]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Transforms / Scalar / CodeGenPrepare.cpp
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/ProfileInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Assembly/Writer.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/GetElementPtrTypeIterator.h"
42 #include "llvm/Support/PatternMatch.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Support/IRBuilder.h"
45 #include "llvm/Support/ValueHandle.h"
46 using namespace llvm;
47 using namespace llvm::PatternMatch;
48
49 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
50 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
51 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
52 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
53                       "sunken Cmps");
54 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
55                        "of sunken Casts");
56 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
57                           "computations were sunk");
58 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
59 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
60 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
61 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
62
63 static cl::opt<bool> DisableBranchOpts(
64   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
65   cl::desc("Disable branch optimizations in CodeGenPrepare"));
66
67 namespace {
68   class CodeGenPrepare : public FunctionPass {
69     /// TLI - Keep a pointer of a TargetLowering to consult for determining
70     /// transformation profitability.
71     const TargetLowering *TLI;
72     DominatorTree *DT;
73     ProfileInfo *PFI;
74     
75     /// CurInstIterator - As we scan instructions optimizing them, this is the
76     /// next instruction to optimize.  Xforms that can invalidate this should
77     /// update it.
78     BasicBlock::iterator CurInstIterator;
79
80     /// Keeps track of non-local addresses that have been sunk into a block.
81     /// This allows us to avoid inserting duplicate code for blocks with
82     /// multiple load/stores of the same address.
83     DenseMap<Value*, Value*> SunkAddrs;
84
85     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
86     /// be updated.
87     bool ModifiedDT;
88
89   public:
90     static char ID; // Pass identification, replacement for typeid
91     explicit CodeGenPrepare(const TargetLowering *tli = 0)
92       : FunctionPass(ID), TLI(tli) {
93         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
94       }
95     bool runOnFunction(Function &F);
96
97     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
98       AU.addPreserved<DominatorTree>();
99       AU.addPreserved<ProfileInfo>();
100     }
101
102   private:
103     bool EliminateMostlyEmptyBlocks(Function &F);
104     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
105     void EliminateMostlyEmptyBlock(BasicBlock *BB);
106     bool OptimizeBlock(BasicBlock &BB);
107     bool OptimizeInst(Instruction *I);
108     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
109     bool OptimizeInlineAsmInst(CallInst *CS);
110     bool OptimizeCallInst(CallInst *CI);
111     bool MoveExtToFormExtLoad(Instruction *I);
112     bool OptimizeExtUses(Instruction *I);
113     bool DupRetToEnableTailCallOpts(ReturnInst *RI);
114     bool PlaceDbgValues(Function &F);
115   };
116 }
117
118 char CodeGenPrepare::ID = 0;
119 INITIALIZE_PASS(CodeGenPrepare, "codegenprepare",
120                 "Optimize for code generation", false, false)
121
122 FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
123   return new CodeGenPrepare(TLI);
124 }
125
126 bool CodeGenPrepare::runOnFunction(Function &F) {
127   bool EverMadeChange = false;
128
129   ModifiedDT = false;
130   DT = getAnalysisIfAvailable<DominatorTree>();
131   PFI = getAnalysisIfAvailable<ProfileInfo>();
132
133   // First pass, eliminate blocks that contain only PHI nodes and an
134   // unconditional branch.
135   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
136
137   // llvm.dbg.value is far away from the value then iSel may not be able
138   // handle it properly. iSel will drop llvm.dbg.value if it can not 
139   // find a node corresponding to the value.
140   EverMadeChange |= PlaceDbgValues(F);
141
142   bool MadeChange = true;
143   while (MadeChange) {
144     MadeChange = false;
145     for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
146       BasicBlock *BB = I++;
147       MadeChange |= OptimizeBlock(*BB);
148     }
149     EverMadeChange |= MadeChange;
150   }
151
152   SunkAddrs.clear();
153
154   if (!DisableBranchOpts) {
155     MadeChange = false;
156     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
157       MadeChange |= ConstantFoldTerminator(BB, true);
158
159     if (MadeChange)
160       ModifiedDT = true;
161     EverMadeChange |= MadeChange;
162   }
163
164   if (ModifiedDT && DT)
165     DT->DT->recalculate(F);
166
167   return EverMadeChange;
168 }
169
170 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
171 /// debug info directives, and an unconditional branch.  Passes before isel
172 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
173 /// isel.  Start by eliminating these blocks so we can split them the way we
174 /// want them.
