]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Transforms / Utils / AddrModeMatcher.cpp
1 //===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements target addressing mode matcher class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
15 #include "llvm/DerivedTypes.h"
16 #include "llvm/GlobalValue.h"
17 #include "llvm/Instruction.h"
18 #include "llvm/Assembly/Writer.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/GetElementPtrTypeIterator.h"
22 #include "llvm/Support/PatternMatch.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Support/CallSite.h"
25
26 using namespace llvm;
27 using namespace llvm::PatternMatch;
28
29 void ExtAddrMode::print(raw_ostream &OS) const {
30   bool NeedPlus = false;
31   OS << "[";
32   if (BaseGV) {
33     OS << (NeedPlus ? " + " : "")
34        << "GV:";
35     WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
36     NeedPlus = true;
37   }
38
39   if (BaseOffs)
40     OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
41
42   if (BaseReg) {
43     OS << (NeedPlus ? " + " : "")
44        << "Base:";
45     WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
46     NeedPlus = true;
47   }
48   if (Scale) {
49     OS << (NeedPlus ? " + " : "")
50        << Scale << "*";
51     WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
52     NeedPlus = true;
53   }
54
55   OS << ']';
56 }
57
58 void ExtAddrMode::dump() const {
59   print(dbgs());
60   dbgs() << '\n';
61 }
62
63
64 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
65 /// Return true and update AddrMode if this addr mode is legal for the target,
66 /// false if not.
67 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
68                                              unsigned Depth) {
69   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
70   // mode.  Just process that directly.
71   if (Scale == 1)
72     return MatchAddr(ScaleReg, Depth);
73   
74   // If the scale is 0, it takes nothing to add this.
75   if (Scale == 0)
76     return true;
77   
78   // If we already have a scale of this value, we can add to it, otherwise, we
79   // need an available scale field.
80   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
81     return false;
82
83   ExtAddrMode TestAddrMode = AddrMode;
84
85   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
86   // [A+B + A*7] -> [B+A*8].
87   TestAddrMode.Scale += Scale;
88   TestAddrMode.ScaledReg = ScaleReg;
89
90   // If the new address isn't legal, bail out.
91   if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
92     return false;
93
94   // It was legal, so commit it.
95   AddrMode = TestAddrMode;
96   
97   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
98   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
99   // X*Scale + C*Scale to addr mode.
100   ConstantInt *CI = 0; Value *AddLHS = 0;
101   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
102       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
103     TestAddrMode.ScaledReg = AddLHS;
104     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
105       
106     // If this addressing mode is legal, commit it and remember that we folded
107     // this instruction.
108     if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
109       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
110       AddrMode = TestAddrMode;
111       return true;
112     }
113   }
114
115   // Otherwise, not (x+c)*scale, just return what we have.
116   return true;
117 }
118
119 /// MightBeFoldableInst - This is a little filter, which returns true if an
120 /// addressing computation involving I might be folded into a load/store
121 /// accessing it.  This doesn't need to be perfect, but needs to accept at least
122 /// the set of instructions that MatchOperationAddr can.
123 static bool MightBeFoldableInst(Instruction *I) {
124   switch (I->getOpcode()) {
125   case Instruction::BitCast:
126     // Don't touch identity bitcasts.
127     if (I->getType() == I->getOperand(0)->getType())
128       return false;
129     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
130   case Instruction::PtrToInt:
131     // PtrToInt is always a noop, as we know that the int type is pointer sized.
132     return true;
133   case Instruction::IntToPtr:
134     // We know the input is intptr_t, so this is foldable.
135     return true;
136   case Instruction::Add:
137     return true;
138   case Instruction::Mul:
139   case Instruction::Shl:
140     // Can only handle X*C and X << C.
141     return isa<ConstantInt>(I->getOperand(1));
142   case Instruction::GetElementPtr:
143     return true;
144   default:
145     return false;
146   }
147 }
148
149
150 /// MatchOperationAddr - Given an instruction or constant expr, see if we can
151 /// fold the operation into the addressing mode.  If so, update the addressing
152 /// mode and return true, otherwise return false without modifying AddrMode.
153 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
154                                                unsigned Depth) {
155   // Avoid exponential behavior on extremely deep expression trees.
156   if (Depth >= 5) return false;
157   
158   switch (Opcode) {
159   case Instruction::PtrToInt:
160     // PtrToInt is always a noop, as we know that the int type is pointer sized.
161     return MatchAddr(AddrInst->getOperand(0), Depth);
162   case Instruction::IntToPtr:
163     // This inttoptr is a no-op if the integer type is pointer sized.
