]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/VMCore/AsmWriter.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / VMCore / AsmWriter.cpp
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Module.h"
28 #include "llvm/ValueSymbolTable.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Dwarf.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/FormattedStream.h"
39 #include <algorithm>
40 #include <cctype>
41 using namespace llvm;
42
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
45
46 //===----------------------------------------------------------------------===//
47 // Helper Functions
48 //===----------------------------------------------------------------------===//
49
50 static const Module *getModuleFromVal(const Value *V) {
51   if (const Argument *MA = dyn_cast<Argument>(V))
52     return MA->getParent() ? MA->getParent()->getParent() : 0;
53
54   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55     return BB->getParent() ? BB->getParent()->getParent() : 0;
56
57   if (const Instruction *I = dyn_cast<Instruction>(V)) {
58     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59     return M ? M->getParent() : 0;
60   }
61
62   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63     return GV->getParent();
64   return 0;
65 }
66
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
70   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
71     unsigned char C = Name[i];
72     if (isprint(C) && C != '\\' && C != '"')
73       Out << C;
74     else
75       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
76   }
77 }
78
79 enum PrefixType {
80   GlobalPrefix,
81   LabelPrefix,
82   LocalPrefix,
83   NoPrefix
84 };
85
86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
87 /// prefixed with % (if the string only contains simple characters) or is
88 /// surrounded with ""'s (if it has special chars in it).  Print it out.
89 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
90   assert(!Name.empty() && "Cannot get empty name!");
91   switch (Prefix) {
92   default: llvm_unreachable("Bad prefix!");
93   case NoPrefix: break;
94   case GlobalPrefix: OS << '@'; break;
95   case LabelPrefix:  break;
96   case LocalPrefix:  OS << '%'; break;
97   }
98
99   // Scan the name to see if it needs quotes first.
100   bool NeedsQuotes = isdigit(Name[0]);
101   if (!NeedsQuotes) {
102     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
103       char C = Name[i];
104       if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
105         NeedsQuotes = true;
106         break;
107       }
108     }
109   }
110
111   // If we didn't need any quotes, just write out the name in one blast.
112   if (!NeedsQuotes) {
113     OS << Name;
114     return;
115   }
116
117   // Okay, we need quotes.  Output the quotes and escape any scary characters as
118   // needed.
119   OS << '"';
120   PrintEscapedString(Name, OS);
121   OS << '"';
122 }
123
124 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
125 /// prefixed with % (if the string only contains simple characters) or is
126 /// surrounded with ""'s (if it has special chars in it).  Print it out.
127 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
128   PrintLLVMName(OS, V->getName(),
129                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
130 }
131
132 //===----------------------------------------------------------------------===//
133 // TypePrinting Class: Type printing machinery
134 //===----------------------------------------------------------------------===//
135
136 /// TypePrinting - Type printing machinery.
137 namespace {
138 class TypePrinting {
139   TypePrinting(const TypePrinting &);   // DO NOT IMPLEMENT
140   void operator=(const TypePrinting&);  // DO NOT IMPLEMENT
141 public:
142
143   /// NamedTypes - The named types that are used by the current module.
144   std::vector<StructType*> NamedTypes;
145
146   /// NumberedTypes - The numbered types, along with their value.
147   DenseMap<StructType*, unsigned> NumberedTypes;
148
149
150   TypePrinting() {}
151   ~TypePrinting() {}
152
153   void incorporateTypes(const Module &M);
154
155   void print(Type *Ty, raw_ostream &OS);
156
157   void printStructBody(StructType *Ty, raw_ostream &OS);
158 };
159 } // end anonymous namespace.
160
161
162 void TypePrinting::incorporateTypes(const Module &M) {
163   M.findUsedStructTypes(NamedTypes);
164
165   // The list of struct types we got back includes all the struct types, split
166   // the unnamed ones out to a numbering and remove the anonymous structs.
167   unsigned NextNumber = 0;
168
169   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
170   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
171     StructType *STy = *I;
172
173     // Ignore anonymous types.
174     if (STy->isLiteral())
175       continue;
176
177     if (STy->getName().empty())
178       NumberedTypes[STy] = NextNumber++;
179     else
180       *NextToUse++ = STy;
181   }
182
183   NamedTypes.erase(NextToUse, NamedTypes.end());
184 }
185
186
187 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
188 /// use of type names or up references to shorten the type name where possible.
189 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
190   switch (Ty->getTypeID()) {
191   case Type::VoidTyID:      OS << "void"; break;
192   case Type::FloatTyID:     OS << "float"; break;
193   case Type::DoubleTyID:    OS << "double"; break;
194   case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
195   case Type::FP128TyID:     OS << "fp128"; break;
196   case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
197   case Type::LabelTyID:     OS << "label"; break;
198   case Type::MetadataTyID:  OS << "metadata"; break;
199   case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
200   case Type::IntegerTyID:
201     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
202     return;
203
204   case Type::FunctionTyID: {
205     FunctionType *FTy = cast<FunctionType>(Ty);
206     print(FTy->getReturnType(), OS);
207     OS << " (";
208     for (FunctionType::param_iterator I = FTy->param_begin(),
209          E = FTy->param_end(); I != E; ++I) {
210       if (I != FTy->param_begin())
211         OS << ", ";
212       print(*I, OS);
213     }
214     if (FTy->isVarArg()) {
215       if (FTy->getNumParams()) OS << ", ";
216       OS << "...";
217     }
218     OS << ')';
219     return;
220   }
221   case Type::StructTyID: {
222     StructType *STy = cast<StructType>(Ty);
223
224     if (STy->isLiteral())
225       return printStructBody(STy, OS);
226
227     if (!STy->getName().empty())
228       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
229
230     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
231     if (I != NumberedTypes.end())
232       OS << '%' << I->second;
233     else  // Not enumerated, print the hex address.
234       OS << "%\"type 0x" << STy << '\"';
235     return;
236   }
237   case Type::PointerTyID: {
238     PointerType *PTy = cast<PointerType>(Ty);
239     print(PTy->getElementType(), OS);
240     if (unsigned AddressSpace = PTy->getAddressSpace())
241       OS << " addrspace(" << AddressSpace << ')';
242     OS << '*';
243     return;
244   }
245   case Type::ArrayTyID: {
246     ArrayType *ATy = cast<ArrayType>(Ty);
247     OS << '[' << ATy->getNumElements() << " x ";
248     print(ATy->getElementType(), OS);
249     OS << ']';
250     return;
251   }
252   case Type::VectorTyID: {
253     VectorType *PTy = cast<VectorType>(Ty);
254     OS << "<" << PTy->getNumElements() << " x ";
255     print(PTy->getElementType(), OS);
256     OS << '>';
257     return;
258   }
259   default:
260     OS << "<unrecognized-type>";
261     return;
262   }
263 }
264
265 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
266   if (STy->isOpaque()) {
267     OS << "opaque";
268     return;
269   }
270
271   if (STy->isPacked())
272     OS << '<';
273
274   if (STy->getNumElements() == 0) {
275     OS << "{}";
276   } else {
277     StructType::element_iterator I = STy->element_begin();
278     OS << "{ ";
279     print(*I++, OS);
280     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
281       OS << ", ";
282       print(*I, OS);
283     }
284
285     OS << " }";
286   }
287   if (STy->isPacked())
288     OS << '>';
289 }
290
291
292
293 //===----------------------------------------------------------------------===//
294 // SlotTracker Class: Enumerate slot numbers for unnamed values
295 //===----------------------------------------------------------------------===//
296
297 namespace {
298
299 /// This class provides computation of slot numbers for LLVM Assembly writing.
300 ///
301 class SlotTracker {
302 public:
303   /// ValueMap - A mapping of Values to slot numbers.
304   typedef DenseMap<const Value*, unsigned> ValueMap;
305
306 private:
307   /// TheModule - The module for which we are holding slot numbers.
308   const Module* TheModule;
309
310   /// TheFunction - The function for which we are holding slot numbers.