175 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
176   bool MadeChange = false;
177   // Note that this intentionally skips the entry block.
178   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
179     BasicBlock *BB = I++;
180
181     // If this block doesn't end with an uncond branch, ignore it.
182     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
183     if (!BI || !BI->isUnconditional())
184       continue;
185
186     // If the instruction before the branch (skipping debug info) isn't a phi
187     // node, then other stuff is happening here.
188     BasicBlock::iterator BBI = BI;
189     if (BBI != BB->begin()) {
190       --BBI;
191       while (isa<DbgInfoIntrinsic>(BBI)) {
192         if (BBI == BB->begin())
193           break;
194         --BBI;
195       }
196       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
197         continue;
198     }
199
200     // Do not break infinite loops.
201     BasicBlock *DestBB = BI->getSuccessor(0);
202     if (DestBB == BB)
203       continue;
204
205     if (!CanMergeBlocks(BB, DestBB))
206       continue;
207
208     EliminateMostlyEmptyBlock(BB);
209     MadeChange = true;
210   }
211   return MadeChange;
212 }
213
214 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
215 /// single uncond branch between them, and BB contains no other non-phi
216 /// instructions.
217 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
218                                     const BasicBlock *DestBB) const {
219   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
220   // the successor.  If there are more complex condition (e.g. preheaders),
221   // don't mess around with them.
222   BasicBlock::const_iterator BBI = BB->begin();
223   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
224     for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
225          UI != E; ++UI) {
226       const Instruction *User = cast<Instruction>(*UI);
227       if (User->getParent() != DestBB || !isa<PHINode>(User))
228         return false;
229       // If User is inside DestBB block and it is a PHINode then check
230       // incoming value. If incoming value is not from BB then this is
231       // a complex condition (e.g. preheaders) we want to avoid here.
232       if (User->getParent() == DestBB) {
233         if (const PHINode *UPN = dyn_cast<PHINode>(User))
234           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
235             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
236             if (Insn && Insn->getParent() == BB &&
237                 Insn->getParent() != UPN->getIncomingBlock(I))
238               return false;
239           }
240       }
241     }
242   }
243
244   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
245   // and DestBB may have conflicting incoming values for the block.  If so, we
246   // can't merge the block.
247   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
248   if (!DestBBPN) return true;  // no conflict.
249
250   // Collect the preds of BB.
251   SmallPtrSet<const BasicBlock*, 16> BBPreds;
252   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
253     // It is faster to get preds from a PHI than with pred_iterator.
254     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
255       BBPreds.insert(BBPN->getIncomingBlock(i));
256   } else {
257     BBPreds.insert(pred_begin(BB), pred_end(BB));
258   }
259
260   // Walk the preds of DestBB.
261   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
262     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
263     if (BBPreds.count(Pred)) {   // Common predecessor?
264       BBI = DestBB->begin();
265       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
266         const Value *V1 = PN->getIncomingValueForBlock(Pred);
267         const Value *V2 = PN->getIncomingValueForBlock(BB);
268
269         // If V2 is a phi node in BB, look up what the mapped value will be.
270         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
271           if (V2PN->getParent() == BB)
272             V2 = V2PN->getIncomingValueForBlock(Pred);
273
274         // If there is a conflict, bail out.
275         if (V1 != V2) return false;
276       }
277     }
278   }
279
280   return true;
281 }
282
283
284 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
285 /// an unconditional branch in it.
286 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
287   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
288   BasicBlock *DestBB = BI->getSuccessor(0);
289
290   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
291
292   // If the destination block has a single pred, then this is a trivial edge,
293   // just collapse it.
294   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
295     if (SinglePred != DestBB) {
296       // Remember if SinglePred was the entry block of the function.  If so, we
297       // will need to move BB back to the entry position.
298       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
299       MergeBasicBlockIntoOnlyPred(DestBB, this);
300
301       if (isEntry && BB != &BB->getParent()->getEntryBlock())
302         BB->moveBefore(&BB->getParent()->getEntryBlock());
303       
304       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
305       return;
306     }
307   }
308
309   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
310   // to handle the new incoming edges it is about to have.
311   PHINode *PN;
312   for (BasicBlock::iterator BBI = DestBB->begin();
313        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
314     // Remove the incoming value for BB, and remember it.
315     Value *InVal = PN->removeIncomingValue(BB, false);
316
317     // Two options: either the InVal is a phi node defined in BB or it is some
318     // value that dominates BB.