164     if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
165         TLI.getPointerTy())
166       return MatchAddr(AddrInst->getOperand(0), Depth);
167     return false;
168   case Instruction::BitCast:
169     // BitCast is always a noop, and we can handle it as long as it is
170     // int->int or pointer->pointer (we don't want int<->fp or something).
171     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
172          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
173         // Don't touch identity bitcasts.  These were probably put here by LSR,
174         // and we don't want to mess around with them.  Assume it knows what it
175         // is doing.
176         AddrInst->getOperand(0)->getType() != AddrInst->getType())
177       return MatchAddr(AddrInst->getOperand(0), Depth);
178     return false;
179   case Instruction::Add: {
180     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
181     ExtAddrMode BackupAddrMode = AddrMode;
182     unsigned OldSize = AddrModeInsts.size();
183     if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
184         MatchAddr(AddrInst->getOperand(0), Depth+1))
185       return true;
186     
187     // Restore the old addr mode info.
188     AddrMode = BackupAddrMode;
189     AddrModeInsts.resize(OldSize);
190     
191     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
192     if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
193         MatchAddr(AddrInst->getOperand(1), Depth+1))
194       return true;
195     
196     // Otherwise we definitely can't merge the ADD in.
197     AddrMode = BackupAddrMode;
198     AddrModeInsts.resize(OldSize);
199     break;
200   }
201   //case Instruction::Or:
202   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
203   //break;
204   case Instruction::Mul:
205   case Instruction::Shl: {
206     // Can only handle X*C and X << C.
207     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
208     if (!RHS) return false;
209     int64_t Scale = RHS->getSExtValue();
210     if (Opcode == Instruction::Shl)
211       Scale = 1LL << Scale;
212     
213     return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
214   }
215   case Instruction::GetElementPtr: {
216     // Scan the GEP.  We check it if it contains constant offsets and at most
217     // one variable offset.
218     int VariableOperand = -1;
219     unsigned VariableScale = 0;
220     
221     int64_t ConstantOffset = 0;
222     const TargetData *TD = TLI.getTargetData();
223     gep_type_iterator GTI = gep_type_begin(AddrInst);
224     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
225       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
226         const StructLayout *SL = TD->getStructLayout(STy);
227         unsigned Idx =
228           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
229         ConstantOffset += SL->getElementOffset(Idx);
230       } else {
231         uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
232         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
233           ConstantOffset += CI->getSExtValue()*TypeSize;
234         } else if (TypeSize) {  // Scales of zero don't do anything.
235           // We only allow one variable index at the moment.
236           if (VariableOperand != -1)
237             return false;
238           
239           // Remember the variable index.
240           VariableOperand = i;
241           VariableScale = TypeSize;
242         }
243       }
244     }
245     
246     // A common case is for the GEP to only do a constant offset.  In this case,
247     // just add it to the disp field and check validity.
248     if (VariableOperand == -1) {
249       AddrMode.BaseOffs += ConstantOffset;
250       if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
251         // Check to see if we can fold the base pointer in too.
252         if (MatchAddr(AddrInst->getOperand(0), Depth+1))
253           return true;
254       }
255       AddrMode.BaseOffs -= ConstantOffset;
256       return false;
257     }
258
259     // Save the valid addressing mode in case we can't match.
260     ExtAddrMode BackupAddrMode = AddrMode;
261     unsigned OldSize = AddrModeInsts.size();
262
263     // See if the scale and offset amount is valid for this target.
264     AddrMode.BaseOffs += ConstantOffset;
265
266     // Match the base operand of the GEP.
267     if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
268       // If it couldn't be matched, just stuff the value in a register.
269       if (AddrMode.HasBaseReg) {
270         AddrMode = BackupAddrMode;
271         AddrModeInsts.resize(OldSize);
272         return false;
273       }
274       AddrMode.HasBaseReg = true;
275       AddrMode.BaseReg = AddrInst->getOperand(0);
276     }
277
278     // Match the remaining variable portion of the GEP.
279     if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
280                           Depth)) {
281       // If it couldn't be matched, try stuffing the base into a register
282       // instead of matching it, and retrying the match of the scale.
283       AddrMode = BackupAddrMode;
284       AddrModeInsts.resize(OldSize);
285       if (AddrMode.HasBaseReg)
286         return false;
287       AddrMode.HasBaseReg = true;
288       AddrMode.BaseReg = AddrInst->getOperand(0);
289       AddrMode.BaseOffs += ConstantOffset;
290       if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
291                             VariableScale, Depth)) {
292         // If even that didn't work, bail.
