I;
1060   
1061   // See if we can simplify any instructions used by the input whose sole 
1062   // purpose is to compute bits we don't care about.
1063   if (SimplifyDemandedInstructionBits(CI))
1064     return &CI;
1065   
1066   Value *Src = CI.getOperand(0);
1067   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1068
1069   // Attempt to extend the entire input expression tree to the destination
1070   // type.   Only do this if the dest type is a simple type, don't convert the
1071   // expression tree to something weird like i93 unless the source is also
1072   // strange.
1073   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1074       CanEvaluateSExtd(Src, DestTy)) {
1075     // Okay, we can transform this!  Insert the new expression now.
1076     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1077           " to avoid sign extend: " << CI);
1078     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1079     assert(Res->getType() == DestTy);
1080
1081     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1082     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1083
1084     // If the high bits are already filled with sign bit, just replace this
1085     // cast with the result.
1086     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1087       return ReplaceInstUsesWith(CI, Res);
1088     
1089     // We need to emit a shl + ashr to do the sign extend.
1090     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1091     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1092                                       ShAmt);
1093   }
1094
1095   // If this input is a trunc from our destination, then turn sext(trunc(x))
1096   // into shifts.
1097   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1098     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1099       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1100       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1101       
1102       // We need to emit a shl + ashr to do the sign extend.
1103       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1104       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1105       return BinaryOperator::CreateAShr(Res, ShAmt);
1106     }
1107
1108   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1109     return transformSExtICmp(ICI, CI);
1110
1111   // If the input is a shl/ashr pair of a same constant, then this is a sign
1112   // extension from a smaller value.  If we could trust arbitrary bitwidth
1113   // integers, we could turn this into a truncate to the smaller bit and then
1114   // use a sext for the whole extension.  Since we don't, look deeper and check
1115   // for a truncate.  If the source and dest are the same type, eliminate the
1116   // trunc and extend and just do shifts.  For example, turn:
1117   //   %a = trunc i32 %i to i8
1118   //   %b = shl i8 %a, 6
1119   //   %c = ashr i8 %b, 6
1120   //   %d = sext i8 %c to i32
1121   // into:
1122   //   %a = shl i32 %i, 30
1123   //   %d = ashr i32 %a, 30
1124   Value *A = 0;
1125   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1126   ConstantInt *BA = 0, *CA = 0;
1127   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1128                         m_ConstantInt(CA))) &&
1129       BA == CA && A->getType() == CI.getType()) {
1130     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1131     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1132     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1133     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1134     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1135     return BinaryOperator::CreateAShr(A, ShAmtV);
1136   }
1137   
1138   return 0;
1139 }
1140
1141
1142 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1143 /// in the specified FP type without changing its value.
1144 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1145   bool losesInfo;
1146   APFloat F = CFP->getValueAPF();
1147   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1148   if (!losesInfo)
1149     return ConstantFP::get(CFP->getContext(), F);
1150   return 0;
1151 }
1152
1153 /// LookThroughFPExtensions - If this is an fp extension instruction, look
1154 /// through it until we get the source value.
1155 static Value *LookThroughFPExtensions(Value *V) {
1156   if (Instruction *I = dyn_cast<Instruction>(V))
1157     if (I->getOpcode() == Instruction::FPExt)
1158       return LookThroughFPExtensions(I->getOperand(0));
1159   
1160   // If this value is a constant, return the constant in the smallest FP type
1161   // that can accurately represent it.  This allows us to turn
1162   // (float)((double)X+2.0) into x+2.0f.
1163   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1164     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1165       return V;  // No constant folding of this.
1166     // See if the value can be truncated to float and then reextended.
1167     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1168       return V;
1169     if (CFP->getType()->isDoubleTy())
1170       return V;  // Won't shrink.
1171     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1172       return V;
1173     // Don't try to shrink to various long double types.