319     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
320     if (InValPhi && InValPhi->getParent() == BB) {
321       // Add all of the input values of the input PHI as inputs of this phi.
322       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
323         PN->addIncoming(InValPhi->getIncomingValue(i),
324                         InValPhi->getIncomingBlock(i));
325     } else {
326       // Otherwise, add one instance of the dominating value for each edge that
327       // we will be adding.
328       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
329         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
330           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
331       } else {
332         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
333           PN->addIncoming(InVal, *PI);
334       }
335     }
336   }
337
338   // The PHIs are now updated, change everything that refers to BB to use
339   // DestBB and remove BB.
340   BB->replaceAllUsesWith(DestBB);
341   if (DT && !ModifiedDT) {
342     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
343     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
344     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
345     DT->changeImmediateDominator(DestBB, NewIDom);
346     DT->eraseNode(BB);
347   }
348   if (PFI) {
349     PFI->replaceAllUses(BB, DestBB);
350     PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
351   }
352   BB->eraseFromParent();
353   ++NumBlocksElim;
354
355   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
356 }
357
358 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
359 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
360 /// sink it into user blocks to reduce the number of virtual
361 /// registers that must be created and coalesced.
362 ///
363 /// Return true if any changes are made.
364 ///
365 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
366   // If this is a noop copy,
367   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
368   EVT DstVT = TLI.getValueType(CI->getType());
369
370   // This is an fp<->int conversion?
371   if (SrcVT.isInteger() != DstVT.isInteger())
372     return false;
373
374   // If this is an extension, it will be a zero or sign extension, which
375   // isn't a noop.
376   if (SrcVT.bitsLT(DstVT)) return false;
377
378   // If these values will be promoted, find out what they will be promoted
379   // to.  This helps us consider truncates on PPC as noop copies when they
380   // are.
381   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
382       TargetLowering::TypePromoteInteger)
383     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
384   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
385       TargetLowering::TypePromoteInteger)
386     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
387
388   // If, after promotion, these are the same types, this is a noop copy.
389   if (SrcVT != DstVT)
390     return false;
391
392   BasicBlock *DefBB = CI->getParent();
393
394   /// InsertedCasts - Only insert a cast in each block once.
395   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
396
397   bool MadeChange = false;
398   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
399        UI != E; ) {
400     Use &TheUse = UI.getUse();
401     Instruction *User = cast<Instruction>(*UI);
402
403     // Figure out which BB this cast is used in.  For PHI's this is the
404     // appropriate predecessor block.
405     BasicBlock *UserBB = User->getParent();
406     if (PHINode *PN = dyn_cast<PHINode>(User)) {
407       UserBB = PN->getIncomingBlock(UI);
408     }
409
410     // Preincrement use iterator so we don't invalidate it.
411     ++UI;
412
413     // If this user is in the same block as the cast, don't change the cast.
414     if (UserBB == DefBB) continue;
415
416     // If we have already inserted a cast into this block, use it.
417     CastInst *&InsertedCast = InsertedCasts[UserBB];
418
419     if (!InsertedCast) {
420       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
421       InsertedCast =
422         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
423                          InsertPt);
424       MadeChange = true;
425     }
426
427     // Replace a use of the cast with a use of the new cast.
428     TheUse = InsertedCast;
429     ++NumCastUses;
430   }
431
432   // If we removed all uses, nuke the cast.
433   if (CI->use_empty()) {
434     CI->eraseFromParent();
435     MadeChange = true;
436   }
437
438   return MadeChange;
439 }
440
441 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
442 /// the number of virtual registers that must be created and coalesced.  This is
443 /// a clear win except on targets with multiple condition code registers
444 ///  (PowerPC), where it might lose; some adjustment may be wanted there.
445 ///
446 /// Return true if any changes are made.
447 static bool OptimizeCmpExpression(CmpInst *CI) {
448   BasicBlock *DefBB = CI->getParent();
449
450   /// InsertedCmp - Only insert a cmp in each block once.
451   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
452
453   bool MadeChange = false;
454   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
455        UI != E; ) {
456     Use &TheUse = UI.getUse();
457     Instruction *User = cast<Instruction>(*UI);
458
459     // Preincrement use iterator so we don't invalidate it.
460     ++UI;
461
462     // Don't bother for PHI nodes.
463     if (isa<PHINode>(User))
464       continue;
465
466     // Figure out which BB this cmp is used in.
