]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/lib/VMCore/Instructions.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / lib / VMCore / Instructions.cpp
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
27
28 //===----------------------------------------------------------------------===//
29 //                            CallSite Class
30 //===----------------------------------------------------------------------===//
31
32 User::op_iterator CallSite::getCallee() const {
33   Instruction *II(getInstruction());
34   return isCall()
35     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
37 }
38
39 //===----------------------------------------------------------------------===//
40 //                            TerminatorInst Class
41 //===----------------------------------------------------------------------===//
42
43 // Out of line virtual method, so the vtable, etc has a home.
44 TerminatorInst::~TerminatorInst() {
45 }
46
47 //===----------------------------------------------------------------------===//
48 //                           UnaryInstruction Class
49 //===----------------------------------------------------------------------===//
50
51 // Out of line virtual method, so the vtable, etc has a home.
52 UnaryInstruction::~UnaryInstruction() {
53 }
54
55 //===----------------------------------------------------------------------===//
56 //                              SelectInst Class
57 //===----------------------------------------------------------------------===//
58
59 /// areInvalidOperands - Return a string if the specified operands are invalid
60 /// for a select operation, otherwise return null.
61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62   if (Op1->getType() != Op2->getType())
63     return "both values to select must have same type";
64   
65   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66     // Vector select.
67     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68       return "vector select condition element type must be i1";
69     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70     if (ET == 0)
71       return "selected values for vector select must be vectors";
72     if (ET->getNumElements() != VT->getNumElements())
73       return "vector select requires selected vectors to have "
74                    "the same vector length as select condition";
75   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76     return "select condition must be i1 or <n x i1>";
77   }
78   return 0;
79 }
80
81
82 //===----------------------------------------------------------------------===//
83 //                               PHINode Class
84 //===----------------------------------------------------------------------===//
85
86 PHINode::PHINode(const PHINode &PN)
87   : Instruction(PN.getType(), Instruction::PHI,
88                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89     ReservedSpace(PN.getNumOperands()) {
90   std::copy(PN.op_begin(), PN.op_end(), op_begin());
91   std::copy(PN.block_begin(), PN.block_end(), block_begin());
92   SubclassOptionalData = PN.SubclassOptionalData;
93 }
94
95 PHINode::~PHINode() {
96   dropHungoffUses();
97 }
98
99 Use *PHINode::allocHungoffUses(unsigned N) const {
100   // Allocate the array of Uses of the incoming values, followed by a pointer
101   // (with bottom bit set) to the User, followed by the array of pointers to
102   // the incoming basic blocks.
103   size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
104     + N * sizeof(BasicBlock*);
105   Use *Begin = static_cast<Use*>(::operator new(size));
106   Use *End = Begin + N;
107   (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
108   return Use::initTags(Begin, End);
109 }
110
111 // removeIncomingValue - Remove an incoming value.  This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114   Value *Removed = getIncomingValue(Idx);
115
116   // Move everything after this operand down.
117   //
118   // FIXME: we could just swap with the end of the list, then erase.  However,
119   // clients might not expect this to happen.  The code as it is thrashes the
120   // use/def lists, which is kinda lame.
121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123
124   // Nuke the last value.
125   Op<-1>().set(0);
126   --NumOperands;
127
128   // If the PHI node is dead, because it has zero entries, nuke it now.
129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130     // If anyone is using this PHI, make them use a dummy value instead...
131     replaceAllUsesWith(UndefValue::get(getType()));
132     eraseFromParent();
133   }
134   return Removed;
135 }
136
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation.  This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142   unsigned e = getNumOperands();
143   unsigned NumOps = e + e / 2;
144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
145
146   Use *OldOps = op_begin();
147   BasicBlock **OldBlocks = block_begin();
148
149   ReservedSpace = NumOps;
150   OperandList = allocHungoffUses(ReservedSpace);
151
152   std::copy(OldOps, OldOps + e, op_begin());
153   std::copy(OldBlocks, OldBlocks + e, block_begin());
154
155   Use::zap(OldOps, OldOps + e, true);
156 }
157
158 /// hasConstantValue - If the specified PHI node always merges together the same
159 /// value, return the value, otherwise return null.
160 Value *PHINode::hasConstantValue() const {
161   // Exploit the fact that phi nodes always have at least one entry.
162   Value *ConstantValue = getIncomingValue(0);
163   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
164     if (getIncomingValue(i) != ConstantValue)
165       return 0; // Incoming values not all the same.
166   return ConstantValue;
167 }
168
169 //===----------------------------------------------------------------------===//
170 //                       LandingPadInst Implementation
171 //===----------------------------------------------------------------------===//
172
173 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
174                                unsigned NumReservedValues, const Twine &NameStr,
175                                Instruction *InsertBefore)
176   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
177   init(PersonalityFn, 1 + NumReservedValues, NameStr);
178 }
179
180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181                                unsigned NumReservedValues, const Twine &NameStr,
182                                BasicBlock *InsertAtEnd)
183   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
184   init(PersonalityFn, 1 + NumReservedValues, NameStr);
185 }
186
187 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
188   : Instruction(LP.getType(), Instruction::LandingPad,
189                 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
190     ReservedSpace(LP.getNumOperands()) {
191   Use *OL = OperandList, *InOL = LP.OperandList;
192   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
193     OL[I] = InOL[I];
194
195   setCleanup(LP.isCleanup());
196 }
197
198 LandingPadInst::~LandingPadInst() {
199   dropHungoffUses();
200 }
201
202 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
203                                        unsigned NumReservedClauses,
204                                        const Twine &NameStr,
205                                        Instruction *InsertBefore) {
206   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
207                             InsertBefore);
208 }
209
210 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
211                                        unsigned NumReservedClauses,
212                                        const Twine &NameStr,
213                                        BasicBlock *InsertAtEnd) {
214   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
215                             InsertAtEnd);
216 }
217
218 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
219                           const Twine &NameStr) {
220   ReservedSpace = NumReservedValues;
221   NumOperands = 1;
222   OperandList = allocHungoffUses(ReservedSpace);
223   OperandList[0] = PersFn;
224   setName(NameStr);
225   setCleanup(false);
226 }
227
228 /// growOperands - grow operands - This grows the operand list in response to a
229 /// push_back style of operation. This grows the number of ops by 2 times.
230 void LandingPadInst::growOperands(unsigned Size) {
231   unsigned e = getNumOperands();
232   if (ReservedSpace >= e + Size) return;
233   ReservedSpace = (e + Size / 2) * 2;
234
235   Use *NewOps = allocHungoffUses(ReservedSpace);
236   Use *OldOps = OperandList;
237   for (unsigned i = 0; i != e; ++i)
238       NewOps[i] = OldOps[i];
239
240   OperandList = NewOps;
241   Use::zap(OldOps, OldOps + e, true);
242 }
243
244 void LandingPadInst::addClause(Value *Val) {
245   unsigned OpNo = getNumOperands();
246   growOperands(1);
247   assert(OpNo < ReservedSpace && "Growing didn't work!");
248   ++NumOperands;
249   OperandList[OpNo] = Val;
250 }
251
252 //===----------------------------------------------------------------------===//
253 //                        CallInst Implementation
254 //===----------------------------------------------------------------------===//
255
256 CallInst::~CallInst() {
257 }
258
259 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
260   assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
261   Op<-1>() = Func;
262
263 #ifndef NDEBUG
264   FunctionType *FTy =
265     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
266
267   assert((Args.size() == FTy->getNumParams() ||
268           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
269          "Calling a function with bad signature!");
270
271   for (unsigned i = 0; i != Args.size(); ++i)
272     assert((i >= FTy->getNumParams() || 
273             FTy->getParamType(i) == Args[i]->getType()) &&
274            "Calling a function with a bad signature!");
275 #endif
276
277   std::copy(Args.begin(), Args.end(), op_begin());
278   setName(NameStr);
279 }
280
281 void CallInst::init(Value *Func, const Twine &NameStr) {
282   assert(NumOperands == 1 && "NumOperands not set up?");
283   Op<-1>() = Func;
284
285 #ifndef NDEBUG
286   FunctionType *FTy =
287     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
288
289   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
290 #endif
291
292   setName(NameStr);
293 }
294
295 CallInst::CallInst(Value *Func, const Twine &Name,
296                    Instruction *InsertBefore)
297   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
298                                    ->getElementType())->getReturnType(),
299                 Instruction::Call,
300                 OperandTraits<CallInst>::op_end(this) - 1,
301                 1, InsertBefore) {
302   init(Func, Name);
303 }
304
305 CallInst::CallInst(Value *Func, const Twine &Name,
306                    BasicBlock *InsertAtEnd)
307   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
308                                    ->getElementType())->getReturnType(),
309                 Instruction::Call,
310                 OperandTraits<CallInst>::op_end(this) - 1,
311                 1, InsertAtEnd) {
312   init(Func, Name);
313 }
314
315 CallInst::CallInst(const CallInst &CI)
316   : Instruction(CI.getType(), Instruction::Call,
317                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
318                 CI.getNumOperands()) {
319   setAttributes(CI.getAttributes());
320   setTailCall(CI.isTailCall());
321   setCallingConv(CI.getCallingConv());
322     
323   std::copy(CI.op_begin(), CI.op_end(), op_begin());
324   SubclassOptionalData = CI.SubclassOptionalData;
325 }
326
327 void CallInst::addAttribute(unsigned i, Attributes attr) {
328   AttrListPtr PAL = getAttributes();
329   PAL = PAL.addAttr(i, attr);
330   setAttributes(PAL);
331 }
332
333 void CallInst::removeAttribute(unsigned i, Attributes attr) {
334   AttrListPtr PAL = getAttributes();
335   PAL = PAL.removeAttr(i, attr);
336   setAttributes(PAL);
337 }
338
339 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
340   if (AttributeList.paramHasAttr(i, attr))
341     return true;
342   if (const Function *F = getCalledFunction())
343     return F->paramHasAttr(i, attr);
344   return false;
345 }
346
347 /// IsConstantOne - Return true only if val is constant int 1
348 static bool IsConstantOne(Value *val) {
349   assert(val && "IsConstantOne does not work with NULL val");
350   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
351 }
352
353 static Instruction *createMalloc(Instruction *InsertBefore,
354                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
355                                  Type *AllocTy, Value *AllocSize, 
356                                  Value *ArraySize, Function *MallocF,
357                                  const Twine &Name) {
358   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
359          "createMalloc needs either InsertBefore or InsertAtEnd");
360
361   // malloc(type) becomes: 
362   //       bitcast (i8* malloc(typeSize)) to type*
363   // malloc(type, arraySize) becomes:
364   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
365   if (!ArraySize)
366     ArraySize = ConstantInt::get(IntPtrTy, 1);
367   else if (ArraySize->getType() != IntPtrTy) {
368     if (InsertBefore)
369       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
370                                               "", InsertBefore);
371     else
372       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
373                                               "", InsertAtEnd);
374   }
375
376   if (!IsConstantOne(ArraySize)) {
377     if (IsConstantOne(AllocSize)) {
378       AllocSize = ArraySize;         // Operand * 1 = Operand
379     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
380       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
381                                                      false /*ZExt*/);
382       // Malloc arg is constant product of type size and array size
383       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
384     } else {
385       // Multiply type size by the array size...
386       if (InsertBefore)
387         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
388                                               "mallocsize", InsertBefore);
389       else
390         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
391                                               "mallocsize", InsertAtEnd);
392     }
393   }
394
395   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
396   // Create the call to Malloc.
397   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
398   Module* M = BB->getParent()->getParent();
399   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
400   Value *MallocFunc = MallocF;
401   if (!MallocFunc)
402     // prototype malloc as "void *malloc(size_t)"
403     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
404   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
405   CallInst *MCall = NULL;
406   Instruction *Result = NULL;
407   if (InsertBefore) {
408     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
409     Result = MCall;
410     if (Result->getType() != AllocPtrType)
411       // Create a cast instruction to convert to the right type...
412       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
413   } else {
414     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
415     Result = MCall;
416     if (Result->getType() != AllocPtrType) {
417       InsertAtEnd->getInstList().push_back(MCall);
418       // Create a cast instruction to convert to the right type...
419       Result = new BitCastInst(MCall, AllocPtrType, Name);
420     }
421   }
422   MCall->setTailCall();
423   if (Function *F = dyn_cast<Function>(MallocFunc)) {
424     MCall->setCallingConv(F->getCallingConv());
425     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
426   }
427   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
428
429   return Result;
430 }
431
432 /// CreateMalloc - Generate the IR for a call to malloc:
433 /// 1. Compute the malloc call's argument as the specified type's size,
434 ///    possibly multiplied by the array size if the array size is not
435 ///    constant 1.
436 /// 2. Call malloc with that argument.
437 /// 3. Bitcast the result of the malloc call to the specified type.
438 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
439                                     Type *IntPtrTy, Type *AllocTy,
440                                     Value *AllocSize, Value *ArraySize,
441                                     Function * MallocF,
442                                     const Twine &Name) {
443   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
444                       ArraySize, MallocF, Name);
445 }
446
447 /// CreateMalloc - Generate the IR for a call to malloc:
448 /// 1. Compute the malloc call's argument as the specified type's size,
449 ///    possibly multiplied by the array size if the array size is not
450 ///    constant 1.
451 /// 2. Call malloc with that argument.
452 /// 3. Bitcast the result of the malloc call to the specified type.