1174   }
1175   
1176   return V;
1177 }
1178
1179 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1180   if (Instruction *I = commonCastTransforms(CI))
1181     return I;
1182   
1183   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1184   // smaller than the destination type, we can eliminate the truncate by doing
1185   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1186   // as many builtins (sqrt, etc).
1187   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1188   if (OpI && OpI->hasOneUse()) {
1189     switch (OpI->getOpcode()) {
1190     default: break;
1191     case Instruction::FAdd:
1192     case Instruction::FSub:
1193     case Instruction::FMul:
1194     case Instruction::FDiv:
1195     case Instruction::FRem:
1196       Type *SrcTy = OpI->getType();
1197       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1198       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1199       if (LHSTrunc->getType() != SrcTy && 
1200           RHSTrunc->getType() != SrcTy) {
1201         unsigned DstSize = CI.getType()->getScalarSizeInBits();
1202         // If the source types were both smaller than the destination type of
1203         // the cast, do this xform.
1204         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1205             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1206           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1207           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1208           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1209         }
1210       }
1211       break;  
1212     }
1213   }
1214   
1215   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1216   // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1217   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1218   if (Call && Call->getCalledFunction() &&
1219       Call->getCalledFunction()->getName() == "sqrt" &&
1220       Call->getNumArgOperands() == 1 &&
1221       Call->hasOneUse()) {
1222     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1223     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1224         CI.getType()->isFloatTy() &&
1225         Call->getType()->isDoubleTy() &&
1226         Arg->getType()->isDoubleTy() &&
1227         Arg->getOperand(0)->getType()->isFloatTy()) {
1228       Function *Callee = Call->getCalledFunction();
1229       Module *M = CI.getParent()->getParent()->getParent();
1230       Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", 
1231                                                    Callee->getAttributes(),
1232                                                    Builder->getFloatTy(),
1233                                                    Builder->getFloatTy(),
1234                                                    NULL);
1235       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1236                                        "sqrtfcall");
1237       ret->setAttributes(Callee->getAttributes());
1238       
1239       
1240       // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1241       ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1242       EraseInstFromFunction(*Call);
1243       return ret;
1244     }
1245   }
1246   
1247   return 0;
1248 }
1249
1250 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1251   return commonCastTransforms(CI);
1252 }
1253
1254 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1255   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1256   if (OpI == 0)
1257     return commonCastTransforms(FI);
1258
1259   // fptoui(uitofp(X)) --> X
1260   // fptoui(sitofp(X)) --> X
1261   // This is safe if the intermediate type has enough bits in its mantissa to
1262   // accurately represent all values of X.  For example, do not do this with
1263   // i64->float->i64.  This is also safe for sitofp case, because any negative
1264   // 'X' value would cause an undefined result for the fptoui. 
1265   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1266       OpI->getOperand(0)->getType() == FI.getType() &&
1267       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1268                     OpI->getType()->getFPMantissaWidth())
1269     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1270
1271   return commonCastTransforms(FI);
1272 }
1273
1274 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1275   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1276   if (OpI == 0)
1277     return commonCastTransforms(FI);
1278   
1279   // fptosi(sitofp(X)) --> X
1280   // fptosi(uitofp(X)) --> X
1281   // This is safe if the intermediate type has enough bits in its mantissa to
1282   // accurately represent all values of X.  For example, do not do this with
1283   // i64->float->i64.  This is also safe for sitofp case, because any negative
1284   // 'X' value would cause an undefined result for the fptoui. 
1285   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1286       OpI->getOperand(0)->getType() == FI.getType() &&
1287       (int)FI.getType()->getScalarSizeInBits() <=
1288                     OpI->getType()->getFPMantissaWidth())
1289     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1290   
1291   return commonCastTransforms(FI);
1292 }
1293
1294 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1295   return commonCastTransforms(CI);
1296 }
1297
1298 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1299   return commonCastTransforms(CI);
1300 }
1301
1302 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1303   // If the source integer type is not the intptr_t type for this target, do a
1304   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1305   // cast to be exposed to other transforms.