311   const Function* TheFunction;
312   bool FunctionProcessed;
313
314   /// mMap - The slot map for the module level data.
315   ValueMap mMap;
316   unsigned mNext;
317
318   /// fMap - The slot map for the function level data.
319   ValueMap fMap;
320   unsigned fNext;
321
322   /// mdnMap - Map for MDNodes.
323   DenseMap<const MDNode*, unsigned> mdnMap;
324   unsigned mdnNext;
325 public:
326   /// Construct from a module
327   explicit SlotTracker(const Module *M);
328   /// Construct from a function, starting out in incorp state.
329   explicit SlotTracker(const Function *F);
330
331   /// Return the slot number of the specified value in it's type
332   /// plane.  If something is not in the SlotTracker, return -1.
333   int getLocalSlot(const Value *V);
334   int getGlobalSlot(const GlobalValue *V);
335   int getMetadataSlot(const MDNode *N);
336
337   /// If you'd like to deal with a function instead of just a module, use
338   /// this method to get its data into the SlotTracker.
339   void incorporateFunction(const Function *F) {
340     TheFunction = F;
341     FunctionProcessed = false;
342   }
343
344   /// After calling incorporateFunction, use this method to remove the
345   /// most recently incorporated function from the SlotTracker. This
346   /// will reset the state of the machine back to just the module contents.
347   void purgeFunction();
348
349   /// MDNode map iterators.
350   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
351   mdn_iterator mdn_begin() { return mdnMap.begin(); }
352   mdn_iterator mdn_end() { return mdnMap.end(); }
353   unsigned mdn_size() const { return mdnMap.size(); }
354   bool mdn_empty() const { return mdnMap.empty(); }
355
356   /// This function does the actual initialization.
357   inline void initialize();
358
359   // Implementation Details
360 private:
361   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
362   void CreateModuleSlot(const GlobalValue *V);
363
364   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
365   void CreateMetadataSlot(const MDNode *N);
366
367   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
368   void CreateFunctionSlot(const Value *V);
369
370   /// Add all of the module level global variables (and their initializers)
371   /// and function declarations, but not the contents of those functions.
372   void processModule();
373
374   /// Add all of the functions arguments, basic blocks, and instructions.
375   void processFunction();
376
377   SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
378   void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
379 };
380
381 }  // end anonymous namespace
382
383
384 static SlotTracker *createSlotTracker(const Value *V) {
385   if (const Argument *FA = dyn_cast<Argument>(V))
386     return new SlotTracker(FA->getParent());
387
388   if (const Instruction *I = dyn_cast<Instruction>(V))
389     if (I->getParent())
390       return new SlotTracker(I->getParent()->getParent());
391
392   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
393     return new SlotTracker(BB->getParent());
394
395   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
396     return new SlotTracker(GV->getParent());
397
398   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
399     return new SlotTracker(GA->getParent());
400
401   if (const Function *Func = dyn_cast<Function>(V))
402     return new SlotTracker(Func);
403
404   if (const MDNode *MD = dyn_cast<MDNode>(V)) {
405     if (!MD->isFunctionLocal())
406       return new SlotTracker(MD->getFunction());
407
408     return new SlotTracker((Function *)0);
409   }
410
411   return 0;
412 }
413
414 #if 0
415 #define ST_DEBUG(X) dbgs() << X
416 #else
417 #define ST_DEBUG(X)
418 #endif
419
420 // Module level constructor. Causes the contents of the Module (sans functions)
421 // to be added to the slot table.
422 SlotTracker::SlotTracker(const Module *M)
423   : TheModule(M), TheFunction(0), FunctionProcessed(false),
424     mNext(0), fNext(0),  mdnNext(0) {
425 }
426
427 // Function level constructor. Causes the contents of the Module and the one
428 // function provided to be added to the slot table.
429 SlotTracker::SlotTracker(const Function *F)
430   : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
431     mNext(0), fNext(0), mdnNext(0) {
432 }
433
434 inline void SlotTracker::initialize() {
435   if (TheModule) {
436     processModule();
437     TheModule = 0; ///< Prevent re-processing next time we're called.
438   }
439
440   if (TheFunction && !FunctionProcessed)
441     processFunction();
442 }
443
444 // Iterate through all the global variables, functions, and global
445 // variable initializers and create slots for them.
446 void SlotTracker::processModule() {
447   ST_DEBUG("begin processModule!\n");
448
449   // Add all of the unnamed global variables to the value table.
450   for (Module::const_global_iterator I = TheModule->global_begin(),
451          E = TheModule->global_end(); I != E; ++I) {
452     if (!I->hasName())
453       CreateModuleSlot(I);
454   }
455
456   // Add metadata used by named metadata.
457   for (Module::const_named_metadata_iterator
458          I = TheModule->named_metadata_begin(),
459          E = TheModule->named_metadata_end(); I != E; ++I) {
460     const NamedMDNode *NMD = I;
461     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
462       CreateMetadataSlot(NMD->getOperand(i));
463   }
464
465   // Add all the unnamed functions to the table.
466   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
467        I != E; ++I)
468     if (!I->hasName())
469       CreateModuleSlot(I);
470
471   ST_DEBUG("end processModule!\n");
472 }
473
474 // Process the arguments, basic blocks, and instructions  of a function.
475 void SlotTracker::processFunction() {
476   ST_DEBUG("begin processFunction!\n");
477   fNext = 0;
478
479   // Add all the function arguments with no names.
480   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
481       AE = TheFunction->arg_end(); AI != AE; ++AI)
482     if (!AI->hasName())
483       CreateFunctionSlot(AI);
484
485   ST_DEBUG("Inserting Instructions:\n");
486
487   SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
488
489   // Add all of the basic blocks and instructions with no names.
490   for (Function::const_iterator BB = TheFunction->begin(),
491        E = TheFunction->end(); BB != E; ++BB) {
492     if (!BB->hasName())
493       CreateFunctionSlot(BB);
494
495     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
496          ++I) {
497       if (!I->getType()->isVoidTy() && !I->hasName())
498         CreateFunctionSlot(I);
499
500       // Intrinsics can directly use metadata.  We allow direct calls to any
501       // llvm.foo function here, because the target may not be linked into the
502       // optimizer.
503       if (const CallInst *CI = dyn_cast<CallInst>(I)) {
504         if (Function *F = CI->getCalledFunction())
505           if (F->getName().startswith("llvm."))
506             for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
507               if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
508                 CreateMetadataSlot(N);
509       }
510
511       // Process metadata attached with this instruction.
512       I->getAllMetadata(MDForInst);
513       for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
514         CreateMetadataSlot(MDForInst[i].second);
515       MDForInst.clear();
516     }
517   }
518
519   FunctionProcessed = true;
520
521   ST_DEBUG("end processFunction!\n");
522 }
523
524 /// Clean up after incorporating a function. This is the only way to get out of
525 /// the function incorporation state that affects get*Slot/Create*Slot. Function
526 /// incorporation state is indicated by TheFunction != 0.
527 void SlotTracker::purgeFunction() {
528   ST_DEBUG("begin purgeFunction!\n");
529   fMap.clear(); // Simply discard the function level map
530   TheFunction = 0;
531   FunctionProcessed = false;
532   ST_DEBUG("end purgeFunction!\n");
533 }
534
535 /// getGlobalSlot - Get the slot number of a global value.
536 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
537   // Check for uninitialized state and do lazy initialization.
538   initialize();
539
540   // Find the value in the module map
541   ValueMap::iterator MI = mMap.find(V);
542   return MI == mMap.end() ? -1 : (int)MI->second;
543 }
544
545 /// getMetadataSlot - Get the slot number of a MDNode.
546 int SlotTracker::getMetadataSlot(const MDNode *N) {
547   // Check for uninitialized state and do lazy initialization.
548   initialize();
549
550   // Find the MDNode in the module map
551   mdn_iterator MI = mdnMap.find(N);
552   return MI == mdnMap.end() ? -1 : (int)MI->second;
553 }
554
555
556 /// getLocalSlot - Get the slot number for a value that is local to a function.