453 /// Note: This function does not add the bitcast to the basic block, that is the
454 /// responsibility of the caller.
455 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
456                                     Type *IntPtrTy, Type *AllocTy,
457                                     Value *AllocSize, Value *ArraySize, 
458                                     Function *MallocF, const Twine &Name) {
459   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
460                       ArraySize, MallocF, Name);
461 }
462
463 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
464                                BasicBlock *InsertAtEnd) {
465   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
466          "createFree needs either InsertBefore or InsertAtEnd");
467   assert(Source->getType()->isPointerTy() &&
468          "Can not free something of nonpointer type!");
469
470   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
471   Module* M = BB->getParent()->getParent();
472
473   Type *VoidTy = Type::getVoidTy(M->getContext());
474   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
475   // prototype free as "void free(void*)"
476   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
477   CallInst* Result = NULL;
478   Value *PtrCast = Source;
479   if (InsertBefore) {
480     if (Source->getType() != IntPtrTy)
481       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
482     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
483   } else {
484     if (Source->getType() != IntPtrTy)
485       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
486     Result = CallInst::Create(FreeFunc, PtrCast, "");
487   }
488   Result->setTailCall();
489   if (Function *F = dyn_cast<Function>(FreeFunc))
490     Result->setCallingConv(F->getCallingConv());
491
492   return Result;
493 }
494
495 /// CreateFree - Generate the IR for a call to the builtin free function.
496 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
497   return createFree(Source, InsertBefore, NULL);
498 }
499
500 /// CreateFree - Generate the IR for a call to the builtin free function.
501 /// Note: This function does not add the call to the basic block, that is the
502 /// responsibility of the caller.
503 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
504   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
505   assert(FreeCall && "CreateFree did not create a CallInst");
506   return FreeCall;
507 }
508
509 //===----------------------------------------------------------------------===//
510 //                        InvokeInst Implementation
511 //===----------------------------------------------------------------------===//
512
513 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
514                       ArrayRef<Value *> Args, const Twine &NameStr) {
515   assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
516   Op<-3>() = Fn;
517   Op<-2>() = IfNormal;
518   Op<-1>() = IfException;
519
520 #ifndef NDEBUG
521   FunctionType *FTy =
522     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
523
524   assert(((Args.size() == FTy->getNumParams()) ||
525           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
526          "Invoking a function with bad signature");
527
528   for (unsigned i = 0, e = Args.size(); i != e; i++)
529     assert((i >= FTy->getNumParams() || 
530             FTy->getParamType(i) == Args[i]->getType()) &&
531            "Invoking a function with a bad signature!");
532 #endif
533
534   std::copy(Args.begin(), Args.end(), op_begin());
535   setName(NameStr);
536 }
537
538 InvokeInst::InvokeInst(const InvokeInst &II)
539   : TerminatorInst(II.getType(), Instruction::Invoke,
540                    OperandTraits<InvokeInst>::op_end(this)
541                    - II.getNumOperands(),
542                    II.getNumOperands()) {
543   setAttributes(II.getAttributes());
544   setCallingConv(II.getCallingConv());
545   std::copy(II.op_begin(), II.op_end(), op_begin());
546   SubclassOptionalData = II.SubclassOptionalData;
547 }
548
549 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
550   return getSuccessor(idx);
551 }
552 unsigned InvokeInst::getNumSuccessorsV() const {
553   return getNumSuccessors();
554 }
555 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
556   return setSuccessor(idx, B);
557 }
558
559 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
560   if (AttributeList.paramHasAttr(i, attr))
561     return true;
562   if (const Function *F = getCalledFunction())
563     return F->paramHasAttr(i, attr);
564   return false;
565 }
566
567 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
568   AttrListPtr PAL = getAttributes();
569   PAL = PAL.addAttr(i, attr);
570   setAttributes(PAL);
571 }
572
573 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
574   AttrListPtr PAL = getAttributes();
575   PAL = PAL.removeAttr(i, attr);
576   setAttributes(PAL);
577 }
578
579 LandingPadInst *InvokeInst::getLandingPadInst() const {
580   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
581 }
582
583 //===----------------------------------------------------------------------===//
584 //                        ReturnInst Implementation
585 //===----------------------------------------------------------------------===//
586
587 ReturnInst::ReturnInst(const ReturnInst &RI)
588   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
589                    OperandTraits<ReturnInst>::op_end(this) -
590                      RI.getNumOperands(),
591                    RI.getNumOperands()) {
592   if (RI.getNumOperands())
593     Op<0>() = RI.Op<0>();
594   SubclassOptionalData = RI.SubclassOptionalData;
595 }
596
597 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
598   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
599                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
600                    InsertBefore) {
601   if (retVal)
602     Op<0>() = retVal;
603 }
604 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
605   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
606                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
607                    InsertAtEnd) {
608   if (retVal)
609     Op<0>() = retVal;
610 }
611 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
612   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
613                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
614 }
615
616 unsigned ReturnInst::getNumSuccessorsV() const {
617   return getNumSuccessors();
618 }
619
620 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
621 /// emit the vtable for the class in this translation unit.
622 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
623   llvm_unreachable("ReturnInst has no successors!");
624 }
625
626 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
627   llvm_unreachable("ReturnInst has no successors!");
628   return 0;
629 }
630
631 ReturnInst::~ReturnInst() {
632 }
633
634 //===----------------------------------------------------------------------===//
635 //                        UnwindInst Implementation
636 //===----------------------------------------------------------------------===//
637
638 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
639   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
640                    0, 0, InsertBefore) {
641 }
642 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
643   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
644                    0, 0, InsertAtEnd) {
645 }
646
647
648 unsigned UnwindInst::getNumSuccessorsV() const {
649   return getNumSuccessors();
650 }
651
652 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
653   llvm_unreachable("UnwindInst has no successors!");
654 }
655
656 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
657   llvm_unreachable("UnwindInst has no successors!");
658   return 0;
659 }
660
661 //===----------------------------------------------------------------------===//
662 //                        ResumeInst Implementation
663 //===----------------------------------------------------------------------===//
664
665 ResumeInst::ResumeInst(const ResumeInst &RI)
666   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667                    OperandTraits<ResumeInst>::op_begin(this), 1) {
668   Op<0>() = RI.Op<0>();
669 }
670
671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674   Op<0>() = Exn;
675 }
676
677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680   Op<0>() = Exn;
681 }
682
683 unsigned ResumeInst::getNumSuccessorsV() const {
684   return getNumSuccessors();
685 }
686
687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688   llvm_unreachable("ResumeInst has no successors!");
689 }
690
691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692   llvm_unreachable("ResumeInst has no successors!");
693   return 0;
694 }
695
696 //===----------------------------------------------------------------------===//
697 //                      UnreachableInst Implementation
698 //===----------------------------------------------------------------------===//
699
700 UnreachableInst::UnreachableInst(LLVMContext &Context, 
701                                  Instruction *InsertBefore)
702   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
703                    0, 0, InsertBefore) {
704 }
705 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
706   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
707                    0, 0, InsertAtEnd) {
708 }
709
710 unsigned UnreachableInst::getNumSuccessorsV() const {
711   return getNumSuccessors();
712 }
713
714 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
715   llvm_unreachable("UnwindInst has no successors!");
716 }
717
718 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
719   llvm_unreachable("UnwindInst has no successors!");
720   return 0;
721 }
722
723 //===----------------------------------------------------------------------===//
724 //                        BranchInst Implementation
725 //===----------------------------------------------------------------------===//
726
727 void BranchInst::AssertOK() {
728   if (isConditional())
729     assert(getCondition()->getType()->isIntegerTy(1) &&
730            "May only branch on boolean predicates!");
731 }
732
733 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
734   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
735                    OperandTraits<BranchInst>::op_end(this) - 1,
736                    1, InsertBefore) {
737   assert(IfTrue != 0 && "Branch destination may not be null!");
738   Op<-1>() = IfTrue;
739 }
740 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
741                        Instruction *InsertBefore)
742   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
743                    OperandTraits<BranchInst>::op_end(this) - 3,
744                    3, InsertBefore) {
745   Op<-1>() = IfTrue;
746   Op<-2>() = IfFalse;
747   Op<-3>() = Cond;
748 #ifndef NDEBUG
749   AssertOK();
750 #endif
751 }
752
753 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
754   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
755                    OperandTraits<BranchInst>::op_end(this) - 1,
756                    1, InsertAtEnd) {
757   assert(IfTrue != 0 && "Branch destination may not be null!");
758   Op<-1>() = IfTrue;
759 }
760
761 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
762            BasicBlock *InsertAtEnd)
763   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
764                    OperandTraits<BranchInst>::op_end(this) - 3,
765                    3, InsertAtEnd) {
766   Op<-1>() = IfTrue;
767   Op<-2>() = IfFalse;
768   Op<-3>() = Cond;
769 #ifndef NDEBUG
770   AssertOK();
771 #endif
772 }
773
774
775 BranchInst::BranchInst(const BranchInst &BI) :
776   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
777                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
778                  BI.getNumOperands()) {
779   Op<-1>() = BI.Op<-1>();
780   if (BI.getNumOperands() != 1) {
781     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
782     Op<-3>() = BI.Op<-3>();
783     Op<-2>() = BI.Op<-2>();
784   }
785   SubclassOptionalData = BI.SubclassOptionalData;
786 }
787
788 void BranchInst::swapSuccessors() {
789   assert(isConditional() &&
790          "Cannot swap successors of an unconditional branch");
791   Op<-1>().swap(Op<-2>());
792
793   // Update profile metadata if present and it matches our structural
794   // expectations.
795   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
796   if (!ProfileData || ProfileData->getNumOperands() != 3)
797     return;
798
799   // The first operand is the name. Fetch them backwards and build a new one.
800   Value *Ops[] = {
801     ProfileData->getOperand(0),
802     ProfileData->getOperand(2),
803     ProfileData->getOperand(1)
804   };
805   setMetadata(LLVMContext::MD_prof,
806               MDNode::get(ProfileData->getContext(), Ops));
807 }
808
809 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
810   return getSuccessor(idx);
811 }
812 unsigned BranchInst::getNumSuccessorsV() const {
813   return getNumSuccessors();
814 }
815 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
816   setSuccessor(idx, B);
817 }
818
819
820 //===----------------------------------------------------------------------===//
821 //                        AllocaInst Implementation
822 //===----------------------------------------------------------------------===//
823
824 static Value *getAISize(LLVMContext &Context, Value *Amt) {
825   if (!Amt)
826     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
827   else {
828     assert(!isa<BasicBlock>(Amt) &&
829            "Passed basic block into allocation size parameter! Use other ctor");
830     assert(Amt->getType()->isIntegerTy() &&
831            "Allocation array size is not an integer!");
832   }
833   return Amt;
834 }
835
836 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
837                        const Twine &Name, Instruction *InsertBefore)
838   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
839                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
840   setAlignment(0);
841   assert(!Ty->isVoidTy() && "Cannot allocate void!");
842   setName(Name);
843 }
844
845 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
846                        const Twine &Name, BasicBlock *InsertAtEnd)
847   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
848                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
849   setAlignment(0);
850   assert(!Ty->isVoidTy() && "Cannot allocate void!");
851   setName(Name);
852 }
853
854 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
855                        Instruction *InsertBefore)
856   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
857                      getAISize(Ty->getContext(), 0), InsertBefore) {
858   setAlignment(0);
859   assert(!Ty->isVoidTy() && "Cannot allocate void!");
860   setName(Name);
861 }
862
863 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
864                        BasicBlock *InsertAtEnd)
865   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
866                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
867   setAlignment(0);
868   assert(!Ty->isVoidTy() && "Cannot allocate void!");
869   setName(Name);
870 }
871
872 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
873                        const Twine &Name, Instruction *InsertBefore)
874   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
875                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
876   setAlignment(Align);
877   assert(!Ty->isVoidTy() && "Cannot allocate void!");
878   setName(Name);
879 }
880
881 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
882                        const Twine &Name, BasicBlock *InsertAtEnd)
883   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
884                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
885   setAlignment(Align);
886   assert(!Ty->isVoidTy() && "Cannot allocate void!");
887   setName(Name);
888 }
889
890 // Out of line virtual method, so the vtable, etc has a home.
891 AllocaInst::~AllocaInst() {
892 }
893
894 void AllocaInst::setAlignment(unsigned Align) {
895   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
896   assert(Align <= MaximumAlignment &&
897          "Alignment is greater than MaximumAlignment!");
898   setInstructionSubclassData(Log2_32(Align) + 1);
899   assert(getAlignment() == Align && "Alignment representation error!");
900 }
901
902 bool AllocaInst::isArrayAllocation() const {
903   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
904     return !CI->isOne();
905   return true;
906 }
907
908 Type *AllocaInst::getAllocatedType() const {
909   return getType()->getElementType();
910 }
911
912 /// isStaticAlloca - Return true if this alloca is in the entry block of the
913 /// function and is a constant size.  If so, the code generator will fold it
914 /// into the prolog/epilog code, so it is basically free.
915 bool AllocaInst::isStaticAlloca() const {
916   // Must be constant size.
917   if (!isa<ConstantInt>(getArraySize())) return false;
918   
919   // Must be in the entry block.
