]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Transforms / Scalar / SimplifyLibCalls.cpp
1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple pass that applies a variety of small
11 // optimizations for calls to specific well-known function calls (e.g. runtime
12 // library functions).   Any optimization that takes the very simple form
13 // "replace call to library function with simpler code that provides the same
14 // result" belongs in this file.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "simplify-libcalls"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BuildLibCalls.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/IRBuilder.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetLibraryInfo.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Config/config.h"            // FIXME: Shouldn't depend on host!
36 using namespace llvm;
37
38 STATISTIC(NumSimplified, "Number of library calls simplified");
39 STATISTIC(NumAnnotated, "Number of attributes added to library functions");
40
41 //===----------------------------------------------------------------------===//
42 // Optimizer Base Class
43 //===----------------------------------------------------------------------===//
44
45 /// This class is the abstract base class for the set of optimizations that
46 /// corresponds to one library call.
47 namespace {
48 class LibCallOptimization {
49 protected:
50   Function *Caller;
51   const TargetData *TD;
52   const TargetLibraryInfo *TLI;
53   LLVMContext* Context;
54 public:
55   LibCallOptimization() { }
56   virtual ~LibCallOptimization() {}
57
58   /// CallOptimizer - This pure virtual method is implemented by base classes to
59   /// do various optimizations.  If this returns null then no transformation was
60   /// performed.  If it returns CI, then it transformed the call and CI is to be
61   /// deleted.  If it returns something else, replace CI with the new value and
62   /// delete CI.
63   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
64     =0;
65
66   Value *OptimizeCall(CallInst *CI, const TargetData *TD,
67                       const TargetLibraryInfo *TLI, IRBuilder<> &B) {
68     Caller = CI->getParent()->getParent();
69     this->TD = TD;
70     this->TLI = TLI;
71     if (CI->getCalledFunction())
72       Context = &CI->getCalledFunction()->getContext();
73
74     // We never change the calling convention.
75     if (CI->getCallingConv() != llvm::CallingConv::C)
76       return NULL;
77
78     return CallOptimizer(CI->getCalledFunction(), CI, B);
79   }
80 };
81 } // End anonymous namespace.
82
83
84 //===----------------------------------------------------------------------===//
85 // Helper Functions
86 //===----------------------------------------------------------------------===//
87
88 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
89 /// value is equal or not-equal to zero.
90 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
91   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
92        UI != E; ++UI) {
93     if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
94       if (IC->isEquality())
95         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
96           if (C->isNullValue())
97             continue;
98     // Unknown instruction.
99     return false;
100   }
101   return true;
102 }
103  
104 static bool CallHasFloatingPointArgument(const CallInst *CI) {
105   for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
106        it != e; ++it) {
107     if ((*it)->getType()->isFloatingPointTy())
108       return true;
109   }
110   return false;
111 }
112
113 /// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality
114 /// comparisons with With.
115 static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) {
116   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
117        UI != E; ++UI) {
118     if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
119       if (IC->isEquality() && IC->getOperand(1) == With)
120         continue;
121     // Unknown instruction.
122     return false;
123   }
124   return true;
125 }
126
127 //===----------------------------------------------------------------------===//
128 // String and Memory LibCall Optimizations
129 //===----------------------------------------------------------------------===//
130
131 //===---------------------------------------===//
132 // 'strcat' Optimizations
133 namespace {
134 struct StrCatOpt : public LibCallOptimization {
135   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
136     // Verify the "strcat" function prototype.
137     FunctionType *FT = Callee->getFunctionType();
138     if (FT->getNumParams() != 2 ||
139         FT->getReturnType() != B.getInt8PtrTy() ||
140         FT->getParamType(0) != FT->getReturnType() ||
141         FT->getParamType(1) != FT->getReturnType())
142       return 0;
143
144     // Extract some information from the instruction
145     Value *Dst = CI->getArgOperand(0);
146     Value *Src = CI->getArgOperand(1);
147
148     // See if we can get the length of the input string.
149     uint64_t Len = GetStringLength(Src);
150     if (Len == 0) return 0;
151     --Len;  // Unbias length.
152
153     // Handle the simple, do-nothing case: strcat(x, "") -> x
154     if (Len == 0)
155       return Dst;
156
157     // These optimizations require TargetData.
158     if (!TD) return 0;
159
160     EmitStrLenMemCpy(Src, Dst, Len, B);
161     return Dst;
162   }
163
164   void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
165     // We need to find the end of the destination string.  That's where the
166     // memory is to be moved to. We just generate a call to strlen.
167     Value *DstLen = EmitStrLen(Dst, B, TD);
168
169     // Now that we have the destination's length, we must index into the
170     // destination's pointer to get the actual memcpy destination (end of
171     // the string .. we're concatenating).
172     Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
173
174     // We have enough information to now generate the memcpy call to do the
175     // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
176     B.CreateMemCpy(CpyDst, Src,
177                    ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
178   }
179 };
180
181 //===---------------------------------------===//
182 // 'strncat' Optimizations
183
184 struct StrNCatOpt : public StrCatOpt {
185   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
186     // Verify the "strncat" function prototype.
187     FunctionType *FT = Callee->getFunctionType();
188     if (FT->getNumParams() != 3 ||
189         FT->getReturnType() != B.getInt8PtrTy() ||
190         FT->getParamType(0) != FT->getReturnType() ||
191         FT->getParamType(1) != FT->getReturnType() ||
192         !FT->getParamType(2)->isIntegerTy())
193       return 0;
194
195     // Extract some information from the instruction
196     Value *Dst = CI->getArgOperand(0);
197     Value *Src = CI->getArgOperand(1);
198     uint64_t Len;
199
200     // We don't do anything if length is not constant
201     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
202       Len = LengthArg->getZExtValue();
203     else
204       return 0;
205
206     // See if we can get the length of the input string.
207     uint64_t SrcLen = GetStringLength(Src);
208     if (SrcLen == 0) return 0;
209     --SrcLen;  // Unbias length.
210
211     // Handle the simple, do-nothing cases:
212     // strncat(x, "", c) -> x
213     // strncat(x,  c, 0) -> x
214     if (SrcLen == 0 || Len == 0) return Dst;
215
216     // These optimizations require TargetData.
217     if (!TD) return 0;
218
219     // We don't optimize this case
220     if (Len < SrcLen) return 0;
221
222     // strncat(x, s, c) -> strcat(x, s)
223     // s is constant so the strcat can be optimized further
224     EmitStrLenMemCpy(Src, Dst, SrcLen, B);
225     return Dst;
226   }
227 };
228
229 //===---------------------------------------===//
230 // 'strchr' Optimizations
231
232 struct StrChrOpt : public LibCallOptimization {
233   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
234     // Verify the "strchr" function prototype.
235     FunctionType *FT = Callee->getFunctionType();
236     if (FT->getNumParams() != 2 ||
237         FT->getReturnType() != B.getInt8PtrTy() ||
238         FT->getParamType(0) != FT->getReturnType() ||
239         !FT->getParamType(1)->isIntegerTy(32))
240       return 0;
241
242     Value *SrcStr = CI->getArgOperand(0);
243
244     // If the second operand is non-constant, see if we can compute the length
245     // of the input string and turn this into memchr.
246     ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
247     if (CharC == 0) {
248       // These optimizations require TargetData.
249       if (!TD) return 0;
250
251       uint64_t Len = GetStringLength(SrcStr);
252       if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
253         return 0;
254
255       return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
256                         ConstantInt::get(TD->getIntPtrType(*Context), Len),
257                         B, TD);
258     }
259
260     // Otherwise, the character is a constant, see if the first argument is
261     // a string literal.  If so, we can constant fold.
262     std::string Str;
263     if (!GetConstantStringInfo(SrcStr, Str))
264       return 0;
265
266     // strchr can find the nul character.
267     Str += '\0';
268
269     // Compute the offset.
270     size_t I = Str.find(CharC->getSExtValue());
271     if (I == std::string::npos) // Didn't find the char.  strchr returns null.
272       return Constant::getNullValue(CI->getType());
273
274     // strchr(s+n,c)  -> gep(s+n+i,c)
275     return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
276   }
277 };
278
279 //===---------------------------------------===//
280 // 'strrchr' Optimizations
281
282 struct StrRChrOpt : public LibCallOptimization {
283   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
284     // Verify the "strrchr" function prototype.
285     FunctionType *FT = Callee->getFunctionType();
286     if (FT->getNumParams() != 2 ||
287         FT->getReturnType() != B.getInt8PtrTy() ||
288         FT->getParamType(0) != FT->getReturnType() ||
289         !FT->getParamType(1)->isIntegerTy(32))
290       return 0;
291
292     Value *SrcStr = CI->getArgOperand(0);
293     ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
294
295     // Cannot fold anything if we're not looking for a constant.
296     if (!CharC)
297       return 0;
298
299     std::string Str;
300     if (!GetConstantStringInfo(SrcStr, Str)) {
301       // strrchr(s, 0) -> strchr(s, 0)
302       if (TD && CharC->isZero())
303         return EmitStrChr(SrcStr, '\0', B, TD);
304       return 0;
305     }
306
307     // strrchr can find the nul character.
308     Str += '\0';
309
310     // Compute the offset.
311     size_t I = Str.rfind(CharC->getSExtValue());
312     if (I == std::string::npos) // Didn't find the char. Return null.
313       return Constant::getNullValue(CI->getType());
314
315     // strrchr(s+n,c) -> gep(s+n+i,c)
316     return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
317   }
318 };
319
320 //===---------------------------------------===//
321 // 'strcmp' Optimizations
322
323 struct StrCmpOpt : public LibCallOptimization {
324   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
325     // Verify the "strcmp" function prototype.