557 int SlotTracker::getLocalSlot(const Value *V) {
558   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
559
560   // Check for uninitialized state and do lazy initialization.
561   initialize();
562
563   ValueMap::iterator FI = fMap.find(V);
564   return FI == fMap.end() ? -1 : (int)FI->second;
565 }
566
567
568 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
569 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
570   assert(V && "Can't insert a null Value into SlotTracker!");
571   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
572   assert(!V->hasName() && "Doesn't need a slot!");
573
574   unsigned DestSlot = mNext++;
575   mMap[V] = DestSlot;
576
577   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
578            DestSlot << " [");
579   // G = Global, F = Function, A = Alias, o = other
580   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
581             (isa<Function>(V) ? 'F' :
582              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
583 }
584
585 /// CreateSlot - Create a new slot for the specified value if it has no name.
586 void SlotTracker::CreateFunctionSlot(const Value *V) {
587   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
588
589   unsigned DestSlot = fNext++;
590   fMap[V] = DestSlot;
591
592   // G = Global, F = Function, o = other
593   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
594            DestSlot << " [o]\n");
595 }
596
597 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
598 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
599   assert(N && "Can't insert a null Value into SlotTracker!");
600
601   // Don't insert if N is a function-local metadata, these are always printed
602   // inline.
603   if (!N->isFunctionLocal()) {
604     mdn_iterator I = mdnMap.find(N);
605     if (I != mdnMap.end())
606       return;
607
608     unsigned DestSlot = mdnNext++;
609     mdnMap[N] = DestSlot;
610   }
611
612   // Recursively add any MDNodes referenced by operands.
613   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
614     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
615       CreateMetadataSlot(Op);
616 }
617
618 //===----------------------------------------------------------------------===//
619 // AsmWriter Implementation
620 //===----------------------------------------------------------------------===//
621
622 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
623                                    TypePrinting *TypePrinter,
624                                    SlotTracker *Machine,
625                                    const Module *Context);
626
627
628
629 static const char *getPredicateText(unsigned predicate) {
630   const char * pred = "unknown";
631   switch (predicate) {
632   case FCmpInst::FCMP_FALSE: pred = "false"; break;
633   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
634   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
635   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
636   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
637   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
638   case FCmpInst::FCMP_ONE:   pred = "one"; break;
639   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
640   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
641   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
642   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
643   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
644   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
645   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
646   case FCmpInst::FCMP_UNE:   pred = "une"; break;
647   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
648   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
649   case ICmpInst::ICMP_NE:    pred = "ne"; break;
650   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
651   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
652   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
653   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
654   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
655   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
656   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
657   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
658   }
659   return pred;
660 }
661
662 static void writeAtomicRMWOperation(raw_ostream &Out,
663                                     AtomicRMWInst::BinOp Op) {
664   switch (Op) {
665   default: Out << " <unknown operation " << Op << ">"; break;
666   case AtomicRMWInst::Xchg: Out << " xchg"; break;
667   case AtomicRMWInst::Add:  Out << " add"; break;
668   case AtomicRMWInst::Sub:  Out << " sub"; break;
669   case AtomicRMWInst::And:  Out << " and"; break;
670   case AtomicRMWInst::Nand: Out << " nand"; break;
671   case AtomicRMWInst::Or:   Out << " or"; break;
672   case AtomicRMWInst::Xor:  Out << " xor"; break;
673   case AtomicRMWInst::Max:  Out << " max"; break;
674   case AtomicRMWInst::Min:  Out << " min"; break;
675   case AtomicRMWInst::UMax: Out << " umax"; break;
676   case AtomicRMWInst::UMin: Out << " umin"; break;
677   }
678 }
679
680 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
681   if (const OverflowingBinaryOperator *OBO =
682         dyn_cast<OverflowingBinaryOperator>(U)) {
683     if (OBO->hasNoUnsignedWrap())
684       Out << " nuw";
685     if (OBO->hasNoSignedWrap())
686       Out << " nsw";
687   } else if (const PossiblyExactOperator *Div =
688                dyn_cast<PossiblyExactOperator>(U)) {
689     if (Div->isExact())
690       Out << " exact";
691   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
692     if (GEP->isInBounds())
693       Out << " inbounds";
694   }
695 }
696
697 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
698                                   TypePrinting &TypePrinter,
699                                   SlotTracker *Machine,
700                                   const Module *Context) {
701   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
702     if (CI->getType()->isIntegerTy(1)) {
703       Out << (CI->getZExtValue() ? "true" : "false");
704       return;
705     }
706     Out << CI->getValue();
707     return;
708   }
709
710   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
711     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
712         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
713       // We would like to output the FP constant value in exponential notation,
714       // but we cannot do this if doing so will lose precision.  Check here to
715       // make sure that we only output it in exponential format if we can parse
716       // the value back and get the same value.
717       //
718       bool ignored;
719       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
720       double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
721                               CFP->getValueAPF().convertToFloat();
722       SmallString<128> StrVal;
723       raw_svector_ostream(StrVal) << Val;
724
725       // Check to make sure that the stringized number is not some string like
726       // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
727       // that the string matches the "[-+]?[0-9]" regex.
728       //
729       if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
730           ((StrVal[0] == '-' || StrVal[0] == '+') &&
731            (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
732         // Reparse stringized version!
733         if (atof(StrVal.c_str()) == Val) {
734           Out << StrVal.str();
735           return;
736         }
737       }
738       // Otherwise we could not reparse it to exactly the same value, so we must
739       // output the string in hexadecimal format!  Note that loading and storing
740       // floating point types changes the bits of NaNs on some hosts, notably
741       // x86, so we must not use these types.
742       assert(sizeof(double) == sizeof(uint64_t) &&
743              "assuming that double is 64 bits!");
744       char Buffer[40];
745       APFloat apf = CFP->getValueAPF();
746       // Floats are represented in ASCII IR as double, convert.
747       if (!isDouble)
748         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
749                           &ignored);
750       Out << "0x" <<
751               utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
752                             Buffer+40);
753       return;
754     }
755
756     // Some form of long double.  These appear as a magic letter identifying
757     // the type, then a fixed number of hex digits.
758     Out << "0x";
759     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
760       Out << 'K';
761       // api needed to prevent premature destruction
762       APInt api = CFP->getValueAPF().bitcastToAPInt();
763       const uint64_t* p = api.getRawData();
764       uint64_t word = p[1];
765       int shiftcount=12;
766       int width = api.getBitWidth();
767       for (int j=0; j<width; j+=4, shiftcount-=4) {
768         unsigned int nibble = (word>>shiftcount) & 15;
769         if (nibble < 10)
770           Out << (unsigned char)(nibble + '0');
771         else
772           Out << (unsigned char)(nibble - 10 + 'A');
773         if (shiftcount == 0 && j+4 < width) {
774           word = *p;
775           shiftcount = 64;
776           if (width-j-4 < 64)
777             shiftcount = width-j-4;
778         }
779       }
780       return;
781     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
782       Out << 'L';
783     else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
784       Out << 'M';
785     else
786       llvm_unreachable("Unsupported floating point type");
787     // api needed to prevent premature destruction
788     APInt api = CFP->getValueAPF().bitcastToAPInt();
789     const uint64_t* p = api.getRawData();
790     uint64_t word = *p;
791     int shiftcount=60;
792     int width = api.getBitWidth();
793     for (int j=0; j<width; j+=4, shiftcount-=4) {
794       unsigned int nibble = (word>>shiftcount) & 15;
795       if (nibble < 10)
796         Out << (unsigned char)(nibble + '0');
797       else
798         Out << (unsigned char)(nibble - 10 + 'A');
799       if (shiftcount == 0 && j+4 < width) {
800         word = *(++p);
801         shiftcount = 64;
802         if (width-j-4 < 64)
803           shiftcount = width-j-4;
804       }
805     }
806     return;
807   }
808
809   if (isa<ConstantAggregateZero>(CV)) {
810     Out << "zeroinitializer";
811     return;
812   }
813
814   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
815     Out << "blockaddress(";
816     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
817                            Context);
818     Out << ", ";
819     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
820                            Context);
821     Out << ")";
822     return;
823   }
824
825   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
826     // As a special case, print the array as a string if it is an array of
827     // i8 with ConstantInt values.
