]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / Transforms / Utils / SimplifyCFG.cpp
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ConstantRange.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/IRBuilder.h"
36 #include "llvm/Support/NoFolder.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <set>
40 #include <map>
41 using namespace llvm;
42
43 static cl::opt<unsigned>
44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
45    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
46
47 static cl::opt<bool>
48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
49        cl::desc("Duplicate return instructions into unconditional branches"));
50
51 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
52
53 namespace {
54 class SimplifyCFGOpt {
55   const TargetData *const TD;
56
57   Value *isValueEqualityComparison(TerminatorInst *TI);
58   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
59     std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
60   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
61                                                      BasicBlock *Pred,
62                                                      IRBuilder<> &Builder);
63   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
64                                            IRBuilder<> &Builder);
65
66   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
67   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
68   bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
69   bool SimplifyUnreachable(UnreachableInst *UI);
70   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
71   bool SimplifyIndirectBr(IndirectBrInst *IBI);
72   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
73   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
74
75 public:
76   explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
77   bool run(BasicBlock *BB);
78 };
79 }
80
81 /// SafeToMergeTerminators - Return true if it is safe to merge these two
82 /// terminator instructions together.
83 ///
84 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
85   if (SI1 == SI2) return false;  // Can't merge with self!
86   
87   // It is not safe to merge these two switch instructions if they have a common
88   // successor, and if that successor has a PHI node, and if *that* PHI node has
89   // conflicting incoming values from the two switch blocks.
90   BasicBlock *SI1BB = SI1->getParent();
91   BasicBlock *SI2BB = SI2->getParent();
92   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
93   
94   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
95     if (SI1Succs.count(*I))
96       for (BasicBlock::iterator BBI = (*I)->begin();
97            isa<PHINode>(BBI); ++BBI) {
98         PHINode *PN = cast<PHINode>(BBI);
99         if (PN->getIncomingValueForBlock(SI1BB) !=
100             PN->getIncomingValueForBlock(SI2BB))
101           return false;
102       }
103         
104   return true;
105 }
106
107 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
108 /// now be entries in it from the 'NewPred' block.  The values that will be
109 /// flowing into the PHI nodes will be the same as those coming in from
110 /// ExistPred, an existing predecessor of Succ.
111 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
112                                   BasicBlock *ExistPred) {
113   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
114   
115   PHINode *PN;
116   for (BasicBlock::iterator I = Succ->begin();
117        (PN = dyn_cast<PHINode>(I)); ++I)
118     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
119 }
120
121
122 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
123 /// least one PHI node in it), check to see if the merge at this block is due
124 /// to an "if condition".  If so, return the boolean condition that determines
125 /// which entry into BB will be taken.  Also, return by references the block
126 /// that will be entered from if the condition is true, and the block that will
127 /// be entered if the condition is false.
128 ///
129 /// This does no checking to see if the true/false blocks have large or unsavory
130 /// instructions in them.
131 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
132                              BasicBlock *&IfFalse) {
133   PHINode *SomePHI = cast<PHINode>(BB->begin());
134   assert(SomePHI->getNumIncomingValues() == 2 &&
135          "Function can only handle blocks with 2 predecessors!");
136   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
137   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
138
139   // We can only handle branches.  Other control flow will be lowered to
140   // branches if possible anyway.
141   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
142   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
143   if (Pred1Br == 0 || Pred2Br == 0)
144     return 0;
145
146   // Eliminate code duplication by ensuring that Pred1Br is conditional if
147   // either are.
148   if (Pred2Br->isConditional()) {
149     // If both branches are conditional, we don't have an "if statement".  In
150     // reality, we could transform this case, but since the condition will be
151     // required anyway, we stand no chance of eliminating it, so the xform is
152     // probably not profitable.
153     if (Pred1Br->isConditional())
154       return 0;
155
156     std::swap(Pred1, Pred2);
157     std::swap(Pred1Br, Pred2Br);
158   }
159
160   if (Pred1Br->isConditional()) {
161     // The only thing we have to watch out for here is to make sure that Pred2
162     // doesn't have incoming edges from other blocks.  If it does, the condition
163     // doesn't dominate BB.
164     if (Pred2->getSinglePredecessor() == 0)
165       return 0;
166     
167     // If we found a conditional branch predecessor, make sure that it branches
168     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
169     if (Pred1Br->getSuccessor(0) == BB &&
170         Pred1Br->getSuccessor(1) == Pred2) {
171       IfTrue = Pred1;
172       IfFalse = Pred2;
173     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
174                Pred1Br->getSuccessor(1) == BB) {
175       IfTrue = Pred2;
176       IfFalse = Pred1;
177     } else {
178       // We know that one arm of the conditional goes to BB, so the other must
179       // go somewhere unrelated, and this must not be an "if statement".
180       return 0;
181     }
182
183     return Pred1Br->getCondition();
184   }
185
186   // Ok, if we got here, both predecessors end with an unconditional branch to
187   // BB.  Don't panic!  If both blocks only have a single (identical)
188   // predecessor, and THAT is a conditional branch, then we're all ok!
189   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
190   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
191     return 0;
192
193   // Otherwise, if this is a conditional branch, then we can use it!
194   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
195   if (BI == 0) return 0;
196   
197   assert(BI->isConditional() && "Two successors but not conditional?");
198   if (BI->getSuccessor(0) == Pred1) {
199     IfTrue = Pred1;
200     IfFalse = Pred2;
201   } else {
202     IfTrue = Pred2;
203     IfFalse = Pred1;
204   }
205   return BI->getCondition();
206 }
207
208 /// DominatesMergePoint - If we have a merge point of an "if condition" as
209 /// accepted above, return true if the specified value dominates the block.  We
210 /// don't handle the true generality of domination here, just a special case
211 /// which works well enough for us.
212 ///
213 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
214 /// see if V (which must be an instruction) and its recursive operands
215 /// that do not dominate BB have a combined cost lower than CostRemaining and
216 /// are non-trapping.  If both are true, the instruction is inserted into the
217 /// set and true is returned.
218 ///
219 /// The cost for most non-trapping instructions is defined as 1 except for
220 /// Select whose cost is 2.
221 ///
222 /// After this function returns, CostRemaining is decreased by the cost of
223 /// V plus its non-dominating operands.  If that cost is greater than
224 /// CostRemaining, false is returned and CostRemaining is undefined.
225 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
226                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
227                                 unsigned &CostRemaining) {
228   Instruction *I = dyn_cast<Instruction>(V);
229   if (!I) {
230     // Non-instructions all dominate instructions, but not all constantexprs
231     // can be executed unconditionally.
232     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
233       if (C->canTrap())
234         return false;
235     return true;
236   }
237   BasicBlock *PBB = I->getParent();
238
239   // We don't want to allow weird loops that might have the "if condition" in
240   // the bottom of this block.
241   if (PBB == BB) return false;
242
243   // If this instruction is defined in a block that contains an unconditional
244   // branch to BB, then it must be in the 'conditional' part of the "if
245   // statement".  If not, it definitely dominates the region.
246   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
247   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
248     return true;
249
250   // If we aren't allowing aggressive promotion anymore, then don't consider
251   // instructions in the 'if region'.
252   if (AggressiveInsts == 0) return false;
253   
254   // If we have seen this instruction before, don't count it again.
255   if (AggressiveInsts->count(I)) return true;
256
257   // Okay, it looks like the instruction IS in the "condition".  Check to
258   // see if it's a cheap instruction to unconditionally compute, and if it
259   // only uses stuff defined outside of the condition.  If so, hoist it out.
260   if (!I->isSafeToSpeculativelyExecute())
261     return false;
262
263   unsigned Cost = 0;
264
265   switch (I->getOpcode()) {
266   default: return false;  // Cannot hoist this out safely.
267   case Instruction::Load:
268     // We have to check to make sure there are no instructions before the
269     // load in its basic block, as we are going to hoist the load out to its
270     // predecessor.
271     if (PBB->getFirstNonPHIOrDbg() != I)
272       return false;
273     Cost = 1;
274     break;
275   case Instruction::GetElementPtr:
276     // GEPs are cheap if all indices are constant.
277     if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
278       return false;
279     Cost = 1;
280     break;
281   case Instruction::Add:
282   case Instruction::Sub:
283   case Instruction::And:
284   case Instruction::Or:
285   case Instruction::Xor:
286   case Instruction::Shl:
287   case Instruction::LShr:
288   case Instruction::AShr:
289   case Instruction::ICmp:
290   case Instruction::Trunc:
291   case Instruction::ZExt:
292   case Instruction::SExt:
293     Cost = 1;
294     break;   // These are all cheap and non-trapping instructions.
295
296   case Instruction::Select:
297     Cost = 2;
298     break;
299   }
300
301   if (Cost > CostRemaining)
302     return false;
303
304   CostRemaining -= Cost;
305
306   // Okay, we can only really hoist these out if their operands do
307   // not take us over the cost threshold.
308   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
309     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
310       return false;
311   // Okay, it's safe to do this!  Remember this instruction.
312   AggressiveInsts->insert(I);
313   return true;
314 }
315
316 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
317 /// and PointerNullValue. Return NULL if value is not a constant int.
318 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
319   // Normal constant int.
320   ConstantInt *CI = dyn_cast<ConstantInt>(V);
321   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
322     return CI;
323
324   // This is some kind of pointer constant. Turn it into a pointer-sized
325   // ConstantInt if possible.
326   IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
327
328   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
329   if (isa<ConstantPointerNull>(V))
330     return ConstantInt::get(PtrTy, 0);
331
332   // IntToPtr const int.
333   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
334     if (CE->getOpcode() == Instruction::IntToPtr)
335       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
336         // The constant is very likely to have the right type already.
337         if (CI->getType() == PtrTy)
338           return CI;
339         else
340           return cast<ConstantInt>
341             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
342       }
343   return 0;
344 }
345
346 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
347 /// collection of icmp eq/ne instructions that compare a value against a
348 /// constant, return the value being compared, and stick the constant into the
349 /// Values vector.
350 static Value *
351 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
352                        const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
353   Instruction *I = dyn_cast<Instruction>(V);
354   if (I == 0) return 0;
355   
356   // If this is an icmp against a constant, handle this as one of the cases.
357   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
358     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
359       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
360         UsedICmps++;
361         Vals.push_back(C);
362         return I->getOperand(0);
363       }
364       
365       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
366       // the set.
367       ConstantRange Span =
368         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
369       
370       // If this is an and/!= check then we want to optimize "x ugt 2" into
371       // x != 0 && x != 1.
372       if (!isEQ)
373         Span = Span.inverse();
374       
375       // If there are a ton of values, we don't want to make a ginormous switch.
376       if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
377           // We don't handle wrapped sets yet.
378           Span.isWrappedSet())
379         return 0;
380       
381       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
382         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
383       UsedICmps++;
384       return I->getOperand(0);
385     }
386     return 0;
387   }
388   
389   // Otherwise, we can only handle an | or &, depending on isEQ.
390   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
391     return 0;
392   
393   unsigned NumValsBeforeLHS = Vals.size();
394   unsigned UsedICmpsBeforeLHS = UsedICmps;
395   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
396                                           isEQ, UsedICmps)) {
397     unsigned NumVals = Vals.size();
398     unsigned UsedICmpsBeforeRHS = UsedICmps;
399     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
400                                             isEQ, UsedICmps)) {
401       if (LHS == RHS)
402         return LHS;
403       Vals.resize(NumVals);
404       UsedICmps = UsedICmpsBeforeRHS;
405     }
406
407     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
408     // set it and return success.
409     if (Extra == 0 || Extra == I->getOperand(1)) {
410       Extra = I->getOperand(1);
411       return LHS;
412     }
413     
414     Vals.resize(NumValsBeforeLHS);
415     UsedICmps = UsedICmpsBeforeLHS;
416     return 0;
417   }
418   
419   // If the LHS can't be folded in, but Extra is available and RHS can, try to
420   // use LHS as Extra.