326     FunctionType *FT = Callee->getFunctionType();
327     if (FT->getNumParams() != 2 ||
328         !FT->getReturnType()->isIntegerTy(32) ||
329         FT->getParamType(0) != FT->getParamType(1) ||
330         FT->getParamType(0) != B.getInt8PtrTy())
331       return 0;
332
333     Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
334     if (Str1P == Str2P)      // strcmp(x,x)  -> 0
335       return ConstantInt::get(CI->getType(), 0);
336
337     std::string Str1, Str2;
338     bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
339     bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
340
341     // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
342     if (HasStr1 && HasStr2)
343       return ConstantInt::get(CI->getType(),
344                               StringRef(Str1).compare(Str2));
345
346     if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
347       return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
348                                       CI->getType()));
349
350     if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
351       return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
352
353     // strcmp(P, "x") -> memcmp(P, "x", 2)
354     uint64_t Len1 = GetStringLength(Str1P);
355     uint64_t Len2 = GetStringLength(Str2P);
356     if (Len1 && Len2) {
357       // These optimizations require TargetData.
358       if (!TD) return 0;
359
360       return EmitMemCmp(Str1P, Str2P,
361                         ConstantInt::get(TD->getIntPtrType(*Context),
362                         std::min(Len1, Len2)), B, TD);
363     }
364
365     return 0;
366   }
367 };
368
369 //===---------------------------------------===//
370 // 'strncmp' Optimizations
371
372 struct StrNCmpOpt : public LibCallOptimization {
373   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
374     // Verify the "strncmp" function prototype.
375     FunctionType *FT = Callee->getFunctionType();
376     if (FT->getNumParams() != 3 ||
377         !FT->getReturnType()->isIntegerTy(32) ||
378         FT->getParamType(0) != FT->getParamType(1) ||
379         FT->getParamType(0) != B.getInt8PtrTy() ||
380         !FT->getParamType(2)->isIntegerTy())
381       return 0;
382
383     Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
384     if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
385       return ConstantInt::get(CI->getType(), 0);
386
387     // Get the length argument if it is constant.
388     uint64_t Length;
389     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
390       Length = LengthArg->getZExtValue();
391     else
392       return 0;
393
394     if (Length == 0) // strncmp(x,y,0)   -> 0
395       return ConstantInt::get(CI->getType(), 0);
396
397     if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
398       return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD);
399
400     std::string Str1, Str2;
401     bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
402     bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
403
404     // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
405     if (HasStr1 && HasStr2) {
406       StringRef SubStr1 = StringRef(Str1).substr(0, Length);
407       StringRef SubStr2 = StringRef(Str2).substr(0, Length);
408       return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
409     }
410
411     if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> -*x
412       return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
413                                       CI->getType()));
414
415     if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
416       return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
417
418     return 0;
419   }
420 };
421
422
423 //===---------------------------------------===//
424 // 'strcpy' Optimizations
425
426 struct StrCpyOpt : public LibCallOptimization {
427   bool OptChkCall;  // True if it's optimizing a __strcpy_chk libcall.
428
429   StrCpyOpt(bool c) : OptChkCall(c) {}
430
431   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
432     // Verify the "strcpy" function prototype.
433     unsigned NumParams = OptChkCall ? 3 : 2;
434     FunctionType *FT = Callee->getFunctionType();
435     if (FT->getNumParams() != NumParams ||
436         FT->getReturnType() != FT->getParamType(0) ||
437         FT->getParamType(0) != FT->getParamType(1) ||
438         FT->getParamType(0) != B.getInt8PtrTy())
439       return 0;
440
441     Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
442     if (Dst == Src)      // strcpy(x,x)  -> x
443       return Src;
444
445     // These optimizations require TargetData.
446     if (!TD) return 0;
447
448     // See if we can get the length of the input string.
449     uint64_t Len = GetStringLength(Src);
450     if (Len == 0) return 0;
451
452     // We have enough information to now generate the memcpy call to do the
453     // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
454     if (OptChkCall)
455       EmitMemCpyChk(Dst, Src,
456                     ConstantInt::get(TD->getIntPtrType(*Context), Len),
457                     CI->getArgOperand(2), B, TD);
458     else
459       B.CreateMemCpy(Dst, Src,
460                      ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
461     return Dst;
462   }
463 };
464
465 //===---------------------------------------===//
466 // 'strncpy' Optimizations
467
468 struct StrNCpyOpt : public LibCallOptimization {
469   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
470     FunctionType *FT = Callee->getFunctionType();
471     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
472         FT->getParamType(0) != FT->getParamType(1) ||
473         FT->getParamType(0) != B.getInt8PtrTy() ||
474         !FT->getParamType(2)->isIntegerTy())
475       return 0;
476
477     Value *Dst = CI->getArgOperand(0);
478     Value *Src = CI->getArgOperand(1);
479     Value *LenOp = CI->getArgOperand(2);
480
481     // See if we can get the length of the input string.
482     uint64_t SrcLen = GetStringLength(Src);
483     if (SrcLen == 0) return 0;
484     --SrcLen;
485
486     if (SrcLen == 0) {
487       // strncpy(x, "", y) -> memset(x, '\0', y, 1)
488       B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
489       return Dst;
490     }
491
492     uint64_t Len;
493     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
494       Len = LengthArg->getZExtValue();
495     else
496       return 0;
497
498     if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
499
500     // These optimizations require TargetData.
501     if (!TD) return 0;
502
503     // Let strncpy handle the zero padding
504     if (Len > SrcLen+1) return 0;
505
506     // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
507     B.CreateMemCpy(Dst, Src,
508                    ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
509
510     return Dst;
511   }
512 };
513
514 //===---------------------------------------===//
515 // 'strlen' Optimizations
516
517 struct StrLenOpt : public LibCallOptimization {
518   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
519     FunctionType *FT = Callee->getFunctionType();
520     if (FT->getNumParams() != 1 ||
521         FT->getParamType(0) != B.getInt8PtrTy() ||
522         !FT->getReturnType()->isIntegerTy())
523       return 0;
524
525     Value *Src = CI->getArgOperand(0);
526
527     // Constant folding: strlen("xyz") -> 3
528     if (uint64_t Len = GetStringLength(Src))
529       return ConstantInt::get(CI->getType(), Len-1);
530
531     // strlen(x) != 0 --> *x != 0
532     // strlen(x) == 0 --> *x == 0
533     if (IsOnlyUsedInZeroEqualityComparison(CI))
534       return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
535     return 0;
536   }
537 };
538
539
540 //===---------------------------------------===//
541 // 'strpbrk' Optimizations
542
543 struct StrPBrkOpt : public LibCallOptimization {
544   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
545     FunctionType *FT = Callee->getFunctionType();
546     if (FT->getNumParams() != 2 ||
547         FT->getParamType(0) != B.getInt8PtrTy() ||
548         FT->getParamType(1) != FT->getParamType(0) ||
549         FT->getReturnType() != FT->getParamType(0))
550       return 0;
551
552     std::string S1, S2;
553     bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
554     bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
555
556     // strpbrk(s, "") -> NULL
557     // strpbrk("", s) -> NULL
558     if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
559       return Constant::getNullValue(CI->getType());
560
561     // Constant folding.
562     if (HasS1 && HasS2) {
563       size_t I = S1.find_first_of(S2);
564       if (I == std::string::npos) // No match.
565         return Constant::getNullValue(CI->getType());
566
567       return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
568     }
569
570     // strpbrk(s, "a") -> strchr(s, 'a')
571     if (TD && HasS2 && S2.size() == 1)
572       return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD);
573
574     return 0;
575   }
576 };
577
578 //===---------------------------------------===//
579 // 'strto*' Optimizations.  This handles strtol, strtod, strtof, strtoul, etc.
580
581 struct StrToOpt : public LibCallOptimization {
582   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
583     FunctionType *FT = Callee->getFunctionType();
584     if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
585         !FT->getParamType(0)->isPointerTy() ||
586         !FT->getParamType(1)->isPointerTy())
587       return 0;
588
589     Value *EndPtr = CI->getArgOperand(1);
590     if (isa<ConstantPointerNull>(EndPtr)) {
591       // With a null EndPtr, this function won't capture the main argument.
592       // It would be readonly too, except that it still may write to errno.
593       CI->addAttribute(1, Attribute::NoCapture);
594     }
595
596     return 0;
597   }
598 };
599
600 //===---------------------------------------===//
601 // 'strspn' Optimizations
602
603 struct StrSpnOpt : public LibCallOptimization {
604   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
605     FunctionType *FT = Callee->getFunctionType();
606     if (FT->getNumParams() != 2 ||
607         FT->getParamType(0) != B.getInt8PtrTy() ||
608         FT->getParamType(1) != FT->getParamType(0) ||
609         !FT->getReturnType()->isIntegerTy())
610       return 0;
611
612     std::string S1, S2;
613     bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
614     bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
615
616     // strspn(s, "") -> 0
617     // strspn("", s) -> 0
618     if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
619       return Constant::getNullValue(CI->getType());
620
621     // Constant folding.
622     if (HasS1 && HasS2)
623       return ConstantInt::get(CI->getType(), strspn(S1.c_str(), S2.c_str()));
624
625     return 0;
626   }
627 };
628
629 //===---------------------------------------===//
630 // 'strcspn' Optimizations
631
632 struct StrCSpnOpt : public LibCallOptimization {
633   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
634     FunctionType *FT = Callee->getFunctionType();
635     if (FT->getNumParams() != 2 ||
636         FT->getParamType(0) != B.getInt8PtrTy() ||
637         FT->getParamType(1) != FT->getParamType(0) ||
638         !FT->getReturnType()->isIntegerTy())
639       return 0;
640
641     std::string S1, S2;
642     bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
643     bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
644
645     // strcspn("", s) -> 0
646     if (HasS1 && S1.empty())
647       return Constant::getNullValue(CI->getType());
648
649     // Constant folding.
650     if (HasS1 && HasS2)
651       return ConstantInt::get(CI->getType(), strcspn(S1.c_str(), S2.c_str()));
652
653     // strcspn(s, "") -> strlen(s)
654     if (TD && HasS2 && S2.empty())
655       return EmitStrLen(CI->getArgOperand(0), B, TD);
656
657     return 0;
658   }
659 };
660
661 //===---------------------------------------===//
662 // 'strstr' Optimizations
663
664 struct StrStrOpt : public LibCallOptimization {
665   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
666     FunctionType *FT = Callee->getFunctionType();
667     if (FT->getNumParams() != 2 ||
668         !FT->getParamType(0)->isPointerTy() ||
669         !FT->getParamType(1)->isPointerTy() ||
670         !FT->getReturnType()->isPointerTy())
671       return 0;
672
673     // fold strstr(x, x) -> x.
