]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/VMCore/Instruction.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / VMCore / Instruction.cpp
1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the VMCore library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Instruction.h"
15 #include "llvm/Type.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/Support/CallSite.h"
20 #include "llvm/Support/LeakDetector.h"
21 using namespace llvm;
22
23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24                          Instruction *InsertBefore)
25   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
26   // Make sure that we get added to a basicblock
27   LeakDetector::addGarbageObject(this);
28
29   // If requested, insert this instruction into a basic block...
30   if (InsertBefore) {
31     assert(InsertBefore->getParent() &&
32            "Instruction to insert before is not in a basic block!");
33     InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
34   }
35 }
36
37 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
38                          BasicBlock *InsertAtEnd)
39   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
40   // Make sure that we get added to a basicblock
41   LeakDetector::addGarbageObject(this);
42
43   // append this instruction into the basic block
44   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
45   InsertAtEnd->getInstList().push_back(this);
46 }
47
48
49 // Out of line virtual method, so the vtable, etc has a home.
50 Instruction::~Instruction() {
51   assert(Parent == 0 && "Instruction still linked in the program!");
52   if (hasMetadataHashEntry())
53     clearMetadataHashEntries();
54 }
55
56
57 void Instruction::setParent(BasicBlock *P) {
58   if (getParent()) {
59     if (!P) LeakDetector::addGarbageObject(this);
60   } else {
61     if (P) LeakDetector::removeGarbageObject(this);
62   }
63
64   Parent = P;
65 }
66
67 void Instruction::removeFromParent() {
68   getParent()->getInstList().remove(this);
69 }
70
71 void Instruction::eraseFromParent() {
72   getParent()->getInstList().erase(this);
73 }
74
75 /// insertBefore - Insert an unlinked instructions into a basic block
76 /// immediately before the specified instruction.
77 void Instruction::insertBefore(Instruction *InsertPos) {
78   InsertPos->getParent()->getInstList().insert(InsertPos, this);
79 }
80
81 /// insertAfter - Insert an unlinked instructions into a basic block
82 /// immediately after the specified instruction.
83 void Instruction::insertAfter(Instruction *InsertPos) {
84   InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
85 }
86
87 /// moveBefore - Unlink this instruction from its current basic block and
88 /// insert it into the basic block that MovePos lives in, right before
89 /// MovePos.
90 void Instruction::moveBefore(Instruction *MovePos) {
91   MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
92                                              this);
93 }
94
95
96 const char *Instruction::getOpcodeName(unsigned OpCode) {
97   switch (OpCode) {
98   // Terminators
99   case Ret:    return "ret";
100   case Br:     return "br";
101   case Switch: return "switch";
102   case IndirectBr: return "indirectbr";
103   case Invoke: return "invoke";
104   case Resume: return "resume";
105   case Unwind: return "unwind";
106   case Unreachable: return "unreachable";
107
108   // Standard binary operators...
109   case Add: return "add";
110   case FAdd: return "fadd";
111   case Sub: return "sub";
112   case FSub: return "fsub";
113   case Mul: return "mul";
114   case FMul: return "fmul";
115   case UDiv: return "udiv";
116   case SDiv: return "sdiv";
117   case FDiv: return "fdiv";
118   case URem: return "urem";
119   case SRem: return "srem";
120   case FRem: return "frem";
121
122   // Logical operators...
123   case And: return "and";
124   case Or : return "or";
125   case Xor: return "xor";
126
127   // Memory instructions...
128   case Alloca:        return "alloca";
129   case Load:          return "load";
130   case Store:         return "store";
131   case AtomicCmpXchg: return "cmpxchg";
132   case AtomicRMW:     return "atomicrmw";
133   case Fence:         return "fence";
134   case GetElementPtr: return "getelementptr";
135
136   // Convert instructions...
137   case Trunc:     return "trunc";
138   case ZExt:      return "zext";
139   case SExt:      return "sext";
140   case FPTrunc:   return "fptrunc";
141   case FPExt:     return "fpext";
142   case FPToUI:    return "fptoui";
143   case FPToSI:    return "fptosi";
144   case UIToFP:    return "uitofp";
145   case SIToFP:    return "sitofp";
146   case IntToPtr:  return "inttoptr";
147   case PtrToInt:  return "ptrtoint";
148   case BitCast:   return "bitcast";
149
150   // Other instructions...