421   if (Extra == 0 || Extra == I->getOperand(0)) {
422     Value *OldExtra = Extra;
423     Extra = I->getOperand(0);
424     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
425                                             isEQ, UsedICmps))
426       return RHS;
427     assert(Vals.size() == NumValsBeforeLHS);
428     Extra = OldExtra;
429   }
430   
431   return 0;
432 }
433       
434 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
435   Instruction* Cond = 0;
436   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
437     Cond = dyn_cast<Instruction>(SI->getCondition());
438   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
439     if (BI->isConditional())
440       Cond = dyn_cast<Instruction>(BI->getCondition());
441   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
442     Cond = dyn_cast<Instruction>(IBI->getAddress());
443   }
444
445   TI->eraseFromParent();
446   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
447 }
448
449 /// isValueEqualityComparison - Return true if the specified terminator checks
450 /// to see if a value is equal to constant integer value.
451 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
452   Value *CV = 0;
453   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
454     // Do not permit merging of large switch instructions into their
455     // predecessors unless there is only one predecessor.
456     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
457                                              pred_end(SI->getParent())) <= 128)
458       CV = SI->getCondition();
459   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
460     if (BI->isConditional() && BI->getCondition()->hasOneUse())
461       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
462         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
463              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
464             GetConstantInt(ICI->getOperand(1), TD))
465           CV = ICI->getOperand(0);
466
467   // Unwrap any lossless ptrtoint cast.
468   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
469     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
470       CV = PTII->getOperand(0);
471   return CV;
472 }
473
474 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
475 /// decode all of the 'cases' that it represents and return the 'default' block.
476 BasicBlock *SimplifyCFGOpt::
477 GetValueEqualityComparisonCases(TerminatorInst *TI,
478                                 std::vector<std::pair<ConstantInt*,
479                                                       BasicBlock*> > &Cases) {
480   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
481     Cases.reserve(SI->getNumCases());
482     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
483       Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
484     return SI->getDefaultDest();
485   }
486
487   BranchInst *BI = cast<BranchInst>(TI);
488   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
489   Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
490                                  BI->getSuccessor(ICI->getPredicate() ==
491                                                   ICmpInst::ICMP_NE)));
492   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
493 }
494
495
496 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
497 /// in the list that match the specified block.
498 static void EliminateBlockCases(BasicBlock *BB,
499                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
500   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
501     if (Cases[i].second == BB) {
502       Cases.erase(Cases.begin()+i);
503       --i; --e;
504     }
505 }
506
507 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
508 /// well.
509 static bool
510 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
511               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
512   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
513
514   // Make V1 be smaller than V2.
515   if (V1->size() > V2->size())
516     std::swap(V1, V2);
517
518   if (V1->size() == 0) return false;
519   if (V1->size() == 1) {
520     // Just scan V2.
521     ConstantInt *TheVal = (*V1)[0].first;
522     for (unsigned i = 0, e = V2->size(); i != e; ++i)
523       if (TheVal == (*V2)[i].first)
524         return true;
525   }
526
527   // Otherwise, just sort both lists and compare element by element.
528   array_pod_sort(V1->begin(), V1->end());
529   array_pod_sort(V2->begin(), V2->end());
530   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
531   while (i1 != e1 && i2 != e2) {
532     if ((*V1)[i1].first == (*V2)[i2].first)
533       return true;
534     if ((*V1)[i1].first < (*V2)[i2].first)
535       ++i1;
536     else
537       ++i2;
538   }
539   return false;
540 }
541
542 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
543 /// terminator instruction and its block is known to only have a single
544 /// predecessor block, check to see if that predecessor is also a value
545 /// comparison with the same value, and if that comparison determines the
546 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
547 /// form of jump threading.
548 bool SimplifyCFGOpt::
549 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
550                                               BasicBlock *Pred,
551                                               IRBuilder<> &Builder) {
552   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
553   if (!PredVal) return false;  // Not a value comparison in predecessor.
554
555   Value *ThisVal = isValueEqualityComparison(TI);
556   assert(ThisVal && "This isn't a value comparison!!");
557   if (ThisVal != PredVal) return false;  // Different predicates.
558
559   // Find out information about when control will move from Pred to TI's block.
560   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
561   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
562                                                         PredCases);
563   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
564
565   // Find information about how control leaves this block.
566   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
567   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
568   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
569
570   // If TI's block is the default block from Pred's comparison, potentially
571   // simplify TI based on this knowledge.
572   if (PredDef == TI->getParent()) {
573     // If we are here, we know that the value is none of those cases listed in
574     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
575     // can simplify TI.
576     if (!ValuesOverlap(PredCases, ThisCases))
577       return false;
578     
579     if (isa<BranchInst>(TI)) {
580       // Okay, one of the successors of this condbr is dead.  Convert it to a
581       // uncond br.
582       assert(ThisCases.size() == 1 && "Branch can only have one case!");
583       // Insert the new branch.
584       Instruction *NI = Builder.CreateBr(ThisDef);
585       (void) NI;
586
587       // Remove PHI node entries for the dead edge.
588       ThisCases[0].second->removePredecessor(TI->getParent());
589
590       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
591            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
592
593       EraseTerminatorInstAndDCECond(TI);
594       return true;
595     }
596       
597     SwitchInst *SI = cast<SwitchInst>(TI);
598     // Okay, TI has cases that are statically dead, prune them away.
599     SmallPtrSet<Constant*, 16> DeadCases;
600     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
601       DeadCases.insert(PredCases[i].first);
602
603     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
604                  << "Through successor TI: " << *TI);
605
606     for (unsigned i = SI->getNumCases()-1; i != 0; --i)
607       if (DeadCases.count(SI->getCaseValue(i))) {
608         SI->getSuccessor(i)->removePredecessor(TI->getParent());
609         SI->removeCase(i);
610       }
611
612     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
613     return true;
614   }
615   
616   // Otherwise, TI's block must correspond to some matched value.  Find out
617   // which value (or set of values) this is.
618   ConstantInt *TIV = 0;
619   BasicBlock *TIBB = TI->getParent();
620   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
621     if (PredCases[i].second == TIBB) {
622       if (TIV != 0)
623         return false;  // Cannot handle multiple values coming to this block.
624       TIV = PredCases[i].first;
625     }
626   assert(TIV && "No edge from pred to succ?");
627
628   // Okay, we found the one constant that our value can be if we get into TI's
629   // BB.  Find out which successor will unconditionally be branched to.
630   BasicBlock *TheRealDest = 0;
631   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
632     if (ThisCases[i].first == TIV) {
633       TheRealDest = ThisCases[i].second;
634       break;
635     }
636
637   // If not handled by any explicit cases, it is handled by the default case.
638   if (TheRealDest == 0) TheRealDest = ThisDef;
639
640   // Remove PHI node entries for dead edges.
641   BasicBlock *CheckEdge = TheRealDest;
642   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
643     if (*SI != CheckEdge)
644       (*SI)->removePredecessor(TIBB);
645     else
646       CheckEdge = 0;
647
648   // Insert the new branch.
649   Instruction *NI = Builder.CreateBr(TheRealDest);
650   (void) NI;
651
652   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
653             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
654
655   EraseTerminatorInstAndDCECond(TI);
656   return true;
657 }
658
659 namespace {
660   /// ConstantIntOrdering - This class implements a stable ordering of constant
661   /// integers that does not depend on their address.  This is important for
662   /// applications that sort ConstantInt's to ensure uniqueness.
663   struct ConstantIntOrdering {
664     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
665       return LHS->getValue().ult(RHS->getValue());
666     }
667   };
668 }
669
670 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
671   const ConstantInt *LHS = *(const ConstantInt**)P1;
672   const ConstantInt *RHS = *(const ConstantInt**)P2;
673   if (LHS->getValue().ult(RHS->getValue()))
674     return 1;
675   if (LHS->getValue() == RHS->getValue())
676     return 0;
677   return -1;
678 }
679
680 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
681 /// equality comparison instruction (either a switch or a branch on "X == c").
682 /// See if any of the predecessors of the terminator block are value comparisons
683 /// on the same value.  If so, and if safe to do so, fold them together.
684 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
685                                                          IRBuilder<> &Builder) {
686   BasicBlock *BB = TI->getParent();
687   Value *CV = isValueEqualityComparison(TI);  // CondVal
688   assert(CV && "Not a comparison?");
689   bool Changed = false;
690
691   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
692   while (!Preds.empty()) {
693     BasicBlock *Pred = Preds.pop_back_val();
694
695     // See if the predecessor is a comparison with the same value.
696     TerminatorInst *PTI = Pred->getTerminator();
697     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
698
699     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
700       // Figure out which 'cases' to copy from SI to PSI.
701       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
702       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
703
704       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
705       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
706
707       // Based on whether the default edge from PTI goes to BB or not, fill in
708       // PredCases and PredDefault with the new switch cases we would like to
709       // build.
710       SmallVector<BasicBlock*, 8> NewSuccessors;
711
712       if (PredDefault == BB) {
713         // If this is the default destination from PTI, only the edges in TI
714         // that don't occur in PTI, or that branch to BB will be activated.
715         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
716         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
717           if (PredCases[i].second != BB)
718             PTIHandled.insert(PredCases[i].first);
719           else {
720             // The default destination is BB, we don't need explicit targets.
721             std::swap(PredCases[i], PredCases.back());
722             PredCases.pop_back();
723             --i; --e;
724           }
725
726         // Reconstruct the new switch statement we will be building.
727         if (PredDefault != BBDefault) {
728           PredDefault->removePredecessor(Pred);
729           PredDefault = BBDefault;
730           NewSuccessors.push_back(BBDefault);
731         }
732         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
733           if (!PTIHandled.count(BBCases[i].first) &&
734               BBCases[i].second != BBDefault) {
735             PredCases.push_back(BBCases[i]);
736             NewSuccessors.push_back(BBCases[i].second);
737           }
738
739       } else {
740         // If this is not the default destination from PSI, only the edges
741         // in SI that occur in PSI with a destination of BB will be
742         // activated.
743         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
744         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
745           if (PredCases[i].second == BB) {
746             PTIHandled.insert(PredCases[i].first);
747             std::swap(PredCases[i], PredCases.back());
748             PredCases.pop_back();
749             --i; --e;
750           }
751
752         // Okay, now we know which constants were sent to BB from the
753         // predecessor.  Figure out where they will all go now.
754         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
755           if (PTIHandled.count(BBCases[i].first)) {
756             // If this is one we are capable of getting...
757             PredCases.push_back(BBCases[i]);
758             NewSuccessors.push_back(BBCases[i].second);
759             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
760           }
761
762         // If there are any constants vectored to BB that TI doesn't handle,
763         // they must go to the default destination of TI.
764         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 
765                                     PTIHandled.begin(),
766                E = PTIHandled.end(); I != E; ++I) {
767           PredCases.push_back(std::make_pair(*I, BBDefault));
768           NewSuccessors.push_back(BBDefault);
769         }
770       }
771
772       // Okay, at this point, we know which new successor Pred will get.  Make
773       // sure we update the number of entries in the PHI nodes for these
774       // successors.
775       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
776         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
777
778       Builder.SetInsertPoint(PTI);
779       // Convert pointer to int before we switch.
780       if (CV->getType()->isPointerTy()) {
781         assert(TD && "Cannot switch on pointer without TargetData");
782         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
783                                     "magicptr");
784       }
785
786       // Now that the successors are updated, create the new Switch instruction.
787       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
788                                                PredCases.size());
789       NewSI->setDebugLoc(PTI->getDebugLoc());
790       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
791         NewSI->addCase(PredCases[i].first, PredCases[i].second);
792
793       EraseTerminatorInstAndDCECond(PTI);
794
795       // Okay, last check.  If BB is still a successor of PSI, then we must
796       // have an infinite loop case.  If so, add an infinitely looping block
797       // to handle the case to preserve the behavior of the code.
