]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/VMCore/ConstantsContext.h
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / VMCore / ConstantsContext.h
1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines various helper methods and classes used by
11 // LLVMContextImpl for creating and managing constants.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CONSTANTSCONTEXT_H
16 #define LLVM_CONSTANTSCONTEXT_H
17
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <map>
25
26 namespace llvm {
27 template<class ValType>
28 struct ConstantTraits;
29
30 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
31 /// behind the scenes to implement unary constant exprs.
32 class UnaryConstantExpr : public ConstantExpr {
33   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
34 public:
35   // allocate space for exactly one operand
36   void *operator new(size_t s) {
37     return User::operator new(s, 1);
38   }
39   UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
40     : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
41     Op<0>() = C;
42   }
43   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
44 };
45
46 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
47 /// behind the scenes to implement binary constant exprs.
48 class BinaryConstantExpr : public ConstantExpr {
49   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
50 public:
51   // allocate space for exactly two operands
52   void *operator new(size_t s) {
53     return User::operator new(s, 2);
54   }
55   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
56                      unsigned Flags)
57     : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
58     Op<0>() = C1;
59     Op<1>() = C2;
60     SubclassOptionalData = Flags;
61   }
62   /// Transparently provide more efficient getOperand methods.
63   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
64 };
65
66 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
67 /// behind the scenes to implement select constant exprs.
68 class SelectConstantExpr : public ConstantExpr {
69   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
70 public:
71   // allocate space for exactly three operands
72   void *operator new(size_t s) {
73     return User::operator new(s, 3);
74   }
75   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
76     : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
77     Op<0>() = C1;
78     Op<1>() = C2;
79     Op<2>() = C3;
80   }
81   /// Transparently provide more efficient getOperand methods.
82   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
83 };
84
85 /// ExtractElementConstantExpr - This class is private to
86 /// Constants.cpp, and is used behind the scenes to implement
87 /// extractelement constant exprs.
88 class ExtractElementConstantExpr : public ConstantExpr {
89   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
90 public:
91   // allocate space for exactly two operands
92   void *operator new(size_t s) {
93     return User::operator new(s, 2);
94   }
95   ExtractElementConstantExpr(Constant *C1, Constant *C2)
96     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
97                    Instruction::ExtractElement, &Op<0>(), 2) {
98     Op<0>() = C1;
99     Op<1>() = C2;
100   }
101   /// Transparently provide more efficient getOperand methods.
102   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
103 };
104
105 /// InsertElementConstantExpr - This class is private to
106 /// Constants.cpp, and is used behind the scenes to implement
107 /// insertelement constant exprs.
108 class InsertElementConstantExpr : public ConstantExpr {
109   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
110 public:
111   // allocate space for exactly three operands
112   void *operator new(size_t s) {
113     return User::operator new(s, 3);
114   }
115   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
116     : ConstantExpr(C1->getType(), Instruction::InsertElement, 
117                    &Op<0>(), 3) {
118     Op<0>() = C1;
119     Op<1>() = C2;
120     Op<2>() = C3;
121   }
122   /// Transparently provide more efficient getOperand methods.
123   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
124 };
125
126 /// ShuffleVectorConstantExpr - This class is private to
127 /// Constants.cpp, and is used behind the scenes to implement
128 /// shufflevector constant exprs.
129 class ShuffleVectorConstantExpr : public ConstantExpr {
130   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
131 public:
132   // allocate space for exactly three operands
133   void *operator new(size_t s) {
134     return User::operator new(s, 3);
135   }
136   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
137   : ConstantExpr(VectorType::get(
138                    cast<VectorType>(C1->getType())->getElementType(),
139                    cast<VectorType>(C3->getType())->getNumElements()),
140                  Instruction::ShuffleVector, 
141                  &Op<0>(), 3) {
142     Op<0>() = C1;
143     Op<1>() = C2;
144     Op<2>() = C3;
145   }
146   /// Transparently provide more efficient getOperand methods.
147   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
148 };
149
150 /// ExtractValueConstantExpr - This class is private to
151 /// Constants.cpp, and is used behind the scenes to implement
152 /// extractvalue constant exprs.
153 class ExtractValueConstantExpr : public ConstantExpr {
154   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
155 public:
156   // allocate space for exactly one operand
157   void *operator new(size_t s) {
158     return User::operator new(s, 1);
159   }
160   ExtractValueConstantExpr(Constant *Agg,
161                            const SmallVector<unsigned, 4> &IdxList,
162                            Type *DestTy)
163     : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
164       Indices(IdxList) {
165     Op<0>() = Agg;
166   }
167
168   /// Indices - These identify which value to extract.
