]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Transforms / Utils / SSAUpdater.cpp
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "ssaupdater"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Support/AlignOf.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Transforms/Utils/SSAUpdater.h"
29 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
30
31 using namespace llvm;
32
33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
34 static AvailableValsTy &getAvailableVals(void *AV) {
35   return *static_cast<AvailableValsTy*>(AV);
36 }
37
38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
39   : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
40
41 SSAUpdater::~SSAUpdater() {
42   delete &getAvailableVals(AV);
43 }
44
45 /// Initialize - Reset this object to get ready for a new set of SSA
46 /// updates with type 'Ty'.  PHI nodes get a name based on 'Name'.
47 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
48   if (AV == 0)
49     AV = new AvailableValsTy();
50   else
51     getAvailableVals(AV).clear();
52   ProtoType = Ty;
53   ProtoName = Name;
54 }
55
56 /// HasValueForBlock - Return true if the SSAUpdater already has a value for
57 /// the specified block.
58 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
59   return getAvailableVals(AV).count(BB);
60 }
61
62 /// AddAvailableValue - Indicate that a rewritten value is available in the
63 /// specified block with the specified value.
64 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
65   assert(ProtoType != 0 && "Need to initialize SSAUpdater");
66   assert(ProtoType == V->getType() &&
67          "All rewritten values must have the same type");
68   getAvailableVals(AV)[BB] = V;
69 }
70
71 /// IsEquivalentPHI - Check if PHI has the same incoming value as specified
72 /// in ValueMapping for each predecessor block.
73 static bool IsEquivalentPHI(PHINode *PHI,
74                             DenseMap<BasicBlock*, Value*> &ValueMapping) {
75   unsigned PHINumValues = PHI->getNumIncomingValues();
76   if (PHINumValues != ValueMapping.size())
77     return false;
78
79   // Scan the phi to see if it matches.
80   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
81     if (ValueMapping[PHI->getIncomingBlock(i)] !=
82         PHI->getIncomingValue(i)) {
83       return false;
84     }
85
86   return true;
87 }
88
89 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
90 /// live at the end of the specified block.
91 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
92   Value *Res = GetValueAtEndOfBlockInternal(BB);
93   return Res;
94 }
95
96 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
97 /// is live in the middle of the specified block.
98 ///
99 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
100 /// important case: if there is a definition of the rewritten value after the
101 /// 'use' in BB.  Consider code like this:
102 ///
103 ///      X1 = ...
104 ///   SomeBB:
105 ///      use(X)
106 ///      X2 = ...
107 ///      br Cond, SomeBB, OutBB
108 ///
109 /// In this case, there are two values (X1 and X2) added to the AvailableVals
110 /// set by the client of the rewriter, and those values are both live out of
111 /// their respective blocks.  However, the use of X happens in the *middle* of
112 /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
113 /// merge the appropriate values, and this value isn't live out of the block.
114 ///
115 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
116   // If there is no definition of the renamed variable in this block, just use
117   // GetValueAtEndOfBlock to do our work.
118   if (!HasValueForBlock(BB))
119     return GetValueAtEndOfBlock(BB);
120
121   // Otherwise, we have the hard case.  Get the live-in values for each
122   // predecessor.
123   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
124   Value *SingularValue = 0;
125
126   // We can get our predecessor info by walking the pred_iterator list, but it
127   // is relatively slow.  If we already have PHI nodes in this block, walk one
128   // of them to get the predecessor list instead.
129   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
130     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
131       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
132       Value *PredVal = GetValueAtEndOfBlock(PredBB);
133       PredValues.push_back(std::make_pair(PredBB, PredVal));
134
135       // Compute SingularValue.
136       if (i == 0)
137         SingularValue = PredVal;
138       else if (PredVal != SingularValue)
139         SingularValue = 0;
140     }
141   } else {
142     bool isFirstPred = true;
143     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
144       BasicBlock *PredBB = *PI;
145       Value *PredVal = GetValueAtEndOfBlock(PredBB);
146       PredValues.push_back(std::make_pair(PredBB, PredVal));
147
148       // Compute SingularValue.