798       BasicBlock *InfLoopBlock = 0;
799       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
800         if (NewSI->getSuccessor(i) == BB) {
801           if (InfLoopBlock == 0) {
802             // Insert it at the end of the function, because it's either code,
803             // or it won't matter if it's hot. :)
804             InfLoopBlock = BasicBlock::Create(BB->getContext(),
805                                               "infloop", BB->getParent());
806             BranchInst::Create(InfLoopBlock, InfLoopBlock);
807           }
808           NewSI->setSuccessor(i, InfLoopBlock);
809         }
810
811       Changed = true;
812     }
813   }
814   return Changed;
815 }
816
817 // isSafeToHoistInvoke - If we would need to insert a select that uses the
818 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
819 // would need to do this), we can't hoist the invoke, as there is nowhere
820 // to put the select in this case.
821 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
822                                 Instruction *I1, Instruction *I2) {
823   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
824     PHINode *PN;
825     for (BasicBlock::iterator BBI = SI->begin();
826          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
827       Value *BB1V = PN->getIncomingValueForBlock(BB1);
828       Value *BB2V = PN->getIncomingValueForBlock(BB2);
829       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
830         return false;
831       }
832     }
833   }
834   return true;
835 }
836
837 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
838 /// BB2, hoist any common code in the two blocks up into the branch block.  The
839 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
840 static bool HoistThenElseCodeToIf(BranchInst *BI) {
841   // This does very trivial matching, with limited scanning, to find identical
842   // instructions in the two blocks.  In particular, we don't want to get into
843   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
844   // such, we currently just scan for obviously identical instructions in an
845   // identical order.
846   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
847   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
848
849   BasicBlock::iterator BB1_Itr = BB1->begin();
850   BasicBlock::iterator BB2_Itr = BB2->begin();
851
852   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
853   // Skip debug info if it is not identical.
854   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
855   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
856   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
857     while (isa<DbgInfoIntrinsic>(I1))
858       I1 = BB1_Itr++;
859     while (isa<DbgInfoIntrinsic>(I2))
860       I2 = BB2_Itr++;
861   }
862   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
863       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
864     return false;
865
866   // If we get here, we can hoist at least one instruction.
867   BasicBlock *BIParent = BI->getParent();
868
869   do {
870     // If we are hoisting the terminator instruction, don't move one (making a
871     // broken BB), instead clone it, and remove BI.
872     if (isa<TerminatorInst>(I1))
873       goto HoistTerminator;
874
875     // For a normal instruction, we just move one to right before the branch,
876     // then replace all uses of the other with the first.  Finally, we remove
877     // the now redundant second instruction.
878     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
879     if (!I2->use_empty())
880       I2->replaceAllUsesWith(I1);
881     I1->intersectOptionalDataWith(I2);
882     I2->eraseFromParent();
883
884     I1 = BB1_Itr++;
885     I2 = BB2_Itr++;
886     // Skip debug info if it is not identical.
887     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
888     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
889     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
890       while (isa<DbgInfoIntrinsic>(I1))
891         I1 = BB1_Itr++;
892       while (isa<DbgInfoIntrinsic>(I2))
893         I2 = BB2_Itr++;
894     }
895   } while (I1->isIdenticalToWhenDefined(I2));
896
897   return true;
898
899 HoistTerminator:
900   // It may not be possible to hoist an invoke.
901   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
902     return true;
903
904   // Okay, it is safe to hoist the terminator.
905   Instruction *NT = I1->clone();
906   BIParent->getInstList().insert(BI, NT);
907   if (!NT->getType()->isVoidTy()) {
908     I1->replaceAllUsesWith(NT);
909     I2->replaceAllUsesWith(NT);
910     NT->takeName(I1);
911   }
912
913   IRBuilder<true, NoFolder> Builder(NT);
914   // Hoisting one of the terminators from our successor is a great thing.
915   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
916   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
917   // nodes, so we insert select instruction to compute the final result.
918   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
919   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
920     PHINode *PN;
921     for (BasicBlock::iterator BBI = SI->begin();
922          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
923       Value *BB1V = PN->getIncomingValueForBlock(BB1);
924       Value *BB2V = PN->getIncomingValueForBlock(BB2);
925       if (BB1V == BB2V) continue;
926       
927       // These values do not agree.  Insert a select instruction before NT
928       // that determines the right value.
929       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
930       if (SI == 0) 
931         SI = cast<SelectInst>
932           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
933                                 BB1V->getName()+"."+BB2V->getName()));
934
935       // Make the PHI node use the select for all incoming values for BB1/BB2
936       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
937         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
938           PN->setIncomingValue(i, SI);
939     }
940   }
941
942   // Update any PHI nodes in our new successors.
943   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
944     AddPredecessorToBlock(*SI, BIParent, BB1);
945
946   EraseTerminatorInstAndDCECond(BI);
947   return true;
948 }
949
950 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
951 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
952 /// (for now, restricted to a single instruction that's side effect free) from
953 /// the BB1 into the branch block to speculatively execute it.
954 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
955   // Only speculatively execution a single instruction (not counting the
956   // terminator) for now.
957   Instruction *HInst = NULL;
958   Instruction *Term = BB1->getTerminator();
959   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
960        BBI != BBE; ++BBI) {
961     Instruction *I = BBI;
962     // Skip debug info.
963     if (isa<DbgInfoIntrinsic>(I)) continue;
964     if (I == Term) break;
965
966     if (HInst)
967       return false;
968     HInst = I;
969   }
970   if (!HInst)
971     return false;
972
973   // Be conservative for now. FP select instruction can often be expensive.
974   Value *BrCond = BI->getCondition();
975   if (isa<FCmpInst>(BrCond))
976     return false;
977
978   // If BB1 is actually on the false edge of the conditional branch, remember
979   // to swap the select operands later.
980   bool Invert = false;
981   if (BB1 != BI->getSuccessor(0)) {
982     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
983     Invert = true;
984   }
985
986   // Turn
987   // BB:
988   //     %t1 = icmp
989   //     br i1 %t1, label %BB1, label %BB2
990   // BB1:
991   //     %t3 = add %t2, c
992   //     br label BB2
993   // BB2:
994   // =>
995   // BB:
996   //     %t1 = icmp
997   //     %t4 = add %t2, c
998   //     %t3 = select i1 %t1, %t2, %t3
999   switch (HInst->getOpcode()) {
1000   default: return false;  // Not safe / profitable to hoist.
1001   case Instruction::Add:
1002   case Instruction::Sub:
1003     // Not worth doing for vector ops.
1004     if (HInst->getType()->isVectorTy())
1005       return false;
1006     break;
1007   case Instruction::And:
1008   case Instruction::Or:
1009   case Instruction::Xor:
1010   case Instruction::Shl:
1011   case Instruction::LShr:
1012   case Instruction::AShr:
1013     // Don't mess with vector operations.
1014     if (HInst->getType()->isVectorTy())
1015       return false;
1016     break;   // These are all cheap and non-trapping instructions.
1017   }
1018   
1019   // If the instruction is obviously dead, don't try to predicate it.
1020   if (HInst->use_empty()) {
1021     HInst->eraseFromParent();
1022     return true;
1023   }
1024
1025   // Can we speculatively execute the instruction? And what is the value 
1026   // if the condition is false? Consider the phi uses, if the incoming value
1027   // from the "if" block are all the same V, then V is the value of the
1028   // select if the condition is false.
1029   BasicBlock *BIParent = BI->getParent();
1030   SmallVector<PHINode*, 4> PHIUses;
1031   Value *FalseV = NULL;
1032   
1033   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1034   for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1035        UI != E; ++UI) {
1036     // Ignore any user that is not a PHI node in BB2.  These can only occur in
1037     // unreachable blocks, because they would not be dominated by the instr.
1038     PHINode *PN = dyn_cast<PHINode>(*UI);
1039     if (!PN || PN->getParent() != BB2)
1040       return false;
1041     PHIUses.push_back(PN);
1042     
1043     Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1044     if (!FalseV)
1045       FalseV = PHIV;
1046     else if (FalseV != PHIV)
1047       return false;  // Inconsistent value when condition is false.
1048   }
1049   
1050   assert(FalseV && "Must have at least one user, and it must be a PHI");
1051
1052   // Do not hoist the instruction if any of its operands are defined but not
1053   // used in this BB. The transformation will prevent the operand from
1054   // being sunk into the use block.
1055   for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 
1056        i != e; ++i) {
1057     Instruction *OpI = dyn_cast<Instruction>(*i);
1058     if (OpI && OpI->getParent() == BIParent &&
1059         !OpI->isUsedInBasicBlock(BIParent))
1060       return false;
1061   }
1062
1063   // If we get here, we can hoist the instruction. Try to place it
1064   // before the icmp instruction preceding the conditional branch.
1065   BasicBlock::iterator InsertPos = BI;
1066   if (InsertPos != BIParent->begin())
1067     --InsertPos;
1068   // Skip debug info between condition and branch.
1069   while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1070     --InsertPos;
1071   if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1072     SmallPtrSet<Instruction *, 4> BB1Insns;
1073     for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 
1074         BB1I != BB1E; ++BB1I) 
1075       BB1Insns.insert(BB1I);
1076     for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1077         UI != UE; ++UI) {
1078       Instruction *Use = cast<Instruction>(*UI);
1079       if (!BB1Insns.count(Use)) continue;
1080       
1081       // If BrCond uses the instruction that place it just before
1082       // branch instruction.
1083       InsertPos = BI;
1084       break;
1085     }
1086   } else
1087     InsertPos = BI;
1088   BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1089
1090   // Create a select whose true value is the speculatively executed value and
1091   // false value is the previously determined FalseV.
1092   IRBuilder<true, NoFolder> Builder(BI);
1093   SelectInst *SI;
1094   if (Invert)
1095     SI = cast<SelectInst>
1096       (Builder.CreateSelect(BrCond, FalseV, HInst,
1097                             FalseV->getName() + "." + HInst->getName()));
1098   else
1099     SI = cast<SelectInst>
1100       (Builder.CreateSelect(BrCond, HInst, FalseV,
1101                             HInst->getName() + "." + FalseV->getName()));
1102
1103   // Make the PHI node use the select for all incoming values for "then" and
1104   // "if" blocks.
1105   for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1106     PHINode *PN = PHIUses[i];
1107     for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1108       if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1109         PN->setIncomingValue(j, SI);
1110   }
1111
1112   ++NumSpeculations;
1113   return true;
1114 }
1115
1116 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1117 /// across this block.
1118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1119   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1120   unsigned Size = 0;
1121   
1122   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1123     if (isa<DbgInfoIntrinsic>(BBI))
1124       continue;
1125     if (Size > 10) return false;  // Don't clone large BB's.
1126     ++Size;
1127     
1128     // We can only support instructions that do not define values that are
1129     // live outside of the current basic block.
1130     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1131          UI != E; ++UI) {
1132       Instruction *U = cast<Instruction>(*UI);
1133       if (U->getParent() != BB || isa<PHINode>(U)) return false;
1134     }
1135     
1136     // Looks ok, continue checking.
1137   }
1138
1139   return true;
1140 }
1141
1142 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1143 /// that is defined in the same block as the branch and if any PHI entries are
1144 /// constants, thread edges corresponding to that entry to be branches to their
1145 /// ultimate destination.
1146 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1147   BasicBlock *BB = BI->getParent();
1148   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1149   // NOTE: we currently cannot transform this case if the PHI node is used
1150   // outside of the block.
1151   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1152     return false;
1153   
1154   // Degenerate case of a single entry PHI.
1155   if (PN->getNumIncomingValues() == 1) {
1156     FoldSingleEntryPHINodes(PN->getParent());
1157     return true;    
1158   }
1159
1160   // Now we know that this block has multiple preds and two succs.
1161   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1162   
1163   // Okay, this is a simple enough basic block.  See if any phi values are
1164   // constants.