920   const BasicBlock *Parent = getParent();
921   return Parent == &Parent->getParent()->front();
922 }
923
924 //===----------------------------------------------------------------------===//
925 //                           LoadInst Implementation
926 //===----------------------------------------------------------------------===//
927
928 void LoadInst::AssertOK() {
929   assert(getOperand(0)->getType()->isPointerTy() &&
930          "Ptr must have pointer type.");
931   assert(!(isAtomic() && getAlignment() == 0) &&
932          "Alignment required for atomic load");
933 }
934
935 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
936   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
937                      Load, Ptr, InsertBef) {
938   setVolatile(false);
939   setAlignment(0);
940   setAtomic(NotAtomic);
941   AssertOK();
942   setName(Name);
943 }
944
945 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
946   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
947                      Load, Ptr, InsertAE) {
948   setVolatile(false);
949   setAlignment(0);
950   setAtomic(NotAtomic);
951   AssertOK();
952   setName(Name);
953 }
954
955 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
956                    Instruction *InsertBef)
957   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
958                      Load, Ptr, InsertBef) {
959   setVolatile(isVolatile);
960   setAlignment(0);
961   setAtomic(NotAtomic);
962   AssertOK();
963   setName(Name);
964 }
965
966 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
967                    BasicBlock *InsertAE)
968   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
969                      Load, Ptr, InsertAE) {
970   setVolatile(isVolatile);
971   setAlignment(0);
972   setAtomic(NotAtomic);
973   AssertOK();
974   setName(Name);
975 }
976
977 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
978                    unsigned Align, Instruction *InsertBef)
979   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
980                      Load, Ptr, InsertBef) {
981   setVolatile(isVolatile);
982   setAlignment(Align);
983   setAtomic(NotAtomic);
984   AssertOK();
985   setName(Name);
986 }
987
988 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
989                    unsigned Align, BasicBlock *InsertAE)
990   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
991                      Load, Ptr, InsertAE) {
992   setVolatile(isVolatile);
993   setAlignment(Align);
994   setAtomic(NotAtomic);
995   AssertOK();
996   setName(Name);
997 }
998
999 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
1000                    unsigned Align, AtomicOrdering Order,
1001                    SynchronizationScope SynchScope,
1002                    Instruction *InsertBef)
1003   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1004                      Load, Ptr, InsertBef) {
1005   setVolatile(isVolatile);
1006   setAlignment(Align);
1007   setAtomic(Order, SynchScope);
1008   AssertOK();
1009   setName(Name);
1010 }
1011
1012 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
1013                    unsigned Align, AtomicOrdering Order,
1014                    SynchronizationScope SynchScope,
1015                    BasicBlock *InsertAE)
1016   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1017                      Load, Ptr, InsertAE) {
1018   setVolatile(isVolatile);
1019   setAlignment(Align);
1020   setAtomic(Order, SynchScope);
1021   AssertOK();
1022   setName(Name);
1023 }
1024
1025 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1026   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1027                      Load, Ptr, InsertBef) {
1028   setVolatile(false);
1029   setAlignment(0);
1030   setAtomic(NotAtomic);
1031   AssertOK();
1032   if (Name && Name[0]) setName(Name);
1033 }
1034
1035 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1036   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1037                      Load, Ptr, InsertAE) {
1038   setVolatile(false);
1039   setAlignment(0);
1040   setAtomic(NotAtomic);
1041   AssertOK();
1042   if (Name && Name[0]) setName(Name);
1043 }
1044
1045 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1046                    Instruction *InsertBef)
1047 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1048                    Load, Ptr, InsertBef) {
1049   setVolatile(isVolatile);
1050   setAlignment(0);
1051   setAtomic(NotAtomic);
1052   AssertOK();
1053   if (Name && Name[0]) setName(Name);
1054 }
1055
1056 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1057                    BasicBlock *InsertAE)
1058   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1059                      Load, Ptr, InsertAE) {
1060   setVolatile(isVolatile);
1061   setAlignment(0);
1062   setAtomic(NotAtomic);
1063   AssertOK();
1064   if (Name && Name[0]) setName(Name);
1065 }
1066
1067 void LoadInst::setAlignment(unsigned Align) {
1068   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1069   assert(Align <= MaximumAlignment &&
1070          "Alignment is greater than MaximumAlignment!");
1071   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1072                              ((Log2_32(Align)+1)<<1));
1073   assert(getAlignment() == Align && "Alignment representation error!");
1074 }
1075
1076 //===----------------------------------------------------------------------===//
1077 //                           StoreInst Implementation
1078 //===----------------------------------------------------------------------===//
1079
1080 void StoreInst::AssertOK() {
1081   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1082   assert(getOperand(1)->getType()->isPointerTy() &&
1083          "Ptr must have pointer type!");
1084   assert(getOperand(0)->getType() ==
1085                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1086          && "Ptr must be a pointer to Val type!");
1087   assert(!(isAtomic() && getAlignment() == 0) &&
1088          "Alignment required for atomic load");
1089 }
1090
1091
1092 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1093   : Instruction(Type::getVoidTy(val->getContext()), Store,
1094                 OperandTraits<StoreInst>::op_begin(this),
1095                 OperandTraits<StoreInst>::operands(this),
1096                 InsertBefore) {
1097   Op<0>() = val;
1098   Op<1>() = addr;
1099   setVolatile(false);
1100   setAlignment(0);
1101   setAtomic(NotAtomic);
1102   AssertOK();
1103 }
1104
1105 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1106   : Instruction(Type::getVoidTy(val->getContext()), Store,
1107                 OperandTraits<StoreInst>::op_begin(this),
1108                 OperandTraits<StoreInst>::operands(this),
1109                 InsertAtEnd) {
1110   Op<0>() = val;
1111   Op<1>() = addr;
1112   setVolatile(false);
1113   setAlignment(0);
1114   setAtomic(NotAtomic);
1115   AssertOK();
1116 }
1117
1118 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1119                      Instruction *InsertBefore)
1120   : Instruction(Type::getVoidTy(val->getContext()), Store,
1121                 OperandTraits<StoreInst>::op_begin(this),
1122                 OperandTraits<StoreInst>::operands(this),
1123                 InsertBefore) {
1124   Op<0>() = val;
1125   Op<1>() = addr;
1126   setVolatile(isVolatile);
1127   setAlignment(0);
1128   setAtomic(NotAtomic);
1129   AssertOK();
1130 }
1131
1132 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1133                      unsigned Align, Instruction *InsertBefore)
1134   : Instruction(Type::getVoidTy(val->getContext()), Store,
1135                 OperandTraits<StoreInst>::op_begin(this),
1136                 OperandTraits<StoreInst>::operands(this),
1137                 InsertBefore) {
1138   Op<0>() = val;
1139   Op<1>() = addr;
1140   setVolatile(isVolatile);
1141   setAlignment(Align);
1142   setAtomic(NotAtomic);
1143   AssertOK();
1144 }
1145
1146 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1147                      unsigned Align, AtomicOrdering Order,
1148                      SynchronizationScope SynchScope,
1149                      Instruction *InsertBefore)
1150   : Instruction(Type::getVoidTy(val->getContext()), Store,
1151                 OperandTraits<StoreInst>::op_begin(this),
1152                 OperandTraits<StoreInst>::operands(this),
1153                 InsertBefore) {
1154   Op<0>() = val;
1155   Op<1>() = addr;
1156   setVolatile(isVolatile);
1157   setAlignment(Align);
1158   setAtomic(Order, SynchScope);
1159   AssertOK();
1160 }
1161
1162 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1163                      BasicBlock *InsertAtEnd)
1164   : Instruction(Type::getVoidTy(val->getContext()), Store,
1165                 OperandTraits<StoreInst>::op_begin(this),
1166                 OperandTraits<StoreInst>::operands(this),
1167                 InsertAtEnd) {
1168   Op<0>() = val;
1169   Op<1>() = addr;
1170   setVolatile(isVolatile);
1171   setAlignment(0);
1172   setAtomic(NotAtomic);
1173   AssertOK();
1174 }
1175
1176 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1177                      unsigned Align, BasicBlock *InsertAtEnd)
1178   : Instruction(Type::getVoidTy(val->getContext()), Store,
1179                 OperandTraits<StoreInst>::op_begin(this),
1180                 OperandTraits<StoreInst>::operands(this),
1181                 InsertAtEnd) {
1182   Op<0>() = val;
1183   Op<1>() = addr;
1184   setVolatile(isVolatile);
1185   setAlignment(Align);
1186   setAtomic(NotAtomic);
1187   AssertOK();
1188 }
1189
1190 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1191                      unsigned Align, AtomicOrdering Order,
1192                      SynchronizationScope SynchScope,
1193                      BasicBlock *InsertAtEnd)
1194   : Instruction(Type::getVoidTy(val->getContext()), Store,
1195                 OperandTraits<StoreInst>::op_begin(this),
1196                 OperandTraits<StoreInst>::operands(this),
1197                 InsertAtEnd) {
1198   Op<0>() = val;
1199   Op<1>() = addr;
1200   setVolatile(isVolatile);
1201   setAlignment(Align);
1202   setAtomic(Order, SynchScope);
1203   AssertOK();
1204 }
1205
1206 void StoreInst::setAlignment(unsigned Align) {
1207   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1208   assert(Align <= MaximumAlignment &&
1209          "Alignment is greater than MaximumAlignment!");
1210   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1211                              ((Log2_32(Align)+1) << 1));
1212   assert(getAlignment() == Align && "Alignment representation error!");
1213 }
1214
1215 //===----------------------------------------------------------------------===//
1216 //                       AtomicCmpXchgInst Implementation
1217 //===----------------------------------------------------------------------===//
1218
1219 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1220                              AtomicOrdering Ordering,
1221                              SynchronizationScope SynchScope) {
1222   Op<0>() = Ptr;
1223   Op<1>() = Cmp;
1224   Op<2>() = NewVal;
1225   setOrdering(Ordering);
1226   setSynchScope(SynchScope);
1227
1228   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1229          "All operands must be non-null!");
1230   assert(getOperand(0)->getType()->isPointerTy() &&
1231          "Ptr must have pointer type!");
1232   assert(getOperand(1)->getType() ==
1233                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1234          && "Ptr must be a pointer to Cmp type!");
1235   assert(getOperand(2)->getType() ==
1236                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1237          && "Ptr must be a pointer to NewVal type!");
1238   assert(Ordering != NotAtomic &&
1239          "AtomicCmpXchg instructions must be atomic!");
1240 }
1241
1242 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1243                                      AtomicOrdering Ordering,
1244                                      SynchronizationScope SynchScope,
1245                                      Instruction *InsertBefore)
1246   : Instruction(Cmp->getType(), AtomicCmpXchg,
1247                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1248                 OperandTraits<AtomicCmpXchgInst>::operands(this),
1249                 InsertBefore) {
1250   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1251 }
1252
1253 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1254                                      AtomicOrdering Ordering,
1255                                      SynchronizationScope SynchScope,
1256                                      BasicBlock *InsertAtEnd)
1257   : Instruction(Cmp->getType(), AtomicCmpXchg,
1258                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1259                 OperandTraits<AtomicCmpXchgInst>::operands(this),
1260                 InsertAtEnd) {
1261   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1262 }
1263  
1264 //===----------------------------------------------------------------------===//
1265 //                       AtomicRMWInst Implementation
1266 //===----------------------------------------------------------------------===//
1267
1268 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1269                          AtomicOrdering Ordering,
1270                          SynchronizationScope SynchScope) {
1271   Op<0>() = Ptr;
1272   Op<1>() = Val;
1273   setOperation(Operation);
1274   setOrdering(Ordering);
1275   setSynchScope(SynchScope);
1276
1277   assert(getOperand(0) && getOperand(1) &&
1278          "All operands must be non-null!");
1279   assert(getOperand(0)->getType()->isPointerTy() &&
1280          "Ptr must have pointer type!");
1281   assert(getOperand(1)->getType() ==
1282          cast<PointerType>(getOperand(0)->getType())->getElementType()
1283          && "Ptr must be a pointer to Val type!");
1284   assert(Ordering != NotAtomic &&
1285          "AtomicRMW instructions must be atomic!");
1286 }
1287
1288 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1289                              AtomicOrdering Ordering,
1290                              SynchronizationScope SynchScope,
1291                              Instruction *InsertBefore)
1292   : Instruction(Val->getType(), AtomicRMW,
1293                 OperandTraits<AtomicRMWInst>::op_begin(this),
1294                 OperandTraits<AtomicRMWInst>::operands(this),
1295                 InsertBefore) {
1296   Init(Operation, Ptr, Val, Ordering, SynchScope);
1297 }
1298
1299 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1300                              AtomicOrdering Ordering,
1301                              SynchronizationScope SynchScope,
1302                              BasicBlock *InsertAtEnd)
1303   : Instruction(Val->getType(), AtomicRMW,
1304                 OperandTraits<AtomicRMWInst>::op_begin(this),
1305                 OperandTraits<AtomicRMWInst>::operands(this),
1306                 InsertAtEnd) {
1307   Init(Operation, Ptr, Val, Ordering, SynchScope);
1308 }
1309
1310 //===----------------------------------------------------------------------===//
1311 //                       FenceInst Implementation
1312 //===----------------------------------------------------------------------===//
1313
1314 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1315                      SynchronizationScope SynchScope,
1316                      Instruction *InsertBefore)
1317   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1318   setOrdering(Ordering);
1319   setSynchScope(SynchScope);
1320 }
1321
1322 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1323                      SynchronizationScope SynchScope,
1324                      BasicBlock *InsertAtEnd)
1325   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1326   setOrdering(Ordering);
1327   setSynchScope(SynchScope);
1328 }
1329
1330 //===----------------------------------------------------------------------===//
1331 //                       GetElementPtrInst Implementation
1332 //===----------------------------------------------------------------------===//
1333
1334 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1335                              const Twine &Name) {
1336   assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1337   OperandList[0] = Ptr;
1338   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1339   setName(Name);
1340 }
1341
1342 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1343   : Instruction(GEPI.getType(), GetElementPtr,
1344                 OperandTraits<GetElementPtrInst>::op_end(this)
1345                 - GEPI.getNumOperands(),
1346                 GEPI.getNumOperands()) {
1347   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1348   SubclassOptionalData = GEPI.SubclassOptionalData;
1349 }
1350
1351 /// getIndexedType - Returns the type of the element that would be accessed with
1352 /// a gep instruction with the specified parameters.