1306   if (TD) {
1307     if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1308         TD->getPointerSizeInBits()) {
1309       Value *P = Builder->CreateTrunc(CI.getOperand(0),
1310                                       TD->getIntPtrType(CI.getContext()));
1311       return new IntToPtrInst(P, CI.getType());
1312     }
1313     if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1314         TD->getPointerSizeInBits()) {
1315       Value *P = Builder->CreateZExt(CI.getOperand(0),
1316                                      TD->getIntPtrType(CI.getContext()));
1317       return new IntToPtrInst(P, CI.getType());
1318     }
1319   }
1320   
1321   if (Instruction *I = commonCastTransforms(CI))
1322     return I;
1323
1324   return 0;
1325 }
1326
1327 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1328 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1329   Value *Src = CI.getOperand(0);
1330   
1331   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1332     // If casting the result of a getelementptr instruction with no offset, turn
1333     // this into a cast of the original pointer!
1334     if (GEP->hasAllZeroIndices()) {
1335       // Changing the cast operand is usually not a good idea but it is safe
1336       // here because the pointer operand is being replaced with another 
1337       // pointer operand so the opcode doesn't need to change.
1338       Worklist.Add(GEP);
1339       CI.setOperand(0, GEP->getOperand(0));
1340       return &CI;
1341     }
1342     
1343     // If the GEP has a single use, and the base pointer is a bitcast, and the
1344     // GEP computes a constant offset, see if we can convert these three
1345     // instructions into fewer.  This typically happens with unions and other
1346     // non-type-safe code.
1347     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1348         GEP->hasAllConstantIndices()) {
1349       // We are guaranteed to get a constant from EmitGEPOffset.
1350       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1351       int64_t Offset = OffsetV->getSExtValue();
1352       
1353       // Get the base pointer input of the bitcast, and the type it points to.
1354       Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1355       Type *GEPIdxTy =
1356       cast<PointerType>(OrigBase->getType())->getElementType();
1357       SmallVector<Value*, 8> NewIndices;
1358       if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1359         // If we were able to index down into an element, create the GEP
1360         // and bitcast the result.  This eliminates one bitcast, potentially
1361         // two.
1362         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1363         Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1364         Builder->CreateGEP(OrigBase, NewIndices);
1365         NGEP->takeName(GEP);
1366         
1367         if (isa<BitCastInst>(CI))
1368           return new BitCastInst(NGEP, CI.getType());
1369         assert(isa<PtrToIntInst>(CI));
1370         return new PtrToIntInst(NGEP, CI.getType());
1371       }      
1372     }
1373   }
1374   
1375   return commonCastTransforms(CI);
1376 }
1377
1378 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1379   // If the destination integer type is not the intptr_t type for this target,
1380   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1381   // to be exposed to other transforms.
1382   if (TD) {
1383     if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1384       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1385                                          TD->getIntPtrType(CI.getContext()));
1386       return new TruncInst(P, CI.getType());
1387     }
1388     if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1389       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1390                                          TD->getIntPtrType(CI.getContext()));
1391       return new ZExtInst(P, CI.getType());
1392     }
1393   }
1394   
1395   return commonPointerCastTransforms(CI);
1396 }
1397
1398 /// OptimizeVectorResize - This input value (which is known to have vector type)
1399 /// is being zero extended or truncated to the specified vector type.  Try to
1400 /// replace it with a shuffle (and vector/vector bitcast) if possible.
1401 ///
1402 /// The source and destination vector types may have different element types.
1403 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1404                                          InstCombiner &IC) {
1405   // We can only do this optimization if the output is a multiple of the input
1406   // element size, or the input is a multiple of the output element size.
1407   // Convert the input type to have the same element type as the output.
1408   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1409   
1410   if (SrcTy->getElementType() != DestTy->getElementType()) {
1411     // The input types don't need to be identical, but for now they must be the
1412     // same size.  There is no specific reason we couldn't handle things like
1413     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1414     // there yet. 