169   const SmallVector<unsigned, 4> Indices;
170
171   /// Transparently provide more efficient getOperand methods.
172   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
173 };
174
175 /// InsertValueConstantExpr - This class is private to
176 /// Constants.cpp, and is used behind the scenes to implement
177 /// insertvalue constant exprs.
178 class InsertValueConstantExpr : public ConstantExpr {
179   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
180 public:
181   // allocate space for exactly one operand
182   void *operator new(size_t s) {
183     return User::operator new(s, 2);
184   }
185   InsertValueConstantExpr(Constant *Agg, Constant *Val,
186                           const SmallVector<unsigned, 4> &IdxList,
187                           Type *DestTy)
188     : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
189       Indices(IdxList) {
190     Op<0>() = Agg;
191     Op<1>() = Val;
192   }
193
194   /// Indices - These identify the position for the insertion.
195   const SmallVector<unsigned, 4> Indices;
196
197   /// Transparently provide more efficient getOperand methods.
198   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
199 };
200
201
202 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
203 /// used behind the scenes to implement getelementpr constant exprs.
204 class GetElementPtrConstantExpr : public ConstantExpr {
205   GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
206                             Type *DestTy);
207 public:
208   static GetElementPtrConstantExpr *Create(Constant *C,
209                                            const std::vector<Constant*>&IdxList,
210                                            Type *DestTy,
211                                            unsigned Flags) {
212     GetElementPtrConstantExpr *Result =
213       new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
214     Result->SubclassOptionalData = Flags;
215     return Result;
216   }
217   /// Transparently provide more efficient getOperand methods.
218   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
219 };
220
221 // CompareConstantExpr - This class is private to Constants.cpp, and is used
222 // behind the scenes to implement ICmp and FCmp constant expressions. This is
223 // needed in order to store the predicate value for these instructions.
224 struct CompareConstantExpr : public ConstantExpr {
225   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
226   // allocate space for exactly two operands
227   void *operator new(size_t s) {
228     return User::operator new(s, 2);
229   }
230   unsigned short predicate;
231   CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
232                       unsigned short pred,  Constant* LHS, Constant* RHS)
233     : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
234     Op<0>() = LHS;
235     Op<1>() = RHS;
236   }
237   /// Transparently provide more efficient getOperand methods.
238   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
239 };
240
241 template <>
242 struct OperandTraits<UnaryConstantExpr> :
243   public FixedNumOperandTraits<UnaryConstantExpr, 1> {
244 };
245 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
246
247 template <>
248 struct OperandTraits<BinaryConstantExpr> :
249   public FixedNumOperandTraits<BinaryConstantExpr, 2> {
250 };
251 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
252
253 template <>
254 struct OperandTraits<SelectConstantExpr> :
255   public FixedNumOperandTraits<SelectConstantExpr, 3> {
256 };
257 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
258
259 template <>
260 struct OperandTraits<ExtractElementConstantExpr> :
261   public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
262 };
263 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
264
265 template <>
266 struct OperandTraits<InsertElementConstantExpr> :
267   public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
268 };
269 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
270
271 template <>
272 struct OperandTraits<ShuffleVectorConstantExpr> :
273     public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
274 };
275 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
276
277 template <>
278 struct OperandTraits<ExtractValueConstantExpr> :
279   public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
280 };
281 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
282
283 template <>
284 struct OperandTraits<InsertValueConstantExpr> :
285   public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
286 };
287 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
288
289 template <>
290 struct OperandTraits<GetElementPtrConstantExpr> :
291   public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
292 };
293
294 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
295
296
297 template <>
298 struct OperandTraits<CompareConstantExpr> :
299   public FixedNumOperandTraits<CompareConstantExpr, 2> {
300 };
301 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
302
303 struct ExprMapKeyType {
304   ExprMapKeyType(unsigned opc,
305       ArrayRef<Constant*> ops,
306       unsigned short flags = 0,
307       unsigned short optionalflags = 0,
308       ArrayRef<unsigned> inds = ArrayRef<unsigned>())
309         : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
310         operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
311   uint8_t opcode;
312   uint8_t subclassoptionaldata;
313   uint16_t subclassdata;
314   std::vector<Constant*> operands;
315   SmallVector<unsigned, 4> indices;
316   bool operator==(const ExprMapKeyType& that) const {