1353 ///
1354 /// The Idxs pointer should point to a continuous piece of memory containing the
1355 /// indices, either as Value* or uint64_t.
1356 ///
1357 /// A null type is returned if the indices are invalid for the specified
1358 /// pointer type.
1359 ///
1360 template <typename IndexTy>
1361 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1362   PointerType *PTy = dyn_cast<PointerType>(Ptr);
1363   if (!PTy) return 0;   // Type isn't a pointer type!
1364   Type *Agg = PTy->getElementType();
1365
1366   // Handle the special case of the empty set index set, which is always valid.
1367   if (IdxList.empty())
1368     return Agg;
1369   
1370   // If there is at least one index, the top level type must be sized, otherwise
1371   // it cannot be 'stepped over'.
1372   if (!Agg->isSized())
1373     return 0;
1374
1375   unsigned CurIdx = 1;
1376   for (; CurIdx != IdxList.size(); ++CurIdx) {
1377     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1378     if (!CT || CT->isPointerTy()) return 0;
1379     IndexTy Index = IdxList[CurIdx];
1380     if (!CT->indexValid(Index)) return 0;
1381     Agg = CT->getTypeAtIndex(Index);
1382   }
1383   return CurIdx == IdxList.size() ? Agg : 0;
1384 }
1385
1386 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1387   return getIndexedTypeInternal(Ptr, IdxList);
1388 }
1389
1390 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1391                                         ArrayRef<Constant *> IdxList) {
1392   return getIndexedTypeInternal(Ptr, IdxList);
1393 }
1394
1395 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1396   return getIndexedTypeInternal(Ptr, IdxList);
1397 }
1398
1399 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1400 /// zeros.  If so, the result pointer and the first operand have the same
1401 /// value, just potentially different types.
1402 bool GetElementPtrInst::hasAllZeroIndices() const {
1403   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1404     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1405       if (!CI->isZero()) return false;
1406     } else {
1407       return false;
1408     }
1409   }
1410   return true;
1411 }
1412
1413 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1414 /// constant integers.  If so, the result pointer and the first operand have
1415 /// a constant offset between them.
1416 bool GetElementPtrInst::hasAllConstantIndices() const {
1417   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1418     if (!isa<ConstantInt>(getOperand(i)))
1419       return false;
1420   }
1421   return true;
1422 }
1423
1424 void GetElementPtrInst::setIsInBounds(bool B) {
1425   cast<GEPOperator>(this)->setIsInBounds(B);
1426 }
1427
1428 bool GetElementPtrInst::isInBounds() const {
1429   return cast<GEPOperator>(this)->isInBounds();
1430 }
1431
1432 //===----------------------------------------------------------------------===//
1433 //                           ExtractElementInst Implementation
1434 //===----------------------------------------------------------------------===//
1435
1436 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1437                                        const Twine &Name,
1438                                        Instruction *InsertBef)
1439   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1440                 ExtractElement,
1441                 OperandTraits<ExtractElementInst>::op_begin(this),
1442                 2, InsertBef) {
1443   assert(isValidOperands(Val, Index) &&
1444          "Invalid extractelement instruction operands!");
1445   Op<0>() = Val;
1446   Op<1>() = Index;
1447   setName(Name);
1448 }
1449
1450 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1451                                        const Twine &Name,
1452                                        BasicBlock *InsertAE)
1453   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1454                 ExtractElement,
1455                 OperandTraits<ExtractElementInst>::op_begin(this),
1456                 2, InsertAE) {
1457   assert(isValidOperands(Val, Index) &&
1458          "Invalid extractelement instruction operands!");
1459
1460   Op<0>() = Val;
1461   Op<1>() = Index;
1462   setName(Name);
1463 }
1464
1465
1466 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1467   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1468     return false;
1469   return true;
1470 }
1471
1472
1473 //===----------------------------------------------------------------------===//
1474 //                           InsertElementInst Implementation
1475 //===----------------------------------------------------------------------===//
1476
1477 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1478                                      const Twine &Name,
1479                                      Instruction *InsertBef)
1480   : Instruction(Vec->getType(), InsertElement,
1481                 OperandTraits<InsertElementInst>::op_begin(this),
1482                 3, InsertBef) {
1483   assert(isValidOperands(Vec, Elt, Index) &&
1484          "Invalid insertelement instruction operands!");
1485   Op<0>() = Vec;
1486   Op<1>() = Elt;
1487   Op<2>() = Index;
1488   setName(Name);
1489 }
1490
1491 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1492                                      const Twine &Name,
1493                                      BasicBlock *InsertAE)
1494   : Instruction(Vec->getType(), InsertElement,
1495                 OperandTraits<InsertElementInst>::op_begin(this),
1496                 3, InsertAE) {
1497   assert(isValidOperands(Vec, Elt, Index) &&
1498          "Invalid insertelement instruction operands!");
1499
1500   Op<0>() = Vec;
1501   Op<1>() = Elt;
1502   Op<2>() = Index;
1503   setName(Name);
1504 }
1505
1506 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
1507                                         const Value *Index) {
1508   if (!Vec->getType()->isVectorTy())
1509     return false;   // First operand of insertelement must be vector type.
1510   
1511   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1512     return false;// Second operand of insertelement must be vector element type.
1513     
1514   if (!Index->getType()->isIntegerTy(32))
1515     return false;  // Third operand of insertelement must be i32.
1516   return true;
1517 }
1518
1519
1520 //===----------------------------------------------------------------------===//
1521 //                      ShuffleVectorInst Implementation
1522 //===----------------------------------------------------------------------===//
1523
1524 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1525                                      const Twine &Name,
1526                                      Instruction *InsertBefore)
1527 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1528                 cast<VectorType>(Mask->getType())->getNumElements()),
1529               ShuffleVector,
1530               OperandTraits<ShuffleVectorInst>::op_begin(this),
1531               OperandTraits<ShuffleVectorInst>::operands(this),
1532               InsertBefore) {
1533   assert(isValidOperands(V1, V2, Mask) &&
1534          "Invalid shuffle vector instruction operands!");
1535   Op<0>() = V1;
1536   Op<1>() = V2;
1537   Op<2>() = Mask;
1538   setName(Name);
1539 }
1540
1541 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1542                                      const Twine &Name,
1543                                      BasicBlock *InsertAtEnd)
1544 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1545                 cast<VectorType>(Mask->getType())->getNumElements()),
1546               ShuffleVector,
1547               OperandTraits<ShuffleVectorInst>::op_begin(this),
1548               OperandTraits<ShuffleVectorInst>::operands(this),
1549               InsertAtEnd) {
1550   assert(isValidOperands(V1, V2, Mask) &&
1551          "Invalid shuffle vector instruction operands!");
1552
1553   Op<0>() = V1;
1554   Op<1>() = V2;
1555   Op<2>() = Mask;
1556   setName(Name);
1557 }
1558
1559 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1560                                         const Value *Mask) {
1561   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1562     return false;
1563   
1564   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1565   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1566     return false;
1567
1568   // Check to see if Mask is valid.
1569   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1570     VectorType *VTy = cast<VectorType>(V1->getType());
1571     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1572       if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1573         if (CI->uge(VTy->getNumElements()*2))
1574           return false;
1575       } else if (!isa<UndefValue>(MV->getOperand(i))) {
1576         return false;
1577       }
1578     }
1579   }
1580   else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
1581     return false;
1582   
1583   return true;
1584 }
1585
1586 /// getMaskValue - Return the index from the shuffle mask for the specified
1587 /// output result.  This is either -1 if the element is undef or a number less
1588 /// than 2*numelements.
1589 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1590   const Constant *Mask = cast<Constant>(getOperand(2));
1591   if (isa<UndefValue>(Mask)) return -1;
1592   if (isa<ConstantAggregateZero>(Mask)) return 0;
1593   const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1594   assert(i < MaskCV->getNumOperands() && "Index out of range");
1595
1596   if (isa<UndefValue>(MaskCV->getOperand(i)))
1597     return -1;
1598   return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1599 }
1600
1601 //===----------------------------------------------------------------------===//
1602 //                             InsertValueInst Class
1603 //===----------------------------------------------------------------------===//
1604
1605 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
1606                            const Twine &Name) {
1607   assert(NumOperands == 2 && "NumOperands not initialized?");
1608
1609   // There's no fundamental reason why we require at least one index
1610   // (other than weirdness with &*IdxBegin being invalid; see
1611   // getelementptr's init routine for example). But there's no
1612   // present need to support it.
1613   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1614
1615   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1616          Val->getType() && "Inserted value must match indexed type!");
1617   Op<0>() = Agg;
1618   Op<1>() = Val;
1619
1620   Indices.append(Idxs.begin(), Idxs.end());
1621   setName(Name);
1622 }
1623
1624 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1625   : Instruction(IVI.getType(), InsertValue,
1626                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1627     Indices(IVI.Indices) {
1628   Op<0>() = IVI.getOperand(0);
1629   Op<1>() = IVI.getOperand(1);
1630   SubclassOptionalData = IVI.SubclassOptionalData;
1631 }
1632
1633 //===----------------------------------------------------------------------===//
1634 //                             ExtractValueInst Class
1635 //===----------------------------------------------------------------------===//
1636
1637 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1638   assert(NumOperands == 1 && "NumOperands not initialized?");
1639
1640   // There's no fundamental reason why we require at least one index.
1641   // But there's no present need to support it.
1642   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1643
1644   Indices.append(Idxs.begin(), Idxs.end());
1645   setName(Name);
1646 }
1647
1648 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1649   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1650     Indices(EVI.Indices) {
1651   SubclassOptionalData = EVI.SubclassOptionalData;
1652 }
1653
1654 // getIndexedType - Returns the type of the element that would be extracted
1655 // with an extractvalue instruction with the specified parameters.
1656 //
1657 // A null type is returned if the indices are invalid for the specified
1658 // pointer type.
1659 //
1660 Type *ExtractValueInst::getIndexedType(Type *Agg,
1661                                        ArrayRef<unsigned> Idxs) {
1662   for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1663     unsigned Index = Idxs[CurIdx];
1664     // We can't use CompositeType::indexValid(Index) here.
1665     // indexValid() always returns true for arrays because getelementptr allows
1666     // out-of-bounds indices. Since we don't allow those for extractvalue and
1667     // insertvalue we need to check array indexing manually.
1668     // Since the only other types we can index into are struct types it's just
1669     // as easy to check those manually as well.
1670     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1671       if (Index >= AT->getNumElements())
1672         return 0;
1673     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1674       if (Index >= ST->getNumElements())
1675         return 0;
1676     } else {
1677       // Not a valid type to index into.
1678       return 0;
1679     }
1680
1681     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1682   }
1683   return const_cast<Type*>(Agg);
1684 }
1685
1686 //===----------------------------------------------------------------------===//
1687 //                             BinaryOperator Class
1688 //===----------------------------------------------------------------------===//
1689
1690 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1691                                Type *Ty, const Twine &Name,
1692                                Instruction *InsertBefore)
1693   : Instruction(Ty, iType,
1694                 OperandTraits<BinaryOperator>::op_begin(this),
1695                 OperandTraits<BinaryOperator>::operands(this),
1696                 InsertBefore) {
1697   Op<0>() = S1;
1698   Op<1>() = S2;
1699   init(iType);
1700   setName(Name);
1701 }
1702
1703 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
1704                                Type *Ty, const Twine &Name,
1705                                BasicBlock *InsertAtEnd)
1706   : Instruction(Ty, iType,
1707                 OperandTraits<BinaryOperator>::op_begin(this),
1708                 OperandTraits<BinaryOperator>::operands(this),
1709                 InsertAtEnd) {
1710   Op<0>() = S1;
1711   Op<1>() = S2;
1712   init(iType);
1713   setName(Name);
1714 }
1715
1716
1717 void BinaryOperator::init(BinaryOps iType) {
1718   Value *LHS = getOperand(0), *RHS = getOperand(1);
1719   (void)LHS; (void)RHS; // Silence warnings.