1165   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1166     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1167     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1168     
1169     // Okay, we now know that all edges from PredBB should be revectored to
1170     // branch to RealDest.
1171     BasicBlock *PredBB = PN->getIncomingBlock(i);
1172     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1173     
1174     if (RealDest == BB) continue;  // Skip self loops.
1175     // Skip if the predecessor's terminator is an indirect branch.
1176     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1177     
1178     // The dest block might have PHI nodes, other predecessors and other
1179     // difficult cases.  Instead of being smart about this, just insert a new
1180     // block that jumps to the destination block, effectively splitting
1181     // the edge we are about to create.
1182     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1183                                             RealDest->getName()+".critedge",
1184                                             RealDest->getParent(), RealDest);
1185     BranchInst::Create(RealDest, EdgeBB);
1186     
1187     // Update PHI nodes.
1188     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1189
1190     // BB may have instructions that are being threaded over.  Clone these
1191     // instructions into EdgeBB.  We know that there will be no uses of the
1192     // cloned instructions outside of EdgeBB.
1193     BasicBlock::iterator InsertPt = EdgeBB->begin();
1194     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1195     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1196       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1197         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1198         continue;
1199       }
1200       // Clone the instruction.
1201       Instruction *N = BBI->clone();
1202       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1203       
1204       // Update operands due to translation.
1205       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1206            i != e; ++i) {
1207         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1208         if (PI != TranslateMap.end())
1209           *i = PI->second;
1210       }
1211       
1212       // Check for trivial simplification.
1213       if (Value *V = SimplifyInstruction(N, TD)) {
1214         TranslateMap[BBI] = V;
1215         delete N;   // Instruction folded away, don't need actual inst
1216       } else {
1217         // Insert the new instruction into its new home.
1218         EdgeBB->getInstList().insert(InsertPt, N);
1219         if (!BBI->use_empty())
1220           TranslateMap[BBI] = N;
1221       }
1222     }
1223
1224     // Loop over all of the edges from PredBB to BB, changing them to branch
1225     // to EdgeBB instead.
1226     TerminatorInst *PredBBTI = PredBB->getTerminator();
1227     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1228       if (PredBBTI->getSuccessor(i) == BB) {
1229         BB->removePredecessor(PredBB);
1230         PredBBTI->setSuccessor(i, EdgeBB);
1231       }
1232
1233     // Recurse, simplifying any other constants.
1234     return FoldCondBranchOnPHI(BI, TD) | true;
1235   }
1236
1237   return false;
1238 }
1239
1240 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1241 /// PHI node, see if we can eliminate it.
1242 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1243   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1244   // statement", which has a very simple dominance structure.  Basically, we
1245   // are trying to find the condition that is being branched on, which
1246   // subsequently causes this merge to happen.  We really want control
1247   // dependence information for this check, but simplifycfg can't keep it up
1248   // to date, and this catches most of the cases we care about anyway.
1249   BasicBlock *BB = PN->getParent();
1250   BasicBlock *IfTrue, *IfFalse;
1251   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1252   if (!IfCond ||
1253       // Don't bother if the branch will be constant folded trivially.
1254       isa<ConstantInt>(IfCond))
1255     return false;
1256   
1257   // Okay, we found that we can merge this two-entry phi node into a select.
1258   // Doing so would require us to fold *all* two entry phi nodes in this block.
1259   // At some point this becomes non-profitable (particularly if the target
1260   // doesn't support cmov's).  Only do this transformation if there are two or
1261   // fewer PHI nodes in this block.
1262   unsigned NumPhis = 0;
1263   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1264     if (NumPhis > 2)
1265       return false;
1266   
1267   // Loop over the PHI's seeing if we can promote them all to select
1268   // instructions.  While we are at it, keep track of the instructions
1269   // that need to be moved to the dominating block.
1270   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1271   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1272            MaxCostVal1 = PHINodeFoldingThreshold;
1273   
1274   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1275     PHINode *PN = cast<PHINode>(II++);
1276     if (Value *V = SimplifyInstruction(PN, TD)) {
1277       PN->replaceAllUsesWith(V);
1278       PN->eraseFromParent();
1279       continue;
1280     }
1281     
1282     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1283                              MaxCostVal0) ||
1284         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1285                              MaxCostVal1))
1286       return false;
1287   }
1288   
1289   // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1290   // we ran out of PHIs then we simplified them all.
1291   PN = dyn_cast<PHINode>(BB->begin());
1292   if (PN == 0) return true;
1293   
1294   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1295   // often be turned into switches and other things.
1296   if (PN->getType()->isIntegerTy(1) &&
1297       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1298        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1299        isa<BinaryOperator>(IfCond)))
1300     return false;
1301   
1302   // If we all PHI nodes are promotable, check to make sure that all
1303   // instructions in the predecessor blocks can be promoted as well.  If
1304   // not, we won't be able to get rid of the control flow, so it's not
1305   // worth promoting to select instructions.
1306   BasicBlock *DomBlock = 0;
1307   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1308   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1309   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1310     IfBlock1 = 0;
1311   } else {
1312     DomBlock = *pred_begin(IfBlock1);
1313     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1314       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1315         // This is not an aggressive instruction that we can promote.
1316         // Because of this, we won't be able to get rid of the control
1317         // flow, so the xform is not worth it.
1318         return false;
1319       }
1320   }
1321     
1322   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1323     IfBlock2 = 0;
1324   } else {
1325     DomBlock = *pred_begin(IfBlock2);
1326     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1327       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1328         // This is not an aggressive instruction that we can promote.
1329         // Because of this, we won't be able to get rid of the control
1330         // flow, so the xform is not worth it.
1331         return false;
1332       }
1333   }
1334   
1335   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1336                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1337       
1338   // If we can still promote the PHI nodes after this gauntlet of tests,
1339   // do all of the PHI's now.
1340   Instruction *InsertPt = DomBlock->getTerminator();
1341   IRBuilder<true, NoFolder> Builder(InsertPt);
1342   
1343   // Move all 'aggressive' instructions, which are defined in the
1344   // conditional parts of the if's up to the dominating block.
1345   if (IfBlock1)
1346     DomBlock->getInstList().splice(InsertPt,
1347                                    IfBlock1->getInstList(), IfBlock1->begin(),
1348                                    IfBlock1->getTerminator());
1349   if (IfBlock2)
1350     DomBlock->getInstList().splice(InsertPt,
1351                                    IfBlock2->getInstList(), IfBlock2->begin(),
1352                                    IfBlock2->getTerminator());
1353   
1354   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1355     // Change the PHI node into a select instruction.
1356     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1357     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1358     
1359     SelectInst *NV = 
1360       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1361     PN->replaceAllUsesWith(NV);
1362     NV->takeName(PN);
1363     PN->eraseFromParent();
1364   }
1365   
1366   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1367   // has been flattened.  Change DomBlock to jump directly to our new block to
1368   // avoid other simplifycfg's kicking in on the diamond.
1369   TerminatorInst *OldTI = DomBlock->getTerminator();
1370   Builder.SetInsertPoint(OldTI);
1371   Builder.CreateBr(BB);
1372   OldTI->eraseFromParent();
1373   return true;
1374 }
1375
1376 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1377 /// to two returning blocks, try to merge them together into one return,
1378 /// introducing a select if the return values disagree.
1379 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 
1380                                            IRBuilder<> &Builder) {
1381   assert(BI->isConditional() && "Must be a conditional branch");
1382   BasicBlock *TrueSucc = BI->getSuccessor(0);
1383   BasicBlock *FalseSucc = BI->getSuccessor(1);
1384   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1385   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1386   
1387   // Check to ensure both blocks are empty (just a return) or optionally empty
1388   // with PHI nodes.  If there are other instructions, merging would cause extra
1389   // computation on one path or the other.
1390   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1391     return false;
1392   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1393     return false;
1394
1395   Builder.SetInsertPoint(BI);
1396   // Okay, we found a branch that is going to two return nodes.  If
1397   // there is no return value for this function, just change the
1398   // branch into a return.
1399   if (FalseRet->getNumOperands() == 0) {
1400     TrueSucc->removePredecessor(BI->getParent());
1401     FalseSucc->removePredecessor(BI->getParent());
1402     Builder.CreateRetVoid();
1403     EraseTerminatorInstAndDCECond(BI);
1404     return true;
1405   }
1406     
1407   // Otherwise, figure out what the true and false return values are
1408   // so we can insert a new select instruction.
1409   Value *TrueValue = TrueRet->getReturnValue();
1410   Value *FalseValue = FalseRet->getReturnValue();
1411   
1412   // Unwrap any PHI nodes in the return blocks.
1413   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1414     if (TVPN->getParent() == TrueSucc)
1415       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1416   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1417     if (FVPN->getParent() == FalseSucc)
1418       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1419   
1420   // In order for this transformation to be safe, we must be able to
1421   // unconditionally execute both operands to the return.  This is
1422   // normally the case, but we could have a potentially-trapping
1423   // constant expression that prevents this transformation from being
1424   // safe.
1425   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1426     if (TCV->canTrap())
1427       return false;
1428   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1429     if (FCV->canTrap())
1430       return false;
1431   
1432   // Okay, we collected all the mapped values and checked them for sanity, and
1433   // defined to really do this transformation.  First, update the CFG.
1434   TrueSucc->removePredecessor(BI->getParent());
1435   FalseSucc->removePredecessor(BI->getParent());
1436   
1437   // Insert select instructions where needed.
1438   Value *BrCond = BI->getCondition();
1439   if (TrueValue) {
1440     // Insert a select if the results differ.
1441     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1442     } else if (isa<UndefValue>(TrueValue)) {
1443       TrueValue = FalseValue;
1444     } else {
1445       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1446                                        FalseValue, "retval");
1447     }
1448   }
1449
1450   Value *RI = !TrueValue ? 
1451     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1452
1453   (void) RI;
1454       
1455   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1456                << "\n  " << *BI << "NewRet = " << *RI
1457                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1458       
1459   EraseTerminatorInstAndDCECond(BI);
1460
1461   return true;
1462 }
1463
1464 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1465 /// predecessor branches to us and one of our successors, fold the block into
1466 /// the predecessor and use logical operations to pick the right destination.
1467 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1468   BasicBlock *BB = BI->getParent();
1469
1470   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1471   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1472     Cond->getParent() != BB || !Cond->hasOneUse())
1473   return false;
1474
1475   // Only allow this if the condition is a simple instruction that can be
1476   // executed unconditionally.  It must be in the same block as the branch, and
1477   // must be at the front of the block.
1478   BasicBlock::iterator FrontIt = BB->front();
1479
1480   // Ignore dbg intrinsics.
1481   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1482     
1483   // Allow a single instruction to be hoisted in addition to the compare
1484   // that feeds the branch.  We later ensure that any values that _it_ uses
1485   // were also live in the predecessor, so that we don't unnecessarily create
1486   // register pressure or inhibit out-of-order execution.
1487   Instruction *BonusInst = 0;
1488   if (&*FrontIt != Cond &&
1489       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1490       FrontIt->isSafeToSpeculativelyExecute()) {
1491     BonusInst = &*FrontIt;
1492     ++FrontIt;
1493     
1494     // Ignore dbg intrinsics.
1495     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1496   }
1497
1498   // Only a single bonus inst is allowed.
1499   if (&*FrontIt != Cond)
1500     return false;
1501   
1502   // Make sure the instruction after the condition is the cond branch.
1503   BasicBlock::iterator CondIt = Cond; ++CondIt;
1504
1505   // Ingore dbg intrinsics.
1506   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1507   
1508   if (&*CondIt != BI)
1509     return false;
1510
1511   // Cond is known to be a compare or binary operator.  Check to make sure that
1512   // neither operand is a potentially-trapping constant expression.
1513   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1514     if (CE->canTrap())
1515       return false;
1516   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1517     if (CE->canTrap())
1518       return false;
1519   
1520   // Finally, don't infinitely unroll conditional loops.