317     return this->opcode == that.opcode &&
318            this->subclassdata == that.subclassdata &&
319            this->subclassoptionaldata == that.subclassoptionaldata &&
320            this->operands == that.operands &&
321            this->indices == that.indices;
322   }
323   bool operator<(const ExprMapKeyType & that) const {
324     if (this->opcode != that.opcode) return this->opcode < that.opcode;
325     if (this->operands != that.operands) return this->operands < that.operands;
326     if (this->subclassdata != that.subclassdata)
327       return this->subclassdata < that.subclassdata;
328     if (this->subclassoptionaldata != that.subclassoptionaldata)
329       return this->subclassoptionaldata < that.subclassoptionaldata;
330     if (this->indices != that.indices) return this->indices < that.indices;
331     return false;
332   }
333
334   bool operator!=(const ExprMapKeyType& that) const {
335     return !(*this == that);
336   }
337 };
338
339 struct InlineAsmKeyType {
340   InlineAsmKeyType(StringRef AsmString,
341                    StringRef Constraints, bool hasSideEffects,
342                    bool isAlignStack)
343     : asm_string(AsmString), constraints(Constraints),
344       has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
345   std::string asm_string;
346   std::string constraints;
347   bool has_side_effects;
348   bool is_align_stack;
349   bool operator==(const InlineAsmKeyType& that) const {
350     return this->asm_string == that.asm_string &&
351            this->constraints == that.constraints &&
352            this->has_side_effects == that.has_side_effects &&
353            this->is_align_stack == that.is_align_stack;
354   }
355   bool operator<(const InlineAsmKeyType& that) const {
356     if (this->asm_string != that.asm_string)
357       return this->asm_string < that.asm_string;
358     if (this->constraints != that.constraints)
359       return this->constraints < that.constraints;
360     if (this->has_side_effects != that.has_side_effects)
361       return this->has_side_effects < that.has_side_effects;
362     if (this->is_align_stack != that.is_align_stack)
363       return this->is_align_stack < that.is_align_stack;
364     return false;
365   }
366
367   bool operator!=(const InlineAsmKeyType& that) const {
368     return !(*this == that);
369   }
370 };
371
372 // The number of operands for each ConstantCreator::create method is
373 // determined by the ConstantTraits template.
374 // ConstantCreator - A class that is used to create constants by
375 // ConstantUniqueMap*.  This class should be partially specialized if there is
376 // something strange that needs to be done to interface to the ctor for the
377 // constant.
378 //
379 template<typename T, typename Alloc>
380 struct ConstantTraits< std::vector<T, Alloc> > {
381   static unsigned uses(const std::vector<T, Alloc>& v) {
382     return v.size();
383   }
384 };
385
386 template<>
387 struct ConstantTraits<Constant *> {
388   static unsigned uses(Constant * const & v) {
389     return 1;
390   }
391 };
392
393 template<class ConstantClass, class TypeClass, class ValType>
394 struct ConstantCreator {
395   static ConstantClass *create(TypeClass *Ty, const ValType &V) {
396     return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
397   }
398 };
399
400 template<class ConstantClass>
401 struct ConstantKeyData {
402   typedef void ValType;
403   static ValType getValType(ConstantClass *C) {
404     llvm_unreachable("Unknown Constant type!");
405   }
406 };
407
408 template<>
409 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
410   static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
411       unsigned short pred = 0) {
412     if (Instruction::isCast(V.opcode))
413       return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
414     if ((V.opcode >= Instruction::BinaryOpsBegin &&
415          V.opcode < Instruction::BinaryOpsEnd))
416       return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
417                                     V.subclassoptionaldata);
418     if (V.opcode == Instruction::Select)
419       return new SelectConstantExpr(V.operands[0], V.operands[1], 
420                                     V.operands[2]);
421     if (V.opcode == Instruction::ExtractElement)
422       return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
423     if (V.opcode == Instruction::InsertElement)
424       return new InsertElementConstantExpr(V.operands[0], V.operands[1],
425                                            V.operands[2]);
426     if (V.opcode == Instruction::ShuffleVector)
427       return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
428                                            V.operands[2]);
429     if (V.opcode == Instruction::InsertValue)
430       return new InsertValueConstantExpr(V.operands[0], V.operands[1],
431                                          V.indices, Ty);
432     if (V.opcode == Instruction::ExtractValue)
433       return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
434     if (V.opcode == Instruction::GetElementPtr) {
435       std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
436       return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
437                                                V.subclassoptionaldata);
438     }
439
440     // The compare instructions are weird. We have to encode the predicate
441     // value and it is combined with the instruction opcode by multiplying
442     // the opcode by one hundred. We must decode this to get the predicate.