674     if (CI->getArgOperand(0) == CI->getArgOperand(1))
675       return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
676
677     // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
678     if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
679       Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD);
680       Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
681                                    StrLen, B, TD);
682       for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
683            UI != UE; ) {
684         ICmpInst *Old = cast<ICmpInst>(*UI++);
685         Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
686                                   ConstantInt::getNullValue(StrNCmp->getType()),
687                                   "cmp");
688         Old->replaceAllUsesWith(Cmp);
689         Old->eraseFromParent();
690       }
691       return CI;
692     }
693
694     // See if either input string is a constant string.
695     std::string SearchStr, ToFindStr;
696     bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr);
697     bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr);
698
699     // fold strstr(x, "") -> x.
700     if (HasStr2 && ToFindStr.empty())
701       return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
702
703     // If both strings are known, constant fold it.
704     if (HasStr1 && HasStr2) {
705       std::string::size_type Offset = SearchStr.find(ToFindStr);
706
707       if (Offset == std::string::npos) // strstr("foo", "bar") -> null
708         return Constant::getNullValue(CI->getType());
709
710       // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
711       Value *Result = CastToCStr(CI->getArgOperand(0), B);
712       Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
713       return B.CreateBitCast(Result, CI->getType());
714     }
715
716     // fold strstr(x, "y") -> strchr(x, 'y').
717     if (HasStr2 && ToFindStr.size() == 1)
718       return B.CreateBitCast(EmitStrChr(CI->getArgOperand(0),
719                              ToFindStr[0], B, TD), CI->getType());
720     return 0;
721   }
722 };
723
724
725 //===---------------------------------------===//
726 // 'memcmp' Optimizations
727
728 struct MemCmpOpt : public LibCallOptimization {
729   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
730     FunctionType *FT = Callee->getFunctionType();
731     if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
732         !FT->getParamType(1)->isPointerTy() ||
733         !FT->getReturnType()->isIntegerTy(32))
734       return 0;
735
736     Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
737
738     if (LHS == RHS)  // memcmp(s,s,x) -> 0
739       return Constant::getNullValue(CI->getType());
740
741     // Make sure we have a constant length.
742     ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
743     if (!LenC) return 0;
744     uint64_t Len = LenC->getZExtValue();
745
746     if (Len == 0) // memcmp(s1,s2,0) -> 0
747       return Constant::getNullValue(CI->getType());
748
749     // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
750     if (Len == 1) {
751       Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
752                                  CI->getType(), "lhsv");
753       Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
754                                  CI->getType(), "rhsv");
755       return B.CreateSub(LHSV, RHSV, "chardiff");
756     }
757
758     // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
759     std::string LHSStr, RHSStr;
760     if (GetConstantStringInfo(LHS, LHSStr) &&
761         GetConstantStringInfo(RHS, RHSStr)) {
762       // Make sure we're not reading out-of-bounds memory.
763       if (Len > LHSStr.length() || Len > RHSStr.length())
764         return 0;
765       uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
766       return ConstantInt::get(CI->getType(), Ret);
767     }
768
769     return 0;
770   }
771 };
772
773 //===---------------------------------------===//
774 // 'memcpy' Optimizations
775
776 struct MemCpyOpt : public LibCallOptimization {
777   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
778     // These optimizations require TargetData.
779     if (!TD) return 0;
780
781     FunctionType *FT = Callee->getFunctionType();
782     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
783         !FT->getParamType(0)->isPointerTy() ||
784         !FT->getParamType(1)->isPointerTy() ||
785         FT->getParamType(2) != TD->getIntPtrType(*Context))
786       return 0;
787
788     // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
789     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
790                    CI->getArgOperand(2), 1);
791     return CI->getArgOperand(0);
792   }
793 };
794
795 //===---------------------------------------===//
796 // 'memmove' Optimizations
797
798 struct MemMoveOpt : public LibCallOptimization {
799   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
800     // These optimizations require TargetData.
801     if (!TD) return 0;
802
803     FunctionType *FT = Callee->getFunctionType();
804     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
805         !FT->getParamType(0)->isPointerTy() ||
806         !FT->getParamType(1)->isPointerTy() ||
807         FT->getParamType(2) != TD->getIntPtrType(*Context))
808       return 0;
809
810     // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
811     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
812                     CI->getArgOperand(2), 1);
813     return CI->getArgOperand(0);
814   }
815 };
816
817 //===---------------------------------------===//
818 // 'memset' Optimizations
819
820 struct MemSetOpt : public LibCallOptimization {
821   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
822     // These optimizations require TargetData.
823     if (!TD) return 0;
824
825     FunctionType *FT = Callee->getFunctionType();
826     if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
827         !FT->getParamType(0)->isPointerTy() ||
828         !FT->getParamType(1)->isIntegerTy() ||
829         FT->getParamType(2) != TD->getIntPtrType(*Context))
830       return 0;
831
832     // memset(p, v, n) -> llvm.memset(p, v, n, 1)
833     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
834     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
835     return CI->getArgOperand(0);
836   }
837 };
838
839 //===----------------------------------------------------------------------===//
840 // Math Library Optimizations
841 //===----------------------------------------------------------------------===//
842
843 //===---------------------------------------===//
844 // 'pow*' Optimizations
845
846 struct PowOpt : public LibCallOptimization {
847   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
848     FunctionType *FT = Callee->getFunctionType();
849     // Just make sure this has 2 arguments of the same FP type, which match the
850     // result type.
851     if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
852         FT->getParamType(0) != FT->getParamType(1) ||
853         !FT->getParamType(0)->isFloatingPointTy())
854       return 0;
855
856     Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
857     if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
858       if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
859         return Op1C;
860       if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
861         return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
862     }
863
864     ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
865     if (Op2C == 0) return 0;
866
867     if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
868       return ConstantFP::get(CI->getType(), 1.0);
869
870     if (Op2C->isExactlyValue(0.5)) {
871       // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
872       // This is faster than calling pow, and still handles negative zero
873       // and negative infinite correctly.
874       // TODO: In fast-math mode, this could be just sqrt(x).
875       // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
876       Value *Inf = ConstantFP::getInfinity(CI->getType());
877       Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
878       Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
879                                          Callee->getAttributes());
880       Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
881                                          Callee->getAttributes());
882       Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
883       Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
884       return Sel;
885     }
886
887     if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
888       return Op1;
889     if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
890       return B.CreateFMul(Op1, Op1, "pow2");
891     if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
892       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
893                           Op1, "powrecip");
894     return 0;
895   }
896 };
897
898 //===---------------------------------------===//
899 // 'exp2' Optimizations
900
901 struct Exp2Opt : public LibCallOptimization {
902   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
903     FunctionType *FT = Callee->getFunctionType();
904     // Just make sure this has 1 argument of FP type, which matches the
905     // result type.
906     if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
907         !FT->getParamType(0)->isFloatingPointTy())
908       return 0;
909
910     Value *Op = CI->getArgOperand(0);
911     // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
912     // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
913     Value *LdExpArg = 0;
914     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
915       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
916         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
917     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
918       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
919         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
920     }
921
922     if (LdExpArg) {
923       const char *Name;
924       if (Op->getType()->isFloatTy())
925         Name = "ldexpf";
926       else if (Op->getType()->isDoubleTy())
927         Name = "ldexp";
928       else
929         Name = "ldexpl";
930
931       Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
932       if (!Op->getType()->isFloatTy())
933         One = ConstantExpr::getFPExtend(One, Op->getType());
934
935       Module *M = Caller->getParent();
936       Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
937                                              Op->getType(),
938                                              B.getInt32Ty(), NULL);
939       CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
940       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
941         CI->setCallingConv(F->getCallingConv());
942
943       return CI;
944     }
945     return 0;
946   }
947 };
948
949 //===---------------------------------------===//
950 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
951
952 struct UnaryDoubleFPOpt : public LibCallOptimization {
953   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
954     FunctionType *FT = Callee->getFunctionType();
955     if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
956         !FT->getParamType(0)->isDoubleTy())
957       return 0;
958
959     // If this is something like 'floor((double)floatval)', convert to floorf.
960     FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
961     if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
962       return 0;
963
964     // floor((double)floatval) -> (double)floorf(floatval)
965     Value *V = Cast->getOperand(0);
966     V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B,
967                              Callee->getAttributes());
968     return B.CreateFPExt(V, B.getDoubleTy());
969   }
970 };
971
972 //===----------------------------------------------------------------------===//
973 // Integer Optimizations
974 //===----------------------------------------------------------------------===//
975
976 //===---------------------------------------===//
977 // 'ffs*' Optimizations
978
979 struct FFSOpt : public LibCallOptimization {
980   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
981     FunctionType *FT = Callee->getFunctionType();
982     // Just make sure this has 2 arguments of the same FP type, which match the
983     // result type.
984     if (FT->getNumParams() != 1 ||
985         !FT->getReturnType()->isIntegerTy(32) ||
986         !FT->getParamType(0)->isIntegerTy())
987       return 0;
988
989     Value *Op = CI->getArgOperand(0);
990
991     // Constant fold.
992     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
993       if (CI->getValue() == 0)  // ffs(0) -> 0.