828     //
829     Type *ETy = CA->getType()->getElementType();
830     if (CA->isString()) {
831       Out << "c\"";
832       PrintEscapedString(CA->getAsString(), Out);
833       Out << '"';
834     } else {                // Cannot output in string format...
835       Out << '[';
836       if (CA->getNumOperands()) {
837         TypePrinter.print(ETy, Out);
838         Out << ' ';
839         WriteAsOperandInternal(Out, CA->getOperand(0),
840                                &TypePrinter, Machine,
841                                Context);
842         for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
843           Out << ", ";
844           TypePrinter.print(ETy, Out);
845           Out << ' ';
846           WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
847                                  Context);
848         }
849       }
850       Out << ']';
851     }
852     return;
853   }
854
855   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
856     if (CS->getType()->isPacked())
857       Out << '<';
858     Out << '{';
859     unsigned N = CS->getNumOperands();
860     if (N) {
861       Out << ' ';
862       TypePrinter.print(CS->getOperand(0)->getType(), Out);
863       Out << ' ';
864
865       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
866                              Context);
867
868       for (unsigned i = 1; i < N; i++) {
869         Out << ", ";
870         TypePrinter.print(CS->getOperand(i)->getType(), Out);
871         Out << ' ';
872
873         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
874                                Context);
875       }
876       Out << ' ';
877     }
878
879     Out << '}';
880     if (CS->getType()->isPacked())
881       Out << '>';
882     return;
883   }
884
885   if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
886     Type *ETy = CP->getType()->getElementType();
887     assert(CP->getNumOperands() > 0 &&
888            "Number of operands for a PackedConst must be > 0");
889     Out << '<';
890     TypePrinter.print(ETy, Out);
891     Out << ' ';
892     WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine,
893                            Context);
894     for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
895       Out << ", ";
896       TypePrinter.print(ETy, Out);
897       Out << ' ';
898       WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine,
899                              Context);
900     }
901     Out << '>';
902     return;
903   }
904
905   if (isa<ConstantPointerNull>(CV)) {
906     Out << "null";
907     return;
908   }
909
910   if (isa<UndefValue>(CV)) {
911     Out << "undef";
912     return;
913   }
914
915   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
916     Out << CE->getOpcodeName();
917     WriteOptimizationInfo(Out, CE);
918     if (CE->isCompare())
919       Out << ' ' << getPredicateText(CE->getPredicate());
920     Out << " (";
921
922     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
923       TypePrinter.print((*OI)->getType(), Out);
924       Out << ' ';
925       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
926       if (OI+1 != CE->op_end())
927         Out << ", ";
928     }
929
930     if (CE->hasIndices()) {
931       ArrayRef<unsigned> Indices = CE->getIndices();
932       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
933         Out << ", " << Indices[i];
934     }
935
936     if (CE->isCast()) {
937       Out << " to ";
938       TypePrinter.print(CE->getType(), Out);
939     }
940
941     Out << ')';
942     return;
943   }
944
945   Out << "<placeholder or erroneous Constant>";
946 }
947
948 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
949                                     TypePrinting *TypePrinter,
950                                     SlotTracker *Machine,
951                                     const Module *Context) {
952   Out << "!{";
953   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
954     const Value *V = Node->getOperand(mi);
955     if (V == 0)
956       Out << "null";
957     else {
958       TypePrinter->print(V->getType(), Out);
959       Out << ' ';
960       WriteAsOperandInternal(Out, Node->getOperand(mi),
961                              TypePrinter, Machine, Context);
962     }
963     if (mi + 1 != me)
964       Out << ", ";
965   }
966
967   Out << "}";
968 }
969
970
971 /// WriteAsOperand - Write the name of the specified value out to the specified
972 /// ostream.  This can be useful when you just want to print int %reg126, not
973 /// the whole instruction that generated it.
974 ///
975 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
976                                    TypePrinting *TypePrinter,
977                                    SlotTracker *Machine,
978                                    const Module *Context) {
979   if (V->hasName()) {
980     PrintLLVMName(Out, V);
981     return;
982   }
983
984   const Constant *CV = dyn_cast<Constant>(V);
985   if (CV && !isa<GlobalValue>(CV)) {
986     assert(TypePrinter && "Constants require TypePrinting!");
987     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
988     return;
989   }
990
991   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
992     Out << "asm ";
993     if (IA->hasSideEffects())
994       Out << "sideeffect ";
995     if (IA->isAlignStack())
996       Out << "alignstack ";
997     Out << '"';
998     PrintEscapedString(IA->getAsmString(), Out);
999     Out << "\", \"";
1000     PrintEscapedString(IA->getConstraintString(), Out);
1001     Out << '"';
1002     return;
1003   }
1004
1005   if (const MDNode *N = dyn_cast<MDNode>(V)) {
1006     if (N->isFunctionLocal()) {
1007       // Print metadata inline, not via slot reference number.
1008       WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1009       return;
1010     }
1011
1012     if (!Machine) {
1013       if (N->isFunctionLocal())
1014         Machine = new SlotTracker(N->getFunction());
1015       else
1016         Machine = new SlotTracker(Context);
1017     }
1018     int Slot = Machine->getMetadataSlot(N);
1019     if (Slot == -1)
1020       Out << "<badref>";
1021     else
1022       Out << '!' << Slot;
1023     return;
1024   }
1025
1026   if (const MDString *MDS = dyn_cast<MDString>(V)) {
1027     Out << "!\"";
1028     PrintEscapedString(MDS->getString(), Out);
1029     Out << '"';
1030     return;
1031   }
1032
1033   if (V->getValueID() == Value::PseudoSourceValueVal ||
1034       V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1035     V->print(Out);
1036     return;
1037   }
1038
1039   char Prefix = '%';
1040   int Slot;
1041   // If we have a SlotTracker, use it.
1042   if (Machine) {
1043     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1044       Slot = Machine->getGlobalSlot(GV);
1045       Prefix = '@';
1046     } else {
1047       Slot = Machine->getLocalSlot(V);
1048
1049       // If the local value didn't succeed, then we may be referring to a value
1050       // from a different function.  Translate it, as this can happen when using
1051       // address of blocks.
1052       if (Slot == -1)
1053         if ((Machine = createSlotTracker(V))) {
1054           Slot = Machine->getLocalSlot(V);
1055           delete Machine;
1056         }
1057     }
1058   } else if ((Machine = createSlotTracker(V))) {
1059     // Otherwise, create one to get the # and then destroy it.
1060     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1061       Slot = Machine->getGlobalSlot(GV);
1062       Prefix = '@';
1063     } else {
1064       Slot = Machine->getLocalSlot(V);
1065     }
1066     delete Machine;
1067     Machine = 0;
1068   } else {
1069     Slot = -1;
1070   }
1071
1072   if (Slot != -1)
1073     Out << Prefix << Slot;
1074   else
1075     Out << "<badref>";
1076 }
1077
1078 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1079                           bool PrintType, const Module *Context) {
1080
1081   // Fast path: Don't construct and populate a TypePrinting object if we
1082   // won't be needing any types printed.