293         AddrMode = BackupAddrMode;
294         AddrModeInsts.resize(OldSize);
295         return false;
296       }
297     }
298
299     return true;
300   }
301   }
302   return false;
303 }
304
305 /// MatchAddr - If we can, try to add the value of 'Addr' into the current
306 /// addressing mode.  If Addr can't be added to AddrMode this returns false and
307 /// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
308 /// or intptr_t for the target.
309 ///
310 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
311   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
312     // Fold in immediates if legal for the target.
313     AddrMode.BaseOffs += CI->getSExtValue();
314     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
315       return true;
316     AddrMode.BaseOffs -= CI->getSExtValue();
317   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
318     // If this is a global variable, try to fold it into the addressing mode.
319     if (AddrMode.BaseGV == 0) {
320       AddrMode.BaseGV = GV;
321       if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
322         return true;
323       AddrMode.BaseGV = 0;
324     }
325   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
326     ExtAddrMode BackupAddrMode = AddrMode;
327     unsigned OldSize = AddrModeInsts.size();
328
329     // Check to see if it is possible to fold this operation.
330     if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
331       // Okay, it's possible to fold this.  Check to see if it is actually
332       // *profitable* to do so.  We use a simple cost model to avoid increasing
333       // register pressure too much.
334       if (I->hasOneUse() ||
335           IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
336         AddrModeInsts.push_back(I);
337         return true;
338       }
339       
340       // It isn't profitable to do this, roll back.
341       //cerr << "NOT FOLDING: " << *I;
342       AddrMode = BackupAddrMode;
343       AddrModeInsts.resize(OldSize);
344     }
345   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
346     if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
347       return true;
348   } else if (isa<ConstantPointerNull>(Addr)) {
349     // Null pointer gets folded without affecting the addressing mode.
350     return true;
351   }
352
353   // Worse case, the target should support [reg] addressing modes. :)
354   if (!AddrMode.HasBaseReg) {
355     AddrMode.HasBaseReg = true;
356     AddrMode.BaseReg = Addr;
357     // Still check for legality in case the target supports [imm] but not [i+r].
358     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
359       return true;
360     AddrMode.HasBaseReg = false;
361     AddrMode.BaseReg = 0;
362   }
363
364   // If the base register is already taken, see if we can do [r+r].
365   if (AddrMode.Scale == 0) {
366     AddrMode.Scale = 1;
367     AddrMode.ScaledReg = Addr;
368     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
369       return true;
370     AddrMode.Scale = 0;
371     AddrMode.ScaledReg = 0;
372   }
373   // Couldn't match.
374   return false;
375 }
376
377
378 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
379 /// inline asm call are due to memory operands.  If so, return true, otherwise
380 /// return false.
381 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
382                                     const TargetLowering &TLI) {
383   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
384   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
385     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
386     
387     // Compute the constraint code and ConstraintType to use.
388     TLI.ComputeConstraintToUse(OpInfo, SDValue());
389
390     // If this asm operand is our Value*, and if it isn't an indirect memory
391     // operand, we can't fold it!
392     if (OpInfo.CallOperandVal == OpVal &&
393         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
394          !OpInfo.isIndirect))
395       return false;
396   }
397
398   return true;
399 }
400
401
402 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
403 /// memory use.  If we find an obviously non-foldable instruction, return true.
404 /// Add the ultimately found memory instructions to MemoryUses.
405 static bool FindAllMemoryUses(Instruction *I,
406                 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
407                               SmallPtrSet<Instruction*, 16> &ConsideredInsts,
408                               const TargetLowering &TLI) {
409   // If we already considered this instruction, we're done.
410   if (!ConsideredInsts.insert(I))
411     return false;
412   
413   // If this is an obviously unfoldable instruction, bail out.
414   if (!MightBeFoldableInst(I))
415     return true;
416
417   // Loop over all the uses, recursively processing them.
418   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
419        UI != E; ++UI) {
420     User *U = *UI;
421
422     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
423       MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
424       continue;
425     }
426     
427     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
428       unsigned opNo = UI.getOperandNo();
429       if (opNo == 0) return true; // Storing addr, not into addr.
430       MemoryUses.push_back(std::make_pair(SI, opNo));
431       continue;
432     }
433     
434     if (CallInst *CI = dyn_cast<CallInst>(U)) {
435       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
436       if (!IA) return true;
437       
438       // If this is a memory operand, we're cool, otherwise bail out.