994         return Constant::getNullValue(CI->getType());
995       // ffs(c) -> cttz(c)+1
996       return B.getInt32(CI->getValue().countTrailingZeros() + 1);
997     }
998
999     // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1000     Type *ArgType = Op->getType();
1001     Value *F = Intrinsic::getDeclaration(Callee->getParent(),
1002                                          Intrinsic::cttz, ArgType);
1003     Value *V = B.CreateCall(F, Op, "cttz");
1004     V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1005     V = B.CreateIntCast(V, B.getInt32Ty(), false);
1006
1007     Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1008     return B.CreateSelect(Cond, V, B.getInt32(0));
1009   }
1010 };
1011
1012 //===---------------------------------------===//
1013 // 'isdigit' Optimizations
1014
1015 struct IsDigitOpt : public LibCallOptimization {
1016   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1017     FunctionType *FT = Callee->getFunctionType();
1018     // We require integer(i32)
1019     if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1020         !FT->getParamType(0)->isIntegerTy(32))
1021       return 0;
1022
1023     // isdigit(c) -> (c-'0') <u 10
1024     Value *Op = CI->getArgOperand(0);
1025     Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1026     Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1027     return B.CreateZExt(Op, CI->getType());
1028   }
1029 };
1030
1031 //===---------------------------------------===//
1032 // 'isascii' Optimizations
1033
1034 struct IsAsciiOpt : public LibCallOptimization {
1035   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1036     FunctionType *FT = Callee->getFunctionType();
1037     // We require integer(i32)
1038     if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1039         !FT->getParamType(0)->isIntegerTy(32))
1040       return 0;
1041
1042     // isascii(c) -> c <u 128
1043     Value *Op = CI->getArgOperand(0);
1044     Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1045     return B.CreateZExt(Op, CI->getType());
1046   }
1047 };
1048
1049 //===---------------------------------------===//
1050 // 'abs', 'labs', 'llabs' Optimizations
1051
1052 struct AbsOpt : public LibCallOptimization {
1053   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1054     FunctionType *FT = Callee->getFunctionType();
1055     // We require integer(integer) where the types agree.
1056     if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1057         FT->getParamType(0) != FT->getReturnType())
1058       return 0;
1059
1060     // abs(x) -> x >s -1 ? x : -x
1061     Value *Op = CI->getArgOperand(0);
1062     Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
1063                                  "ispos");
1064     Value *Neg = B.CreateNeg(Op, "neg");
1065     return B.CreateSelect(Pos, Op, Neg);
1066   }
1067 };
1068
1069
1070 //===---------------------------------------===//
1071 // 'toascii' Optimizations
1072
1073 struct ToAsciiOpt : public LibCallOptimization {
1074   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1075     FunctionType *FT = Callee->getFunctionType();
1076     // We require i32(i32)
1077     if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1078         !FT->getParamType(0)->isIntegerTy(32))
1079       return 0;
1080
1081     // isascii(c) -> c & 0x7f
1082     return B.CreateAnd(CI->getArgOperand(0),
1083                        ConstantInt::get(CI->getType(),0x7F));
1084   }
1085 };
1086
1087 //===----------------------------------------------------------------------===//
1088 // Formatting and IO Optimizations
1089 //===----------------------------------------------------------------------===//
1090
1091 //===---------------------------------------===//
1092 // 'printf' Optimizations
1093
1094 struct PrintFOpt : public LibCallOptimization {
1095   Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
1096                                    IRBuilder<> &B) {
1097     // Check for a fixed format string.
1098     std::string FormatStr;
1099     if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr))
1100       return 0;
1101
1102     // Empty format string -> noop.
1103     if (FormatStr.empty())  // Tolerate printf's declared void.
1104       return CI->use_empty() ? (Value*)CI :
1105                                ConstantInt::get(CI->getType(), 0);
1106
1107     // Do not do any of the following transformations if the printf return value
1108     // is used, in general the printf return value is not compatible with either
1109     // putchar() or puts().
1110     if (!CI->use_empty())
1111       return 0;
1112
1113     // printf("x") -> putchar('x'), even for '%'.
1114     if (FormatStr.size() == 1) {
1115       Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD);
1116       if (CI->use_empty()) return CI;
1117       return B.CreateIntCast(Res, CI->getType(), true);
1118     }
1119
1120     // printf("foo\n") --> puts("foo")
1121     if (FormatStr[FormatStr.size()-1] == '\n' &&
1122         FormatStr.find('%') == std::string::npos) {  // no format characters.
1123       // Create a string literal with no \n on it.  We expect the constant merge
1124       // pass to be run after this pass, to merge duplicate strings.
1125       FormatStr.erase(FormatStr.end()-1);
1126       Constant *C = ConstantArray::get(*Context, FormatStr, true);
1127       C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
1128                              GlobalVariable::InternalLinkage, C, "str");
1129       EmitPutS(C, B, TD);
1130       return CI->use_empty() ? (Value*)CI :
1131                     ConstantInt::get(CI->getType(), FormatStr.size()+1);
1132     }
1133
1134     // Optimize specific format strings.
1135     // printf("%c", chr) --> putchar(chr)
1136     if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1137         CI->getArgOperand(1)->getType()->isIntegerTy()) {
1138       Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD);
1139
1140       if (CI->use_empty()) return CI;
1141       return B.CreateIntCast(Res, CI->getType(), true);
1142     }
1143
1144     // printf("%s\n", str) --> puts(str)
1145     if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1146         CI->getArgOperand(1)->getType()->isPointerTy()) {
1147       EmitPutS(CI->getArgOperand(1), B, TD);
1148       return CI;
1149     }
1150     return 0;
1151   }
1152
1153   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1154     // Require one fixed pointer argument and an integer/void result.
1155     FunctionType *FT = Callee->getFunctionType();
1156     if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1157         !(FT->getReturnType()->isIntegerTy() ||
1158           FT->getReturnType()->isVoidTy()))
1159       return 0;
1160
1161     if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
1162       return V;
1163     }
1164
1165     // printf(format, ...) -> iprintf(format, ...) if no floating point
1166     // arguments.
1167     if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) {
1168       Module *M = B.GetInsertBlock()->getParent()->getParent();
1169       Constant *IPrintFFn =
1170         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1171       CallInst *New = cast<CallInst>(CI->clone());
1172       New->setCalledFunction(IPrintFFn);
1173       B.Insert(New);
1174       return New;
1175     }
1176     return 0;
1177   }
1178 };
1179
1180 //===---------------------------------------===//
1181 // 'sprintf' Optimizations
1182
1183 struct SPrintFOpt : public LibCallOptimization {
1184   Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
1185                                    IRBuilder<> &B) {
1186     // Check for a fixed format string.
1187     std::string FormatStr;
1188     if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
1189       return 0;
1190
1191     // If we just have a format string (nothing else crazy) transform it.
1192     if (CI->getNumArgOperands() == 2) {
1193       // Make sure there's no % in the constant array.  We could try to handle
1194       // %% -> % in the future if we cared.
1195       for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1196         if (FormatStr[i] == '%')
1197           return 0; // we found a format specifier, bail out.
1198
1199       // These optimizations require TargetData.
1200       if (!TD) return 0;
1201
1202       // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1203       B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1204                      ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
1205                                       FormatStr.size() + 1), 1);   // nul byte.
1206       return ConstantInt::get(CI->getType(), FormatStr.size());
1207     }
1208
1209     // The remaining optimizations require the format string to be "%s" or "%c"
1210     // and have an extra operand.
1211     if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1212         CI->getNumArgOperands() < 3)
1213       return 0;
1214
1215     // Decode the second character of the format string.
1216     if (FormatStr[1] == 'c') {
1217       // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1218       if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1219       Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1220       Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
1221       B.CreateStore(V, Ptr);
1222       Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
1223       B.CreateStore(B.getInt8(0), Ptr);
1224
1225       return ConstantInt::get(CI->getType(), 1);
1226     }
1227
1228     if (FormatStr[1] == 's') {
1229       // These optimizations require TargetData.
1230       if (!TD) return 0;
1231
1232       // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1233       if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
1234
1235       Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD);
1236       Value *IncLen = B.CreateAdd(Len,
1237                                   ConstantInt::get(Len->getType(), 1),
1238                                   "leninc");
1239       B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1240
1241       // The sprintf result is the unincremented number of bytes in the string.
1242       return B.CreateIntCast(Len, CI->getType(), false);
1243     }
1244     return 0;
1245   }
1246
1247   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1248     // Require two fixed pointer arguments and an integer result.
1249     FunctionType *FT = Callee->getFunctionType();
1250     if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1251         !FT->getParamType(1)->isPointerTy() ||
1252         !FT->getReturnType()->isIntegerTy())
1253       return 0;
1254
1255     if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
1256       return V;
1257     }
1258
1259     // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1260     // point arguments.
1261     if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) {
1262       Module *M = B.GetInsertBlock()->getParent()->getParent();
1263       Constant *SIPrintFFn =
1264         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1265       CallInst *New = cast<CallInst>(CI->clone());
1266       New->setCalledFunction(SIPrintFFn);
1267       B.Insert(New);
1268       return New;
1269     }
1270     return 0;
1271   }
1272 };
1273
1274 //===---------------------------------------===//
1275 // 'fwrite' Optimizations
1276
1277 struct FWriteOpt : public LibCallOptimization {
1278   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1279     // Require a pointer, an integer, an integer, a pointer, returning integer.
1280     FunctionType *FT = Callee->getFunctionType();
1281     if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
1282         !FT->getParamType(1)->isIntegerTy() ||
1283         !FT->getParamType(2)->isIntegerTy() ||
1284         !FT->getParamType(3)->isPointerTy() ||
1285         !FT->getReturnType()->isIntegerTy())
1286       return 0;
1287
1288     // Get the element size and count.
1289     ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1290     ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1291     if (!SizeC || !CountC) return 0;
1292     uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1293
1294     // If this is writing zero records, remove the call (it's a noop).
1295     if (Bytes == 0)
1296       return ConstantInt::get(CI->getType(), 0);
1297
1298     // If this is writing one byte, turn it into fputc.
1299     if (Bytes == 1) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
1300       Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
1301       EmitFPutC(Char, CI->getArgOperand(3), B, TD);
1302       return ConstantInt::get(CI->getType(), 1);
1303     }
1304
1305     return 0;
1306   }
1307 };
1308
1309 //===---------------------------------------===//
1310 // 'fputs' Optimizations
1311
1312 struct FPutsOpt : public LibCallOptimization {
1313   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1314     // These optimizations require TargetData.
1315     if (!TD) return 0;
1316
1317     // Require two pointers.  Also, we can't optimize if return value is used.