1083   if (!PrintType &&
1084       ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1085        V->hasName() || isa<GlobalValue>(V))) {
1086     WriteAsOperandInternal(Out, V, 0, 0, Context);
1087     return;
1088   }
1089
1090   if (Context == 0) Context = getModuleFromVal(V);
1091
1092   TypePrinting TypePrinter;
1093   if (Context)
1094     TypePrinter.incorporateTypes(*Context);
1095   if (PrintType) {
1096     TypePrinter.print(V->getType(), Out);
1097     Out << ' ';
1098   }
1099
1100   WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1101 }
1102
1103 namespace {
1104
1105 class AssemblyWriter {
1106   formatted_raw_ostream &Out;
1107   SlotTracker &Machine;
1108   const Module *TheModule;
1109   TypePrinting TypePrinter;
1110   AssemblyAnnotationWriter *AnnotationWriter;
1111
1112 public:
1113   inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1114                         const Module *M,
1115                         AssemblyAnnotationWriter *AAW)
1116     : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1117     if (M)
1118       TypePrinter.incorporateTypes(*M);
1119   }
1120
1121   void printMDNodeBody(const MDNode *MD);
1122   void printNamedMDNode(const NamedMDNode *NMD);
1123
1124   void printModule(const Module *M);
1125
1126   void writeOperand(const Value *Op, bool PrintType);
1127   void writeParamOperand(const Value *Operand, Attributes Attrs);
1128   void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
1129
1130   void writeAllMDNodes();
1131
1132   void printTypeIdentities();
1133   void printGlobal(const GlobalVariable *GV);
1134   void printAlias(const GlobalAlias *GV);
1135   void printFunction(const Function *F);
1136   void printArgument(const Argument *FA, Attributes Attrs);
1137   void printBasicBlock(const BasicBlock *BB);
1138   void printInstruction(const Instruction &I);
1139
1140 private:
1141   // printInfoComment - Print a little comment after the instruction indicating
1142   // which slot it occupies.
1143   void printInfoComment(const Value &V);
1144 };
1145 }  // end of anonymous namespace
1146
1147 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1148   if (Operand == 0) {
1149     Out << "<null operand!>";
1150     return;
1151   }
1152   if (PrintType) {
1153     TypePrinter.print(Operand->getType(), Out);
1154     Out << ' ';
1155   }
1156   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1157 }
1158
1159 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1160                                  SynchronizationScope SynchScope) {
1161   if (Ordering == NotAtomic)
1162     return;
1163
1164   switch (SynchScope) {
1165   default: Out << " <bad scope " << int(SynchScope) << ">"; break;
1166   case SingleThread: Out << " singlethread"; break;
1167   case CrossThread: break;
1168   }
1169
1170   switch (Ordering) {
1171   default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1172   case Unordered: Out << " unordered"; break;
1173   case Monotonic: Out << " monotonic"; break;
1174   case Acquire: Out << " acquire"; break;
1175   case Release: Out << " release"; break;
1176   case AcquireRelease: Out << " acq_rel"; break;
1177   case SequentiallyConsistent: Out << " seq_cst"; break;
1178   }
1179 }
1180
1181 void AssemblyWriter::writeParamOperand(const Value *Operand,
1182                                        Attributes Attrs) {
1183   if (Operand == 0) {
1184     Out << "<null operand!>";
1185     return;
1186   }
1187
1188   // Print the type
1189   TypePrinter.print(Operand->getType(), Out);
1190   // Print parameter attributes list
1191   if (Attrs != Attribute::None)
1192     Out << ' ' << Attribute::getAsString(Attrs);
1193   Out << ' ';
1194   // Print the operand
1195   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1196 }
1197
1198 void AssemblyWriter::printModule(const Module *M) {
1199   if (!M->getModuleIdentifier().empty() &&
1200       // Don't print the ID if it will start a new line (which would
1201       // require a comment char before it).
1202       M->getModuleIdentifier().find('\n') == std::string::npos)
1203     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1204
1205   if (!M->getDataLayout().empty())
1206     Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1207   if (!M->getTargetTriple().empty())
1208     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1209
1210   if (!M->getModuleInlineAsm().empty()) {
1211     // Split the string into lines, to make it easier to read the .ll file.
1212     std::string Asm = M->getModuleInlineAsm();
1213     size_t CurPos = 0;
1214     size_t NewLine = Asm.find_first_of('\n', CurPos);
1215     Out << '\n';
1216     while (NewLine != std::string::npos) {
1217       // We found a newline, print the portion of the asm string from the
1218       // last newline up to this newline.
1219       Out << "module asm \"";
1220       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1221                          Out);
1222       Out << "\"\n";
1223       CurPos = NewLine+1;
1224       NewLine = Asm.find_first_of('\n', CurPos);
1225     }
1226     std::string rest(Asm.begin()+CurPos, Asm.end());
1227     if (!rest.empty()) {
1228       Out << "module asm \"";
1229       PrintEscapedString(rest, Out);
1230       Out << "\"\n";
1231     }
1232   }
1233
1234   // Loop over the dependent libraries and emit them.
1235   Module::lib_iterator LI = M->lib_begin();
1236   Module::lib_iterator LE = M->lib_end();
1237   if (LI != LE) {
1238     Out << '\n';
1239     Out << "deplibs = [ ";
1240     while (LI != LE) {
1241       Out << '"' << *LI << '"';
1242       ++LI;
1243       if (LI != LE)
1244         Out << ", ";
1245     }
1246     Out << " ]";
1247   }
1248
1249   printTypeIdentities();
1250
1251   // Output all globals.
1252   if (!M->global_empty()) Out << '\n';
1253   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1254        I != E; ++I)
1255     printGlobal(I);
1256
1257   // Output all aliases.
1258   if (!M->alias_empty()) Out << "\n";
1259   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1260        I != E; ++I)
1261     printAlias(I);
1262
1263   // Output all of the functions.
1264   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1265     printFunction(I);
1266
1267   // Output named metadata.
1268   if (!M->named_metadata_empty()) Out << '\n';
1269
1270   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1271        E = M->named_metadata_end(); I != E; ++I)
1272     printNamedMDNode(I);
1273
1274   // Output metadata.
1275   if (!Machine.mdn_empty()) {
1276     Out << '\n';
1277     writeAllMDNodes();
1278   }
1279 }
1280
1281 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1282   Out << '!';
1283   StringRef Name = NMD->getName();
1284   if (Name.empty()) {
1285     Out << "<empty name> ";
1286   } else {
1287     if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' ||
1288         Name[0] == '.' || Name[0] == '_')
1289       Out << Name[0];
1290     else
1291       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1292     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1293       unsigned char C = Name[i];
1294       if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
1295         Out << C;
1296       else
1297         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1298     }
1299   }
1300   Out << " = !{";
1301   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1302     if (i) Out << ", ";
1303     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1304     if (Slot == -1)
1305       Out << "<badref>";
1306     else
1307       Out << '!' << Slot;
1308   }
1309   Out << "}\n";
1310 }
1311
1312
1313 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1314                          formatted_raw_ostream &Out) {
1315   switch (LT) {
1316   case GlobalValue::ExternalLinkage: break;
1317   case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1318   case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1319   case GlobalValue::LinkerPrivateWeakLinkage:
1320     Out << "linker_private_weak ";
1321     break;
1322   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
1323     Out << "linker_private_weak_def_auto ";
1324     break;
1325   case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1326   case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1327   case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1328   case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1329   case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1330   case GlobalValue::CommonLinkage:        Out << "common ";         break;
1331   case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1332   case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1333   case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1334   case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1335   case GlobalValue::AvailableExternallyLinkage:
1336     Out << "available_externally ";
1337     break;
1338   }
1339 }
1340
1341
1342 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1343                             formatted_raw_ostream &Out) {
1344   switch (Vis) {
1345   case GlobalValue::DefaultVisibility: break;
1346   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1347   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1348   }
1349 }
1350
1351 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1352   if (GV->isMaterializable())
1353     Out << "; Materializable\n";
1354
1355   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1356   Out << " = ";
1357
1358   if (!GV->hasInitializer() && GV->hasExternalLinkage())
1359     Out << "external ";
1360
1361   PrintLinkage(GV->getLinkage(), Out);
1362   PrintVisibility(GV->getVisibility(), Out);
1363
1364   if (GV->isThreadLocal()) Out << "thread_local ";
1365   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1366     Out << "addrspace(" << AddressSpace << ") ";
1367   if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1368   Out << (GV->isConstant() ? "constant " : "global ");
1369   TypePrinter.print(GV->getType()->getElementType(), Out);
1370
1371   if (GV->hasInitializer()) {
1372     Out << ' ';
1373     writeOperand(GV->getInitializer(), false);
1374   }
1375
1376   if (GV->hasSection()) {
1377     Out << ", section \"";
1378     PrintEscapedString(GV->getSection(), Out);
1379     Out << '"';
1380   }
1381   if (GV->getAlignment())
1382     Out << ", align " << GV->getAlignment();
1383
1384   printInfoComment(*GV);
1385   Out << '\n';
1386 }
1387
1388 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1389   if (GA->isMaterializable())
1390     Out << "; Materializable\n";
1391
1392   // Don't crash when dumping partially built GA
1393   if (!GA->hasName())
1394     Out << "<<nameless>> = ";
1395   else {
1396     PrintLLVMName(Out, GA);
1397     Out << " = ";
1398   }
1399   PrintVisibility(GA->getVisibility(), Out);
1400
1401   Out << "alias ";
1402
1403   PrintLinkage(GA->getLinkage(), Out);
1404
1405   const Constant *Aliasee = GA->getAliasee();
1406
1407   if (Aliasee == 0) {
1408     TypePrinter.print(GA->getType(), Out);
1409     Out << " <<NULL ALIASEE>>";
1410   } else {
1411     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1412   }
1413
1414   printInfoComment(*GA);
1415   Out << '\n';
1416 }
1417
1418 void AssemblyWriter::printTypeIdentities() {
1419   if (TypePrinter.NumberedTypes.empty() &&
1420       TypePrinter.NamedTypes.empty())
1421     return;
1422
1423   Out << '\n';
1424
1425   // We know all the numbers that each type is used and we know that it is a
1426   // dense assignment.  Convert the map to an index table.