1521   BasicBlock *TrueDest  = BI->getSuccessor(0);
1522   BasicBlock *FalseDest = BI->getSuccessor(1);
1523   if (TrueDest == BB || FalseDest == BB)
1524     return false;
1525
1526   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1527     BasicBlock *PredBlock = *PI;
1528     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1529     
1530     // Check that we have two conditional branches.  If there is a PHI node in
1531     // the common successor, verify that the same value flows in from both
1532     // blocks.
1533     if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1534       continue;
1535     
1536     // Determine if the two branches share a common destination.
1537     Instruction::BinaryOps Opc;
1538     bool InvertPredCond = false;
1539     
1540     if (PBI->getSuccessor(0) == TrueDest)
1541       Opc = Instruction::Or;
1542     else if (PBI->getSuccessor(1) == FalseDest)
1543       Opc = Instruction::And;
1544     else if (PBI->getSuccessor(0) == FalseDest)
1545       Opc = Instruction::And, InvertPredCond = true;
1546     else if (PBI->getSuccessor(1) == TrueDest)
1547       Opc = Instruction::Or, InvertPredCond = true;
1548     else
1549       continue;
1550
1551     // Ensure that any values used in the bonus instruction are also used
1552     // by the terminator of the predecessor.  This means that those values
1553     // must already have been resolved, so we won't be inhibiting the 
1554     // out-of-order core by speculating them earlier.
1555     if (BonusInst) {
1556       // Collect the values used by the bonus inst
1557       SmallPtrSet<Value*, 4> UsedValues;
1558       for (Instruction::op_iterator OI = BonusInst->op_begin(),
1559            OE = BonusInst->op_end(); OI != OE; ++OI) {
1560         Value* V = *OI;
1561         if (!isa<Constant>(V))
1562           UsedValues.insert(V);
1563       }
1564
1565       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1566       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1567       
1568       // Walk up to four levels back up the use-def chain of the predecessor's
1569       // terminator to see if all those values were used.  The choice of four
1570       // levels is arbitrary, to provide a compile-time-cost bound.
1571       while (!Worklist.empty()) {
1572         std::pair<Value*, unsigned> Pair = Worklist.back();
1573         Worklist.pop_back();
1574         
1575         if (Pair.second >= 4) continue;
1576         UsedValues.erase(Pair.first);
1577         if (UsedValues.empty()) break;
1578         
1579         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1580           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1581                OI != OE; ++OI)
1582             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1583         }       
1584       }
1585       
1586       if (!UsedValues.empty()) return false;
1587     }
1588
1589     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1590     IRBuilder<> Builder(PBI);    
1591
1592     // If we need to invert the condition in the pred block to match, do so now.
1593     if (InvertPredCond) {
1594       Value *NewCond = PBI->getCondition();
1595       
1596       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1597         CmpInst *CI = cast<CmpInst>(NewCond);
1598         CI->setPredicate(CI->getInversePredicate());
1599       } else {
1600         NewCond = Builder.CreateNot(NewCond, 
1601                                     PBI->getCondition()->getName()+".not");
1602       }
1603       
1604       PBI->setCondition(NewCond);
1605       BasicBlock *OldTrue = PBI->getSuccessor(0);
1606       BasicBlock *OldFalse = PBI->getSuccessor(1);
1607       PBI->setSuccessor(0, OldFalse);
1608       PBI->setSuccessor(1, OldTrue);
1609     }
1610     
1611     // If we have a bonus inst, clone it into the predecessor block.
1612     Instruction *NewBonus = 0;
1613     if (BonusInst) {
1614       NewBonus = BonusInst->clone();
1615       PredBlock->getInstList().insert(PBI, NewBonus);
1616       NewBonus->takeName(BonusInst);
1617       BonusInst->setName(BonusInst->getName()+".old");
1618     }
1619     
1620     // Clone Cond into the predecessor basic block, and or/and the
1621     // two conditions together.
1622     Instruction *New = Cond->clone();
1623     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1624     PredBlock->getInstList().insert(PBI, New);
1625     New->takeName(Cond);
1626     Cond->setName(New->getName()+".old");
1627     
1628     Instruction *NewCond = 
1629       cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1630                                             New, "or.cond"));
1631     PBI->setCondition(NewCond);
1632     if (PBI->getSuccessor(0) == BB) {
1633       AddPredecessorToBlock(TrueDest, PredBlock, BB);
1634       PBI->setSuccessor(0, TrueDest);
1635     }
1636     if (PBI->getSuccessor(1) == BB) {
1637       AddPredecessorToBlock(FalseDest, PredBlock, BB);
1638       PBI->setSuccessor(1, FalseDest);
1639     }
1640
1641     // Copy any debug value intrinsics into the end of PredBlock.
1642     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1643       if (isa<DbgInfoIntrinsic>(*I))
1644         I->clone()->insertBefore(PBI);
1645       
1646     return true;
1647   }
1648   return false;
1649 }
1650
1651 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1652 /// predecessor of another block, this function tries to simplify it.  We know
1653 /// that PBI and BI are both conditional branches, and BI is in one of the
1654 /// successor blocks of PBI - PBI branches to BI.
1655 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1656   assert(PBI->isConditional() && BI->isConditional());
1657   BasicBlock *BB = BI->getParent();
1658
1659   // If this block ends with a branch instruction, and if there is a
1660   // predecessor that ends on a branch of the same condition, make 
1661   // this conditional branch redundant.
1662   if (PBI->getCondition() == BI->getCondition() &&
1663       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1664     // Okay, the outcome of this conditional branch is statically
1665     // knowable.  If this block had a single pred, handle specially.
1666     if (BB->getSinglePredecessor()) {
1667       // Turn this into a branch on constant.
1668       bool CondIsTrue = PBI->getSuccessor(0) == BB;
1669       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 
1670                                         CondIsTrue));
1671       return true;  // Nuke the branch on constant.
1672     }
1673     
1674     // Otherwise, if there are multiple predecessors, insert a PHI that merges
1675     // in the constant and simplify the block result.  Subsequent passes of
1676     // simplifycfg will thread the block.
1677     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1678       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1679       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1680                                        std::distance(PB, PE),
1681                                        BI->getCondition()->getName() + ".pr",
1682                                        BB->begin());
1683       // Okay, we're going to insert the PHI node.  Since PBI is not the only
1684       // predecessor, compute the PHI'd conditional value for all of the preds.
1685       // Any predecessor where the condition is not computable we keep symbolic.
1686       for (pred_iterator PI = PB; PI != PE; ++PI) {
1687         BasicBlock *P = *PI;
1688         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1689             PBI != BI && PBI->isConditional() &&
1690             PBI->getCondition() == BI->getCondition() &&
1691             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1692           bool CondIsTrue = PBI->getSuccessor(0) == BB;
1693           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 
1694                                               CondIsTrue), P);
1695         } else {
1696           NewPN->addIncoming(BI->getCondition(), P);
1697         }
1698       }
1699       
1700       BI->setCondition(NewPN);
1701       return true;
1702     }
1703   }
1704   
1705   // If this is a conditional branch in an empty block, and if any
1706   // predecessors is a conditional branch to one of our destinations,
1707   // fold the conditions into logical ops and one cond br.
1708   BasicBlock::iterator BBI = BB->begin();
1709   // Ignore dbg intrinsics.
1710   while (isa<DbgInfoIntrinsic>(BBI))
1711     ++BBI;
1712   if (&*BBI != BI)
1713     return false;
1714
1715   
1716   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1717     if (CE->canTrap())
1718       return false;
1719   
1720   int PBIOp, BIOp;
1721   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1722     PBIOp = BIOp = 0;
1723   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1724     PBIOp = 0, BIOp = 1;
1725   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1726     PBIOp = 1, BIOp = 0;
1727   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1728     PBIOp = BIOp = 1;
1729   else
1730     return false;
1731     
1732   // Check to make sure that the other destination of this branch
1733   // isn't BB itself.  If so, this is an infinite loop that will
1734   // keep getting unwound.
1735   if (PBI->getSuccessor(PBIOp) == BB)
1736     return false;
1737     
1738   // Do not perform this transformation if it would require 
1739   // insertion of a large number of select instructions. For targets
1740   // without predication/cmovs, this is a big pessimization.
1741   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1742       
1743   unsigned NumPhis = 0;
1744   for (BasicBlock::iterator II = CommonDest->begin();
1745        isa<PHINode>(II); ++II, ++NumPhis)
1746     if (NumPhis > 2) // Disable this xform.
1747       return false;
1748     
1749   // Finally, if everything is ok, fold the branches to logical ops.
1750   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1751   
1752   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1753                << "AND: " << *BI->getParent());
1754   
1755   
1756   // If OtherDest *is* BB, then BB is a basic block with a single conditional
1757   // branch in it, where one edge (OtherDest) goes back to itself but the other
1758   // exits.  We don't *know* that the program avoids the infinite loop
1759   // (even though that seems likely).  If we do this xform naively, we'll end up
1760   // recursively unpeeling the loop.  Since we know that (after the xform is
1761   // done) that the block *is* infinite if reached, we just make it an obviously
1762   // infinite loop with no cond branch.
1763   if (OtherDest == BB) {
1764     // Insert it at the end of the function, because it's either code,
1765     // or it won't matter if it's hot. :)
1766     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1767                                                   "infloop", BB->getParent());
1768     BranchInst::Create(InfLoopBlock, InfLoopBlock);
1769     OtherDest = InfLoopBlock;
1770   }  
1771   
1772   DEBUG(dbgs() << *PBI->getParent()->getParent());
1773
1774   // BI may have other predecessors.  Because of this, we leave
1775   // it alone, but modify PBI.
1776   
1777   // Make sure we get to CommonDest on True&True directions.
1778   Value *PBICond = PBI->getCondition();
1779   IRBuilder<true, NoFolder> Builder(PBI);
1780   if (PBIOp)
1781     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
1782
1783   Value *BICond = BI->getCondition();
1784   if (BIOp)
1785     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
1786
1787   // Merge the conditions.
1788   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
1789   
1790   // Modify PBI to branch on the new condition to the new dests.
1791   PBI->setCondition(Cond);
1792   PBI->setSuccessor(0, CommonDest);
1793   PBI->setSuccessor(1, OtherDest);
1794   
1795   // OtherDest may have phi nodes.  If so, add an entry from PBI's
1796   // block that are identical to the entries for BI's block.
1797   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1798   
1799   // We know that the CommonDest already had an edge from PBI to
1800   // it.  If it has PHIs though, the PHIs may have different
1801   // entries for BB and PBI's BB.  If so, insert a select to make
1802   // them agree.
1803   PHINode *PN;
1804   for (BasicBlock::iterator II = CommonDest->begin();
1805        (PN = dyn_cast<PHINode>(II)); ++II) {
1806     Value *BIV = PN->getIncomingValueForBlock(BB);
1807     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1808     Value *PBIV = PN->getIncomingValue(PBBIdx);
1809     if (BIV != PBIV) {
1810       // Insert a select in PBI to pick the right value.
1811       Value *NV = cast<SelectInst>
1812         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
1813       PN->setIncomingValue(PBBIdx, NV);
1814     }
1815   }
1816   
1817   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1818   DEBUG(dbgs() << *PBI->getParent()->getParent());
1819   
1820   // This basic block is probably dead.  We know it has at least
1821   // one fewer predecessor.
1822   return true;
1823 }
1824
1825 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1826 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1827 // Takes care of updating the successors and removing the old terminator.
1828 // Also makes sure not to introduce new successors by assuming that edges to
1829 // non-successor TrueBBs and FalseBBs aren't reachable.
1830 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1831                                        BasicBlock *TrueBB, BasicBlock *FalseBB){
1832   // Remove any superfluous successor edges from the CFG.
1833   // First, figure out which successors to preserve.
1834   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1835   // successor.
1836   BasicBlock *KeepEdge1 = TrueBB;
1837   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1838
1839   // Then remove the rest.