1318     FunctionType *FT = Callee->getFunctionType();
1319     if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1320         !FT->getParamType(1)->isPointerTy() ||
1321         !CI->use_empty())
1322       return 0;
1323
1324     // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1325     uint64_t Len = GetStringLength(CI->getArgOperand(0));
1326     if (!Len) return 0;
1327     EmitFWrite(CI->getArgOperand(0),
1328                ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
1329                CI->getArgOperand(1), B, TD);
1330     return CI;  // Known to have no uses (see above).
1331   }
1332 };
1333
1334 //===---------------------------------------===//
1335 // 'fprintf' Optimizations
1336
1337 struct FPrintFOpt : public LibCallOptimization {
1338   Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
1339                                    IRBuilder<> &B) {
1340     // All the optimizations depend on the format string.
1341     std::string FormatStr;
1342     if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
1343       return 0;
1344
1345     // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1346     if (CI->getNumArgOperands() == 2) {
1347       for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1348         if (FormatStr[i] == '%')  // Could handle %% -> % if we cared.
1349           return 0; // We found a format specifier.
1350
1351       // These optimizations require TargetData.
1352       if (!TD) return 0;
1353
1354       EmitFWrite(CI->getArgOperand(1),
1355                  ConstantInt::get(TD->getIntPtrType(*Context),
1356                                   FormatStr.size()),
1357                  CI->getArgOperand(0), B, TD);
1358       return ConstantInt::get(CI->getType(), FormatStr.size());
1359     }
1360
1361     // The remaining optimizations require the format string to be "%s" or "%c"
1362     // and have an extra operand.
1363     if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1364         CI->getNumArgOperands() < 3)
1365       return 0;
1366
1367     // Decode the second character of the format string.
1368     if (FormatStr[1] == 'c') {
1369       // fprintf(F, "%c", chr) --> fputc(chr, F)
1370       if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1371       EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
1372       return ConstantInt::get(CI->getType(), 1);
1373     }
1374
1375     if (FormatStr[1] == 's') {
1376       // fprintf(F, "%s", str) --> fputs(str, F)
1377       if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
1378         return 0;
1379       EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
1380       return CI;
1381     }
1382     return 0;
1383   }
1384
1385   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1386     // Require two fixed paramters as pointers and integer result.
1387     FunctionType *FT = Callee->getFunctionType();
1388     if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1389         !FT->getParamType(1)->isPointerTy() ||
1390         !FT->getReturnType()->isIntegerTy())
1391       return 0;
1392
1393     if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
1394       return V;
1395     }
1396
1397     // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1398     // floating point arguments.
1399     if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) {
1400       Module *M = B.GetInsertBlock()->getParent()->getParent();
1401       Constant *FIPrintFFn =
1402         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1403       CallInst *New = cast<CallInst>(CI->clone());
1404       New->setCalledFunction(FIPrintFFn);
1405       B.Insert(New);
1406       return New;
1407     }
1408     return 0;
1409   }
1410 };
1411
1412 //===---------------------------------------===//
1413 // 'puts' Optimizations
1414
1415 struct PutsOpt : public LibCallOptimization {
1416   virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1417     // Require one fixed pointer argument and an integer/void result.
1418     FunctionType *FT = Callee->getFunctionType();
1419     if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1420         !(FT->getReturnType()->isIntegerTy() ||
1421           FT->getReturnType()->isVoidTy()))
1422       return 0;
1423
1424     // Check for a constant string.
1425     std::string Str;
1426     if (!GetConstantStringInfo(CI->getArgOperand(0), Str))
1427       return 0;
1428
1429     if (Str.empty() && CI->use_empty()) {
1430       // puts("") -> putchar('\n')
1431       Value *Res = EmitPutChar(B.getInt32('\n'), B, TD);
1432       if (CI->use_empty()) return CI;
1433       return B.CreateIntCast(Res, CI->getType(), true);
1434     }
1435
1436     return 0;
1437   }
1438 };
1439
1440 } // end anonymous namespace.
1441
1442 //===----------------------------------------------------------------------===//
1443 // SimplifyLibCalls Pass Implementation
1444 //===----------------------------------------------------------------------===//
1445
1446 namespace {
1447   /// This pass optimizes well known library functions from libc and libm.
1448   ///
1449   class SimplifyLibCalls : public FunctionPass {
1450     TargetLibraryInfo *TLI;
1451     
1452     StringMap<LibCallOptimization*> Optimizations;
1453     // String and Memory LibCall Optimizations
1454     StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr;
1455     StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrCpyOpt StrCpyChk;
1456     StrNCpyOpt StrNCpy; StrLenOpt StrLen; StrPBrkOpt StrPBrk;
1457     StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr;
1458     MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet;
1459     // Math Library Optimizations
1460     PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
1461     // Integer Optimizations
1462     FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
1463     ToAsciiOpt ToAscii;
1464     // Formatting and IO Optimizations
1465     SPrintFOpt SPrintF; PrintFOpt PrintF;
1466     FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
1467     PutsOpt Puts;
1468     
1469     bool Modified;  // This is only used by doInitialization.
1470   public:
1471     static char ID; // Pass identification
1472     SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) {
1473       initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
1474     }
1475     void InitOptimizations();
1476     bool runOnFunction(Function &F);
1477
1478     void setDoesNotAccessMemory(Function &F);
1479     void setOnlyReadsMemory(Function &F);
1480     void setDoesNotThrow(Function &F);
1481     void setDoesNotCapture(Function &F, unsigned n);
1482     void setDoesNotAlias(Function &F, unsigned n);
1483     bool doInitialization(Module &M);
1484
1485     void inferPrototypeAttributes(Function &F);
1486     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1487       AU.addRequired<TargetLibraryInfo>();
1488     }
1489   };
1490 } // end anonymous namespace.
1491
1492 char SimplifyLibCalls::ID = 0;
1493
1494 INITIALIZE_PASS_BEGIN(SimplifyLibCalls, "simplify-libcalls",
1495                       "Simplify well-known library calls", false, false)
1496 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
1497 INITIALIZE_PASS_END(SimplifyLibCalls, "simplify-libcalls",
1498                     "Simplify well-known library calls", false, false)
1499
1500 // Public interface to the Simplify LibCalls pass.
1501 FunctionPass *llvm::createSimplifyLibCallsPass() {
1502   return new SimplifyLibCalls();
1503 }
1504
1505 /// Optimizations - Populate the Optimizations map with all the optimizations
1506 /// we know.
1507 void SimplifyLibCalls::InitOptimizations() {
1508   // String and Memory LibCall Optimizations
1509   Optimizations["strcat"] = &StrCat;
1510   Optimizations["strncat"] = &StrNCat;
1511   Optimizations["strchr"] = &StrChr;
1512   Optimizations["strrchr"] = &StrRChr;
1513   Optimizations["strcmp"] = &StrCmp;
1514   Optimizations["strncmp"] = &StrNCmp;
1515   Optimizations["strcpy"] = &StrCpy;
1516   Optimizations["strncpy"] = &StrNCpy;
1517   Optimizations["strlen"] = &StrLen;
1518   Optimizations["strpbrk"] = &StrPBrk;
1519   Optimizations["strtol"] = &StrTo;
1520   Optimizations["strtod"] = &StrTo;
1521   Optimizations["strtof"] = &StrTo;
1522   Optimizations["strtoul"] = &StrTo;
1523   Optimizations["strtoll"] = &StrTo;
1524   Optimizations["strtold"] = &StrTo;
1525   Optimizations["strtoull"] = &StrTo;
1526   Optimizations["strspn"] = &StrSpn;
1527   Optimizations["strcspn"] = &StrCSpn;
1528   Optimizations["strstr"] = &StrStr;
1529   Optimizations["memcmp"] = &MemCmp;
1530   if (TLI->has(LibFunc::memcpy)) Optimizations["memcpy"] = &MemCpy;
1531   Optimizations["memmove"] = &MemMove;
1532   if (TLI->has(LibFunc::memset)) Optimizations["memset"] = &MemSet;
1533
1534   // _chk variants of String and Memory LibCall Optimizations.
1535   Optimizations["__strcpy_chk"] = &StrCpyChk;
1536
1537   // Math Library Optimizations
1538   Optimizations["powf"] = &Pow;
1539   Optimizations["pow"] = &Pow;
1540   Optimizations["powl"] = &Pow;
1541   Optimizations["llvm.pow.f32"] = &Pow;
1542   Optimizations["llvm.pow.f64"] = &Pow;
1543   Optimizations["llvm.pow.f80"] = &Pow;
1544   Optimizations["llvm.pow.f128"] = &Pow;
1545   Optimizations["llvm.pow.ppcf128"] = &Pow;
1546   Optimizations["exp2l"] = &Exp2;
1547   Optimizations["exp2"] = &Exp2;
1548   Optimizations["exp2f"] = &Exp2;
1549   Optimizations["llvm.exp2.ppcf128"] = &Exp2;
1550   Optimizations["llvm.exp2.f128"] = &Exp2;
1551   Optimizations["llvm.exp2.f80"] = &Exp2;
1552   Optimizations["llvm.exp2.f64"] = &Exp2;
1553   Optimizations["llvm.exp2.f32"] = &Exp2;
1554
1555 #ifdef HAVE_FLOORF
1556   Optimizations["floor"] = &UnaryDoubleFP;
1557 #endif
1558 #ifdef HAVE_CEILF
1559   Optimizations["ceil"] = &UnaryDoubleFP;
1560 #endif
1561 #ifdef HAVE_ROUNDF
1562   Optimizations["round"] = &UnaryDoubleFP;
1563 #endif
1564 #ifdef HAVE_RINTF
1565   Optimizations["rint"] = &UnaryDoubleFP;
1566 #endif
1567 #ifdef HAVE_NEARBYINTF
1568   Optimizations["nearbyint"] = &UnaryDoubleFP;
1569 #endif
1570
1571   // Integer Optimizations
1572   Optimizations["ffs"] = &FFS;
1573   Optimizations["ffsl"] = &FFS;
1574   Optimizations["ffsll"] = &FFS;
1575   Optimizations["abs"] = &Abs;
1576   Optimizations["labs"] = &Abs;
1577   Optimizations["llabs"] = &Abs;
1578   Optimizations["isdigit"] = &IsDigit;
1579   Optimizations["isascii"] = &IsAscii;
1580   Optimizations["toascii"] = &ToAscii;
1581
1582   // Formatting and IO Optimizations
1583   Optimizations["sprintf"] = &SPrintF;
1584   Optimizations["printf"] = &PrintF;
1585   Optimizations["fwrite"] = &FWrite;
1586   Optimizations["fputs"] = &FPuts;
1587   Optimizations["fprintf"] = &FPrintF;
1588   Optimizations["puts"] = &Puts;
1589 }
1590
1591
1592 /// runOnFunction - Top level algorithm.