1427   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1428   for (DenseMap<StructType*, unsigned>::iterator I =
1429        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1430        I != E; ++I) {
1431     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1432     NumberedTypes[I->second] = I->first;
1433   }
1434
1435   // Emit all numbered types.
1436   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1437     Out << '%' << i << " = type ";
1438
1439     // Make sure we print out at least one level of the type structure, so
1440     // that we do not get %2 = type %2
1441     TypePrinter.printStructBody(NumberedTypes[i], Out);
1442     Out << '\n';
1443   }
1444
1445   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1446     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1447     Out << " = type ";
1448
1449     // Make sure we print out at least one level of the type structure, so
1450     // that we do not get %FILE = type %FILE
1451     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1452     Out << '\n';
1453   }
1454 }
1455
1456 /// printFunction - Print all aspects of a function.
1457 ///
1458 void AssemblyWriter::printFunction(const Function *F) {
1459   // Print out the return type and name.
1460   Out << '\n';
1461
1462   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1463
1464   if (F->isMaterializable())
1465     Out << "; Materializable\n";
1466
1467   if (F->isDeclaration())
1468     Out << "declare ";
1469   else
1470     Out << "define ";
1471
1472   PrintLinkage(F->getLinkage(), Out);
1473   PrintVisibility(F->getVisibility(), Out);
1474
1475   // Print the calling convention.
1476   switch (F->getCallingConv()) {
1477   case CallingConv::C: break;   // default
1478   case CallingConv::Fast:         Out << "fastcc "; break;
1479   case CallingConv::Cold:         Out << "coldcc "; break;
1480   case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1481   case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1482   case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break;
1483   case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1484   case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1485   case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1486   case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1487   case CallingConv::PTX_Kernel:   Out << "ptx_kernel "; break;
1488   case CallingConv::PTX_Device:   Out << "ptx_device "; break;
1489   default: Out << "cc" << F->getCallingConv() << " "; break;
1490   }
1491
1492   FunctionType *FT = F->getFunctionType();
1493   const AttrListPtr &Attrs = F->getAttributes();
1494   Attributes RetAttrs = Attrs.getRetAttributes();
1495   if (RetAttrs != Attribute::None)
1496     Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1497   TypePrinter.print(F->getReturnType(), Out);
1498   Out << ' ';
1499   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1500   Out << '(';
1501   Machine.incorporateFunction(F);
1502
1503   // Loop over the arguments, printing them...
1504
1505   unsigned Idx = 1;
1506   if (!F->isDeclaration()) {
1507     // If this isn't a declaration, print the argument names as well.
1508     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1509          I != E; ++I) {
1510       // Insert commas as we go... the first arg doesn't get a comma
1511       if (I != F->arg_begin()) Out << ", ";
1512       printArgument(I, Attrs.getParamAttributes(Idx));
1513       Idx++;
1514     }
1515   } else {
1516     // Otherwise, print the types from the function type.
1517     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1518       // Insert commas as we go... the first arg doesn't get a comma
1519       if (i) Out << ", ";
1520
1521       // Output type...
1522       TypePrinter.print(FT->getParamType(i), Out);
1523
1524       Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1525       if (ArgAttrs != Attribute::None)
1526         Out << ' ' << Attribute::getAsString(ArgAttrs);
1527     }
1528   }
1529
1530   // Finish printing arguments...
1531   if (FT->isVarArg()) {
1532     if (FT->getNumParams()) Out << ", ";
1533     Out << "...";  // Output varargs portion of signature!
1534   }
1535   Out << ')';
1536   if (F->hasUnnamedAddr())
1537     Out << " unnamed_addr";
1538   Attributes FnAttrs = Attrs.getFnAttributes();
1539   if (FnAttrs != Attribute::None)
1540     Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1541   if (F->hasSection()) {
1542     Out << " section \"";
1543     PrintEscapedString(F->getSection(), Out);
1544     Out << '"';
1545   }
1546   if (F->getAlignment())
1547     Out << " align " << F->getAlignment();
1548   if (F->hasGC())
1549     Out << " gc \"" << F->getGC() << '"';
1550   if (F->isDeclaration()) {
1551     Out << '\n';
1552   } else {
1553     Out << " {";
1554     // Output all of the function's basic blocks.
1555     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1556       printBasicBlock(I);
1557
1558     Out << "}\n";
1559   }
1560
1561   Machine.purgeFunction();
1562 }
1563
1564 /// printArgument - This member is called for every argument that is passed into
1565 /// the function.  Simply print it out
1566 ///
1567 void AssemblyWriter::printArgument(const Argument *Arg,
1568                                    Attributes Attrs) {
1569   // Output type...
1570   TypePrinter.print(Arg->getType(), Out);
1571
1572   // Output parameter attributes list
1573   if (Attrs != Attribute::None)
1574     Out << ' ' << Attribute::getAsString(Attrs);
1575
1576   // Output name, if available...
1577   if (Arg->hasName()) {
1578     Out << ' ';
1579     PrintLLVMName(Out, Arg);
1580   }
1581 }
1582
1583 /// printBasicBlock - This member is called for each basic block in a method.
1584 ///
1585 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1586   if (BB->hasName()) {              // Print out the label if it exists...
1587     Out << "\n";
1588     PrintLLVMName(Out, BB->getName(), LabelPrefix);
1589     Out << ':';
1590   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1591     Out << "\n; <label>:";
1592     int Slot = Machine.getLocalSlot(BB);
1593     if (Slot != -1)
1594       Out << Slot;
1595     else
1596       Out << "<badref>";
1597   }
1598
1599   if (BB->getParent() == 0) {
1600     Out.PadToColumn(50);
1601     Out << "; Error: Block without parent!";
1602   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1603     // Output predecessors for the block.
1604     Out.PadToColumn(50);
1605     Out << ";";
1606     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1607
1608     if (PI == PE) {
1609       Out << " No predecessors!";
1610     } else {
1611       Out << " preds = ";
1612       writeOperand(*PI, false);
1613       for (++PI; PI != PE; ++PI) {
1614         Out << ", ";
1615         writeOperand(*PI, false);
1616       }
1617     }
1618   }
1619
1620   Out << "\n";
1621
1622   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1623
1624   // Output all of the instructions in the basic block...