1840   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1841     BasicBlock *Succ = OldTerm->getSuccessor(I);
1842     // Make sure only to keep exactly one copy of each edge.
1843     if (Succ == KeepEdge1)
1844       KeepEdge1 = 0;
1845     else if (Succ == KeepEdge2)
1846       KeepEdge2 = 0;
1847     else
1848       Succ->removePredecessor(OldTerm->getParent());
1849   }
1850
1851   IRBuilder<> Builder(OldTerm);
1852   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
1853
1854   // Insert an appropriate new terminator.
1855   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1856     if (TrueBB == FalseBB)
1857       // We were only looking for one successor, and it was present.
1858       // Create an unconditional branch to it.
1859       Builder.CreateBr(TrueBB);
1860     else
1861       // We found both of the successors we were looking for.
1862       // Create a conditional branch sharing the condition of the select.
1863       Builder.CreateCondBr(Cond, TrueBB, FalseBB);
1864   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1865     // Neither of the selected blocks were successors, so this
1866     // terminator must be unreachable.
1867     new UnreachableInst(OldTerm->getContext(), OldTerm);
1868   } else {
1869     // One of the selected values was a successor, but the other wasn't.
1870     // Insert an unconditional branch to the one that was found;
1871     // the edge to the one that wasn't must be unreachable.
1872     if (KeepEdge1 == 0)
1873       // Only TrueBB was found.
1874       Builder.CreateBr(TrueBB);
1875     else
1876       // Only FalseBB was found.
1877       Builder.CreateBr(FalseBB);
1878   }
1879
1880   EraseTerminatorInstAndDCECond(OldTerm);
1881   return true;
1882 }
1883
1884 // SimplifySwitchOnSelect - Replaces
1885 //   (switch (select cond, X, Y)) on constant X, Y
1886 // with a branch - conditional if X and Y lead to distinct BBs,
1887 // unconditional otherwise.
1888 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1889   // Check for constant integer values in the select.
1890   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1891   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1892   if (!TrueVal || !FalseVal)
1893     return false;
1894
1895   // Find the relevant condition and destinations.
1896   Value *Condition = Select->getCondition();
1897   BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1898   BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1899
1900   // Perform the actual simplification.
1901   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1902 }
1903
1904 // SimplifyIndirectBrOnSelect - Replaces
1905 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
1906 //                             blockaddress(@fn, BlockB)))
1907 // with
1908 //   (br cond, BlockA, BlockB).
1909 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1910   // Check that both operands of the select are block addresses.
1911   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1912   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1913   if (!TBA || !FBA)
1914     return false;
1915
1916   // Extract the actual blocks.
1917   BasicBlock *TrueBB = TBA->getBasicBlock();
1918   BasicBlock *FalseBB = FBA->getBasicBlock();
1919
1920   // Perform the actual simplification.
1921   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1922 }
1923
1924 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1925 /// instruction (a seteq/setne with a constant) as the only instruction in a
1926 /// block that ends with an uncond branch.  We are looking for a very specific
1927 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
1928 /// this case, we merge the first two "or's of icmp" into a switch, but then the
1929 /// default value goes to an uncond block with a seteq in it, we get something
1930 /// like:
1931 ///
1932 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
1933 /// DEFAULT:
1934 ///   %tmp = icmp eq i8 %A, 92
1935 ///   br label %end
1936 /// end:
1937 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1938 /// 
1939 /// We prefer to split the edge to 'end' so that there is a true/false entry to
1940 /// the PHI, merging the third icmp into the switch.
1941 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1942                                                   const TargetData *TD,
1943                                                   IRBuilder<> &Builder) {
1944   BasicBlock *BB = ICI->getParent();
1945
1946   // If the block has any PHIs in it or the icmp has multiple uses, it is too
1947   // complex.
1948   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1949
1950   Value *V = ICI->getOperand(0);
1951   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1952   
1953   // The pattern we're looking for is where our only predecessor is a switch on
1954   // 'V' and this block is the default case for the switch.  In this case we can
1955   // fold the compared value into the switch to simplify things.
1956   BasicBlock *Pred = BB->getSinglePredecessor();
1957   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1958   
1959   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1960   if (SI->getCondition() != V)
1961     return false;
1962   
1963   // If BB is reachable on a non-default case, then we simply know the value of
1964   // V in this block.  Substitute it and constant fold the icmp instruction
1965   // away.
1966   if (SI->getDefaultDest() != BB) {
1967     ConstantInt *VVal = SI->findCaseDest(BB);
1968     assert(VVal && "Should have a unique destination value");
1969     ICI->setOperand(0, VVal);
1970     
1971     if (Value *V = SimplifyInstruction(ICI, TD)) {
1972       ICI->replaceAllUsesWith(V);
1973       ICI->eraseFromParent();
1974     }
1975     // BB is now empty, so it is likely to simplify away.
1976     return SimplifyCFG(BB) | true;
1977   }
1978   
1979   // Ok, the block is reachable from the default dest.  If the constant we're
1980   // comparing exists in one of the other edges, then we can constant fold ICI
1981   // and zap it.
1982   if (SI->findCaseValue(Cst) != 0) {
1983     Value *V;
1984     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1985       V = ConstantInt::getFalse(BB->getContext());
1986     else
1987       V = ConstantInt::getTrue(BB->getContext());
1988     
1989     ICI->replaceAllUsesWith(V);
1990     ICI->eraseFromParent();
1991     // BB is now empty, so it is likely to simplify away.
1992     return SimplifyCFG(BB) | true;
1993   }
1994   
1995   // The use of the icmp has to be in the 'end' block, by the only PHI node in
1996   // the block.
1997   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1998   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1999   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2000       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2001     return false;
2002
2003   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2004   // true in the PHI.
2005   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2006   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2007
2008   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2009     std::swap(DefaultCst, NewCst);
2010
2011   // Replace ICI (which is used by the PHI for the default value) with true or
2012   // false depending on if it is EQ or NE.
2013   ICI->replaceAllUsesWith(DefaultCst);
2014   ICI->eraseFromParent();
2015
2016   // Okay, the switch goes to this block on a default value.  Add an edge from
2017   // the switch to the merge point on the compared value.
2018   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2019                                          BB->getParent(), BB);
2020   SI->addCase(Cst, NewBB);
2021   
2022   // NewBB branches to the phi block, add the uncond branch and the phi entry.
2023   Builder.SetInsertPoint(NewBB);
2024   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2025   Builder.CreateBr(SuccBlock);
2026   PHIUse->addIncoming(NewCst, NewBB);
2027   return true;
2028 }
2029
2030 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2031 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2032 /// fold it into a switch instruction if so.
2033 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2034                                       IRBuilder<> &Builder) {
2035   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2036   if (Cond == 0) return false;
2037   
2038   
2039   // Change br (X == 0 | X == 1), T, F into a switch instruction.
2040   // If this is a bunch of seteq's or'd together, or if it's a bunch of
2041   // 'setne's and'ed together, collect them.
2042   Value *CompVal = 0;
2043   std::vector<ConstantInt*> Values;
2044   bool TrueWhenEqual = true;
2045   Value *ExtraCase = 0;
2046   unsigned UsedICmps = 0;
2047   
2048   if (Cond->getOpcode() == Instruction::Or) {
2049     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2050                                      UsedICmps);
2051   } else if (Cond->getOpcode() == Instruction::And) {
2052     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2053                                      UsedICmps);
2054     TrueWhenEqual = false;
2055   }
2056   
2057   // If we didn't have a multiply compared value, fail.
2058   if (CompVal == 0) return false;
2059
2060   // Avoid turning single icmps into a switch.
2061   if (UsedICmps <= 1)
2062     return false;
2063
2064   // There might be duplicate constants in the list, which the switch
2065   // instruction can't handle, remove them now.
2066   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2067   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2068   
2069   // If Extra was used, we require at least two switch values to do the
2070   // transformation.  A switch with one value is just an cond branch.
2071   if (ExtraCase && Values.size() < 2) return false;
2072   
2073   // Figure out which block is which destination.
2074   BasicBlock *DefaultBB = BI->getSuccessor(1);
2075   BasicBlock *EdgeBB    = BI->getSuccessor(0);
2076   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2077   
2078   BasicBlock *BB = BI->getParent();
2079   
2080   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2081                << " cases into SWITCH.  BB is:\n" << *BB);
2082   
2083   // If there are any extra values that couldn't be folded into the switch
2084   // then we evaluate them with an explicit branch first.  Split the block
2085   // right before the condbr to handle it.
2086   if (ExtraCase) {
2087     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2088     // Remove the uncond branch added to the old block.
2089     TerminatorInst *OldTI = BB->getTerminator();
2090     Builder.SetInsertPoint(OldTI);
2091
2092     if (TrueWhenEqual)
2093       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2094     else
2095       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2096       
2097     OldTI->eraseFromParent();
2098     
2099     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2100     // for the edge we just added.
2101     AddPredecessorToBlock(EdgeBB, BB, NewBB);
2102     
2103     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2104           << "\nEXTRABB = " << *BB);
2105     BB = NewBB;
2106   }
2107
2108   Builder.SetInsertPoint(BI);
2109   // Convert pointer to int before we switch.
2110   if (CompVal->getType()->isPointerTy()) {
2111     assert(TD && "Cannot switch on pointer without TargetData");
2112     CompVal = Builder.CreatePtrToInt(CompVal,
2113                                      TD->getIntPtrType(CompVal->getContext()),
2114                                      "magicptr");
2115   }
2116   
2117   // Create the new switch instruction now.
2118   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2119
2120   // Add all of the 'cases' to the switch instruction.
2121   for (unsigned i = 0, e = Values.size(); i != e; ++i)
2122     New->addCase(Values[i], EdgeBB);
2123   
2124   // We added edges from PI to the EdgeBB.  As such, if there were any
2125   // PHI nodes in EdgeBB, they need entries to be added corresponding to
2126   // the number of edges added.
2127   for (BasicBlock::iterator BBI = EdgeBB->begin();
2128        isa<PHINode>(BBI); ++BBI) {
2129     PHINode *PN = cast<PHINode>(BBI);
2130     Value *InVal = PN->getIncomingValueForBlock(BB);
2131     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2132       PN->addIncoming(InVal, BB);
2133   }
2134   
2135   // Erase the old branch instruction.
2136   EraseTerminatorInstAndDCECond(BI);
2137   
2138   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2139   return true;
2140 }
2141
2142 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2143   // If this is a trivial landing pad that just continues unwinding the caught
2144   // exception then zap the landing pad, turning its invokes into calls.
2145   BasicBlock *BB = RI->getParent();
2146   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2147   if (RI->getValue() != LPInst)
2148     // Not a landing pad, or the resume is not unwinding the exception that
2149     // caused control to branch here.
2150     return false;
2151
2152   // Check that there are no other instructions except for debug intrinsics.
2153   BasicBlock::iterator I = LPInst, E = RI;
2154   while (++I != E)
2155     if (!isa<DbgInfoIntrinsic>(I))
2156       return false;
2157
2158   // Turn all invokes that unwind here into calls and delete the basic block.
2159   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2160     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2161     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2162     // Insert a call instruction before the invoke.
2163     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2164     Call->takeName(II);
2165     Call->setCallingConv(II->getCallingConv());
2166     Call->setAttributes(II->getAttributes());
2167     Call->setDebugLoc(II->getDebugLoc());
2168
2169     // Anything that used the value produced by the invoke instruction now uses
2170     // the value produced by the call instruction.  Note that we do this even
2171     // for void functions and calls with no uses so that the callgraph edge is
2172     // updated.
2173     II->replaceAllUsesWith(Call);
2174     BB->removePredecessor(II->getParent());
2175
2176     // Insert a branch to the normal destination right before the invoke.
2177     BranchInst::Create(II->getNormalDest(), II);
2178
2179     // Finally, delete the invoke instruction!
2180     II->eraseFromParent();
2181   }
2182
2183   // The landingpad is now unreachable.  Zap it.