1415     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1416         DestTy->getElementType()->getPrimitiveSizeInBits())
1417       return 0;
1418     
1419     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1420     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1421   }
1422   
1423   // Now that the element types match, get the shuffle mask and RHS of the
1424   // shuffle to use, which depends on whether we're increasing or decreasing the
1425   // size of the input.
1426   SmallVector<Constant*, 16> ShuffleMask;
1427   Value *V2;
1428   IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1429   
1430   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1431     // If we're shrinking the number of elements, just shuffle in the low
1432     // elements from the input and use undef as the second shuffle input.
1433     V2 = UndefValue::get(SrcTy);
1434     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1435       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1436     
1437   } else {
1438     // If we're increasing the number of elements, shuffle in all of the
1439     // elements from InVal and fill the rest of the result elements with zeros
1440     // from a constant zero.
1441     V2 = Constant::getNullValue(SrcTy);
1442     unsigned SrcElts = SrcTy->getNumElements();
1443     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1444       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1445
1446     // The excess elements reference the first element of the zero input.
1447     ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1448                        ConstantInt::get(Int32Ty, SrcElts));
1449   }
1450   
1451   return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
1452 }
1453
1454 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1455   return Value % Ty->getPrimitiveSizeInBits() == 0;
1456 }
1457
1458 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1459   return Value / Ty->getPrimitiveSizeInBits();
1460 }
1461
1462 /// CollectInsertionElements - V is a value which is inserted into a vector of
1463 /// VecEltTy.  Look through the value to see if we can decompose it into
1464 /// insertions into the vector.  See the example in the comment for
1465 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1466 /// The type of V is always a non-zero multiple of VecEltTy's size.
1467 ///
1468 /// This returns false if the pattern can't be matched or true if it can,
1469 /// filling in Elements with the elements found here.
1470 static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1471                                      SmallVectorImpl<Value*> &Elements,
1472                                      Type *VecEltTy) {
1473   // Undef values never contribute useful bits to the result.
1474   if (isa<UndefValue>(V)) return true;
1475   
1476   // If we got down to a value of the right type, we win, try inserting into the
1477   // right element.
1478   if (V->getType() == VecEltTy) {
1479     // Inserting null doesn't actually insert any elements.
1480     if (Constant *C = dyn_cast<Constant>(V))
1481       if (C->isNullValue())
1482         return true;
1483     
1484     // Fail if multiple elements are inserted into this slot.
1485     if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1486       return false;
1487     
1488     Elements[ElementIndex] = V;
1489     return true;
1490   }
1491   
1492   if (Constant *C = dyn_cast<Constant>(V)) {
1493     // Figure out the # elements this provides, and bitcast it or slice it up
1494     // as required.
1495     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1496                                         VecEltTy);
1497     // If the constant is the size of a vector element, we just need to bitcast
1498     // it to the right type so it gets properly inserted.
1499     if (NumElts == 1)
1500       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1501                                       ElementIndex, Elements, VecEltTy);
1502     
1503     // Okay, this is a constant that covers multiple elements.  Slice it up into
1504     // pieces and insert each element-sized piece into the vector.
1505     if (!isa<IntegerType>(C->getType()))
1506       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1507                                        C->getType()->getPrimitiveSizeInBits()));
1508     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1509     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1510     
1511     for (unsigned i = 0; i != NumElts; ++i) {
1512       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1513                                                                i*ElementSize));
1514       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1515       if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1516         return false;
1517     }
1518     return true;
1519   }
1520   
1521   if (!V->hasOneUse()) return false;
1522   
1523   Instruction *I = dyn_cast<Instruction>(V);
1524   if (I == 0) return false;
1525   switch (I->getOpcode()) {
1526   default: return false; // Unhandled case.