1625   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1626     printInstruction(*I);
1627     Out << '\n';
1628   }
1629
1630   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1631 }
1632
1633 /// printInfoComment - Print a little comment after the instruction indicating
1634 /// which slot it occupies.
1635 ///
1636 void AssemblyWriter::printInfoComment(const Value &V) {
1637   if (AnnotationWriter) {
1638     AnnotationWriter->printInfoComment(V, Out);
1639     return;
1640   }
1641 }
1642
1643 // This member is called for each Instruction in a function..
1644 void AssemblyWriter::printInstruction(const Instruction &I) {
1645   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1646
1647   // Print out indentation for an instruction.
1648   Out << "  ";
1649
1650   // Print out name if it exists...
1651   if (I.hasName()) {
1652     PrintLLVMName(Out, &I);
1653     Out << " = ";
1654   } else if (!I.getType()->isVoidTy()) {
1655     // Print out the def slot taken.
1656     int SlotNum = Machine.getLocalSlot(&I);
1657     if (SlotNum == -1)
1658       Out << "<badref> = ";
1659     else
1660       Out << '%' << SlotNum << " = ";
1661   }
1662
1663   if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1664     Out << "tail ";
1665
1666   // Print out the opcode...
1667   Out << I.getOpcodeName();
1668
1669   // If this is an atomic load or store, print out the atomic marker.
1670   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
1671       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1672     Out << " atomic";
1673
1674   // If this is a volatile operation, print out the volatile marker.
1675   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1676       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1677       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1678       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1679     Out << " volatile";
1680
1681   // Print out optimization information.
1682   WriteOptimizationInfo(Out, &I);
1683
1684   // Print out the compare instruction predicates
1685   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1686     Out << ' ' << getPredicateText(CI->getPredicate());
1687
1688   // Print out the atomicrmw operation
1689   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1690     writeAtomicRMWOperation(Out, RMWI->getOperation());
1691
1692   // Print out the type of the operands...
1693   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1694
1695   // Special case conditional branches to swizzle the condition out to the front
1696   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1697     BranchInst &BI(cast<BranchInst>(I));
1698     Out << ' ';
1699     writeOperand(BI.getCondition(), true);
1700     Out << ", ";
1701     writeOperand(BI.getSuccessor(0), true);
1702     Out << ", ";
1703     writeOperand(BI.getSuccessor(1), true);
1704
1705   } else if (isa<SwitchInst>(I)) {
1706     SwitchInst& SI(cast<SwitchInst>(I));
1707     // Special case switch instruction to get formatting nice and correct.
1708     Out << ' ';
1709     writeOperand(SI.getCondition(), true);
1710     Out << ", ";
1711     writeOperand(SI.getDefaultDest(), true);
1712     Out << " [";
1713     // Skip the first item since that's the default case.
1714     unsigned NumCases = SI.getNumCases();
1715     for (unsigned i = 1; i < NumCases; ++i) {
1716       Out << "\n    ";
1717       writeOperand(SI.getCaseValue(i), true);
1718       Out << ", ";
1719       writeOperand(SI.getSuccessor(i), true);
1720     }
1721     Out << "\n  ]";
1722   } else if (isa<IndirectBrInst>(I)) {
1723     // Special case indirectbr instruction to get formatting nice and correct.
1724     Out << ' ';
1725     writeOperand(Operand, true);
1726     Out << ", [";
1727
1728     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1729       if (i != 1)
1730         Out << ", ";
1731       writeOperand(I.getOperand(i), true);
1732     }
1733     Out << ']';
1734   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1735     Out << ' ';
1736     TypePrinter.print(I.getType(), Out);
1737     Out << ' ';
1738
1739     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1740       if (op) Out << ", ";
1741       Out << "[ ";
1742       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1743       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1744     }
1745   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1746     Out << ' ';
1747     writeOperand(I.getOperand(0), true);
1748     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1749       Out << ", " << *i;
1750   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1751     Out << ' ';
1752     writeOperand(I.getOperand(0), true); Out << ", ";
1753     writeOperand(I.getOperand(1), true);
1754     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1755       Out << ", " << *i;
1756   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1757     Out << ' ';
1758     TypePrinter.print(I.getType(), Out);
1759     Out << " personality ";
1760     writeOperand(I.getOperand(0), true); Out << '\n';
1761
1762     if (LPI->isCleanup())
1763       Out << "          cleanup";
1764
1765     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1766       if (i != 0 || LPI->isCleanup()) Out << "\n";
1767       if (LPI->isCatch(i))
1768         Out << "          catch ";
1769       else
1770         Out << "          filter ";
1771
1772       writeOperand(LPI->getClause(i), true);
1773     }
1774   } else if (isa<ReturnInst>(I) && !Operand) {
1775     Out << " void";
1776   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1777     // Print the calling convention being used.
1778     switch (CI->getCallingConv()) {
1779     case CallingConv::C: break;   // default
1780     case CallingConv::Fast:  Out << " fastcc"; break;
1781     case CallingConv::Cold:  Out << " coldcc"; break;
1782     case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1783     case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1784     case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1785     case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1786     case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1787     case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1788     case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1789     case CallingConv::PTX_Kernel:   Out << " ptx_kernel"; break;
1790     case CallingConv::PTX_Device:   Out << " ptx_device"; break;
1791     default: Out << " cc" << CI->getCallingConv(); break;
1792     }
1793
1794     Operand = CI->getCalledValue();
1795     PointerType *PTy = cast<PointerType>(Operand->getType());
1796     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1797     Type *RetTy = FTy->getReturnType();
1798     const AttrListPtr &PAL = CI->getAttributes();
1799
1800     if (PAL.getRetAttributes() != Attribute::None)
1801       Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1802
1803     // If possible, print out the short form of the call instruction.  We can
1804     // only do this if the first argument is a pointer to a nonvararg function,
1805     // and if the return type is not a pointer to a function.
1806     //
1807     Out << ' ';
1808     if (!FTy->isVarArg() &&
1809         (!RetTy->isPointerTy() ||
1810          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1811       TypePrinter.print(RetTy, Out);
1812       Out << ' ';
1813       writeOperand(Operand, false);
1814     } else {
1815       writeOperand(Operand, true);
1816     }
1817     Out << '(';
1818     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1819       if (op > 0)
1820         Out << ", ";
1821       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
1822     }
1823     Out << ')';
1824     if (PAL.getFnAttributes() != Attribute::None)
1825       Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1826   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1827     Operand = II->getCalledValue();
1828     PointerType *PTy = cast<PointerType>(Operand->getType());
1829     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1830     Type *RetTy = FTy->getReturnType();
1831     const AttrListPtr &PAL = II->getAttributes();
1832
1833     // Print the calling convention being used.
1834     switch (II->getCallingConv()) {
1835     case CallingConv::C: break;   // default
1836     case CallingConv::Fast:  Out << " fastcc"; break;
1837     case CallingConv::Cold:  Out << " coldcc"; break;
1838     case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1839     case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1840     case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1841     case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1842     case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1843     case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1844     case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1845     case CallingConv::PTX_Kernel:   Out << " ptx_kernel"; break;
1846     case CallingConv::PTX_Device:   Out << " ptx_device"; break;
1847     default: Out << " cc" << II->getCallingConv(); break;
1848     }
1849
1850     if (PAL.getRetAttributes() != Attribute::None)
1851       Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1852
1853     // If possible, print out the short form of the invoke instruction. We can
1854     // only do this if the first argument is a pointer to a nonvararg function,
1855     // and if the return type is not a pointer to a function.