149       if (isFirstPred) {
150         SingularValue = PredVal;
151         isFirstPred = false;
152       } else if (PredVal != SingularValue)
153         SingularValue = 0;
154     }
155   }
156
157   // If there are no predecessors, just return undef.
158   if (PredValues.empty())
159     return UndefValue::get(ProtoType);
160
161   // Otherwise, if all the merged values are the same, just use it.
162   if (SingularValue != 0)
163     return SingularValue;
164
165   // Otherwise, we do need a PHI: check to see if we already have one available
166   // in this block that produces the right value.
167   if (isa<PHINode>(BB->begin())) {
168     DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
169                                                PredValues.end());
170     PHINode *SomePHI;
171     for (BasicBlock::iterator It = BB->begin();
172          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
173       if (IsEquivalentPHI(SomePHI, ValueMapping))
174         return SomePHI;
175     }
176   }
177
178   // Ok, we have no way out, insert a new one now.
179   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
180                                          ProtoName, &BB->front());
181
182   // Fill in all the predecessors of the PHI.
183   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
184     InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
185
186   // See if the PHI node can be merged to a single value.  This can happen in
187   // loop cases when we get a PHI of itself and one other value.
188   if (Value *V = SimplifyInstruction(InsertedPHI)) {
189     InsertedPHI->eraseFromParent();
190     return V;
191   }
192
193   // Set DebugLoc.
194   InsertedPHI->setDebugLoc(GetFirstDebugLocInBasicBlock(BB));
195
196   // If the client wants to know about all new instructions, tell it.
197   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
198
199   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
200   return InsertedPHI;
201 }
202
203 /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
204 /// which use their value in the corresponding predecessor.
205 void SSAUpdater::RewriteUse(Use &U) {
206   Instruction *User = cast<Instruction>(U.getUser());
207
208   Value *V;
209   if (PHINode *UserPN = dyn_cast<PHINode>(User))
210     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
211   else
212     V = GetValueInMiddleOfBlock(User->getParent());
213
214   U.set(V);
215 }
216
217 /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse.  However,
218 /// this version of the method can rewrite uses in the same block as a
219 /// definition, because it assumes that all uses of a value are below any
220 /// inserted values.
221 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
222   Instruction *User = cast<Instruction>(U.getUser());
223   
224   Value *V;
225   if (PHINode *UserPN = dyn_cast<PHINode>(User))
226     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
227   else
228     V = GetValueAtEndOfBlock(User->getParent());
229   
230   U.set(V);
231 }
232
233 /// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
234 /// in the SSAUpdaterImpl template.
235 namespace {
236   class PHIiter {
237   private:
238     PHINode *PHI;
239     unsigned idx;
240
241   public:
242     explicit PHIiter(PHINode *P) // begin iterator
243       : PHI(P), idx(0) {}
244     PHIiter(PHINode *P, bool) // end iterator
245       : PHI(P), idx(PHI->getNumIncomingValues()) {}
246
247     PHIiter &operator++() { ++idx; return *this; } 
248     bool operator==(const PHIiter& x) const { return idx == x.idx; }
249     bool operator!=(const PHIiter& x) const { return !operator==(x); }
250     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
251     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
252   };
253 }
254
255 /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
256 /// specialized for SSAUpdater.
257 namespace llvm {
258 template<>
259 class SSAUpdaterTraits<SSAUpdater> {
260 public:
261   typedef BasicBlock BlkT;
262   typedef Value *ValT;
263   typedef PHINode PhiT;
264
265   typedef succ_iterator BlkSucc_iterator;
266   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
267   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
268
269   typedef PHIiter PHI_iterator;
270   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
271   static inline PHI_iterator PHI_end(PhiT *PHI) {
272     return PHI_iterator(PHI, true);
273   }
274
275   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
276   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
277   static void FindPredecessorBlocks(BasicBlock *BB,
278                                     SmallVectorImpl<BasicBlock*> *Preds) {
279     // We can get our predecessor info by walking the pred_iterator list,
280     // but it is relatively slow.  If we already have PHI nodes in this
281     // block, walk one of them to get the predecessor list instead.