467     BasicBlock *UserBB = User->getParent();
468
469     // If this user is in the same block as the cmp, don't change the cmp.
470     if (UserBB == DefBB) continue;
471
472     // If we have already inserted a cmp into this block, use it.
473     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
474
475     if (!InsertedCmp) {
476       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
477       InsertedCmp =
478         CmpInst::Create(CI->getOpcode(),
479                         CI->getPredicate(),  CI->getOperand(0),
480                         CI->getOperand(1), "", InsertPt);
481       MadeChange = true;
482     }
483
484     // Replace a use of the cmp with a use of the new cmp.
485     TheUse = InsertedCmp;
486     ++NumCmpUses;
487   }
488
489   // If we removed all uses, nuke the cmp.
490   if (CI->use_empty())
491     CI->eraseFromParent();
492
493   return MadeChange;
494 }
495
496 namespace {
497 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
498 protected:
499   void replaceCall(Value *With) {
500     CI->replaceAllUsesWith(With);
501     CI->eraseFromParent();
502   }
503   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
504       if (ConstantInt *SizeCI =
505                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
506         return SizeCI->isAllOnesValue();
507     return false;
508   }
509 };
510 } // end anonymous namespace
511
512 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
513   BasicBlock *BB = CI->getParent();
514   
515   // Lower inline assembly if we can.
516   // If we found an inline asm expession, and if the target knows how to
517   // lower it to normal LLVM code, do so now.
518   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
519     if (TLI->ExpandInlineAsm(CI)) {
520       // Avoid invalidating the iterator.
521       CurInstIterator = BB->begin();
522       // Avoid processing instructions out of order, which could cause
523       // reuse before a value is defined.
524       SunkAddrs.clear();
525       return true;
526     }
527     // Sink address computing for memory operands into the block.
528     if (OptimizeInlineAsmInst(CI))
529       return true;
530   }
531   
532   // Lower all uses of llvm.objectsize.*
533   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
534   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
535     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
536     Type *ReturnTy = CI->getType();
537     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);    
538     
539     // Substituting this can cause recursive simplifications, which can
540     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
541     // happens.
542     WeakVH IterHandle(CurInstIterator);
543     
544     ReplaceAndSimplifyAllUses(CI, RetVal, TLI ? TLI->getTargetData() : 0,
545                               ModifiedDT ? 0 : DT);
546
547     // If the iterator instruction was recursively deleted, start over at the
548     // start of the block.
549     if (IterHandle != CurInstIterator) {
550       CurInstIterator = BB->begin();
551       SunkAddrs.clear();
552     }
553     return true;
554   }
555
556   // From here on out we're working with named functions.
557   if (CI->getCalledFunction() == 0) return false;
558
559   // We'll need TargetData from here on out.
560   const TargetData *TD = TLI ? TLI->getTargetData() : 0;
561   if (!TD) return false;
562   
563   // Lower all default uses of _chk calls.  This is very similar
564   // to what InstCombineCalls does, but here we are only lowering calls
565   // that have the default "don't know" as the objectsize.  Anything else
566   // should be left alone.
567   CodeGenPrepareFortifiedLibCalls Simplifier;
568   return Simplifier.fold(CI, TD);
569 }
570
571 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
572 /// instructions to the predecessor to enable tail call optimizations. The
573 /// case it is currently looking for is:
574 /// bb0:
575 ///   %tmp0 = tail call i32 @f0()
576 ///   br label %return
577 /// bb1:
578 ///   %tmp1 = tail call i32 @f1()
579 ///   br label %return
580 /// bb2:
581 ///   %tmp2 = tail call i32 @f2()
582 ///   br label %return
583 /// return:
584 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
585 ///   ret i32 %retval
586 ///
587 /// =>
588 ///
589 /// bb0:
590 ///   %tmp0 = tail call i32 @f0()
591 ///   ret i32 %tmp0
592 /// bb1:
593 ///   %tmp1 = tail call i32 @f1()
594 ///   ret i32 %tmp1
595 /// bb2:
596 ///   %tmp2 = tail call i32 @f2()
597 ///   ret i32 %tmp2
598 ///
599 bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
600   if (!TLI)
601     return false;
602
603   Value *V = RI->getReturnValue();
604   PHINode *PN = V ? dyn_cast<PHINode>(V) : NULL;
605   if (V && !PN)
606     return false;
607
608   BasicBlock *BB = RI->getParent();
609   if (PN && PN->getParent() != BB)
610     return false;
611
612   // It's not safe to eliminate the sign / zero extension of the return value.