1593 ///
1594 bool SimplifyLibCalls::runOnFunction(Function &F) {
1595   TLI = &getAnalysis<TargetLibraryInfo>();
1596
1597   if (Optimizations.empty())
1598     InitOptimizations();
1599
1600   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
1601
1602   IRBuilder<> Builder(F.getContext());
1603
1604   bool Changed = false;
1605   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1606     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
1607       // Ignore non-calls.
1608       CallInst *CI = dyn_cast<CallInst>(I++);
1609       if (!CI) continue;
1610
1611       // Ignore indirect calls and calls to non-external functions.
1612       Function *Callee = CI->getCalledFunction();
1613       if (Callee == 0 || !Callee->isDeclaration() ||
1614           !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
1615         continue;
1616
1617       // Ignore unknown calls.
1618       LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
1619       if (!LCO) continue;
1620
1621       // Set the builder to the instruction after the call.
1622       Builder.SetInsertPoint(BB, I);
1623
1624       // Use debug location of CI for all new instructions.
1625       Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1626
1627       // Try to optimize this call.
1628       Value *Result = LCO->OptimizeCall(CI, TD, TLI, Builder);
1629       if (Result == 0) continue;
1630
1631       DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI;
1632             dbgs() << "  into: " << *Result << "\n");
1633
1634       // Something changed!
1635       Changed = true;
1636       ++NumSimplified;
1637
1638       // Inspect the instruction after the call (which was potentially just
1639       // added) next.
1640       I = CI; ++I;
1641
1642       if (CI != Result && !CI->use_empty()) {
1643         CI->replaceAllUsesWith(Result);
1644         if (!Result->hasName())
1645           Result->takeName(CI);
1646       }
1647       CI->eraseFromParent();
1648     }
1649   }
1650   return Changed;
1651 }
1652
1653 // Utility methods for doInitialization.
1654
1655 void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) {
1656   if (!F.doesNotAccessMemory()) {
1657     F.setDoesNotAccessMemory();
1658     ++NumAnnotated;
1659     Modified = true;
1660   }
1661 }
1662 void SimplifyLibCalls::setOnlyReadsMemory(Function &F) {
1663   if (!F.onlyReadsMemory()) {
1664     F.setOnlyReadsMemory();
1665     ++NumAnnotated;
1666     Modified = true;
1667   }
1668 }
1669 void SimplifyLibCalls::setDoesNotThrow(Function &F) {
1670   if (!F.doesNotThrow()) {
1671     F.setDoesNotThrow();
1672     ++NumAnnotated;
1673     Modified = true;
1674   }
1675 }
1676 void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) {
1677   if (!F.doesNotCapture(n)) {
1678     F.setDoesNotCapture(n);
1679     ++NumAnnotated;
1680     Modified = true;
1681   }
1682 }
1683 void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
1684   if (!F.doesNotAlias(n)) {
1685     F.setDoesNotAlias(n);
1686     ++NumAnnotated;
1687     Modified = true;
1688   }
1689 }
1690
1691
1692 void SimplifyLibCalls::inferPrototypeAttributes(Function &F) {
1693   FunctionType *FTy = F.getFunctionType();
1694   
1695   StringRef Name = F.getName();
1696   switch (Name[0]) {
1697   case 's':
1698     if (Name == "strlen") {
1699       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
1700         return;
1701       setOnlyReadsMemory(F);
1702       setDoesNotThrow(F);
1703       setDoesNotCapture(F, 1);
1704     } else if (Name == "strchr" ||
1705                Name == "strrchr") {
1706       if (FTy->getNumParams() != 2 ||
1707           !FTy->getParamType(0)->isPointerTy() ||
1708           !FTy->getParamType(1)->isIntegerTy())
1709         return;
1710       setOnlyReadsMemory(F);
1711       setDoesNotThrow(F);
1712     } else if (Name == "strcpy" ||
1713                Name == "stpcpy" ||
1714                Name == "strcat" ||
1715                Name == "strtol" ||
1716                Name == "strtod" ||
1717                Name == "strtof" ||
1718                Name == "strtoul" ||
1719                Name == "strtoll" ||
1720                Name == "strtold" ||
1721                Name == "strncat" ||
1722                Name == "strncpy" ||
1723                Name == "strtoull") {
1724       if (FTy->getNumParams() < 2 ||
1725           !FTy->getParamType(1)->isPointerTy())
1726         return;
1727       setDoesNotThrow(F);
1728       setDoesNotCapture(F, 2);
1729     } else if (Name == "strxfrm") {
1730       if (FTy->getNumParams() != 3 ||
1731           !FTy->getParamType(0)->isPointerTy() ||
1732           !FTy->getParamType(1)->isPointerTy())
1733         return;
1734       setDoesNotThrow(F);
1735       setDoesNotCapture(F, 1);
1736       setDoesNotCapture(F, 2);
1737     } else if (Name == "strcmp" ||
1738                Name == "strspn" ||
1739                Name == "strncmp" ||
1740                Name == "strcspn" ||
1741                Name == "strcoll" ||
1742                Name == "strcasecmp" ||
1743                Name == "strncasecmp") {
1744       if (FTy->getNumParams() < 2 ||
1745           !FTy->getParamType(0)->isPointerTy() ||
1746           !FTy->getParamType(1)->isPointerTy())
1747         return;
1748       setOnlyReadsMemory(F);
1749       setDoesNotThrow(F);
1750       setDoesNotCapture(F, 1);
1751       setDoesNotCapture(F, 2);
1752     } else if (Name == "strstr" ||
1753                Name == "strpbrk") {
1754       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
1755         return;
1756       setOnlyReadsMemory(F);
1757       setDoesNotThrow(F);
1758       setDoesNotCapture(F, 2);
1759     } else if (Name == "strtok" ||
1760                Name == "strtok_r") {
1761       if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy())
1762         return;
1763       setDoesNotThrow(F);
1764       setDoesNotCapture(F, 2);
1765     } else if (Name == "scanf" ||
1766                Name == "setbuf" ||
1767                Name == "setvbuf") {
1768       if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy())
1769         return;
1770       setDoesNotThrow(F);
1771       setDoesNotCapture(F, 1);
1772     } else if (Name == "strdup" ||
1773                Name == "strndup") {
1774       if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() ||
1775           !FTy->getParamType(0)->isPointerTy())
1776         return;
1777       setDoesNotThrow(F);
1778       setDoesNotAlias(F, 0);
1779       setDoesNotCapture(F, 1);
1780     } else if (Name == "stat" ||
1781                Name == "sscanf" ||
1782                Name == "sprintf" ||
1783                Name == "statvfs") {
1784       if (FTy->getNumParams() < 2 ||
1785           !FTy->getParamType(0)->isPointerTy() ||
1786           !FTy->getParamType(1)->isPointerTy())
1787         return;
1788       setDoesNotThrow(F);
1789       setDoesNotCapture(F, 1);
1790       setDoesNotCapture(F, 2);
1791     } else if (Name == "snprintf") {
1792       if (FTy->getNumParams() != 3 ||
1793           !FTy->getParamType(0)->isPointerTy() ||
1794           !FTy->getParamType(2)->isPointerTy())
1795         return;
1796       setDoesNotThrow(F);
1797       setDoesNotCapture(F, 1);
1798       setDoesNotCapture(F, 3);
1799     } else if (Name == "setitimer") {
1800       if (FTy->getNumParams() != 3 ||
1801           !FTy->getParamType(1)->isPointerTy() ||
1802           !FTy->getParamType(2)->isPointerTy())
1803         return;
1804       setDoesNotThrow(F);
1805       setDoesNotCapture(F, 2);
1806       setDoesNotCapture(F, 3);
1807     } else if (Name == "system") {
1808       if (FTy->getNumParams() != 1 ||
1809           !FTy->getParamType(0)->isPointerTy())
1810         return;
1811       // May throw; "system" is a valid pthread cancellation point.
1812       setDoesNotCapture(F, 1);
1813     }
1814     break;
1815   case 'm':
1816     if (Name == "malloc") {
1817       if (FTy->getNumParams() != 1 ||
1818           !FTy->getReturnType()->isPointerTy())
1819         return;
1820       setDoesNotThrow(F);
1821       setDoesNotAlias(F, 0);
1822     } else if (Name == "memcmp") {
1823       if (FTy->getNumParams() != 3 ||
1824           !FTy->getParamType(0)->isPointerTy() ||
1825           !FTy->getParamType(1)->isPointerTy())
1826         return;
1827       setOnlyReadsMemory(F);
1828       setDoesNotThrow(F);
1829       setDoesNotCapture(F, 1);
1830       setDoesNotCapture(F, 2);
1831     } else if (Name == "memchr" ||
1832                Name == "memrchr") {
1833       if (FTy->getNumParams() != 3)
1834         return;
1835       setOnlyReadsMemory(F);
1836       setDoesNotThrow(F);
1837     } else if (Name == "modf" ||
1838                Name == "modff" ||
1839                Name == "modfl" ||
1840                Name == "memcpy" ||
1841                Name == "memccpy" ||
1842                Name == "memmove") {
1843       if (FTy->getNumParams() < 2 ||
1844           !FTy->getParamType(1)->isPointerTy())
1845         return;
1846       setDoesNotThrow(F);
1847       setDoesNotCapture(F, 2);
1848     } else if (Name == "memalign") {
1849       if (!FTy->getReturnType()->isPointerTy())
1850         return;
1851       setDoesNotAlias(F, 0);
1852     } else if (Name == "mkdir" ||
1853                Name == "mktime") {
1854       if (FTy->getNumParams() == 0 ||
1855           !FTy->getParamType(0)->isPointerTy())
1856         return;
1857       setDoesNotThrow(F);
1858       setDoesNotCapture(F, 1);
1859     }
1860     break;
1861   case 'r':
1862     if (Name == "realloc") {
1863       if (FTy->getNumParams() != 2 ||
1864           !FTy->getParamType(0)->isPointerTy() ||
1865           !FTy->getReturnType()->isPointerTy())
1866         return;
1867       setDoesNotThrow(F);
1868       setDoesNotAlias(F, 0);
1869       setDoesNotCapture(F, 1);
1870     } else if (Name == "read") {
1871       if (FTy->getNumParams() != 3 ||
1872           !FTy->getParamType(1)->isPointerTy())
1873         return;
1874       // May throw; "read" is a valid pthread cancellation point.