151   case ICmp:           return "icmp";
152   case FCmp:           return "fcmp";
153   case PHI:            return "phi";
154   case Select:         return "select";
155   case Call:           return "call";
156   case Shl:            return "shl";
157   case LShr:           return "lshr";
158   case AShr:           return "ashr";
159   case VAArg:          return "va_arg";
160   case ExtractElement: return "extractelement";
161   case InsertElement:  return "insertelement";
162   case ShuffleVector:  return "shufflevector";
163   case ExtractValue:   return "extractvalue";
164   case InsertValue:    return "insertvalue";
165   case LandingPad:     return "landingpad";
166
167   default: return "<Invalid operator> ";
168   }
169
170   return 0;
171 }
172
173 /// isIdenticalTo - Return true if the specified instruction is exactly
174 /// identical to the current one.  This means that all operands match and any
175 /// extra information (e.g. load is volatile) agree.
176 bool Instruction::isIdenticalTo(const Instruction *I) const {
177   return isIdenticalToWhenDefined(I) &&
178          SubclassOptionalData == I->SubclassOptionalData;
179 }
180
181 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
182 /// ignores the SubclassOptionalData flags, which specify conditions
183 /// under which the instruction's result is undefined.
184 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
185   if (getOpcode() != I->getOpcode() ||
186       getNumOperands() != I->getNumOperands() ||
187       getType() != I->getType())
188     return false;
189
190   // We have two instructions of identical opcode and #operands.  Check to see
191   // if all operands are the same.
192   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
193     if (getOperand(i) != I->getOperand(i))
194       return false;
195
196   // Check special state that is a part of some instructions.
197   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
198     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
199            LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
200            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
201            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
202   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
203     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
204            SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
205            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
206            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
207   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
208     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
209   if (const CallInst *CI = dyn_cast<CallInst>(this))
210     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
211            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
212            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
213   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
214     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
215            CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
216   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
217     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
218   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
219     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
220   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
221     return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
222            FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
223   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
224     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
225            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
226            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
227   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
228     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
229            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
230            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
231            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
232
233   return true;
234 }
235
236 // isSameOperationAs
237 // This should be kept in sync with isEquivalentOperation in
238 // lib/Transforms/IPO/MergeFunctions.cpp.
239 bool Instruction::isSameOperationAs(const Instruction *I) const {
240   if (getOpcode() != I->getOpcode() ||
241       getNumOperands() != I->getNumOperands() ||
242       getType() != I->getType())
243     return false;
244
245   // We have two instructions of identical opcode and #operands.  Check to see
246   // if all operands are the same type
247   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
248     if (getOperand(i)->getType() != I->getOperand(i)->getType())
249       return false;
250
251   // Check special state that is a part of some instructions.
252   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
253     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
254            LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
255            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
256            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
257   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
258     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
259            SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
260            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
261            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
262   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
263     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
264   if (const CallInst *CI = dyn_cast<CallInst>(this))
265     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
266            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
267            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
268   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
269     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
270            CI->getAttributes() ==
271              cast<InvokeInst>(I)->getAttributes();
272   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
273     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
274   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
275     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
276   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
277     return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
278            FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
279   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
280     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
281            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
282            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
283   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
284     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
285            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
286            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
287            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
288
289   return true;
290 }
291
292 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
293 /// specified block.  Note that PHI nodes are considered to evaluate their
294 /// operands in the corresponding predecessor block.
295 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
296   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
297     // PHI nodes uses values in the corresponding predecessor block.  For other
298     // instructions, just check to see whether the parent of the use matches up.
299     const User *U = *UI;
300     const PHINode *PN = dyn_cast<PHINode>(U);
301     if (PN == 0) {
302       if (cast<Instruction>(U)->getParent() != BB)
303         return true;
304       continue;
305     }
306
307     if (PN->getIncomingBlock(UI) != BB)
308       return true;
309   }
310   return false;
311 }
312
313 /// mayReadFromMemory - Return true if this instruction may read memory.