443     if (V.opcode == Instruction::ICmp)
444       return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
445                                      V.operands[0], V.operands[1]);
446     if (V.opcode == Instruction::FCmp) 
447       return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
448                                      V.operands[0], V.operands[1]);
449     llvm_unreachable("Invalid ConstantExpr!");
450     return 0;
451   }
452 };
453
454 template<>
455 struct ConstantKeyData<ConstantExpr> {
456   typedef ExprMapKeyType ValType;
457   static ValType getValType(ConstantExpr *CE) {
458     std::vector<Constant*> Operands;
459     Operands.reserve(CE->getNumOperands());
460     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
461       Operands.push_back(cast<Constant>(CE->getOperand(i)));
462     return ExprMapKeyType(CE->getOpcode(), Operands,
463         CE->isCompare() ? CE->getPredicate() : 0,
464         CE->getRawSubclassOptionalData(),
465         CE->hasIndices() ?
466           CE->getIndices() : ArrayRef<unsigned>());
467   }
468 };
469
470 // ConstantAggregateZero does not take extra "value" argument...
471 template<class ValType>
472 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
473   static ConstantAggregateZero *create(Type *Ty, const ValType &V){
474     return new ConstantAggregateZero(Ty);
475   }
476 };
477
478 template<>
479 struct ConstantKeyData<ConstantVector> {
480   typedef std::vector<Constant*> ValType;
481   static ValType getValType(ConstantVector *CP) {
482     std::vector<Constant*> Elements;
483     Elements.reserve(CP->getNumOperands());
484     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
485       Elements.push_back(CP->getOperand(i));
486     return Elements;
487   }
488 };
489
490 template<>
491 struct ConstantKeyData<ConstantAggregateZero> {
492   typedef char ValType;
493   static ValType getValType(ConstantAggregateZero *C) {
494     return 0;
495   }
496 };
497
498 template<>
499 struct ConstantKeyData<ConstantArray> {
500   typedef std::vector<Constant*> ValType;
501   static ValType getValType(ConstantArray *CA) {
502     std::vector<Constant*> Elements;
503     Elements.reserve(CA->getNumOperands());
504     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
505       Elements.push_back(cast<Constant>(CA->getOperand(i)));
506     return Elements;
507   }
508 };
509
510 template<>
511 struct ConstantKeyData<ConstantStruct> {
512   typedef std::vector<Constant*> ValType;
513   static ValType getValType(ConstantStruct *CS) {
514     std::vector<Constant*> Elements;
515     Elements.reserve(CS->getNumOperands());
516     for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
517       Elements.push_back(cast<Constant>(CS->getOperand(i)));
518     return Elements;
519   }
520 };
521
522 // ConstantPointerNull does not take extra "value" argument...
523 template<class ValType>
524 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
525   static ConstantPointerNull *create(PointerType *Ty, const ValType &V){
526     return new ConstantPointerNull(Ty);
527   }
528 };
529
530 template<>
531 struct ConstantKeyData<ConstantPointerNull> {
532   typedef char ValType;
533   static ValType getValType(ConstantPointerNull *C) {
534     return 0;
535   }
536 };
537
538 // UndefValue does not take extra "value" argument...
539 template<class ValType>
540 struct ConstantCreator<UndefValue, Type, ValType> {
541   static UndefValue *create(Type *Ty, const ValType &V) {
542     return new UndefValue(Ty);
543   }
544 };
545
546 template<>
547 struct ConstantKeyData<UndefValue> {
548   typedef char ValType;
549   static ValType getValType(UndefValue *C) {
550     return 0;
551   }
552 };
553
554 template<>
555 struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
556   static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
557     return new InlineAsm(Ty, Key.asm_string, Key.constraints,
558                          Key.has_side_effects, Key.is_align_stack);
559   }
560 };
561
562 template<>
563 struct ConstantKeyData<InlineAsm> {
564   typedef InlineAsmKeyType ValType;
565   static ValType getValType(InlineAsm *Asm) {
566     return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
567                             Asm->hasSideEffects(), Asm->isAlignStack());
568   }
569 };
570
571 template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
572          bool HasLargeKey = false /*true for arrays and structs*/ >
573 class ConstantUniqueMap {
574 public:
575   typedef std::pair<TypeClass*, ValType> MapKey;
576   typedef std::map<MapKey, ConstantClass *> MapTy;
577   typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
578 private:
579   /// Map - This is the main map from the element descriptor to the Constants.