282     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
283       for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
284         Preds->push_back(SomePhi->getIncomingBlock(PI));
285     } else {
286       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
287         Preds->push_back(*PI);
288     }
289   }
290
291   /// GetUndefVal - Get an undefined value of the same type as the value
292   /// being handled.
293   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
294     return UndefValue::get(Updater->ProtoType);
295   }
296
297   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
298   /// Reserve space for the operands but do not fill them in yet.
299   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
300                                SSAUpdater *Updater) {
301     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
302                                    Updater->ProtoName, &BB->front());
303     return PHI;
304   }
305
306   /// AddPHIOperand - Add the specified value as an operand of the PHI for
307   /// the specified predecessor block.
308   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
309     PHI->addIncoming(Val, Pred);
310   }
311
312   /// InstrIsPHI - Check if an instruction is a PHI.
313   ///
314   static PHINode *InstrIsPHI(Instruction *I) {
315     return dyn_cast<PHINode>(I);
316   }
317
318   /// ValueIsPHI - Check if a value is a PHI.
319   ///
320   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
321     return dyn_cast<PHINode>(Val);
322   }
323
324   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
325   /// operands, i.e., it was just added.
326   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
327     PHINode *PHI = ValueIsPHI(Val, Updater);
328     if (PHI && PHI->getNumIncomingValues() == 0)
329       return PHI;
330     return 0;
331   }
332
333   /// GetPHIValue - For the specified PHI instruction, return the value
334   /// that it defines.
335   static Value *GetPHIValue(PHINode *PHI) {
336     return PHI;
337   }
338 };
339
340 } // End llvm namespace
341
342 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
343 /// for the specified BB and if so, return it.  If not, construct SSA form by
344 /// first calculating the required placement of PHIs and then inserting new
345 /// PHIs where needed.
346 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
347   AvailableValsTy &AvailableVals = getAvailableVals(AV);
348   if (Value *V = AvailableVals[BB])
349     return V;
350
351   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
352   return Impl.GetValue(BB);
353 }
354
355 //===----------------------------------------------------------------------===//
356 // LoadAndStorePromoter Implementation
357 //===----------------------------------------------------------------------===//
358
359 LoadAndStorePromoter::
360 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
361                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
362   if (Insts.empty()) return;
363   
364   Value *SomeVal;
365   if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
366     SomeVal = LI;
367   else
368     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
369
370   if (BaseName.empty())
371     BaseName = SomeVal->getName();
372   SSA.Initialize(SomeVal->getType(), BaseName);
373 }
374
375
376 void LoadAndStorePromoter::
377 run(const SmallVectorImpl<Instruction*> &Insts) const {
378   
379   // First step: bucket up uses of the alloca by the block they occur in.
380   // This is important because we have to handle multiple defs/uses in a block
381   // ourselves: SSAUpdater is purely for cross-block references.
382   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
383   
384   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
385     Instruction *User = Insts[i];
386     UsesByBlock[User->getParent()].push_back(User);
387   }
388   
389   // Okay, now we can iterate over all the blocks in the function with uses,
390   // processing them.  Keep track of which loads are loading a live-in value.
391   // Walk the uses in the use-list order to be determinstic.
392   SmallVector<LoadInst*, 32> LiveInLoads;
393   DenseMap<Value*, Value*> ReplacedLoads;
394   
395   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
396     Instruction *User = Insts[i];
397     BasicBlock *BB = User->getParent();
398     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
399     
400     // If this block has already been processed, ignore this repeat use.
401     if (BlockUses.empty()) continue;
402     
403     // Okay, this is the first use in the block.  If this block just has a
404     // single user in it, we can rewrite it trivially.