314 ///
315 bool Instruction::mayReadFromMemory() const {
316   switch (getOpcode()) {
317   default: return false;
318   case Instruction::VAArg:
319   case Instruction::Load:
320   case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
321   case Instruction::AtomicCmpXchg:
322   case Instruction::AtomicRMW:
323     return true;
324   case Instruction::Call:
325     return !cast<CallInst>(this)->doesNotAccessMemory();
326   case Instruction::Invoke:
327     return !cast<InvokeInst>(this)->doesNotAccessMemory();
328   case Instruction::Store:
329     return !cast<StoreInst>(this)->isUnordered();
330   }
331 }
332
333 /// mayWriteToMemory - Return true if this instruction may modify memory.
334 ///
335 bool Instruction::mayWriteToMemory() const {
336   switch (getOpcode()) {
337   default: return false;
338   case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
339   case Instruction::Store:
340   case Instruction::VAArg:
341   case Instruction::AtomicCmpXchg:
342   case Instruction::AtomicRMW:
343     return true;
344   case Instruction::Call:
345     return !cast<CallInst>(this)->onlyReadsMemory();
346   case Instruction::Invoke:
347     return !cast<InvokeInst>(this)->onlyReadsMemory();
348   case Instruction::Load:
349     return !cast<LoadInst>(this)->isUnordered();
350   }
351 }
352
353 /// mayThrow - Return true if this instruction may throw an exception.
354 ///
355 bool Instruction::mayThrow() const {
356   if (const CallInst *CI = dyn_cast<CallInst>(this))
357     return !CI->doesNotThrow();
358   return isa<ResumeInst>(this);
359 }
360
361 /// isAssociative - Return true if the instruction is associative:
362 ///
363 ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
364 ///
365 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
366 ///
367 bool Instruction::isAssociative(unsigned Opcode) {
368   return Opcode == And || Opcode == Or || Opcode == Xor ||
369          Opcode == Add || Opcode == Mul;
370 }
371
372 /// isCommutative - Return true if the instruction is commutative:
373 ///
374 ///   Commutative operators satisfy: (x op y) === (y op x)
375 ///
376 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
377 /// applied to any type.
378 ///
379 bool Instruction::isCommutative(unsigned op) {
380   switch (op) {
381   case Add:
382   case FAdd:
383   case Mul:
384   case FMul:
385   case And:
386   case Or:
387   case Xor:
388     return true;
389   default:
390     return false;
391   }
392 }
393
394 bool Instruction::isSafeToSpeculativelyExecute() const {
395   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
396     if (Constant *C = dyn_cast<Constant>(getOperand(i)))
397       if (C->canTrap())
398         return false;
399
400   switch (getOpcode()) {
401   default:
402     return true;
403   case UDiv:
404   case URem: {
405     // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
406     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
407     return Op && !Op->isNullValue();
408   }
409   case SDiv:
410   case SRem: {
411     // x / y is undefined if y == 0, and might be undefined if y == -1,
412     // but calcuations like x / 3 are safe.
413     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
414     return Op && !Op->isNullValue() && !Op->isAllOnesValue();
415   }
416   case Load: {
417     const LoadInst *LI = cast<LoadInst>(this);
418     if (!LI->isUnordered())
419       return false;
420     return LI->getPointerOperand()->isDereferenceablePointer();
421   }
422   case Call:
423     return false; // The called function could have undefined behavior or
424                   // side-effects.
425                   // FIXME: We should special-case some intrinsics (bswap,
426                   // overflow-checking arithmetic, etc.)
427   case VAArg:
428   case Alloca:
429   case Invoke:
430   case PHI:
431   case Store:
432   case Ret:
433   case Br:
434   case IndirectBr:
435   case Switch:
436   case Unwind:
437   case Unreachable:
438   case Fence:
439   case LandingPad:
440   case AtomicRMW:
441   case AtomicCmpXchg:
442   case Resume:
443     return false; // Misc instructions which have effects
444   }
445 }
446
447 Instruction *Instruction::clone() const {
448   Instruction *New = clone_impl();
449   New->SubclassOptionalData = SubclassOptionalData;
450   if (!hasMetadata())
451     return New;
452   
453   // Otherwise, enumerate and copy over metadata from the old instruction to the
454   // new one.
455   SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
456   getAllMetadataOtherThanDebugLoc(TheMDs);
457   for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
458     New->setMetadata(TheMDs[i].first, TheMDs[i].second);
459   
460   New->setDebugLoc(getDebugLoc());
461   return New;
462 }