1720   assert(LHS->getType() == RHS->getType() &&
1721          "Binary operator operand types must match!");
1722 #ifndef NDEBUG
1723   switch (iType) {
1724   case Add: case Sub:
1725   case Mul:
1726     assert(getType() == LHS->getType() &&
1727            "Arithmetic operation should return same type as operands!");
1728     assert(getType()->isIntOrIntVectorTy() &&
1729            "Tried to create an integer operation on a non-integer type!");
1730     break;
1731   case FAdd: case FSub:
1732   case FMul:
1733     assert(getType() == LHS->getType() &&
1734            "Arithmetic operation should return same type as operands!");
1735     assert(getType()->isFPOrFPVectorTy() &&
1736            "Tried to create a floating-point operation on a "
1737            "non-floating-point type!");
1738     break;
1739   case UDiv: 
1740   case SDiv: 
1741     assert(getType() == LHS->getType() &&
1742            "Arithmetic operation should return same type as operands!");
1743     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
1744             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1745            "Incorrect operand type (not integer) for S/UDIV");
1746     break;
1747   case FDiv:
1748     assert(getType() == LHS->getType() &&
1749            "Arithmetic operation should return same type as operands!");
1750     assert(getType()->isFPOrFPVectorTy() &&
1751            "Incorrect operand type (not floating point) for FDIV");
1752     break;
1753   case URem: 
1754   case SRem: 
1755     assert(getType() == LHS->getType() &&
1756            "Arithmetic operation should return same type as operands!");
1757     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
1758             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1759            "Incorrect operand type (not integer) for S/UREM");
1760     break;
1761   case FRem:
1762     assert(getType() == LHS->getType() &&
1763            "Arithmetic operation should return same type as operands!");
1764     assert(getType()->isFPOrFPVectorTy() &&
1765            "Incorrect operand type (not floating point) for FREM");
1766     break;
1767   case Shl:
1768   case LShr:
1769   case AShr:
1770     assert(getType() == LHS->getType() &&
1771            "Shift operation should return same type as operands!");
1772     assert((getType()->isIntegerTy() ||
1773             (getType()->isVectorTy() && 
1774              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1775            "Tried to create a shift operation on a non-integral type!");
1776     break;
1777   case And: case Or:
1778   case Xor:
1779     assert(getType() == LHS->getType() &&
1780            "Logical operation should return same type as operands!");
1781     assert((getType()->isIntegerTy() ||
1782             (getType()->isVectorTy() && 
1783              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1784            "Tried to create a logical operation on a non-integral type!");
1785     break;
1786   default:
1787     break;
1788   }
1789 #endif
1790 }
1791
1792 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1793                                        const Twine &Name,
1794                                        Instruction *InsertBefore) {
1795   assert(S1->getType() == S2->getType() &&
1796          "Cannot create binary operator with two operands of differing type!");
1797   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1798 }
1799
1800 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1801                                        const Twine &Name,
1802                                        BasicBlock *InsertAtEnd) {
1803   BinaryOperator *Res = Create(Op, S1, S2, Name);
1804   InsertAtEnd->getInstList().push_back(Res);
1805   return Res;
1806 }
1807
1808 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1809                                           Instruction *InsertBefore) {
1810   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1811   return new BinaryOperator(Instruction::Sub,
1812                             zero, Op,
1813                             Op->getType(), Name, InsertBefore);
1814 }
1815
1816 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1817                                           BasicBlock *InsertAtEnd) {
1818   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1819   return new BinaryOperator(Instruction::Sub,
1820                             zero, Op,
1821                             Op->getType(), Name, InsertAtEnd);
1822 }
1823
1824 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1825                                              Instruction *InsertBefore) {
1826   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1827   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1828 }
1829
1830 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1831                                              BasicBlock *InsertAtEnd) {
1832   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1833   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1834 }
1835
1836 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1837                                              Instruction *InsertBefore) {
1838   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1839   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1840 }
1841
1842 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1843                                              BasicBlock *InsertAtEnd) {
1844   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1845   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1846 }
1847
1848 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1849                                            Instruction *InsertBefore) {
1850   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1851   return new BinaryOperator(Instruction::FSub,
1852                             zero, Op,
1853                             Op->getType(), Name, InsertBefore);
1854 }
1855
1856 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1857                                            BasicBlock *InsertAtEnd) {
1858   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1859   return new BinaryOperator(Instruction::FSub,
1860                             zero, Op,
1861                             Op->getType(), Name, InsertAtEnd);
1862 }
1863
1864 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1865                                           Instruction *InsertBefore) {
1866   Constant *C;
1867   if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1868     C = Constant::getAllOnesValue(PTy->getElementType());
1869     C = ConstantVector::get(
1870                               std::vector<Constant*>(PTy->getNumElements(), C));
1871   } else {
1872     C = Constant::getAllOnesValue(Op->getType());
1873   }
1874   
1875   return new BinaryOperator(Instruction::Xor, Op, C,
1876                             Op->getType(), Name, InsertBefore);
1877 }
1878
1879 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1880                                           BasicBlock *InsertAtEnd) {
1881   Constant *AllOnes;
1882   if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1883     // Create a vector of all ones values.
1884     Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1885     AllOnes = ConstantVector::get(
1886                             std::vector<Constant*>(PTy->getNumElements(), Elt));
1887   } else {
1888     AllOnes = Constant::getAllOnesValue(Op->getType());
1889   }
1890   
1891   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1892                             Op->getType(), Name, InsertAtEnd);
1893 }
1894
1895
1896 // isConstantAllOnes - Helper function for several functions below
1897 static inline bool isConstantAllOnes(const Value *V) {
1898   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1899     return CI->isAllOnesValue();
1900   if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1901     return CV->isAllOnesValue();
1902   return false;
1903 }
1904
1905 bool BinaryOperator::isNeg(const Value *V) {
1906   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1907     if (Bop->getOpcode() == Instruction::Sub)
1908       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1909         return C->isNegativeZeroValue();
1910   return false;
1911 }
1912
1913 bool BinaryOperator::isFNeg(const Value *V) {
1914   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1915     if (Bop->getOpcode() == Instruction::FSub)
1916       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1917         return C->isNegativeZeroValue();
1918   return false;
1919 }
1920
1921 bool BinaryOperator::isNot(const Value *V) {
1922   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1923     return (Bop->getOpcode() == Instruction::Xor &&
1924             (isConstantAllOnes(Bop->getOperand(1)) ||
1925              isConstantAllOnes(Bop->getOperand(0))));
1926   return false;
1927 }
1928
1929 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1930   return cast<BinaryOperator>(BinOp)->getOperand(1);
1931 }
1932
1933 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1934   return getNegArgument(const_cast<Value*>(BinOp));
1935 }
1936
1937 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1938   return cast<BinaryOperator>(BinOp)->getOperand(1);
1939 }
1940
1941 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1942   return getFNegArgument(const_cast<Value*>(BinOp));
1943 }
1944
1945 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1946   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1947   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1948   Value *Op0 = BO->getOperand(0);
1949   Value *Op1 = BO->getOperand(1);
1950   if (isConstantAllOnes(Op0)) return Op1;
1951
1952   assert(isConstantAllOnes(Op1));
1953   return Op0;
1954 }
1955
1956 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1957   return getNotArgument(const_cast<Value*>(BinOp));
1958 }
1959
1960
1961 // swapOperands - Exchange the two operands to this instruction.  This
1962 // instruction is safe to use on any binary instruction and does not
1963 // modify the semantics of the instruction.  If the instruction is
1964 // order dependent (SetLT f.e.) the opcode is changed.
1965 //
1966 bool BinaryOperator::swapOperands() {
1967   if (!isCommutative())
1968     return true; // Can't commute operands
1969   Op<0>().swap(Op<1>());
1970   return false;
1971 }
1972
1973 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1974   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1975 }
1976
1977 void BinaryOperator::setHasNoSignedWrap(bool b) {
1978   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1979 }
1980
1981 void BinaryOperator::setIsExact(bool b) {
1982   cast<PossiblyExactOperator>(this)->setIsExact(b);
1983 }
1984
1985 bool BinaryOperator::hasNoUnsignedWrap() const {
1986   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1987 }
1988
1989 bool BinaryOperator::hasNoSignedWrap() const {
1990   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1991 }
1992
1993 bool BinaryOperator::isExact() const {
1994   return cast<PossiblyExactOperator>(this)->isExact();
1995 }
1996
1997 //===----------------------------------------------------------------------===//
1998 //                                CastInst Class
1999 //===----------------------------------------------------------------------===//
2000
2001 // Just determine if this cast only deals with integral->integral conversion.
2002 bool CastInst::isIntegerCast() const {
2003   switch (getOpcode()) {
2004     default: return false;
2005     case Instruction::ZExt:
2006     case Instruction::SExt:
2007     case Instruction::Trunc:
2008       return true;
2009     case Instruction::BitCast:
2010       return getOperand(0)->getType()->isIntegerTy() &&
2011         getType()->isIntegerTy();
2012   }
2013 }
2014
2015 bool CastInst::isLosslessCast() const {
2016   // Only BitCast can be lossless, exit fast if we're not BitCast
2017   if (getOpcode() != Instruction::BitCast)
2018     return false;
2019
2020   // Identity cast is always lossless
2021   Type* SrcTy = getOperand(0)->getType();
2022   Type* DstTy = getType();
2023   if (SrcTy == DstTy)
2024     return true;
2025   
2026   // Pointer to pointer is always lossless.
2027   if (SrcTy->isPointerTy())
2028     return DstTy->isPointerTy();
2029   return false;  // Other types have no identity values
2030 }
2031
2032 /// This function determines if the CastInst does not require any bits to be
2033 /// changed in order to effect the cast. Essentially, it identifies cases where
2034 /// no code gen is necessary for the cast, hence the name no-op cast.  For 
2035 /// example, the following are all no-op casts:
2036 /// # bitcast i32* %x to i8*
2037 /// # bitcast <2 x i32> %x to <4 x i16> 
2038 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2039 /// @brief Determine if the described cast is a no-op.
2040 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2041                           Type *SrcTy,
2042                           Type *DestTy,
2043                           Type *IntPtrTy) {
2044   switch (Opcode) {
2045     default:
2046       assert(0 && "Invalid CastOp");
2047     case Instruction::Trunc:
2048     case Instruction::ZExt:
2049     case Instruction::SExt: 
2050     case Instruction::FPTrunc:
2051     case Instruction::FPExt:
2052     case Instruction::UIToFP:
2053     case Instruction::SIToFP:
2054     case Instruction::FPToUI:
2055     case Instruction::FPToSI:
2056       return false; // These always modify bits
2057     case Instruction::BitCast:
2058       return true;  // BitCast never modifies bits.
2059     case Instruction::PtrToInt:
2060       return IntPtrTy->getScalarSizeInBits() ==
2061              DestTy->getScalarSizeInBits();
2062     case Instruction::IntToPtr:
2063       return IntPtrTy->getScalarSizeInBits() ==
2064              SrcTy->getScalarSizeInBits();
2065   }
2066 }
2067
2068 /// @brief Determine if a cast is a no-op.
2069 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2070   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2071 }
2072
2073 /// This function determines if a pair of casts can be eliminated and what 
2074 /// opcode should be used in the elimination. This assumes that there are two 
2075 /// instructions like this:
2076 /// *  %F = firstOpcode SrcTy %x to MidTy
2077 /// *  %S = secondOpcode MidTy %F to DstTy
2078 /// The function returns a resultOpcode so these two casts can be replaced with:
2079 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2080 /// If no such cast is permited, the function returns 0.
2081 unsigned CastInst::isEliminableCastPair(
2082   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2083   Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) {
2084   // Define the 144 possibilities for these two cast instructions. The values
2085   // in this matrix determine what to do in a given situation and select the
2086   // case in the switch below.  The rows correspond to firstOp, the columns 
2087   // correspond to secondOp.  In looking at the table below, keep in  mind
2088   // the following cast properties:
2089   //
2090   //          Size Compare       Source               Destination
2091   // Operator  Src ? Size   Type       Sign         Type       Sign
2092   // -------- ------------ -------------------   ---------------------
2093   // TRUNC         >       Integer      Any        Integral     Any
2094   // ZEXT          <       Integral   Unsigned     Integer      Any
2095   // SEXT          <       Integral    Signed      Integer      Any
2096   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2097   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed 
2098   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a   
2099   // SITOFP       n/a      Integral    Signed      FloatPt      n/a   
2100   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a   
2101   // FPEXT         <       FloatPt      n/a        FloatPt      n/a   
2102   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2103   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2104   // BITCAST       =       FirstClass   n/a       FirstClass    n/a   
2105   //
2106   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2107   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2108   // into "fptoui double to i64", but this loses information about the range
2109   // of the produced value (we no longer know the top-part is all zeros). 
2110   // Further this conversion is often much more expensive for typical hardware,
2111   // and causes issues when building libgcc.  We disallow fptosi+sext for the 
2112   // same reason.
2113   const unsigned numCastOps = 
2114     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2115   static const uint8_t CastResults[numCastOps][numCastOps] = {
2116     // T        F  F  U  S  F  F  P  I  B   -+
2117     // R  Z  S  P  P  I  I  T  P  2  N  T    |
2118     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
2119     // N  X  X  U  S  F  F  N  X  N  2  V    |
2120     // C  T  T  I  I  P  P  C  T  T  P  T   -+
2121     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
2122     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
2123     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
2124     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
2125     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
2126     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
2127     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
2128     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
2129     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
2130     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
2131     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
2132     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
2133   };
2134   
2135   // If either of the casts are a bitcast from scalar to vector, disallow the
2136   // merging. However, bitcast of A->B->A are allowed.
2137   bool isFirstBitcast  = (firstOp == Instruction::BitCast);
2138   bool isSecondBitcast = (secondOp == Instruction::BitCast);
2139   bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2140
2141   // Check if any of the bitcasts convert scalars<->vectors.
2142   if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2143       (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2144     // Unless we are bitcasing to the original type, disallow optimizations.