1527   case Instruction::BitCast:
1528     return CollectInsertionElements(I->getOperand(0), ElementIndex,
1529                                     Elements, VecEltTy);  
1530   case Instruction::ZExt:
1531     if (!isMultipleOfTypeSize(
1532                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1533                               VecEltTy))
1534       return false;
1535     return CollectInsertionElements(I->getOperand(0), ElementIndex,
1536                                     Elements, VecEltTy);  
1537   case Instruction::Or:
1538     return CollectInsertionElements(I->getOperand(0), ElementIndex,
1539                                     Elements, VecEltTy) &&
1540            CollectInsertionElements(I->getOperand(1), ElementIndex,
1541                                     Elements, VecEltTy);
1542   case Instruction::Shl: {
1543     // Must be shifting by a constant that is a multiple of the element size.
1544     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1545     if (CI == 0) return false;
1546     if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1547     unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1548     
1549     return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1550                                     Elements, VecEltTy);
1551   }
1552       
1553   }
1554 }
1555
1556
1557 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1558 /// may be doing shifts and ors to assemble the elements of the vector manually.
1559 /// Try to rip the code out and replace it with insertelements.  This is to
1560 /// optimize code like this:
1561 ///
1562 ///    %tmp37 = bitcast float %inc to i32
1563 ///    %tmp38 = zext i32 %tmp37 to i64
1564 ///    %tmp31 = bitcast float %inc5 to i32
1565 ///    %tmp32 = zext i32 %tmp31 to i64
1566 ///    %tmp33 = shl i64 %tmp32, 32
1567 ///    %ins35 = or i64 %tmp33, %tmp38
1568 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1569 ///
1570 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1571 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1572                                                 InstCombiner &IC) {
1573   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1574   Value *IntInput = CI.getOperand(0);
1575
1576   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1577   if (!CollectInsertionElements(IntInput, 0, Elements,
1578                                 DestVecTy->getElementType()))
1579     return 0;
1580
1581   // If we succeeded, we know that all of the element are specified by Elements
1582   // or are zero if Elements has a null entry.  Recast this as a set of
1583   // insertions.
1584   Value *Result = Constant::getNullValue(CI.getType());
1585   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1586     if (Elements[i] == 0) continue;  // Unset element.
1587     
1588     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1589                                              IC.Builder->getInt32(i));
1590   }
1591   
1592   return Result;
1593 }
1594
1595
1596 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1597 /// bitcast.  The various long double bitcasts can't get in here.
1598 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1599   Value *Src = CI.getOperand(0);
1600   Type *DestTy = CI.getType();
1601
1602   // If this is a bitcast from int to float, check to see if the int is an
1603   // extraction from a vector.
1604   Value *VecInput = 0;
1605   // bitcast(trunc(bitcast(somevector)))
1606   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1607       isa<VectorType>(VecInput->getType())) {
1608     VectorType *VecTy = cast<VectorType>(VecInput->getType());
1609     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1610
1611     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1612       // If the element type of the vector doesn't match the result type,
1613       // bitcast it to be a vector type we can extract from.
1614       if (VecTy->getElementType() != DestTy) {
1615         VecTy = VectorType::get(DestTy,
1616                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
1617         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1618       }
1619     
1620       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1621     }
1622   }
1623   
1624   // bitcast(trunc(lshr(bitcast(somevector), cst))
1625   ConstantInt *ShAmt = 0;
1626   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1627                                 m_ConstantInt(ShAmt)))) &&
1628       isa<VectorType>(VecInput->getType())) {
1629     VectorType *VecTy = cast<VectorType>(VecInput->getType());
1630     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1631     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1632         ShAmt->getZExtValue() % DestWidth == 0) {
1633       // If the element type of the vector doesn't match the result type,
1634       // bitcast it to be a vector type we can extract from.
1635       if (VecTy->getElementType() != DestTy) {
1636         VecTy = VectorType::get(DestTy,
1637                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
1638         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1639       }
1640       
1641       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1642       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1643     }
1644   }
1645   return 0;
1646 }
1647
1648 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1649   // If the operands are integer typed then apply the integer transforms,
1650   // otherwise just apply the common ones.