405     if (BlockUses.size() == 1) {
406       // If it is a store, it is a trivial def of the value in the block.
407       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
408         updateDebugInfo(SI);
409         SSA.AddAvailableValue(BB, SI->getOperand(0));
410       } else 
411         // Otherwise it is a load, queue it to rewrite as a live-in load.
412         LiveInLoads.push_back(cast<LoadInst>(User));
413       BlockUses.clear();
414       continue;
415     }
416     
417     // Otherwise, check to see if this block is all loads.
418     bool HasStore = false;
419     for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
420       if (isa<StoreInst>(BlockUses[i])) {
421         HasStore = true;
422         break;
423       }
424     }
425     
426     // If so, we can queue them all as live in loads.  We don't have an
427     // efficient way to tell which on is first in the block and don't want to
428     // scan large blocks, so just add all loads as live ins.
429     if (!HasStore) {
430       for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
431         LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
432       BlockUses.clear();
433       continue;
434     }
435     
436     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
437     // Since SSAUpdater is purely for cross-block values, we need to determine
438     // the order of these instructions in the block.  If the first use in the
439     // block is a load, then it uses the live in value.  The last store defines
440     // the live out value.  We handle this by doing a linear scan of the block.
441     Value *StoredValue = 0;
442     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
443       if (LoadInst *L = dyn_cast<LoadInst>(II)) {
444         // If this is a load from an unrelated pointer, ignore it.
445         if (!isInstInList(L, Insts)) continue;
446         
447         // If we haven't seen a store yet, this is a live in use, otherwise
448         // use the stored value.
449         if (StoredValue) {
450           replaceLoadWithValue(L, StoredValue);
451           L->replaceAllUsesWith(StoredValue);
452           ReplacedLoads[L] = StoredValue;
453         } else {
454           LiveInLoads.push_back(L);
455         }
456         continue;
457       }
458       
459       if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
460         // If this is a store to an unrelated pointer, ignore it.
461         if (!isInstInList(SI, Insts)) continue;
462         updateDebugInfo(SI);
463
464         // Remember that this is the active value in the block.
465         StoredValue = SI->getOperand(0);
466       }
467     }
468     
469     // The last stored value that happened is the live-out for the block.
470     assert(StoredValue && "Already checked that there is a store in block");
471     SSA.AddAvailableValue(BB, StoredValue);
472     BlockUses.clear();
473   }
474   
475   // Okay, now we rewrite all loads that use live-in values in the loop,
476   // inserting PHI nodes as necessary.
477   for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
478     LoadInst *ALoad = LiveInLoads[i];
479     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
480     replaceLoadWithValue(ALoad, NewVal);
481
482     // Avoid assertions in unreachable code.
483     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
484     ALoad->replaceAllUsesWith(NewVal);
485     ReplacedLoads[ALoad] = NewVal;
486   }
487   
488   // Allow the client to do stuff before we start nuking things.
489   doExtraRewritesBeforeFinalDeletion();
490   
491   // Now that everything is rewritten, delete the old instructions from the
492   // function.  They should all be dead now.
493   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
494     Instruction *User = Insts[i];
495     
496     // If this is a load that still has uses, then the load must have been added
497     // as a live value in the SSAUpdate data structure for a block (e.g. because
498     // the loaded value was stored later).  In this case, we need to recursively
499     // propagate the updates until we get to the real value.
500     if (!User->use_empty()) {
501       Value *NewVal = ReplacedLoads[User];
502       assert(NewVal && "not a replaced load?");
503       
504       // Propagate down to the ultimate replacee.  The intermediately loads
505       // could theoretically already have been deleted, so we don't want to
506       // dereference the Value*'s.
507       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
508       while (RLI != ReplacedLoads.end()) {
509         NewVal = RLI->second;
510         RLI = ReplacedLoads.find(NewVal);
511       }
512       
513       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
514       User->replaceAllUsesWith(NewVal);
515     }
516     
517     instructionDeleted(User);
518     User->eraseFromParent();
519   }
520 }