2145     if (!chainedBitcast) return 0;
2146
2147   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2148                             [secondOp-Instruction::CastOpsBegin];
2149   switch (ElimCase) {
2150     case 0: 
2151       // categorically disallowed
2152       return 0;
2153     case 1: 
2154       // allowed, use first cast's opcode
2155       return firstOp;
2156     case 2: 
2157       // allowed, use second cast's opcode
2158       return secondOp;
2159     case 3: 
2160       // no-op cast in second op implies firstOp as long as the DestTy 
2161       // is integer and we are not converting between a vector and a
2162       // non vector type.
2163       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2164         return firstOp;
2165       return 0;
2166     case 4:
2167       // no-op cast in second op implies firstOp as long as the DestTy
2168       // is floating point.
2169       if (DstTy->isFloatingPointTy())
2170         return firstOp;
2171       return 0;
2172     case 5: 
2173       // no-op cast in first op implies secondOp as long as the SrcTy
2174       // is an integer.
2175       if (SrcTy->isIntegerTy())
2176         return secondOp;
2177       return 0;
2178     case 6:
2179       // no-op cast in first op implies secondOp as long as the SrcTy
2180       // is a floating point.
2181       if (SrcTy->isFloatingPointTy())
2182         return secondOp;
2183       return 0;
2184     case 7: { 
2185       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2186       if (!IntPtrTy)
2187         return 0;
2188       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2189       unsigned MidSize = MidTy->getScalarSizeInBits();
2190       if (MidSize >= PtrSize)
2191         return Instruction::BitCast;
2192       return 0;
2193     }
2194     case 8: {
2195       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2196       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2197       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2198       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2199       unsigned DstSize = DstTy->getScalarSizeInBits();
2200       if (SrcSize == DstSize)
2201         return Instruction::BitCast;
2202       else if (SrcSize < DstSize)
2203         return firstOp;
2204       return secondOp;
2205     }
2206     case 9: // zext, sext -> zext, because sext can't sign extend after zext
2207       return Instruction::ZExt;
2208     case 10:
2209       // fpext followed by ftrunc is allowed if the bit size returned to is
2210       // the same as the original, in which case its just a bitcast
2211       if (SrcTy == DstTy)
2212         return Instruction::BitCast;
2213       return 0; // If the types are not the same we can't eliminate it.
2214     case 11:
2215       // bitcast followed by ptrtoint is allowed as long as the bitcast
2216       // is a pointer to pointer cast.
2217       if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2218         return secondOp;
2219       return 0;
2220     case 12:
2221       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
2222       if (MidTy->isPointerTy() && DstTy->isPointerTy())
2223         return firstOp;
2224       return 0;
2225     case 13: {
2226       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2227       if (!IntPtrTy)
2228         return 0;
2229       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2230       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2231       unsigned DstSize = DstTy->getScalarSizeInBits();
2232       if (SrcSize <= PtrSize && SrcSize == DstSize)
2233         return Instruction::BitCast;
2234       return 0;
2235     }
2236     case 99: 
2237       // cast combination can't happen (error in input). This is for all cases
2238       // where the MidTy is not the same for the two cast instructions.
2239       assert(0 && "Invalid Cast Combination");
2240       return 0;
2241     default:
2242       assert(0 && "Error in CastResults table!!!");
2243       return 0;
2244   }
2245   return 0;
2246 }
2247
2248 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 
2249   const Twine &Name, Instruction *InsertBefore) {
2250   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2251   // Construct and return the appropriate CastInst subclass
2252   switch (op) {
2253     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
2254     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
2255     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
2256     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
2257     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
2258     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
2259     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
2260     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
2261     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
2262     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2263     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2264     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
2265     default:
2266       assert(0 && "Invalid opcode provided");
2267   }
2268   return 0;
2269 }
2270
2271 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2272   const Twine &Name, BasicBlock *InsertAtEnd) {
2273   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2274   // Construct and return the appropriate CastInst subclass
2275   switch (op) {
2276     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
2277     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2278     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2279     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2280     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2281     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2282     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2283     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2284     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2285     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2286     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2287     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2288     default:
2289       assert(0 && "Invalid opcode provided");
2290   }
2291   return 0;
2292 }
2293
2294 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2295                                         const Twine &Name,
2296                                         Instruction *InsertBefore) {
2297   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2298     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2299   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2300 }
2301
2302 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2303                                         const Twine &Name,
2304                                         BasicBlock *InsertAtEnd) {
2305   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2306     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2307   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2308 }
2309
2310 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2311                                         const Twine &Name,
2312                                         Instruction *InsertBefore) {
2313   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2314     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2315   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2316 }
2317
2318 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2319                                         const Twine &Name,
2320                                         BasicBlock *InsertAtEnd) {
2321   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2322     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2323   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2324 }
2325
2326 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2327                                          const Twine &Name,
2328                                          Instruction *InsertBefore) {
2329   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2330     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2331   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2332 }
2333
2334 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2335                                          const Twine &Name, 
2336                                          BasicBlock *InsertAtEnd) {
2337   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2338     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2339   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2340 }
2341
2342 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2343                                       const Twine &Name,
2344                                       BasicBlock *InsertAtEnd) {
2345   assert(S->getType()->isPointerTy() && "Invalid cast");
2346   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2347          "Invalid cast");
2348
2349   if (Ty->isIntegerTy())
2350     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2351   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2352 }
2353
2354 /// @brief Create a BitCast or a PtrToInt cast instruction
2355 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 
2356                                       const Twine &Name, 
2357                                       Instruction *InsertBefore) {
2358   assert(S->getType()->isPointerTy() && "Invalid cast");
2359   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2360          "Invalid cast");
2361
2362   if (Ty->isIntegerTy())
2363     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2364   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2365 }
2366
2367 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
2368                                       bool isSigned, const Twine &Name,
2369                                       Instruction *InsertBefore) {
2370   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2371          "Invalid integer cast");
2372   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2373   unsigned DstBits = Ty->getScalarSizeInBits();
2374   Instruction::CastOps opcode =
2375     (SrcBits == DstBits ? Instruction::BitCast :
2376      (SrcBits > DstBits ? Instruction::Trunc :
2377       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2378   return Create(opcode, C, Ty, Name, InsertBefore);
2379 }
2380
2381 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
2382                                       bool isSigned, const Twine &Name,
2383                                       BasicBlock *InsertAtEnd) {
2384   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2385          "Invalid cast");
2386   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2387   unsigned DstBits = Ty->getScalarSizeInBits();
2388   Instruction::CastOps opcode =
2389     (SrcBits == DstBits ? Instruction::BitCast :
2390      (SrcBits > DstBits ? Instruction::Trunc :
2391       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2392   return Create(opcode, C, Ty, Name, InsertAtEnd);
2393 }
2394
2395 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2396                                  const Twine &Name, 
2397                                  Instruction *InsertBefore) {
2398   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2399          "Invalid cast");
2400   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2401   unsigned DstBits = Ty->getScalarSizeInBits();
2402   Instruction::CastOps opcode =
2403     (SrcBits == DstBits ? Instruction::BitCast :
2404      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2405   return Create(opcode, C, Ty, Name, InsertBefore);
2406 }
2407
2408 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2409                                  const Twine &Name, 
2410                                  BasicBlock *InsertAtEnd) {
2411   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2412          "Invalid cast");
2413   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2414   unsigned DstBits = Ty->getScalarSizeInBits();
2415   Instruction::CastOps opcode =
2416     (SrcBits == DstBits ? Instruction::BitCast :
2417      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2418   return Create(opcode, C, Ty, Name, InsertAtEnd);
2419 }
2420
2421 // Check whether it is valid to call getCastOpcode for these types.
2422 // This routine must be kept in sync with getCastOpcode.
2423 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2424   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2425     return false;
2426
2427   if (SrcTy == DestTy)
2428     return true;
2429
2430   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2431     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2432       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2433         // An element by element cast.  Valid if casting the elements is valid.
2434         SrcTy = SrcVecTy->getElementType();
2435         DestTy = DestVecTy->getElementType();
2436       }
2437
2438   // Get the bit sizes, we'll need these
2439   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2440   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2441
2442   // Run through the possibilities ...
2443   if (DestTy->isIntegerTy()) {               // Casting to integral
2444     if (SrcTy->isIntegerTy()) {                // Casting from integral
2445         return true;
2446     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2447       return true;
2448     } else if (SrcTy->isVectorTy()) {          // Casting from vector
2449       return DestBits == SrcBits;
2450     } else {                                   // Casting from something else
2451       return SrcTy->isPointerTy();
2452     }
2453   } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2454     if (SrcTy->isIntegerTy()) {                // Casting from integral
2455       return true;
2456     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2457       return true;
2458     } else if (SrcTy->isVectorTy()) {          // Casting from vector
2459       return DestBits == SrcBits;
2460     } else {                                   // Casting from something else
2461       return false;
2462     }
2463   } else if (DestTy->isVectorTy()) {         // Casting to vector
2464     return DestBits == SrcBits;
2465   } else if (DestTy->isPointerTy()) {        // Casting to pointer
2466     if (SrcTy->isPointerTy()) {                // Casting from pointer
2467       return true;
2468     } else if (SrcTy->isIntegerTy()) {         // Casting from integral
2469       return true;
2470     } else {                                   // Casting from something else
2471       return false;
2472     }
2473   } else if (DestTy->isX86_MMXTy()) {
2474     if (SrcTy->isVectorTy()) {
2475       return DestBits == SrcBits;       // 64-bit vector to MMX
2476     } else {
2477       return false;
2478     }
2479   } else {                                   // Casting to something else
2480     return false;
2481   }
2482 }
2483
2484 // Provide a way to get a "cast" where the cast opcode is inferred from the 
2485 // types and size of the operand. This, basically, is a parallel of the 
2486 // logic in the castIsValid function below.  This axiom should hold:
2487 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2488 // should not assert in castIsValid. In other words, this produces a "correct"
2489 // casting opcode for the arguments passed to it.
2490 // This routine must be kept in sync with isCastable.
2491 Instruction::CastOps
2492 CastInst::getCastOpcode(
2493   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2494   Type *SrcTy = Src->getType();
2495
2496   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2497          "Only first class types are castable!");
2498
2499   if (SrcTy == DestTy)
2500     return BitCast;
2501
2502   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2503     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2504       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2505         // An element by element cast.  Find the appropriate opcode based on the
2506         // element types.
2507         SrcTy = SrcVecTy->getElementType();
2508         DestTy = DestVecTy->getElementType();
2509       }
2510
2511   // Get the bit sizes, we'll need these
2512   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2513   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2514
2515   // Run through the possibilities ...
2516   if (DestTy->isIntegerTy()) {                      // Casting to integral
2517     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2518       if (DestBits < SrcBits)
2519         return Trunc;                               // int -> smaller int
2520       else if (DestBits > SrcBits) {                // its an extension
2521         if (SrcIsSigned)
2522           return SExt;                              // signed -> SEXT
2523         else
2524           return ZExt;                              // unsigned -> ZEXT
2525       } else {
2526         return BitCast;                             // Same size, No-op cast
2527       }
2528     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2529       if (DestIsSigned) 
2530         return FPToSI;                              // FP -> sint
2531       else
2532         return FPToUI;                              // FP -> uint 
2533     } else if (SrcTy->isVectorTy()) {
2534       assert(DestBits == SrcBits &&
2535              "Casting vector to integer of different width");
2536       return BitCast;                             // Same size, no-op cast
2537     } else {
2538       assert(SrcTy->isPointerTy() &&
2539              "Casting from a value that is not first-class type");
2540       return PtrToInt;                              // ptr -> int
2541     }
2542   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2543     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2544       if (SrcIsSigned)
2545         return SIToFP;                              // sint -> FP
2546       else
2547         return UIToFP;                              // uint -> FP
2548     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2549       if (DestBits < SrcBits) {
2550         return FPTrunc;                             // FP -> smaller FP
2551       } else if (DestBits > SrcBits) {
2552         return FPExt;                               // FP -> larger FP
2553       } else  {
2554         return BitCast;                             // same size, no-op cast
2555       }
2556     } else if (SrcTy->isVectorTy()) {
2557       assert(DestBits == SrcBits &&
2558              "Casting vector to floating point of different width");
2559       return BitCast;                             // same size, no-op cast
2560     } else {
2561       llvm_unreachable("Casting pointer or non-first class to float");
2562     }
2563   } else if (DestTy->isVectorTy()) {
2564     assert(DestBits == SrcBits &&
2565            "Illegal cast to vector (wrong type or size)");
2566     return BitCast;
2567   } else if (DestTy->isPointerTy()) {
2568     if (SrcTy->isPointerTy()) {
2569       return BitCast;                               // ptr -> ptr
2570     } else if (SrcTy->isIntegerTy()) {
2571       return IntToPtr;                              // int -> ptr
2572     } else {
2573       assert(0 && "Casting pointer to other than pointer or int");
2574     }
2575   } else if (DestTy->isX86_MMXTy()) {
2576     if (SrcTy->isVectorTy()) {
2577       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2578       return BitCast;                               // 64-bit vector to MMX
2579     } else {
2580       assert(0 && "Illegal cast to X86_MMX");
2581     }
2582   } else {
2583     assert(0 && "Casting to type that is not first-class");
2584   }
2585
2586   // If we fall through to here we probably hit an assertion cast above
2587   // and assertions are not turned on. Anything we return is an error, so
2588   // BitCast is as good a choice as any.