2184   BB->eraseFromParent();
2185   return true;
2186 }
2187
2188 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2189   BasicBlock *BB = RI->getParent();
2190   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2191   
2192   // Find predecessors that end with branches.
2193   SmallVector<BasicBlock*, 8> UncondBranchPreds;
2194   SmallVector<BranchInst*, 8> CondBranchPreds;
2195   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2196     BasicBlock *P = *PI;
2197     TerminatorInst *PTI = P->getTerminator();
2198     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2199       if (BI->isUnconditional())
2200         UncondBranchPreds.push_back(P);
2201       else
2202         CondBranchPreds.push_back(BI);
2203     }
2204   }
2205   
2206   // If we found some, do the transformation!
2207   if (!UncondBranchPreds.empty() && DupRet) {
2208     while (!UncondBranchPreds.empty()) {
2209       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2210       DEBUG(dbgs() << "FOLDING: " << *BB
2211             << "INTO UNCOND BRANCH PRED: " << *Pred);
2212       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2213     }
2214     
2215     // If we eliminated all predecessors of the block, delete the block now.
2216     if (pred_begin(BB) == pred_end(BB))
2217       // We know there are no successors, so just nuke the block.
2218       BB->eraseFromParent();
2219     
2220     return true;
2221   }
2222   
2223   // Check out all of the conditional branches going to this return
2224   // instruction.  If any of them just select between returns, change the
2225   // branch itself into a select/return pair.
2226   while (!CondBranchPreds.empty()) {
2227     BranchInst *BI = CondBranchPreds.pop_back_val();
2228     
2229     // Check to see if the non-BB successor is also a return block.
2230     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2231         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2232         SimplifyCondBranchToTwoReturns(BI, Builder))
2233       return true;
2234   }
2235   return false;
2236 }
2237
2238 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
2239   // Check to see if the first instruction in this block is just an unwind.
2240   // If so, replace any invoke instructions which use this as an exception
2241   // destination with call instructions.
2242   BasicBlock *BB = UI->getParent();
2243   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2244
2245   bool Changed = false;
2246   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2247   while (!Preds.empty()) {
2248     BasicBlock *Pred = Preds.back();
2249     InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2250     if (II && II->getUnwindDest() == BB) {
2251       // Insert a new branch instruction before the invoke, because this
2252       // is now a fall through.
2253       Builder.SetInsertPoint(II);
2254       BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2255       Pred->getInstList().remove(II);   // Take out of symbol table
2256       
2257       // Insert the call now.
2258       SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2259       Builder.SetInsertPoint(BI);
2260       CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2261                                         Args, II->getName());
2262       CI->setCallingConv(II->getCallingConv());
2263       CI->setAttributes(II->getAttributes());
2264       // If the invoke produced a value, the Call now does instead.
2265       II->replaceAllUsesWith(CI);
2266       delete II;
2267       Changed = true;
2268     }
2269     
2270     Preds.pop_back();
2271   }
2272   
2273   // If this block is now dead (and isn't the entry block), remove it.
2274   if (pred_begin(BB) == pred_end(BB) &&
2275       BB != &BB->getParent()->getEntryBlock()) {
2276     // We know there are no successors, so just nuke the block.
2277     BB->eraseFromParent();
2278     return true;
2279   }
2280   
2281   return Changed;  
2282 }
2283
2284 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2285   BasicBlock *BB = UI->getParent();
2286   
2287   bool Changed = false;
2288   
2289   // If there are any instructions immediately before the unreachable that can
2290   // be removed, do so.
2291   while (UI != BB->begin()) {
2292     BasicBlock::iterator BBI = UI;
2293     --BBI;
2294     // Do not delete instructions that can have side effects which might cause
2295     // the unreachable to not be reachable; specifically, calls and volatile
2296     // operations may have this effect.
2297     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2298
2299     if (BBI->mayHaveSideEffects()) {
2300       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2301         if (SI->isVolatile())
2302           break;
2303       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2304         if (LI->isVolatile())
2305           break;
2306       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2307         if (RMWI->isVolatile())
2308           break;
2309       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2310         if (CXI->isVolatile())
2311           break;
2312       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2313                  !isa<LandingPadInst>(BBI)) {
2314         break;
2315       }
2316       // Note that deleting LandingPad's here is in fact okay, although it
2317       // involves a bit of subtle reasoning. If this inst is a LandingPad,
2318       // all the predecessors of this block will be the unwind edges of Invokes,
2319       // and we can therefore guarantee this block will be erased.
2320     }
2321
2322     // Delete this instruction (any uses are guaranteed to be dead)
2323     if (!BBI->use_empty())
2324       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2325     BBI->eraseFromParent();
2326     Changed = true;
2327   }
2328   
2329   // If the unreachable instruction is the first in the block, take a gander
2330   // at all of the predecessors of this instruction, and simplify them.
2331   if (&BB->front() != UI) return Changed;
2332   
2333   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2334   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2335     TerminatorInst *TI = Preds[i]->getTerminator();
2336     IRBuilder<> Builder(TI);
2337     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2338       if (BI->isUnconditional()) {
2339         if (BI->getSuccessor(0) == BB) {
2340           new UnreachableInst(TI->getContext(), TI);
2341           TI->eraseFromParent();
2342           Changed = true;
2343         }
2344       } else {
2345         if (BI->getSuccessor(0) == BB) {
2346           Builder.CreateBr(BI->getSuccessor(1));
2347           EraseTerminatorInstAndDCECond(BI);
2348         } else if (BI->getSuccessor(1) == BB) {
2349           Builder.CreateBr(BI->getSuccessor(0));
2350           EraseTerminatorInstAndDCECond(BI);
2351           Changed = true;
2352         }
2353       }
2354     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2355       for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2356         if (SI->getSuccessor(i) == BB) {
2357           BB->removePredecessor(SI->getParent());
2358           SI->removeCase(i);
2359           --i; --e;
2360           Changed = true;
2361         }
2362       // If the default value is unreachable, figure out the most popular
2363       // destination and make it the default.
2364       if (SI->getSuccessor(0) == BB) {
2365         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2366         for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2367           std::pair<unsigned, unsigned>& entry =
2368               Popularity[SI->getSuccessor(i)];
2369           if (entry.first == 0) {
2370             entry.first = 1;
2371             entry.second = i;
2372           } else {
2373             entry.first++;
2374           }
2375         }
2376
2377         // Find the most popular block.
2378         unsigned MaxPop = 0;
2379         unsigned MaxIndex = 0;
2380         BasicBlock *MaxBlock = 0;
2381         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2382              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2383           if (I->second.first > MaxPop || 
2384               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2385             MaxPop = I->second.first;
2386             MaxIndex = I->second.second;
2387             MaxBlock = I->first;
2388           }
2389         }
2390         if (MaxBlock) {
2391           // Make this the new default, allowing us to delete any explicit
2392           // edges to it.
2393           SI->setSuccessor(0, MaxBlock);
2394           Changed = true;
2395           
2396           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2397           // it.
2398           if (isa<PHINode>(MaxBlock->begin()))
2399             for (unsigned i = 0; i != MaxPop-1; ++i)
2400               MaxBlock->removePredecessor(SI->getParent());
2401           
2402           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2403             if (SI->getSuccessor(i) == MaxBlock) {
2404               SI->removeCase(i);
2405               --i; --e;
2406             }
2407         }
2408       }
2409     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2410       if (II->getUnwindDest() == BB) {
2411         // Convert the invoke to a call instruction.  This would be a good
2412         // place to note that the call does not throw though.
2413         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2414         II->removeFromParent();   // Take out of symbol table
2415         
2416         // Insert the call now...
2417         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2418         Builder.SetInsertPoint(BI);
2419         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2420                                           Args, II->getName());
2421         CI->setCallingConv(II->getCallingConv());
2422         CI->setAttributes(II->getAttributes());
2423         // If the invoke produced a value, the call does now instead.
2424         II->replaceAllUsesWith(CI);
2425         delete II;
2426         Changed = true;
2427       }
2428     }
2429   }
2430   
2431   // If this block is now dead, remove it.
2432   if (pred_begin(BB) == pred_end(BB) &&
2433       BB != &BB->getParent()->getEntryBlock()) {
2434     // We know there are no successors, so just nuke the block.
2435     BB->eraseFromParent();
2436     return true;
2437   }
2438
2439   return Changed;
2440 }
2441
2442 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2443 /// integer range comparison into a sub, an icmp and a branch.
2444 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2445   assert(SI->getNumCases() > 2 && "Degenerate switch?");
2446
2447   // Make sure all cases point to the same destination and gather the values.
2448   SmallVector<ConstantInt *, 16> Cases;
2449   Cases.push_back(SI->getCaseValue(1));
2450   for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2451     if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2452       return false;
2453     Cases.push_back(SI->getCaseValue(I));
2454   }
2455   assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2456
2457   // Sort the case values, then check if they form a range we can transform.
2458   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2459   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2460     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2461       return false;
2462   }
2463
2464   Constant *Offset = ConstantExpr::getNeg(Cases.back());
2465   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2466
2467   Value *Sub = SI->getCondition();
2468   if (!Offset->isNullValue())
2469     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2470   Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2471   Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
2472
2473   // Prune obsolete incoming values off the successor's PHI nodes.
2474   for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2475        isa<PHINode>(BBI); ++BBI) {
2476     for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2477       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2478   }
2479   SI->eraseFromParent();
2480
2481   return true;
2482 }
2483
2484 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2485 /// and use it to remove dead cases.
2486 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2487   Value *Cond = SI->getCondition();
2488   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2489   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2490   ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
2491
2492   // Gather dead cases.
2493   SmallVector<ConstantInt*, 8> DeadCases;
2494   for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
2495     if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
2496         (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
2497       DeadCases.push_back(SI->getCaseValue(I));
2498       DEBUG(dbgs() << "SimplifyCFG: switch case '"
2499                    << SI->getCaseValue(I)->getValue() << "' is dead.\n");
2500     }
2501   }
2502
2503   // Remove dead cases from the switch.
2504   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2505     unsigned Case = SI->findCaseValue(DeadCases[I]);
2506     // Prune unused values from PHI nodes.
2507     SI->getSuccessor(Case)->removePredecessor(SI->getParent());
2508     SI->removeCase(Case);
2509   }
2510
2511   return !DeadCases.empty();
2512 }
2513
2514 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
2515 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2516 /// by an unconditional branch), look at the phi node for BB in the successor
2517 /// block and see if the incoming value is equal to CaseValue. If so, return
2518 /// the phi node, and set PhiIndex to BB's index in the phi node.
2519 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2520                                               BasicBlock *BB,
2521                                               int *PhiIndex) {
2522   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2523     return NULL; // BB must be empty to be a candidate for simplification.
2524   if (!BB->getSinglePredecessor())
2525     return NULL; // BB must be dominated by the switch.
2526
2527   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2528   if (!Branch || !Branch->isUnconditional())
2529     return NULL; // Terminator must be unconditional branch.
2530
2531   BasicBlock *Succ = Branch->getSuccessor(0);
2532
2533   BasicBlock::iterator I = Succ->begin();
2534   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2535     int Idx = PHI->getBasicBlockIndex(BB);
2536     assert(Idx >= 0 && "PHI has no entry for predecessor?");
2537
2538     Value *InValue = PHI->getIncomingValue(Idx);
2539     if (InValue != CaseValue) continue;
2540
2541     *PhiIndex = Idx;
2542     return PHI;
2543   }
2544
2545   return NULL;
2546 }
2547
2548 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2549 /// instruction to a phi node dominated by the switch, if that would mean that
2550 /// some of the destination blocks of the switch can be folded away.
2551 /// Returns true if a change is made.
2552 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2553   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2554   ForwardingNodesMap ForwardingNodes;
2555
2556   for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case.