613   // See llvm::isInTailCallPosition().
614   const Function *F = BB->getParent();
615   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
616   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
617     return false;
618
619   // Make sure there are no instructions between the PHI and return, or that the
620   // return is the first instruction in the block.
621   if (PN) {
622     BasicBlock::iterator BI = BB->begin();
623     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
624     if (&*BI != RI)
625       return false;
626   } else {
627     BasicBlock::iterator BI = BB->begin();
628     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
629     if (&*BI != RI)
630       return false;
631   }
632
633   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
634   /// call.
635   SmallVector<CallInst*, 4> TailCalls;
636   if (PN) {
637     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
638       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
639       // Make sure the phi value is indeed produced by the tail call.
640       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
641           TLI->mayBeEmittedAsTailCall(CI))
642         TailCalls.push_back(CI);
643     }
644   } else {
645     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
646     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
647       if (!VisitedBBs.insert(*PI))
648         continue;
649
650       BasicBlock::InstListType &InstList = (*PI)->getInstList();
651       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
652       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
653       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
654       if (RI == RE)
655         continue;
656
657       CallInst *CI = dyn_cast<CallInst>(&*RI);
658       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
659         TailCalls.push_back(CI);
660     }
661   }
662
663   bool Changed = false;
664   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
665     CallInst *CI = TailCalls[i];
666     CallSite CS(CI);
667
668     // Conservatively require the attributes of the call to match those of the
669     // return. Ignore noalias because it doesn't affect the call sequence.
670     unsigned CalleeRetAttr = CS.getAttributes().getRetAttributes();
671     if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
672       continue;
673
674     // Make sure the call instruction is followed by an unconditional branch to
675     // the return block.
676     BasicBlock *CallBB = CI->getParent();
677     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
678     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
679       continue;
680
681     // Duplicate the return into CallBB.
682     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
683     ModifiedDT = Changed = true;
684     ++NumRetsDup;
685   }
686
687   // If we eliminated all predecessors of the block, delete the block now.
688   if (Changed && pred_begin(BB) == pred_end(BB))
689     BB->eraseFromParent();
690
691   return Changed;
692 }
693
694 //===----------------------------------------------------------------------===//
695 // Memory Optimization
696 //===----------------------------------------------------------------------===//
697
698 /// IsNonLocalValue - Return true if the specified values are defined in a
699 /// different basic block than BB.
700 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
701   if (Instruction *I = dyn_cast<Instruction>(V))
702     return I->getParent() != BB;
703   return false;
704 }
705
706 /// OptimizeMemoryInst - Load and Store Instructions often have
707 /// addressing modes that can do significant amounts of computation.  As such,
708 /// instruction selection will try to get the load or store to do as much
709 /// computation as possible for the program.  The problem is that isel can only
710 /// see within a single block.  As such, we sink as much legal addressing mode
711 /// stuff into the block as possible.
712 ///
713 /// This method is used to optimize both load/store and inline asms with memory
714 /// operands.
715 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
716                                         Type *AccessTy) {
717   Value *Repl = Addr;
718   
719   // Try to collapse single-value PHI nodes.  This is necessary to undo 
720   // unprofitable PRE transformations.
721   SmallVector<Value*, 8> worklist;
722   SmallPtrSet<Value*, 16> Visited;
723   worklist.push_back(Addr);
724   
725   // Use a worklist to iteratively look through PHI nodes, and ensure that
726   // the addressing mode obtained from the non-PHI roots of the graph
727   // are equivalent.
728   Value *Consensus = 0;
729   unsigned NumUsesConsensus = 0;
730   bool IsNumUsesConsensusValid = false;
731   SmallVector<Instruction*, 16> AddrModeInsts;
732   ExtAddrMode AddrMode;
733   while (!worklist.empty()) {
734     Value *V = worklist.back();
735     worklist.pop_back();
736     
737     // Break use-def graph loops.
738     if (!Visited.insert(V)) {
739       Consensus = 0;
740       break;
741     }
742     
743     // For a PHI node, push all of its incoming values.
744     if (PHINode *P = dyn_cast<PHINode>(V)) {
745       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
746         worklist.push_back(P->getIncomingValue(i));
747       continue;
748     }
749     
750     // For non-PHIs, determine the addressing mode being computed.