1856     //
1857     Out << ' ';
1858     if (!FTy->isVarArg() &&
1859         (!RetTy->isPointerTy() ||
1860          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1861       TypePrinter.print(RetTy, Out);
1862       Out << ' ';
1863       writeOperand(Operand, false);
1864     } else {
1865       writeOperand(Operand, true);
1866     }
1867     Out << '(';
1868     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1869       if (op)
1870         Out << ", ";
1871       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
1872     }
1873
1874     Out << ')';
1875     if (PAL.getFnAttributes() != Attribute::None)
1876       Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1877
1878     Out << "\n          to ";
1879     writeOperand(II->getNormalDest(), true);
1880     Out << " unwind ";
1881     writeOperand(II->getUnwindDest(), true);
1882
1883   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1884     Out << ' ';
1885     TypePrinter.print(AI->getType()->getElementType(), Out);
1886     if (!AI->getArraySize() || AI->isArrayAllocation()) {
1887       Out << ", ";
1888       writeOperand(AI->getArraySize(), true);
1889     }
1890     if (AI->getAlignment()) {
1891       Out << ", align " << AI->getAlignment();
1892     }
1893   } else if (isa<CastInst>(I)) {
1894     if (Operand) {
1895       Out << ' ';
1896       writeOperand(Operand, true);   // Work with broken code
1897     }
1898     Out << " to ";
1899     TypePrinter.print(I.getType(), Out);
1900   } else if (isa<VAArgInst>(I)) {
1901     if (Operand) {
1902       Out << ' ';
1903       writeOperand(Operand, true);   // Work with broken code
1904     }
1905     Out << ", ";
1906     TypePrinter.print(I.getType(), Out);
1907   } else if (Operand) {   // Print the normal way.
1908
1909     // PrintAllTypes - Instructions who have operands of all the same type
1910     // omit the type from all but the first operand.  If the instruction has
1911     // different type operands (for example br), then they are all printed.
1912     bool PrintAllTypes = false;
1913     Type *TheType = Operand->getType();
1914
1915     // Select, Store and ShuffleVector always print all types.
1916     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1917         || isa<ReturnInst>(I)) {
1918       PrintAllTypes = true;
1919     } else {
1920       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1921         Operand = I.getOperand(i);
1922         // note that Operand shouldn't be null, but the test helps make dump()
1923         // more tolerant of malformed IR
1924         if (Operand && Operand->getType() != TheType) {
1925           PrintAllTypes = true;    // We have differing types!  Print them all!
1926           break;
1927         }
1928       }
1929     }
1930
1931     if (!PrintAllTypes) {
1932       Out << ' ';
1933       TypePrinter.print(TheType, Out);
1934     }
1935
1936     Out << ' ';
1937     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1938       if (i) Out << ", ";
1939       writeOperand(I.getOperand(i), PrintAllTypes);
1940     }
1941   }
1942
1943   // Print atomic ordering/alignment for memory operations
1944   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1945     if (LI->isAtomic())
1946       writeAtomic(LI->getOrdering(), LI->getSynchScope());
1947     if (LI->getAlignment())
1948       Out << ", align " << LI->getAlignment();
1949   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
1950     if (SI->isAtomic())
1951       writeAtomic(SI->getOrdering(), SI->getSynchScope());
1952     if (SI->getAlignment())
1953       Out << ", align " << SI->getAlignment();
1954   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
1955     writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
1956   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
1957     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
1958   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
1959     writeAtomic(FI->getOrdering(), FI->getSynchScope());
1960   }
1961
1962   // Print Metadata info.
1963   SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
1964   I.getAllMetadata(InstMD);
1965   if (!InstMD.empty()) {
1966     SmallVector<StringRef, 8> MDNames;
1967     I.getType()->getContext().getMDKindNames(MDNames);
1968     for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
1969       unsigned Kind = InstMD[i].first;
1970        if (Kind < MDNames.size()) {
1971          Out << ", !" << MDNames[Kind];
1972       } else {
1973         Out << ", !<unknown kind #" << Kind << ">";
1974       }
1975       Out << ' ';
1976       WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
1977                              TheModule);
1978     }
1979   }
1980   printInfoComment(I);
1981 }
1982
1983 static void WriteMDNodeComment(const MDNode *Node,
1984                                formatted_raw_ostream &Out) {
1985   if (Node->getNumOperands() < 1)
1986     return;
1987   ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
1988   if (!CI) return;
1989   APInt Val = CI->getValue();
1990   APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask);
1991   if (Val.ult(LLVMDebugVersion))
1992     return;
1993
1994   Out.PadToColumn(50);
1995   if (Tag == dwarf::DW_TAG_user_base)
1996     Out << "; [ DW_TAG_user_base ]";
1997   else if (Tag.isIntN(32)) {
1998     if (const char *TagName = dwarf::TagString(Tag.getZExtValue()))
1999       Out << "; [ " << TagName << " ]";
2000   }
2001 }
2002
2003 void AssemblyWriter::writeAllMDNodes() {
2004   SmallVector<const MDNode *, 16> Nodes;
2005   Nodes.resize(Machine.mdn_size());
2006   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2007        I != E; ++I)
2008     Nodes[I->second] = cast<MDNode>(I->first);
2009
2010   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2011     Out << '!' << i << " = metadata ";
2012     printMDNodeBody(Nodes[i]);
2013   }
2014 }
2015
2016 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2017   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2018   WriteMDNodeComment(Node, Out);
2019   Out << "\n";
2020 }
2021
2022 //===----------------------------------------------------------------------===//
2023 //                       External Interface declarations
2024 //===----------------------------------------------------------------------===//
2025
2026 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2027   SlotTracker SlotTable(this);
2028   formatted_raw_ostream OS(ROS);
2029   AssemblyWriter W(OS, SlotTable, this, AAW);
2030   W.printModule(this);
2031 }
2032
2033 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2034   SlotTracker SlotTable(getParent());
2035   formatted_raw_ostream OS(ROS);
2036   AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2037   W.printNamedMDNode(this);
2038 }
2039
2040 void Type::print(raw_ostream &OS) const {
2041   if (this == 0) {
2042     OS << "<null Type>";
2043     return;
2044   }
2045   TypePrinting TP;
2046   TP.print(const_cast<Type*>(this), OS);
2047
2048   // If the type is a named struct type, print the body as well.
2049   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2050     if (!STy->isLiteral()) {
2051       OS << " = type ";
2052       TP.printStructBody(STy, OS);
2053     }
2054 }
2055
2056 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2057   if (this == 0) {
2058     ROS << "printing a <null> value\n";
2059     return;
2060   }
2061   formatted_raw_ostream OS(ROS);
2062   if (const Instruction *I = dyn_cast<Instruction>(this)) {
2063     const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2064     SlotTracker SlotTable(F);
2065     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2066     W.printInstruction(*I);
2067   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2068     SlotTracker SlotTable(BB->getParent());
2069     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2070     W.printBasicBlock(BB);
2071   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2072     SlotTracker SlotTable(GV->getParent());
2073     AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2074     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2075       W.printGlobal(V);
2076     else if (const Function *F = dyn_cast<Function>(GV))
2077       W.printFunction(F);
2078     else
2079       W.printAlias(cast<GlobalAlias>(GV));
2080   } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2081     const Function *F = N->getFunction();
2082     SlotTracker SlotTable(F);
2083     AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2084     W.printMDNodeBody(N);
2085   } else if (const Constant *C = dyn_cast<Constant>(this)) {
2086     TypePrinting TypePrinter;
2087     TypePrinter.print(C->getType(), OS);
2088     OS << ' ';
2089     WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2090   } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2091              isa<Argument>(this)) {
2092     WriteAsOperand(OS, this, true, 0);
2093   } else {
2094     // Otherwise we don't know what it is. Call the virtual function to
2095     // allow a subclass to print itself.
2096     printCustom(OS);
2097   }
2098 }
2099
2100 // Value::printCustom - subclasses should override this to implement printing.
2101 void Value::printCustom(raw_ostream &OS) const {
2102   llvm_unreachable("Unknown value to print out!");
2103 }
2104
2105 // Value::dump - allow easy printing of Values from the debugger.
2106 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2107
2108 // Type::dump - allow easy printing of Types from the debugger.
2109 void Type::dump() const { print(dbgs()); }
2110
2111 // Module::dump() - Allow printing of Modules from the debugger.
2112 void Module::dump() const { print(dbgs(), 0); }