580   /// This is the primary way we avoid creating two of the same shape
581   /// constant.
582   MapTy Map;
583     
584   /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
585   /// from the constants to their element in Map.  This is important for
586   /// removal of constants from the array, which would otherwise have to scan
587   /// through the map with very large keys.
588   InverseMapTy InverseMap;
589
590 public:
591   typename MapTy::iterator map_begin() { return Map.begin(); }
592   typename MapTy::iterator map_end() { return Map.end(); }
593
594   void freeConstants() {
595     for (typename MapTy::iterator I=Map.begin(), E=Map.end();
596          I != E; ++I) {
597       // Asserts that use_empty().
598       delete I->second;
599     }
600   }
601     
602   /// InsertOrGetItem - Return an iterator for the specified element.
603   /// If the element exists in the map, the returned iterator points to the
604   /// entry and Exists=true.  If not, the iterator points to the newly
605   /// inserted entry and returns Exists=false.  Newly inserted entries have
606   /// I->second == 0, and should be filled in.
607   typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
608                                  &InsertVal,
609                                  bool &Exists) {
610     std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
611     Exists = !IP.second;
612     return IP.first;
613   }
614     
615 private:
616   typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
617     if (HasLargeKey) {
618       typename InverseMapTy::iterator IMI = InverseMap.find(CP);
619       assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
620              IMI->second->second == CP &&
621              "InverseMap corrupt!");
622       return IMI->second;
623     }
624       
625     typename MapTy::iterator I =
626       Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
627                       ConstantKeyData<ConstantClass>::getValType(CP)));
628     if (I == Map.end() || I->second != CP) {
629       // FIXME: This should not use a linear scan.  If this gets to be a
630       // performance problem, someone should look at this.
631       for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
632         /* empty */;
633     }
634     return I;
635   }
636
637   ConstantClass *Create(TypeClass *Ty, ValRefType V,
638                         typename MapTy::iterator I) {
639     ConstantClass* Result =
640       ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
641
642     assert(Result->getType() == Ty && "Type specified is not correct!");
643     I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
644
645     if (HasLargeKey)  // Remember the reverse mapping if needed.
646       InverseMap.insert(std::make_pair(Result, I));
647
648     return Result;
649   }
650 public:
651     
652   /// getOrCreate - Return the specified constant from the map, creating it if
653   /// necessary.
654   ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
655     MapKey Lookup(Ty, V);
656     ConstantClass* Result = 0;
657     
658     typename MapTy::iterator I = Map.find(Lookup);
659     // Is it in the map?  
660     if (I != Map.end())
661       Result = I->second;
662         
663     if (!Result) {
664       // If no preexisting value, create one now...
665       Result = Create(Ty, V, I);
666     }
667         
668     return Result;
669   }
670
671   void remove(ConstantClass *CP) {
672     typename MapTy::iterator I = FindExistingElement(CP);
673     assert(I != Map.end() && "Constant not found in constant table!");
674     assert(I->second == CP && "Didn't find correct element?");
675
676     if (HasLargeKey)  // Remember the reverse mapping if needed.
677       InverseMap.erase(CP);
678
679     Map.erase(I);
680   }
681
682   /// MoveConstantToNewSlot - If we are about to change C to be the element
683   /// specified by I, update our internal data structures to reflect this
684   /// fact.
685   void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
686     // First, remove the old location of the specified constant in the map.
687     typename MapTy::iterator OldI = FindExistingElement(C);
688     assert(OldI != Map.end() && "Constant not found in constant table!");
689     assert(OldI->second == C && "Didn't find correct element?");
690       
691      // Remove the old entry from the map.
692     Map.erase(OldI);
693     
694     // Update the inverse map so that we know that this constant is now
695     // located at descriptor I.
696     if (HasLargeKey) {
697       assert(I->second == C && "Bad inversemap entry!");
698       InverseMap[C] = I;
699     }
700   }
701
702   void dump() const {
703     DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
704   }
705 };
706
707 }
708
709 #endif