751     SmallVector<Instruction*, 16> NewAddrModeInsts;
752     ExtAddrMode NewAddrMode =
753       AddressingModeMatcher::Match(V, AccessTy, MemoryInst,
754                                    NewAddrModeInsts, *TLI);
755
756     // This check is broken into two cases with very similar code to avoid using
757     // getNumUses() as much as possible. Some values have a lot of uses, so
758     // calling getNumUses() unconditionally caused a significant compile-time
759     // regression.
760     if (!Consensus) {
761       Consensus = V;
762       AddrMode = NewAddrMode;
763       AddrModeInsts = NewAddrModeInsts;
764       continue;
765     } else if (NewAddrMode == AddrMode) {
766       if (!IsNumUsesConsensusValid) {
767         NumUsesConsensus = Consensus->getNumUses();
768         IsNumUsesConsensusValid = true;
769       }
770
771       // Ensure that the obtained addressing mode is equivalent to that obtained
772       // for all other roots of the PHI traversal.  Also, when choosing one
773       // such root as representative, select the one with the most uses in order
774       // to keep the cost modeling heuristics in AddressingModeMatcher
775       // applicable.
776       unsigned NumUses = V->getNumUses();
777       if (NumUses > NumUsesConsensus) {
778         Consensus = V;
779         NumUsesConsensus = NumUses;
780         AddrModeInsts = NewAddrModeInsts;
781       }
782       continue;
783     }
784     
785     Consensus = 0;
786     break;
787   }
788   
789   // If the addressing mode couldn't be determined, or if multiple different
790   // ones were determined, bail out now.
791   if (!Consensus) return false;
792   
793   // Check to see if any of the instructions supersumed by this addr mode are
794   // non-local to I's BB.
795   bool AnyNonLocal = false;
796   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
797     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
798       AnyNonLocal = true;
799       break;
800     }
801   }
802
803   // If all the instructions matched are already in this BB, don't do anything.
804   if (!AnyNonLocal) {
805     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
806     return false;
807   }
808
809   // Insert this computation right after this user.  Since our caller is
810   // scanning from the top of the BB to the bottom, reuse of the expr are
811   // guaranteed to happen later.
812   IRBuilder<> Builder(MemoryInst);
813
814   // Now that we determined the addressing expression we want to use and know
815   // that we have to sink it into this block.  Check to see if we have already
816   // done this for some other load/store instr in this block.  If so, reuse the
817   // computation.
818   Value *&SunkAddr = SunkAddrs[Addr];
819   if (SunkAddr) {
820     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
821                  << *MemoryInst);
822     if (SunkAddr->getType() != Addr->getType())
823       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
824   } else {
825     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
826                  << *MemoryInst);
827     Type *IntPtrTy =
828           TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
829
830     Value *Result = 0;
831
832     // Start with the base register. Do this first so that subsequent address
833     // matching finds it last, which will prevent it from trying to match it
834     // as the scaled value in case it happens to be a mul. That would be
835     // problematic if we've sunk a different mul for the scale, because then
836     // we'd end up sinking both muls.
837     if (AddrMode.BaseReg) {
838       Value *V = AddrMode.BaseReg;
839       if (V->getType()->isPointerTy())
840         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
841       if (V->getType() != IntPtrTy)
842         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
843       Result = V;
844     }
845
846     // Add the scale value.
847     if (AddrMode.Scale) {
848       Value *V = AddrMode.ScaledReg;
849       if (V->getType() == IntPtrTy) {
850         // done.
851       } else if (V->getType()->isPointerTy()) {
852         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
853       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
854                  cast<IntegerType>(V->getType())->getBitWidth()) {
855         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
856       } else {
857         V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
858       }
859       if (AddrMode.Scale != 1)
860         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
861                               "sunkaddr");
862       if (Result)
863         Result = Builder.CreateAdd(Result, V, "sunkaddr");
864       else
865         Result = V;
866     }
867
868     // Add in the BaseGV if present.
869     if (AddrMode.BaseGV) {
870       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
871       if (Result)
872         Result = Builder.CreateAdd(Result, V, "sunkaddr");
873       else
874         Result = V;
875     }
876
877     // Add in the Base Offset if present.
878     if (AddrMode.BaseOffs) {
879       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
880       if (Result)
881         Result = Builder.CreateAdd(Result, V, "sunkaddr");
882       else
883         Result = V;
884     }
885
886     if (Result == 0)
887       SunkAddr = Constant::getNullValue(Addr->getType());
888     else
889       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
890   }
891
892   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
893
894   // If we have no uses, recursively delete the value and all dead instructions
895   // using it.