1651   Value *Src = CI.getOperand(0);
1652   Type *SrcTy = Src->getType();
1653   Type *DestTy = CI.getType();
1654
1655   // Get rid of casts from one type to the same type. These are useless and can
1656   // be replaced by the operand.
1657   if (DestTy == Src->getType())
1658     return ReplaceInstUsesWith(CI, Src);
1659
1660   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1661     PointerType *SrcPTy = cast<PointerType>(SrcTy);
1662     Type *DstElTy = DstPTy->getElementType();
1663     Type *SrcElTy = SrcPTy->getElementType();
1664     
1665     // If the address spaces don't match, don't eliminate the bitcast, which is
1666     // required for changing types.
1667     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1668       return 0;
1669     
1670     // If we are casting a alloca to a pointer to a type of the same
1671     // size, rewrite the allocation instruction to allocate the "right" type.
1672     // There is no need to modify malloc calls because it is their bitcast that
1673     // needs to be cleaned up.
1674     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1675       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1676         return V;
1677     
1678     // If the source and destination are pointers, and this cast is equivalent
1679     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1680     // This can enhance SROA and other transforms that want type-safe pointers.
1681     Constant *ZeroUInt =
1682       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1683     unsigned NumZeros = 0;
1684     while (SrcElTy != DstElTy && 
1685            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1686            SrcElTy->getNumContainedTypes() /* not "{}" */) {
1687       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1688       ++NumZeros;
1689     }
1690
1691     // If we found a path from the src to dest, create the getelementptr now.
1692     if (SrcElTy == DstElTy) {
1693       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1694       return GetElementPtrInst::CreateInBounds(Src, Idxs);
1695     }
1696   }
1697   
1698   // Try to optimize int -> float bitcasts.
1699   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1700     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1701       return I;
1702
1703   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1704     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1705       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1706       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1707                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1708       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1709     }
1710     
1711     if (isa<IntegerType>(SrcTy)) {
1712       // If this is a cast from an integer to vector, check to see if the input
1713       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1714       // the casts with a shuffle and (potentially) a bitcast.
1715       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1716         CastInst *SrcCast = cast<CastInst>(Src);
1717         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1718           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1719             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1720                                                cast<VectorType>(DestTy), *this))
1721               return I;
1722       }
1723       
1724       // If the input is an 'or' instruction, we may be doing shifts and ors to
1725       // assemble the elements of the vector manually.  Try to rip the code out
1726       // and replace it with insertelements.
1727       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1728         return ReplaceInstUsesWith(CI, V);
1729     }
1730   }
1731
1732   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1733     if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1734       Value *Elem = 
1735         Builder->CreateExtractElement(Src,
1736                    Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1737       return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1738     }
1739   }
1740
1741   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1742     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1743     // a bitcast to a vector with the same # elts.
1744     if (SVI->hasOneUse() && DestTy->isVectorTy() && 
1745         cast<VectorType>(DestTy)->getNumElements() ==
1746               SVI->getType()->getNumElements() &&
1747         SVI->getType()->getNumElements() ==
1748           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1749       BitCastInst *Tmp;
1750       // If either of the operands is a cast from CI.getType(), then
1751       // evaluating the shuffle in the casted destination's type will allow
1752       // us to eliminate at least one cast.
1753       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 
1754            Tmp->getOperand(0)->getType() == DestTy) ||
1755           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 
1756            Tmp->getOperand(0)->getType() == DestTy)) {
1757         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1758         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1759         // Return a new shuffle vector.  Use the same element ID's, as we
1760         // know the vector types match #elts.
1761         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1762       }
1763     }
1764   }
1765   
1766   if (SrcTy->isPointerTy())
1767     return commonPointerCastTransforms(CI);
1768   return commonCastTransforms(CI);
1769 }