2557     ConstantInt *CaseValue = SI->getCaseValue(I);
2558     BasicBlock *CaseDest = SI->getSuccessor(I);
2559
2560     int PhiIndex;
2561     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2562                                                  &PhiIndex);
2563     if (!PHI) continue;
2564
2565     ForwardingNodes[PHI].push_back(PhiIndex);
2566   }
2567
2568   bool Changed = false;
2569
2570   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2571        E = ForwardingNodes.end(); I != E; ++I) {
2572     PHINode *Phi = I->first;
2573     SmallVector<int,4> &Indexes = I->second;
2574
2575     if (Indexes.size() < 2) continue;
2576
2577     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2578       Phi->setIncomingValue(Indexes[I], SI->getCondition());
2579     Changed = true;
2580   }
2581
2582   return Changed;
2583 }
2584
2585 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2586   // If this switch is too complex to want to look at, ignore it.
2587   if (!isValueEqualityComparison(SI))
2588     return false;
2589
2590   BasicBlock *BB = SI->getParent();
2591
2592   // If we only have one predecessor, and if it is a branch on this value,
2593   // see if that predecessor totally determines the outcome of this switch.
2594   if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2595     if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2596       return SimplifyCFG(BB) | true;
2597
2598   Value *Cond = SI->getCondition();
2599   if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2600     if (SimplifySwitchOnSelect(SI, Select))
2601       return SimplifyCFG(BB) | true;
2602
2603   // If the block only contains the switch, see if we can fold the block
2604   // away into any preds.
2605   BasicBlock::iterator BBI = BB->begin();
2606   // Ignore dbg intrinsics.
2607   while (isa<DbgInfoIntrinsic>(BBI))
2608     ++BBI;
2609   if (SI == &*BBI)
2610     if (FoldValueComparisonIntoPredecessors(SI, Builder))
2611       return SimplifyCFG(BB) | true;
2612
2613   // Try to transform the switch into an icmp and a branch.
2614   if (TurnSwitchRangeIntoICmp(SI, Builder))
2615     return SimplifyCFG(BB) | true;
2616
2617   // Remove unreachable cases.
2618   if (EliminateDeadSwitchCases(SI))
2619     return SimplifyCFG(BB) | true;
2620
2621   if (ForwardSwitchConditionToPHI(SI))
2622     return SimplifyCFG(BB) | true;
2623
2624   return false;
2625 }
2626
2627 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2628   BasicBlock *BB = IBI->getParent();
2629   bool Changed = false;
2630   
2631   // Eliminate redundant destinations.
2632   SmallPtrSet<Value *, 8> Succs;
2633   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2634     BasicBlock *Dest = IBI->getDestination(i);
2635     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2636       Dest->removePredecessor(BB);
2637       IBI->removeDestination(i);
2638       --i; --e;
2639       Changed = true;
2640     }
2641   } 
2642
2643   if (IBI->getNumDestinations() == 0) {
2644     // If the indirectbr has no successors, change it to unreachable.
2645     new UnreachableInst(IBI->getContext(), IBI);
2646     EraseTerminatorInstAndDCECond(IBI);
2647     return true;
2648   }
2649   
2650   if (IBI->getNumDestinations() == 1) {
2651     // If the indirectbr has one successor, change it to a direct branch.
2652     BranchInst::Create(IBI->getDestination(0), IBI);
2653     EraseTerminatorInstAndDCECond(IBI);
2654     return true;
2655   }
2656   
2657   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2658     if (SimplifyIndirectBrOnSelect(IBI, SI))
2659       return SimplifyCFG(BB) | true;
2660   }
2661   return Changed;
2662 }
2663
2664 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2665   BasicBlock *BB = BI->getParent();
2666   
2667   // If the Terminator is the only non-phi instruction, simplify the block.
2668   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
2669   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2670       TryToSimplifyUncondBranchFromEmptyBlock(BB))
2671     return true;
2672   
2673   // If the only instruction in the block is a seteq/setne comparison
2674   // against a constant, try to simplify the block.
2675   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2676     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2677       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2678         ;
2679       if (I->isTerminator() 
2680           && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2681         return true;
2682     }
2683   
2684   return false;
2685 }
2686
2687
2688 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2689   BasicBlock *BB = BI->getParent();
2690   
2691   // Conditional branch
2692   if (isValueEqualityComparison(BI)) {
2693     // If we only have one predecessor, and if it is a branch on this value,
2694     // see if that predecessor totally determines the outcome of this
2695     // switch.
2696     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2697       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2698         return SimplifyCFG(BB) | true;
2699     
2700     // This block must be empty, except for the setcond inst, if it exists.
2701     // Ignore dbg intrinsics.
2702     BasicBlock::iterator I = BB->begin();
2703     // Ignore dbg intrinsics.
2704     while (isa<DbgInfoIntrinsic>(I))
2705       ++I;
2706     if (&*I == BI) {
2707       if (FoldValueComparisonIntoPredecessors(BI, Builder))
2708         return SimplifyCFG(BB) | true;
2709     } else if (&*I == cast<Instruction>(BI->getCondition())){
2710       ++I;
2711       // Ignore dbg intrinsics.
2712       while (isa<DbgInfoIntrinsic>(I))
2713         ++I;
2714       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2715         return SimplifyCFG(BB) | true;
2716     }
2717   }
2718   
2719   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2720   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2721     return true;
2722   
2723   // We have a conditional branch to two blocks that are only reachable
2724   // from BI.  We know that the condbr dominates the two blocks, so see if
2725   // there is any identical code in the "then" and "else" blocks.  If so, we
2726   // can hoist it up to the branching block.
2727   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2728     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2729       if (HoistThenElseCodeToIf(BI))
2730         return SimplifyCFG(BB) | true;
2731     } else {
2732       // If Successor #1 has multiple preds, we may be able to conditionally
2733       // execute Successor #0 if it branches to successor #1.
2734       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2735       if (Succ0TI->getNumSuccessors() == 1 &&
2736           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2737         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2738           return SimplifyCFG(BB) | true;
2739     }
2740   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2741     // If Successor #0 has multiple preds, we may be able to conditionally
2742     // execute Successor #1 if it branches to successor #0.
2743     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2744     if (Succ1TI->getNumSuccessors() == 1 &&
2745         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2746       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2747         return SimplifyCFG(BB) | true;
2748   }
2749   
2750   // If this is a branch on a phi node in the current block, thread control
2751   // through this block if any PHI node entries are constants.
2752   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2753     if (PN->getParent() == BI->getParent())
2754       if (FoldCondBranchOnPHI(BI, TD))
2755         return SimplifyCFG(BB) | true;
2756   
2757   // If this basic block is ONLY a setcc and a branch, and if a predecessor
2758   // branches to us and one of our successors, fold the setcc into the
2759   // predecessor and use logical operations to pick the right destination.
2760   if (FoldBranchToCommonDest(BI))
2761     return SimplifyCFG(BB) | true;
2762   
2763   // Scan predecessor blocks for conditional branches.
2764   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2765     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2766       if (PBI != BI && PBI->isConditional())
2767         if (SimplifyCondBranchToCondBranch(PBI, BI))
2768           return SimplifyCFG(BB) | true;
2769
2770   return false;
2771 }
2772
2773 /// Check if passing a value to an instruction will cause undefined behavior.
2774 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
2775   Constant *C = dyn_cast<Constant>(V);
2776   if (!C)
2777     return false;
2778
2779   if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
2780     return false;
2781
2782   if (C->isNullValue()) {
2783     Instruction *Use = I->use_back();
2784
2785     // Now make sure that there are no instructions in between that can alter
2786     // control flow (eg. calls)
2787     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
2788       if (i == I->getParent()->end() || i->mayHaveSideEffects())
2789         return false;
2790
2791     // Look through GEPs. A load from a GEP derived from NULL is still undefined
2792     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
2793       if (GEP->getPointerOperand() == I)
2794         return passingValueIsAlwaysUndefined(V, GEP);
2795
2796     // Look through bitcasts.
2797     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
2798       return passingValueIsAlwaysUndefined(V, BC);
2799
2800     // Load from null is undefined.
2801     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
2802       return LI->getPointerAddressSpace() == 0;
2803
2804     // Store to null is undefined.
2805     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
2806       return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
2807   }
2808   return false;
2809 }
2810
2811 /// If BB has an incoming value that will always trigger undefined behavior
2812 /// (eg. null pointer derefence), remove the branch leading here.
2813 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
2814   for (BasicBlock::iterator i = BB->begin();
2815        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
2816     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
2817       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
2818         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
2819         IRBuilder<> Builder(T);
2820         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
2821           BB->removePredecessor(PHI->getIncomingBlock(i));
2822           // Turn uncoditional branches into unreachables and remove the dead
2823           // destination from conditional branches.
2824           if (BI->isUnconditional())
2825             Builder.CreateUnreachable();
2826           else
2827             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
2828                                                          BI->getSuccessor(0));
2829           BI->eraseFromParent();
2830           return true;
2831         }
2832         // TODO: SwitchInst.
2833       }
2834
2835   return false;
2836 }
2837
2838 bool SimplifyCFGOpt::run(BasicBlock *BB) {
2839   bool Changed = false;
2840
2841   assert(BB && BB->getParent() && "Block not embedded in function!");
2842   assert(BB->getTerminator() && "Degenerate basic block encountered!");
2843
2844   // Remove basic blocks that have no predecessors (except the entry block)...
2845   // or that just have themself as a predecessor.  These are unreachable.
2846   if ((pred_begin(BB) == pred_end(BB) &&
2847        BB != &BB->getParent()->getEntryBlock()) ||
2848       BB->getSinglePredecessor() == BB) {
2849     DEBUG(dbgs() << "Removing BB: \n" << *BB);
2850     DeleteDeadBlock(BB);
2851     return true;
2852   }
2853
2854   // Check to see if we can constant propagate this terminator instruction
2855   // away...
2856   Changed |= ConstantFoldTerminator(BB, true);
2857
2858   // Check for and eliminate duplicate PHI nodes in this block.
2859   Changed |= EliminateDuplicatePHINodes(BB);
2860
2861   // Check for and remove branches that will always cause undefined behavior.
2862   Changed |= removeUndefIntroducingPredecessor(BB);
2863
2864   // Merge basic blocks into their predecessor if there is only one distinct
2865   // pred, and if there is only one distinct successor of the predecessor, and
2866   // if there are no PHI nodes.
2867   //
2868   if (MergeBlockIntoPredecessor(BB))
2869     return true;
2870   
2871   IRBuilder<> Builder(BB);
2872
2873   // If there is a trivial two-entry PHI node in this basic block, and we can
2874   // eliminate it, do so now.
2875   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2876     if (PN->getNumIncomingValues() == 2)
2877       Changed |= FoldTwoEntryPHINode(PN, TD);
2878
2879   Builder.SetInsertPoint(BB->getTerminator());
2880   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2881     if (BI->isUnconditional()) {
2882       if (SimplifyUncondBranch(BI, Builder)) return true;
2883     } else {
2884       if (SimplifyCondBranch(BI, Builder)) return true;
2885     }
2886   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
2887     if (SimplifyResume(RI, Builder)) return true;
2888   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2889     if (SimplifyReturn(RI, Builder)) return true;
2890   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2891     if (SimplifySwitch(SI, Builder)) return true;
2892   } else if (UnreachableInst *UI =
2893                dyn_cast<UnreachableInst>(BB->getTerminator())) {
2894     if (SimplifyUnreachable(UI)) return true;
2895   } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2896     if (SimplifyUnwind(UI, Builder)) return true;
2897   } else if (IndirectBrInst *IBI =
2898                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2899     if (SimplifyIndirectBr(IBI)) return true;
2900   }
2901
2902   return Changed;
2903 }
2904
2905 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
2906 /// example, it adjusts branches to branches to eliminate the extra hop, it
2907 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2908 /// of the CFG.  It returns true if a modification was made.
2909 ///
2910 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2911   return SimplifyCFGOpt(TD).run(BB);
2912 }