2589   return BitCast;
2590 }
2591
2592 //===----------------------------------------------------------------------===//
2593 //                    CastInst SubClass Constructors
2594 //===----------------------------------------------------------------------===//
2595
2596 /// Check that the construction parameters for a CastInst are correct. This
2597 /// could be broken out into the separate constructors but it is useful to have
2598 /// it in one place and to eliminate the redundant code for getting the sizes
2599 /// of the types involved.
2600 bool 
2601 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2602
2603   // Check for type sanity on the arguments
2604   Type *SrcTy = S->getType();
2605   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2606       SrcTy->isAggregateType() || DstTy->isAggregateType())
2607     return false;
2608
2609   // Get the size of the types in bits, we'll need this later
2610   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2611   unsigned DstBitSize = DstTy->getScalarSizeInBits();
2612
2613   // If these are vector types, get the lengths of the vectors (using zero for
2614   // scalar types means that checking that vector lengths match also checks that
2615   // scalars are not being converted to vectors or vectors to scalars).
2616   unsigned SrcLength = SrcTy->isVectorTy() ?
2617     cast<VectorType>(SrcTy)->getNumElements() : 0;
2618   unsigned DstLength = DstTy->isVectorTy() ?
2619     cast<VectorType>(DstTy)->getNumElements() : 0;
2620
2621   // Switch on the opcode provided
2622   switch (op) {
2623   default: return false; // This is an input error
2624   case Instruction::Trunc:
2625     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2626       SrcLength == DstLength && SrcBitSize > DstBitSize;
2627   case Instruction::ZExt:
2628     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2629       SrcLength == DstLength && SrcBitSize < DstBitSize;
2630   case Instruction::SExt: 
2631     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2632       SrcLength == DstLength && SrcBitSize < DstBitSize;
2633   case Instruction::FPTrunc:
2634     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2635       SrcLength == DstLength && SrcBitSize > DstBitSize;
2636   case Instruction::FPExt:
2637     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2638       SrcLength == DstLength && SrcBitSize < DstBitSize;
2639   case Instruction::UIToFP:
2640   case Instruction::SIToFP:
2641     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2642       SrcLength == DstLength;
2643   case Instruction::FPToUI:
2644   case Instruction::FPToSI:
2645     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2646       SrcLength == DstLength;
2647   case Instruction::PtrToInt:
2648     return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2649   case Instruction::IntToPtr:
2650     return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2651   case Instruction::BitCast:
2652     // BitCast implies a no-op cast of type only. No bits change.
2653     // However, you can't cast pointers to anything but pointers.
2654     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2655       return false;
2656
2657     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2658     // these cases, the cast is okay if the source and destination bit widths
2659     // are identical.
2660     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2661   }
2662 }
2663
2664 TruncInst::TruncInst(
2665   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2666 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2667   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2668 }
2669
2670 TruncInst::TruncInst(
2671   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2672 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
2673   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2674 }
2675
2676 ZExtInst::ZExtInst(
2677   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2678 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
2679   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2680 }
2681
2682 ZExtInst::ZExtInst(
2683   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2684 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
2685   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2686 }
2687 SExtInst::SExtInst(
2688   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2689 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
2690   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2691 }
2692
2693 SExtInst::SExtInst(
2694   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2695 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
2696   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2697 }
2698
2699 FPTruncInst::FPTruncInst(
2700   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2701 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
2702   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2703 }
2704
2705 FPTruncInst::FPTruncInst(
2706   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2707 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
2708   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2709 }
2710
2711 FPExtInst::FPExtInst(
2712   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2713 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
2714   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2715 }
2716
2717 FPExtInst::FPExtInst(
2718   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2719 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
2720   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2721 }
2722
2723 UIToFPInst::UIToFPInst(
2724   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2725 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
2726   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2727 }
2728
2729 UIToFPInst::UIToFPInst(
2730   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2731 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
2732   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2733 }
2734
2735 SIToFPInst::SIToFPInst(
2736   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2737 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
2738   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2739 }
2740
2741 SIToFPInst::SIToFPInst(
2742   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2743 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
2744   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2745 }
2746
2747 FPToUIInst::FPToUIInst(
2748   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2749 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
2750   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2751 }
2752
2753 FPToUIInst::FPToUIInst(
2754   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2755 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
2756   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2757 }
2758
2759 FPToSIInst::FPToSIInst(
2760   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2761 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
2762   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2763 }
2764
2765 FPToSIInst::FPToSIInst(
2766   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2767 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
2768   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2769 }
2770
2771 PtrToIntInst::PtrToIntInst(
2772   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2773 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
2774   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2775 }
2776
2777 PtrToIntInst::PtrToIntInst(
2778   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2779 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
2780   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2781 }
2782
2783 IntToPtrInst::IntToPtrInst(
2784   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2785 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
2786   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2787 }
2788
2789 IntToPtrInst::IntToPtrInst(
2790   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2791 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
2792   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2793 }
2794
2795 BitCastInst::BitCastInst(
2796   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2797 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
2798   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2799 }
2800
2801 BitCastInst::BitCastInst(
2802   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2803 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
2804   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2805 }
2806
2807 //===----------------------------------------------------------------------===//
2808 //                               CmpInst Classes
2809 //===----------------------------------------------------------------------===//
2810
2811 void CmpInst::Anchor() const {}
2812
2813 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2814                  Value *LHS, Value *RHS, const Twine &Name,
2815                  Instruction *InsertBefore)
2816   : Instruction(ty, op,
2817                 OperandTraits<CmpInst>::op_begin(this),
2818                 OperandTraits<CmpInst>::operands(this),
2819                 InsertBefore) {
2820     Op<0>() = LHS;
2821     Op<1>() = RHS;
2822   setPredicate((Predicate)predicate);
2823   setName(Name);
2824 }
2825
2826 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2827                  Value *LHS, Value *RHS, const Twine &Name,
2828                  BasicBlock *InsertAtEnd)
2829   : Instruction(ty, op,
2830                 OperandTraits<CmpInst>::op_begin(this),
2831                 OperandTraits<CmpInst>::operands(this),
2832                 InsertAtEnd) {
2833   Op<0>() = LHS;
2834   Op<1>() = RHS;
2835   setPredicate((Predicate)predicate);
2836   setName(Name);
2837 }
2838
2839 CmpInst *
2840 CmpInst::Create(OtherOps Op, unsigned short predicate,
2841                 Value *S1, Value *S2, 
2842                 const Twine &Name, Instruction *InsertBefore) {
2843   if (Op == Instruction::ICmp) {
2844     if (InsertBefore)
2845       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2846                           S1, S2, Name);
2847     else
2848       return new ICmpInst(CmpInst::Predicate(predicate),
2849                           S1, S2, Name);
2850   }
2851   
2852   if (InsertBefore)
2853     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2854                         S1, S2, Name);
2855   else
2856     return new FCmpInst(CmpInst::Predicate(predicate),
2857                         S1, S2, Name);
2858 }
2859
2860 CmpInst *
2861 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 
2862                 const Twine &Name, BasicBlock *InsertAtEnd) {
2863   if (Op == Instruction::ICmp) {
2864     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2865                         S1, S2, Name);
2866   }
2867   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2868                       S1, S2, Name);
2869 }
2870
2871 void CmpInst::swapOperands() {
2872   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2873     IC->swapOperands();
2874   else
2875     cast<FCmpInst>(this)->swapOperands();
2876 }
2877
2878 bool CmpInst::isCommutative() const {
2879   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2880     return IC->isCommutative();
2881   return cast<FCmpInst>(this)->isCommutative();
2882 }
2883
2884 bool CmpInst::isEquality() const {
2885   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2886     return IC->isEquality();
2887   return cast<FCmpInst>(this)->isEquality();
2888 }
2889
2890
2891 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2892   switch (pred) {
2893     default: assert(0 && "Unknown cmp predicate!");
2894     case ICMP_EQ: return ICMP_NE;
2895     case ICMP_NE: return ICMP_EQ;
2896     case ICMP_UGT: return ICMP_ULE;
2897     case ICMP_ULT: return ICMP_UGE;
2898     case ICMP_UGE: return ICMP_ULT;
2899     case ICMP_ULE: return ICMP_UGT;
2900     case ICMP_SGT: return ICMP_SLE;
2901     case ICMP_SLT: return ICMP_SGE;
2902     case ICMP_SGE: return ICMP_SLT;
2903     case ICMP_SLE: return ICMP_SGT;
2904
2905     case FCMP_OEQ: return FCMP_UNE;
2906     case FCMP_ONE: return FCMP_UEQ;
2907     case FCMP_OGT: return FCMP_ULE;
2908     case FCMP_OLT: return FCMP_UGE;
2909     case FCMP_OGE: return FCMP_ULT;
2910     case FCMP_OLE: return FCMP_UGT;
2911     case FCMP_UEQ: return FCMP_ONE;
2912     case FCMP_UNE: return FCMP_OEQ;
2913     case FCMP_UGT: return FCMP_OLE;
2914     case FCMP_ULT: return FCMP_OGE;
2915     case FCMP_UGE: return FCMP_OLT;
2916     case FCMP_ULE: return FCMP_OGT;
2917     case FCMP_ORD: return FCMP_UNO;
2918     case FCMP_UNO: return FCMP_ORD;
2919     case FCMP_TRUE: return FCMP_FALSE;
2920     case FCMP_FALSE: return FCMP_TRUE;
2921   }
2922 }
2923
2924 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2925   switch (pred) {
2926     default: assert(0 && "Unknown icmp predicate!");
2927     case ICMP_EQ: case ICMP_NE: 
2928     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
2929        return pred;
2930     case ICMP_UGT: return ICMP_SGT;
2931     case ICMP_ULT: return ICMP_SLT;
2932     case ICMP_UGE: return ICMP_SGE;
2933     case ICMP_ULE: return ICMP_SLE;
2934   }
2935 }
2936
2937 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2938   switch (pred) {
2939     default: assert(0 && "Unknown icmp predicate!");
2940     case ICMP_EQ: case ICMP_NE: 
2941     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
2942        return pred;
2943     case ICMP_SGT: return ICMP_UGT;
2944     case ICMP_SLT: return ICMP_ULT;
2945     case ICMP_SGE: return ICMP_UGE;
2946     case ICMP_SLE: return ICMP_ULE;
2947   }
2948 }
2949
2950 /// Initialize a set of values that all satisfy the condition with C.
2951 ///
2952 ConstantRange 
2953 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2954   APInt Lower(C);
2955   APInt Upper(C);
2956   uint32_t BitWidth = C.getBitWidth();
2957   switch (pred) {
2958   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2959   case ICmpInst::ICMP_EQ: Upper++; break;
2960   case ICmpInst::ICMP_NE: Lower++; break;
2961   case ICmpInst::ICMP_ULT:
2962     Lower = APInt::getMinValue(BitWidth);
2963     // Check for an empty-set condition.
2964     if (Lower == Upper)
2965       return ConstantRange(BitWidth, /*isFullSet=*/false);
2966     break;
2967   case ICmpInst::ICMP_SLT:
2968     Lower = APInt::getSignedMinValue(BitWidth);
2969     // Check for an empty-set condition.
2970     if (Lower == Upper)
2971       return ConstantRange(BitWidth, /*isFullSet=*/false);
2972     break;
2973   case ICmpInst::ICMP_UGT: 
2974     Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2975     // Check for an empty-set condition.
2976     if (Lower == Upper)
2977       return ConstantRange(BitWidth, /*isFullSet=*/false);
2978     break;
2979   case ICmpInst::ICMP_SGT:
2980     Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2981     // Check for an empty-set condition.
2982     if (Lower == Upper)
2983       return ConstantRange(BitWidth, /*isFullSet=*/false);
2984     break;
2985   case ICmpInst::ICMP_ULE: 
2986     Lower = APInt::getMinValue(BitWidth); Upper++; 
2987     // Check for a full-set condition.
2988     if (Lower == Upper)
2989       return ConstantRange(BitWidth, /*isFullSet=*/true);
2990     break;
2991   case ICmpInst::ICMP_SLE: 
2992     Lower = APInt::getSignedMinValue(BitWidth); Upper++; 
2993     // Check for a full-set condition.
2994     if (Lower == Upper)
2995       return ConstantRange(BitWidth, /*isFullSet=*/true);
2996     break;
2997   case ICmpInst::ICMP_UGE:
2998     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2999     // Check for a full-set condition.
3000     if (Lower == Upper)
3001       return ConstantRange(BitWidth, /*isFullSet=*/true);
3002     break;
3003   case ICmpInst::ICMP_SGE:
3004     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3005     // Check for a full-set condition.