1875       setDoesNotCapture(F, 2);
1876     } else if (Name == "rmdir" ||
1877                Name == "rewind" ||
1878                Name == "remove" ||
1879                Name == "realpath") {
1880       if (FTy->getNumParams() < 1 ||
1881           !FTy->getParamType(0)->isPointerTy())
1882         return;
1883       setDoesNotThrow(F);
1884       setDoesNotCapture(F, 1);
1885     } else if (Name == "rename" ||
1886                Name == "readlink") {
1887       if (FTy->getNumParams() < 2 ||
1888           !FTy->getParamType(0)->isPointerTy() ||
1889           !FTy->getParamType(1)->isPointerTy())
1890         return;
1891       setDoesNotThrow(F);
1892       setDoesNotCapture(F, 1);
1893       setDoesNotCapture(F, 2);
1894     }
1895     break;
1896   case 'w':
1897     if (Name == "write") {
1898       if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy())
1899         return;
1900       // May throw; "write" is a valid pthread cancellation point.
1901       setDoesNotCapture(F, 2);
1902     }
1903     break;
1904   case 'b':
1905     if (Name == "bcopy") {
1906       if (FTy->getNumParams() != 3 ||
1907           !FTy->getParamType(0)->isPointerTy() ||
1908           !FTy->getParamType(1)->isPointerTy())
1909         return;
1910       setDoesNotThrow(F);
1911       setDoesNotCapture(F, 1);
1912       setDoesNotCapture(F, 2);
1913     } else if (Name == "bcmp") {
1914       if (FTy->getNumParams() != 3 ||
1915           !FTy->getParamType(0)->isPointerTy() ||
1916           !FTy->getParamType(1)->isPointerTy())
1917         return;
1918       setDoesNotThrow(F);
1919       setOnlyReadsMemory(F);
1920       setDoesNotCapture(F, 1);
1921       setDoesNotCapture(F, 2);
1922     } else if (Name == "bzero") {
1923       if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
1924         return;
1925       setDoesNotThrow(F);
1926       setDoesNotCapture(F, 1);
1927     }
1928     break;
1929   case 'c':
1930     if (Name == "calloc") {
1931       if (FTy->getNumParams() != 2 ||
1932           !FTy->getReturnType()->isPointerTy())
1933         return;
1934       setDoesNotThrow(F);
1935       setDoesNotAlias(F, 0);
1936     } else if (Name == "chmod" ||
1937                Name == "chown" ||
1938                Name == "ctermid" ||
1939                Name == "clearerr" ||
1940                Name == "closedir") {
1941       if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
1942         return;
1943       setDoesNotThrow(F);
1944       setDoesNotCapture(F, 1);
1945     }
1946     break;
1947   case 'a':
1948     if (Name == "atoi" ||
1949         Name == "atol" ||
1950         Name == "atof" ||
1951         Name == "atoll") {
1952       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
1953         return;
1954       setDoesNotThrow(F);
1955       setOnlyReadsMemory(F);
1956       setDoesNotCapture(F, 1);
1957     } else if (Name == "access") {
1958       if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
1959         return;
1960       setDoesNotThrow(F);
1961       setDoesNotCapture(F, 1);
1962     }
1963     break;
1964   case 'f':
1965     if (Name == "fopen") {
1966       if (FTy->getNumParams() != 2 ||
1967           !FTy->getReturnType()->isPointerTy() ||
1968           !FTy->getParamType(0)->isPointerTy() ||
1969           !FTy->getParamType(1)->isPointerTy())
1970         return;
1971       setDoesNotThrow(F);
1972       setDoesNotAlias(F, 0);
1973       setDoesNotCapture(F, 1);
1974       setDoesNotCapture(F, 2);
1975     } else if (Name == "fdopen") {
1976       if (FTy->getNumParams() != 2 ||
1977           !FTy->getReturnType()->isPointerTy() ||
1978           !FTy->getParamType(1)->isPointerTy())
1979         return;
1980       setDoesNotThrow(F);
1981       setDoesNotAlias(F, 0);
1982       setDoesNotCapture(F, 2);
1983     } else if (Name == "feof" ||
1984                Name == "free" ||
1985                Name == "fseek" ||
1986                Name == "ftell" ||
1987                Name == "fgetc" ||
1988                Name == "fseeko" ||
1989                Name == "ftello" ||
1990                Name == "fileno" ||
1991                Name == "fflush" ||
1992                Name == "fclose" ||
1993                Name == "fsetpos" ||
1994                Name == "flockfile" ||
1995                Name == "funlockfile" ||
1996                Name == "ftrylockfile") {
1997       if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
1998         return;
1999       setDoesNotThrow(F);
2000       setDoesNotCapture(F, 1);
2001     } else if (Name == "ferror") {
2002       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2003         return;
2004       setDoesNotThrow(F);
2005       setDoesNotCapture(F, 1);
2006       setOnlyReadsMemory(F);
2007     } else if (Name == "fputc" ||
2008                Name == "fstat" ||
2009                Name == "frexp" ||
2010                Name == "frexpf" ||
2011                Name == "frexpl" ||
2012                Name == "fstatvfs") {
2013       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2014         return;
2015       setDoesNotThrow(F);
2016       setDoesNotCapture(F, 2);
2017     } else if (Name == "fgets") {
2018       if (FTy->getNumParams() != 3 ||
2019           !FTy->getParamType(0)->isPointerTy() ||
2020           !FTy->getParamType(2)->isPointerTy())
2021         return;
2022       setDoesNotThrow(F);
2023       setDoesNotCapture(F, 3);
2024     } else if (Name == "fread" ||
2025                Name == "fwrite") {
2026       if (FTy->getNumParams() != 4 ||
2027           !FTy->getParamType(0)->isPointerTy() ||
2028           !FTy->getParamType(3)->isPointerTy())
2029         return;
2030       setDoesNotThrow(F);
2031       setDoesNotCapture(F, 1);
2032       setDoesNotCapture(F, 4);
2033     } else if (Name == "fputs" ||
2034                Name == "fscanf" ||
2035                Name == "fprintf" ||
2036                Name == "fgetpos") {
2037       if (FTy->getNumParams() < 2 ||
2038           !FTy->getParamType(0)->isPointerTy() ||
2039           !FTy->getParamType(1)->isPointerTy())
2040         return;
2041       setDoesNotThrow(F);
2042       setDoesNotCapture(F, 1);
2043       setDoesNotCapture(F, 2);
2044     }
2045     break;
2046   case 'g':
2047     if (Name == "getc" ||
2048         Name == "getlogin_r" ||
2049         Name == "getc_unlocked") {
2050       if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
2051         return;
2052       setDoesNotThrow(F);
2053       setDoesNotCapture(F, 1);
2054     } else if (Name == "getenv") {
2055       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2056         return;
2057       setDoesNotThrow(F);
2058       setOnlyReadsMemory(F);
2059       setDoesNotCapture(F, 1);
2060     } else if (Name == "gets" ||
2061                Name == "getchar") {
2062       setDoesNotThrow(F);
2063     } else if (Name == "getitimer") {
2064       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2065         return;
2066       setDoesNotThrow(F);
2067       setDoesNotCapture(F, 2);
2068     } else if (Name == "getpwnam") {
2069       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2070         return;
2071       setDoesNotThrow(F);
2072       setDoesNotCapture(F, 1);
2073     }
2074     break;
2075   case 'u':
2076     if (Name == "ungetc") {
2077       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2078         return;
2079       setDoesNotThrow(F);
2080       setDoesNotCapture(F, 2);
2081     } else if (Name == "uname" ||
2082                Name == "unlink" ||
2083                Name == "unsetenv") {
2084       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2085         return;
2086       setDoesNotThrow(F);
2087       setDoesNotCapture(F, 1);
2088     } else if (Name == "utime" ||
2089                Name == "utimes") {
2090       if (FTy->getNumParams() != 2 ||
2091           !FTy->getParamType(0)->isPointerTy() ||
2092           !FTy->getParamType(1)->isPointerTy())
2093         return;
2094       setDoesNotThrow(F);
2095       setDoesNotCapture(F, 1);
2096       setDoesNotCapture(F, 2);
2097     }
2098     break;
2099   case 'p':
2100     if (Name == "putc") {
2101       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2102         return;
2103       setDoesNotThrow(F);
2104       setDoesNotCapture(F, 2);
2105     } else if (Name == "puts" ||
2106                Name == "printf" ||
2107                Name == "perror") {
2108       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2109         return;
2110       setDoesNotThrow(F);
2111       setDoesNotCapture(F, 1);
2112     } else if (Name == "pread" ||
2113                Name == "pwrite") {
2114       if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy())
2115         return;
2116       // May throw; these are valid pthread cancellation points.