439       if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
440         return true;
441       continue;
442     }
443     
444     if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
445                           TLI))
446       return true;
447   }
448
449   return false;
450 }
451
452
453 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
454 /// the use site that we're folding it into.  If so, there is no cost to
455 /// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
456 /// that we know are live at the instruction already.
457 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
458                                                    Value *KnownLive2) {
459   // If Val is either of the known-live values, we know it is live!
460   if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
461     return true;
462   
463   // All values other than instructions and arguments (e.g. constants) are live.
464   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
465   
466   // If Val is a constant sized alloca in the entry block, it is live, this is
467   // true because it is just a reference to the stack/frame pointer, which is
468   // live for the whole function.
469   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
470     if (AI->isStaticAlloca())
471       return true;
472   
473   // Check to see if this value is already used in the memory instruction's
474   // block.  If so, it's already live into the block at the very least, so we
475   // can reasonably fold it.
476   BasicBlock *MemBB = MemoryInst->getParent();
477   for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
478        UI != E; ++UI)
479     // We know that uses of arguments and instructions have to be instructions.
480     if (cast<Instruction>(*UI)->getParent() == MemBB)
481       return true;
482   
483   return false;
484 }
485
486
487
488 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
489 /// mode of the machine to fold the specified instruction into a load or store
490 /// that ultimately uses it.  However, the specified instruction has multiple
491 /// uses.  Given this, it may actually increase register pressure to fold it
492 /// into the load.  For example, consider this code:
493 ///
494 ///     X = ...
495 ///     Y = X+1
496 ///     use(Y)   -> nonload/store
497 ///     Z = Y+1
498 ///     load Z
499 ///
500 /// In this case, Y has multiple uses, and can be folded into the load of Z
501 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
502 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
503 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
504 /// number of computations either.
505 ///
506 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
507 /// X was live across 'load Z' for other reasons, we actually *would* want to
508 /// fold the addressing mode in the Z case.  This would make Y die earlier.
509 bool AddressingModeMatcher::
510 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
511                                      ExtAddrMode &AMAfter) {
512   if (IgnoreProfitability) return true;
513   
514   // AMBefore is the addressing mode before this instruction was folded into it,
515   // and AMAfter is the addressing mode after the instruction was folded.  Get
516   // the set of registers referenced by AMAfter and subtract out those
517   // referenced by AMBefore: this is the set of values which folding in this
518   // address extends the lifetime of.
519   //
520   // Note that there are only two potential values being referenced here,
521   // BaseReg and ScaleReg (global addresses are always available, as are any
522   // folded immediates).
523   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
524   
525   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
526   // lifetime wasn't extended by adding this instruction.
527   if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
528     BaseReg = 0;
529   if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
530     ScaledReg = 0;
531
532   // If folding this instruction (and it's subexprs) didn't extend any live
533   // ranges, we're ok with it.
534   if (BaseReg == 0 && ScaledReg == 0)
535     return true;
536
537   // If all uses of this instruction are ultimately load/store/inlineasm's,
538   // check to see if their addressing modes will include this instruction.  If
539   // so, we can fold it into all uses, so it doesn't matter if it has multiple
540   // uses.
541   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
542   SmallPtrSet<Instruction*, 16> ConsideredInsts;
543   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
544     return false;  // Has a non-memory, non-foldable use!
545   
546   // Now that we know that all uses of this instruction are part of a chain of
547   // computation involving only operations that could theoretically be folded
548   // into a memory use, loop over each of these uses and see if they could
549   // *actually* fold the instruction.
550   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
551   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
552     Instruction *User = MemoryUses[i].first;
553     unsigned OpNo = MemoryUses[i].second;
554     
555     // Get the access type of this use.  If the use isn't a pointer, we don't
556     // know what it accesses.
557     Value *Address = User->getOperand(OpNo);
558     if (!Address->getType()->isPointerTy())
559       return false;
560     Type *AddressAccessTy =
561       cast<PointerType>(Address->getType())->getElementType();
562     
563     // Do a match against the root of this address, ignoring profitability. This
564     // will tell us if the addressing mode for the memory operation will
565     // *actually* cover the shared instruction.
566     ExtAddrMode Result;
567     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
568                                   MemoryInst, Result);
569     Matcher.IgnoreProfitability = true;
570     bool Success = Matcher.MatchAddr(Address, 0);
571     (void)Success; assert(Success && "Couldn't select *anything*?");
572
573     // If the match didn't cover I, then it won't be shared by it.
574     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
575                   I) == MatchedAddrModeInsts.end())
576       return false;
577     
578     MatchedAddrModeInsts.clear();
579   }
580   
581   return true;
582 }