896   if (Repl->use_empty()) {
897     // This can cause recursive deletion, which can invalidate our iterator.
898     // Use a WeakVH to hold onto it in case this happens.
899     WeakVH IterHandle(CurInstIterator);
900     BasicBlock *BB = CurInstIterator->getParent();
901     
902     RecursivelyDeleteTriviallyDeadInstructions(Repl);
903
904     if (IterHandle != CurInstIterator) {
905       // If the iterator instruction was recursively deleted, start over at the
906       // start of the block.
907       CurInstIterator = BB->begin();
908       SunkAddrs.clear();
909     } else {
910       // This address is now available for reassignment, so erase the table
911       // entry; we don't want to match some completely different instruction.
912       SunkAddrs[Addr] = 0;
913     }    
914   }
915   ++NumMemoryInsts;
916   return true;
917 }
918
919 /// OptimizeInlineAsmInst - If there are any memory operands, use
920 /// OptimizeMemoryInst to sink their address computing into the block when
921 /// possible / profitable.
922 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
923   bool MadeChange = false;
924
925   TargetLowering::AsmOperandInfoVector 
926     TargetConstraints = TLI->ParseConstraints(CS);
927   unsigned ArgNo = 0;
928   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
929     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
930     
931     // Compute the constraint code and ConstraintType to use.
932     TLI->ComputeConstraintToUse(OpInfo, SDValue());
933
934     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
935         OpInfo.isIndirect) {
936       Value *OpVal = CS->getArgOperand(ArgNo++);
937       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
938     } else if (OpInfo.Type == InlineAsm::isInput)
939       ArgNo++;
940   }
941
942   return MadeChange;
943 }
944
945 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
946 /// basic block as the load, unless conditions are unfavorable. This allows
947 /// SelectionDAG to fold the extend into the load.
948 ///
949 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
950   // Look for a load being extended.
951   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
952   if (!LI) return false;
953
954   // If they're already in the same block, there's nothing to do.
955   if (LI->getParent() == I->getParent())
956     return false;
957
958   // If the load has other users and the truncate is not free, this probably
959   // isn't worthwhile.
960   if (!LI->hasOneUse() &&
961       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
962               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
963       !TLI->isTruncateFree(I->getType(), LI->getType()))
964     return false;
965
966   // Check whether the target supports casts folded into loads.
967   unsigned LType;
968   if (isa<ZExtInst>(I))
969     LType = ISD::ZEXTLOAD;
970   else {
971     assert(isa<SExtInst>(I) && "Unexpected ext type!");
972     LType = ISD::SEXTLOAD;
973   }
974   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
975     return false;
976
977   // Move the extend into the same block as the load, so that SelectionDAG
978   // can fold it.
979   I->removeFromParent();
980   I->insertAfter(LI);
981   ++NumExtsMoved;
982   return true;
983 }
984
985 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
986   BasicBlock *DefBB = I->getParent();
987
988   // If the result of a {s|z}ext and its source are both live out, rewrite all
989   // other uses of the source with result of extension.
990   Value *Src = I->getOperand(0);
991   if (Src->hasOneUse())
992     return false;
993
994   // Only do this xform if truncating is free.
995   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
996     return false;
997
998   // Only safe to perform the optimization if the source is also defined in
999   // this block.
1000   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
1001     return false;
1002
1003   bool DefIsLiveOut = false;
1004   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1005        UI != E; ++UI) {
1006     Instruction *User = cast<Instruction>(*UI);
1007
1008     // Figure out which BB this ext is used in.
1009     BasicBlock *UserBB = User->getParent();
1010     if (UserBB == DefBB) continue;
1011     DefIsLiveOut = true;
1012     break;
1013   }
1014   if (!DefIsLiveOut)
1015     return false;
1016
1017   // Make sure non of the uses are PHI nodes.
1018   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1019        UI != E; ++UI) {
1020     Instruction *User = cast<Instruction>(*UI);
1021     BasicBlock *UserBB = User->getParent();
1022     if (UserBB == DefBB) continue;
1023     // Be conservative. We don't want this xform to end up introducing
1024     // reloads just before load / store instructions.
1025     if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
1026       return false;
1027   }
1028
1029   // InsertedTruncs - Only insert one trunc in each block once.