2117       setDoesNotCapture(F, 2);
2118     } else if (Name == "putchar") {
2119       setDoesNotThrow(F);
2120     } else if (Name == "popen") {
2121       if (FTy->getNumParams() != 2 ||
2122           !FTy->getReturnType()->isPointerTy() ||
2123           !FTy->getParamType(0)->isPointerTy() ||
2124           !FTy->getParamType(1)->isPointerTy())
2125         return;
2126       setDoesNotThrow(F);
2127       setDoesNotAlias(F, 0);
2128       setDoesNotCapture(F, 1);
2129       setDoesNotCapture(F, 2);
2130     } else if (Name == "pclose") {
2131       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2132         return;
2133       setDoesNotThrow(F);
2134       setDoesNotCapture(F, 1);
2135     }
2136     break;
2137   case 'v':
2138     if (Name == "vscanf") {
2139       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2140         return;
2141       setDoesNotThrow(F);
2142       setDoesNotCapture(F, 1);
2143     } else if (Name == "vsscanf" ||
2144                Name == "vfscanf") {
2145       if (FTy->getNumParams() != 3 ||
2146           !FTy->getParamType(1)->isPointerTy() ||
2147           !FTy->getParamType(2)->isPointerTy())
2148         return;
2149       setDoesNotThrow(F);
2150       setDoesNotCapture(F, 1);
2151       setDoesNotCapture(F, 2);
2152     } else if (Name == "valloc") {
2153       if (!FTy->getReturnType()->isPointerTy())
2154         return;
2155       setDoesNotThrow(F);
2156       setDoesNotAlias(F, 0);
2157     } else if (Name == "vprintf") {
2158       if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy())
2159         return;
2160       setDoesNotThrow(F);
2161       setDoesNotCapture(F, 1);
2162     } else if (Name == "vfprintf" ||
2163                Name == "vsprintf") {
2164       if (FTy->getNumParams() != 3 ||
2165           !FTy->getParamType(0)->isPointerTy() ||
2166           !FTy->getParamType(1)->isPointerTy())
2167         return;
2168       setDoesNotThrow(F);
2169       setDoesNotCapture(F, 1);
2170       setDoesNotCapture(F, 2);
2171     } else if (Name == "vsnprintf") {
2172       if (FTy->getNumParams() != 4 ||
2173           !FTy->getParamType(0)->isPointerTy() ||
2174           !FTy->getParamType(2)->isPointerTy())
2175         return;
2176       setDoesNotThrow(F);
2177       setDoesNotCapture(F, 1);
2178       setDoesNotCapture(F, 3);
2179     }
2180     break;
2181   case 'o':
2182     if (Name == "open") {
2183       if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
2184         return;
2185       // May throw; "open" is a valid pthread cancellation point.
2186       setDoesNotCapture(F, 1);
2187     } else if (Name == "opendir") {
2188       if (FTy->getNumParams() != 1 ||
2189           !FTy->getReturnType()->isPointerTy() ||
2190           !FTy->getParamType(0)->isPointerTy())
2191         return;
2192       setDoesNotThrow(F);
2193       setDoesNotAlias(F, 0);
2194       setDoesNotCapture(F, 1);
2195     }
2196     break;
2197   case 't':
2198     if (Name == "tmpfile") {
2199       if (!FTy->getReturnType()->isPointerTy())
2200         return;
2201       setDoesNotThrow(F);
2202       setDoesNotAlias(F, 0);
2203     } else if (Name == "times") {
2204       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2205         return;
2206       setDoesNotThrow(F);
2207       setDoesNotCapture(F, 1);
2208     }
2209     break;
2210   case 'h':
2211     if (Name == "htonl" ||
2212         Name == "htons") {
2213       setDoesNotThrow(F);
2214       setDoesNotAccessMemory(F);
2215     }
2216     break;
2217   case 'n':
2218     if (Name == "ntohl" ||
2219         Name == "ntohs") {
2220       setDoesNotThrow(F);
2221       setDoesNotAccessMemory(F);
2222     }
2223     break;
2224   case 'l':
2225     if (Name == "lstat") {
2226       if (FTy->getNumParams() != 2 ||
2227           !FTy->getParamType(0)->isPointerTy() ||
2228           !FTy->getParamType(1)->isPointerTy())
2229         return;
2230       setDoesNotThrow(F);
2231       setDoesNotCapture(F, 1);
2232       setDoesNotCapture(F, 2);
2233     } else if (Name == "lchown") {
2234       if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy())
2235         return;
2236       setDoesNotThrow(F);
2237       setDoesNotCapture(F, 1);
2238     }
2239     break;
2240   case 'q':
2241     if (Name == "qsort") {
2242       if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy())
2243         return;
2244       // May throw; places call through function pointer.
2245       setDoesNotCapture(F, 4);
2246     }
2247     break;
2248   case '_':
2249     if (Name == "__strdup" ||
2250         Name == "__strndup") {
2251       if (FTy->getNumParams() < 1 ||
2252           !FTy->getReturnType()->isPointerTy() ||
2253           !FTy->getParamType(0)->isPointerTy())
2254         return;
2255       setDoesNotThrow(F);
2256       setDoesNotAlias(F, 0);
2257       setDoesNotCapture(F, 1);
2258     } else if (Name == "__strtok_r") {
2259       if (FTy->getNumParams() != 3 ||
2260           !FTy->getParamType(1)->isPointerTy())
2261         return;
2262       setDoesNotThrow(F);
2263       setDoesNotCapture(F, 2);
2264     } else if (Name == "_IO_getc") {
2265       if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy())
2266         return;
2267       setDoesNotThrow(F);
2268       setDoesNotCapture(F, 1);
2269     } else if (Name == "_IO_putc") {
2270       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2271         return;
2272       setDoesNotThrow(F);
2273       setDoesNotCapture(F, 2);
2274     }
2275     break;
2276   case 1:
2277     if (Name == "\1__isoc99_scanf") {
2278       if (FTy->getNumParams() < 1 ||
2279           !FTy->getParamType(0)->isPointerTy())
2280         return;
2281       setDoesNotThrow(F);
2282       setDoesNotCapture(F, 1);
2283     } else if (Name == "\1stat64" ||
2284                Name == "\1lstat64" ||
2285                Name == "\1statvfs64" ||
2286                Name == "\1__isoc99_sscanf") {
2287       if (FTy->getNumParams() < 1 ||
2288           !FTy->getParamType(0)->isPointerTy() ||
2289           !FTy->getParamType(1)->isPointerTy())
2290         return;
2291       setDoesNotThrow(F);
2292       setDoesNotCapture(F, 1);
2293       setDoesNotCapture(F, 2);
2294     } else if (Name == "\1fopen64") {
2295       if (FTy->getNumParams() != 2 ||
2296           !FTy->getReturnType()->isPointerTy() ||
2297           !FTy->getParamType(0)->isPointerTy() ||
2298           !FTy->getParamType(1)->isPointerTy())
2299         return;
2300       setDoesNotThrow(F);
2301       setDoesNotAlias(F, 0);
2302       setDoesNotCapture(F, 1);
2303       setDoesNotCapture(F, 2);
2304     } else if (Name == "\1fseeko64" ||
2305                Name == "\1ftello64") {
2306       if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy())
2307         return;
2308       setDoesNotThrow(F);
2309       setDoesNotCapture(F, 1);
2310     } else if (Name == "\1tmpfile64") {
2311       if (!FTy->getReturnType()->isPointerTy())
2312         return;
2313       setDoesNotThrow(F);
2314       setDoesNotAlias(F, 0);
2315     } else if (Name == "\1fstat64" ||
2316                Name == "\1fstatvfs64") {
2317       if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy())
2318         return;
2319       setDoesNotThrow(F);
2320       setDoesNotCapture(F, 2);
2321     } else if (Name == "\1open64") {
2322       if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy())
2323         return;
2324       // May throw; "open" is a valid pthread cancellation point.
2325       setDoesNotCapture(F, 1);
2326     }
2327     break;
2328   }
2329 }
2330
2331 /// doInitialization - Add attributes to well-known functions.
2332 ///
2333 bool SimplifyLibCalls::doInitialization(Module &M) {
2334   Modified = false;
2335   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
2336     Function &F = *I;
2337     if (F.isDeclaration() && F.hasName())
2338       inferPrototypeAttributes(F);
2339   }
2340   return Modified;
2341 }
2342
2343 // TODO:
2344 //   Additional cases that we need to add to this file:
2345 //
2346 // cbrt:
2347 //   * cbrt(expN(X))  -> expN(x/3)
2348 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2349 //   * cbrt(sqrt(x))  -> pow(x,1/9)
2350 //
2351 // cos, cosf, cosl:
2352 //   * cos(-x)  -> cos(x)
2353 //
2354 // exp, expf, expl:
2355 //   * exp(log(x))  -> x
2356 //
2357 // log, logf, logl:
2358 //   * log(exp(x))   -> x
2359 //   * log(x**y)     -> y*log(x)
2360 //   * log(exp(y))   -> y*log(e)
2361 //   * log(exp2(y))  -> y*log(2)
2362 //   * log(exp10(y)) -> y*log(10)
2363 //   * log(sqrt(x))  -> 0.5*log(x)
2364 //   * log(pow(x,y)) -> y*log(x)
2365 //
2366 // lround, lroundf, lroundl:
2367 //   * lround(cnst) -> cnst'
2368 //
2369 // pow, powf, powl:
2370 //   * pow(exp(x),y)  -> exp(x*y)
2371 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2372 //   * pow(pow(x,y),z)-> pow(x,y*z)
2373 //
2374 // round, roundf, roundl:
2375 //   * round(cnst) -> cnst'
2376 //
2377 // signbit:
2378 //   * signbit(cnst) -> cnst'
2379 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2380 //
2381 // sqrt, sqrtf, sqrtl:
2382 //   * sqrt(expN(x))  -> expN(x*0.5)
2383 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2384 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2385 //
2386 // stpcpy:
2387 //   * stpcpy(str, "literal") ->
2388 //           llvm.memcpy(str,"literal",strlen("literal")+1,1)
2389 //
2390 // tan, tanf, tanl:
2391 //   * tan(atan(x)) -> x
2392 //
2393 // trunc, truncf, truncl:
2394 //   * trunc(cnst) -> cnst'
2395 //
2396 //