1030   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
1031
1032   bool MadeChange = false;
1033   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1034        UI != E; ++UI) {
1035     Use &TheUse = UI.getUse();
1036     Instruction *User = cast<Instruction>(*UI);
1037
1038     // Figure out which BB this ext is used in.
1039     BasicBlock *UserBB = User->getParent();
1040     if (UserBB == DefBB) continue;
1041
1042     // Both src and def are live in this block. Rewrite the use.
1043     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1044
1045     if (!InsertedTrunc) {
1046       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1047       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1048     }
1049
1050     // Replace a use of the {s|z}ext source with a use of the result.
1051     TheUse = InsertedTrunc;
1052     ++NumExtUses;
1053     MadeChange = true;
1054   }
1055
1056   return MadeChange;
1057 }
1058
1059 bool CodeGenPrepare::OptimizeInst(Instruction *I) {
1060   if (PHINode *P = dyn_cast<PHINode>(I)) {
1061     // It is possible for very late stage optimizations (such as SimplifyCFG)
1062     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
1063     // trivial PHI, go ahead and zap it here.
1064     if (Value *V = SimplifyInstruction(P)) {
1065       P->replaceAllUsesWith(V);
1066       P->eraseFromParent();
1067       ++NumPHIsElim;
1068       return true;
1069     }
1070     return false;
1071   }
1072   
1073   if (CastInst *CI = dyn_cast<CastInst>(I)) {
1074     // If the source of the cast is a constant, then this should have
1075     // already been constant folded.  The only reason NOT to constant fold
1076     // it is if something (e.g. LSR) was careful to place the constant
1077     // evaluation in a block other than then one that uses it (e.g. to hoist
1078     // the address of globals out of a loop).  If this is the case, we don't
1079     // want to forward-subst the cast.
1080     if (isa<Constant>(CI->getOperand(0)))
1081       return false;
1082
1083     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
1084       return true;
1085
1086     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
1087       bool MadeChange = MoveExtToFormExtLoad(I);
1088       return MadeChange | OptimizeExtUses(I);
1089     }
1090     return false;
1091   }
1092   
1093   if (CmpInst *CI = dyn_cast<CmpInst>(I))
1094     return OptimizeCmpExpression(CI);
1095   
1096   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1097     if (TLI)
1098       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
1099     return false;
1100   }
1101   
1102   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1103     if (TLI)
1104       return OptimizeMemoryInst(I, SI->getOperand(1),
1105                                 SI->getOperand(0)->getType());
1106     return false;
1107   }
1108   
1109   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1110     if (GEPI->hasAllZeroIndices()) {
1111       /// The GEP operand must be a pointer, so must its result -> BitCast
1112       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1113                                         GEPI->getName(), GEPI);
1114       GEPI->replaceAllUsesWith(NC);
1115       GEPI->eraseFromParent();
1116       ++NumGEPsElim;
1117       OptimizeInst(NC);
1118       return true;
1119     }
1120     return false;
1121   }
1122   
1123   if (CallInst *CI = dyn_cast<CallInst>(I))
1124     return OptimizeCallInst(CI);
1125
1126   if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
1127     return DupRetToEnableTailCallOpts(RI);
1128
1129   return false;
1130 }
1131
1132 // In this pass we look for GEP and cast instructions that are used
1133 // across basic blocks and rewrite them to improve basic-block-at-a-time
1134 // selection.
1135 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1136   SunkAddrs.clear();
1137   bool MadeChange = false;
1138
1139   CurInstIterator = BB.begin();
1140   for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; )
1141     MadeChange |= OptimizeInst(CurInstIterator++);
1142
1143   return MadeChange;
1144 }
1145
1146 // llvm.dbg.value is far away from the value then iSel may not be able
1147 // handle it properly. iSel will drop llvm.dbg.value if it can not 
1148 // find a node corresponding to the value.
1149 bool CodeGenPrepare::PlaceDbgValues(Function &F) {
1150   bool MadeChange = false;
1151   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1152     Instruction *PrevNonDbgInst = NULL;
1153     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
1154       Instruction *Insn = BI; ++BI;
1155       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
1156       if (!DVI) {
1157         PrevNonDbgInst = Insn;
1158         continue;
1159       }
1160
1161       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
1162       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
1163         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
1164         DVI->removeFromParent();
1165         if (isa<PHINode>(VI))
1166           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
1167         else
1168           DVI->insertAfter(VI);
1169         MadeChange = true;
1170         ++NumDbgValueMoved;
1171       }
1172     }
1173   }
1174   return MadeChange;
1175 }