3006     if (Lower == Upper)
3007       return ConstantRange(BitWidth, /*isFullSet=*/true);
3008     break;
3009   }
3010   return ConstantRange(Lower, Upper);
3011 }
3012
3013 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3014   switch (pred) {
3015     default: assert(0 && "Unknown cmp predicate!");
3016     case ICMP_EQ: case ICMP_NE:
3017       return pred;
3018     case ICMP_SGT: return ICMP_SLT;
3019     case ICMP_SLT: return ICMP_SGT;
3020     case ICMP_SGE: return ICMP_SLE;
3021     case ICMP_SLE: return ICMP_SGE;
3022     case ICMP_UGT: return ICMP_ULT;
3023     case ICMP_ULT: return ICMP_UGT;
3024     case ICMP_UGE: return ICMP_ULE;
3025     case ICMP_ULE: return ICMP_UGE;
3026   
3027     case FCMP_FALSE: case FCMP_TRUE:
3028     case FCMP_OEQ: case FCMP_ONE:
3029     case FCMP_UEQ: case FCMP_UNE:
3030     case FCMP_ORD: case FCMP_UNO:
3031       return pred;
3032     case FCMP_OGT: return FCMP_OLT;
3033     case FCMP_OLT: return FCMP_OGT;
3034     case FCMP_OGE: return FCMP_OLE;
3035     case FCMP_OLE: return FCMP_OGE;
3036     case FCMP_UGT: return FCMP_ULT;
3037     case FCMP_ULT: return FCMP_UGT;
3038     case FCMP_UGE: return FCMP_ULE;
3039     case FCMP_ULE: return FCMP_UGE;
3040   }
3041 }
3042
3043 bool CmpInst::isUnsigned(unsigned short predicate) {
3044   switch (predicate) {
3045     default: return false;
3046     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
3047     case ICmpInst::ICMP_UGE: return true;
3048   }
3049 }
3050
3051 bool CmpInst::isSigned(unsigned short predicate) {
3052   switch (predicate) {
3053     default: return false;
3054     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
3055     case ICmpInst::ICMP_SGE: return true;
3056   }
3057 }
3058
3059 bool CmpInst::isOrdered(unsigned short predicate) {
3060   switch (predicate) {
3061     default: return false;
3062     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
3063     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
3064     case FCmpInst::FCMP_ORD: return true;
3065   }
3066 }
3067       
3068 bool CmpInst::isUnordered(unsigned short predicate) {
3069   switch (predicate) {
3070     default: return false;
3071     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
3072     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
3073     case FCmpInst::FCMP_UNO: return true;
3074   }
3075 }
3076
3077 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3078   switch(predicate) {
3079     default: return false;
3080     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3081     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3082   }
3083 }
3084
3085 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3086   switch(predicate) {
3087   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3088   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3089   default: return false;
3090   }
3091 }
3092
3093
3094 //===----------------------------------------------------------------------===//
3095 //                        SwitchInst Implementation
3096 //===----------------------------------------------------------------------===//
3097
3098 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3099   assert(Value && Default && NumReserved);
3100   ReservedSpace = NumReserved;
3101   NumOperands = 2;
3102   OperandList = allocHungoffUses(ReservedSpace);
3103
3104   OperandList[0] = Value;
3105   OperandList[1] = Default;
3106 }
3107
3108 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3109 /// switch on and a default destination.  The number of additional cases can
3110 /// be specified here to make memory allocation more efficient.  This
3111 /// constructor can also autoinsert before another instruction.
3112 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3113                        Instruction *InsertBefore)
3114   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3115                    0, 0, InsertBefore) {
3116   init(Value, Default, 2+NumCases*2);
3117 }
3118
3119 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3120 /// switch on and a default destination.  The number of additional cases can
3121 /// be specified here to make memory allocation more efficient.  This
3122 /// constructor also autoinserts at the end of the specified BasicBlock.
3123 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3124                        BasicBlock *InsertAtEnd)
3125   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3126                    0, 0, InsertAtEnd) {
3127   init(Value, Default, 2+NumCases*2);
3128 }
3129
3130 SwitchInst::SwitchInst(const SwitchInst &SI)
3131   : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3132   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3133   NumOperands = SI.getNumOperands();
3134   Use *OL = OperandList, *InOL = SI.OperandList;
3135   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3136     OL[i] = InOL[i];
3137     OL[i+1] = InOL[i+1];
3138   }
3139   SubclassOptionalData = SI.SubclassOptionalData;
3140 }
3141
3142 SwitchInst::~SwitchInst() {
3143   dropHungoffUses();
3144 }
3145
3146
3147 /// addCase - Add an entry to the switch instruction...
3148 ///
3149 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3150   unsigned OpNo = NumOperands;
3151   if (OpNo+2 > ReservedSpace)
3152     growOperands();  // Get more space!
3153   // Initialize some new operands.
3154   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3155   NumOperands = OpNo+2;
3156   OperandList[OpNo] = OnVal;
3157   OperandList[OpNo+1] = Dest;
3158 }
3159
3160 /// removeCase - This method removes the specified successor from the switch
3161 /// instruction.  Note that this cannot be used to remove the default
3162 /// destination (successor #0).
3163 ///
3164 void SwitchInst::removeCase(unsigned idx) {
3165   assert(idx != 0 && "Cannot remove the default case!");
3166   assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
3167
3168   unsigned NumOps = getNumOperands();
3169   Use *OL = OperandList;
3170
3171   // Overwrite this case with the end of the list.
3172   if ((idx + 1) * 2 != NumOps) {
3173     OL[idx * 2] = OL[NumOps - 2];
3174     OL[idx * 2 + 1] = OL[NumOps - 1];
3175   }
3176
3177   // Nuke the last value.
3178   OL[NumOps-2].set(0);
3179   OL[NumOps-2+1].set(0);
3180   NumOperands = NumOps-2;
3181 }
3182
3183 /// growOperands - grow operands - This grows the operand list in response
3184 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3185 ///
3186 void SwitchInst::growOperands() {
3187   unsigned e = getNumOperands();
3188   unsigned NumOps = e*3;
3189
3190   ReservedSpace = NumOps;
3191   Use *NewOps = allocHungoffUses(NumOps);
3192   Use *OldOps = OperandList;
3193   for (unsigned i = 0; i != e; ++i) {
3194       NewOps[i] = OldOps[i];
3195   }
3196   OperandList = NewOps;
3197   Use::zap(OldOps, OldOps + e, true);
3198 }
3199
3200
3201 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3202   return getSuccessor(idx);
3203 }
3204 unsigned SwitchInst::getNumSuccessorsV() const {
3205   return getNumSuccessors();
3206 }
3207 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3208   setSuccessor(idx, B);
3209 }
3210
3211 //===----------------------------------------------------------------------===//
3212 //                        IndirectBrInst Implementation
3213 //===----------------------------------------------------------------------===//
3214
3215 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3216   assert(Address && Address->getType()->isPointerTy() &&
3217          "Address of indirectbr must be a pointer");
3218   ReservedSpace = 1+NumDests;
3219   NumOperands = 1;
3220   OperandList = allocHungoffUses(ReservedSpace);
3221   
3222   OperandList[0] = Address;
3223 }
3224
3225
3226 /// growOperands - grow operands - This grows the operand list in response
3227 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3228 ///
3229 void IndirectBrInst::growOperands() {
3230   unsigned e = getNumOperands();
3231   unsigned NumOps = e*2;
3232   
3233   ReservedSpace = NumOps;
3234   Use *NewOps = allocHungoffUses(NumOps);
3235   Use *OldOps = OperandList;
3236   for (unsigned i = 0; i != e; ++i)
3237     NewOps[i] = OldOps[i];
3238   OperandList = NewOps;
3239   Use::zap(OldOps, OldOps + e, true);
3240 }
3241
3242 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3243                                Instruction *InsertBefore)
3244 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3245                  0, 0, InsertBefore) {
3246   init(Address, NumCases);
3247 }
3248
3249 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3250                                BasicBlock *InsertAtEnd)
3251 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3252                  0, 0, InsertAtEnd) {
3253   init(Address, NumCases);
3254 }
3255
3256 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3257   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3258                    allocHungoffUses(IBI.getNumOperands()),
3259                    IBI.getNumOperands()) {
3260   Use *OL = OperandList, *InOL = IBI.OperandList;
3261   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3262     OL[i] = InOL[i];
3263   SubclassOptionalData = IBI.SubclassOptionalData;
3264 }
3265
3266 IndirectBrInst::~IndirectBrInst() {
3267   dropHungoffUses();
3268 }
3269
3270 /// addDestination - Add a destination.
3271 ///
3272 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3273   unsigned OpNo = NumOperands;
3274   if (OpNo+1 > ReservedSpace)
3275     growOperands();  // Get more space!
3276   // Initialize some new operands.
3277   assert(OpNo < ReservedSpace && "Growing didn't work!");
3278   NumOperands = OpNo+1;
3279   OperandList[OpNo] = DestBB;
3280 }
3281
3282 /// removeDestination - This method removes the specified successor from the
3283 /// indirectbr instruction.
3284 void IndirectBrInst::removeDestination(unsigned idx) {
3285   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3286   
3287   unsigned NumOps = getNumOperands();
3288   Use *OL = OperandList;
3289
3290   // Replace this value with the last one.
3291   OL[idx+1] = OL[NumOps-1];
3292   
3293   // Nuke the last value.
3294   OL[NumOps-1].set(0);
3295   NumOperands = NumOps-1;
3296 }
3297
3298 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3299   return getSuccessor(idx);
3300 }
3301 unsigned IndirectBrInst::getNumSuccessorsV() const {
3302   return getNumSuccessors();
3303 }
3304 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3305   setSuccessor(idx, B);
3306 }
3307
3308 //===----------------------------------------------------------------------===//
3309 //                           clone_impl() implementations
3310 //===----------------------------------------------------------------------===//
3311
3312 // Define these methods here so vtables don't get emitted into every translation
3313 // unit that uses these classes.
3314
3315 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3316   return new (getNumOperands()) GetElementPtrInst(*this);
3317 }
3318
3319 BinaryOperator *BinaryOperator::clone_impl() const {
3320   return Create(getOpcode(), Op<0>(), Op<1>());
3321 }
3322
3323 FCmpInst* FCmpInst::clone_impl() const {
3324   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3325 }
3326
3327 ICmpInst* ICmpInst::clone_impl() const {
3328   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3329 }
3330
3331 ExtractValueInst *ExtractValueInst::clone_impl() const {
3332   return new ExtractValueInst(*this);
3333 }
3334
3335 InsertValueInst *InsertValueInst::clone_impl() const {
3336   return new InsertValueInst(*this);
3337 }
3338
3339 AllocaInst *AllocaInst::clone_impl() const {
3340   return new AllocaInst(getAllocatedType(),
3341                         (Value*)getOperand(0),
3342                         getAlignment());
3343 }
3344
3345 LoadInst *LoadInst::clone_impl() const {
3346   return new LoadInst(getOperand(0), Twine(), isVolatile(),
3347                       getAlignment(), getOrdering(), getSynchScope());
3348 }
3349
3350 StoreInst *StoreInst::clone_impl() const {
3351   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3352                        getAlignment(), getOrdering(), getSynchScope());
3353   
3354 }
3355
3356 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3357   AtomicCmpXchgInst *Result =
3358     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3359                           getOrdering(), getSynchScope());
3360   Result->setVolatile(isVolatile());
3361   return Result;
3362 }
3363
3364 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3365   AtomicRMWInst *Result =
3366     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3367                       getOrdering(), getSynchScope());
3368   Result->setVolatile(isVolatile());
3369   return Result;
3370 }
3371
3372 FenceInst *FenceInst::clone_impl() const {
3373   return new FenceInst(getContext(), getOrdering(), getSynchScope());
3374 }
3375
3376 TruncInst *TruncInst::clone_impl() const {
3377   return new TruncInst(getOperand(0), getType());
3378 }
3379
3380 ZExtInst *ZExtInst::clone_impl() const {
3381   return new ZExtInst(getOperand(0), getType());
3382 }
3383
3384 SExtInst *SExtInst::clone_impl() const {
3385   return new SExtInst(getOperand(0), getType());
3386 }
3387
3388 FPTruncInst *FPTruncInst::clone_impl() const {
3389   return new FPTruncInst(getOperand(0), getType());
3390 }
3391
3392 FPExtInst *FPExtInst::clone_impl() const {
3393   return new FPExtInst(getOperand(0), getType());
3394 }
3395
3396 UIToFPInst *UIToFPInst::clone_impl() const {
3397   return new UIToFPInst(getOperand(0), getType());
3398 }
3399
3400 SIToFPInst *SIToFPInst::clone_impl() const {
3401   return new SIToFPInst(getOperand(0), getType());
3402 }
3403
3404 FPToUIInst *FPToUIInst::clone_impl() const {
3405   return new FPToUIInst(getOperand(0), getType());
3406 }
3407
3408 FPToSIInst *FPToSIInst::clone_impl() const {
3409   return new FPToSIInst(getOperand(0), getType());
3410 }
3411
3412 PtrToIntInst *PtrToIntInst::clone_impl() const {
3413   return new PtrToIntInst(getOperand(0), getType());
3414 }
3415
3416 IntToPtrInst *IntToPtrInst::clone_impl() const {
3417   return new IntToPtrInst(getOperand(0), getType());
3418 }
3419
3420 BitCastInst *BitCastInst::clone_impl() const {
3421   return new BitCastInst(getOperand(0), getType());
3422 }
3423
3424 CallInst *CallInst::clone_impl() const {
3425   return  new(getNumOperands()) CallInst(*this);
3426 }
3427
3428 SelectInst *SelectInst::clone_impl() const {
3429   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3430 }
3431
3432 VAArgInst *VAArgInst::clone_impl() const {
3433   return new VAArgInst(getOperand(0), getType());
3434 }
3435
3436 ExtractElementInst *ExtractElementInst::clone_impl() const {
3437   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3438 }
3439
3440 InsertElementInst *InsertElementInst::clone_impl() const {
3441   return InsertElementInst::Create(getOperand(0),
3442                                    getOperand(1),
3443                                    getOperand(2));
3444 }
3445
3446 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3447   return new ShuffleVectorInst(getOperand(0),
3448                            getOperand(1),
3449                            getOperand(2));
3450 }
3451
3452 PHINode *PHINode::clone_impl() const {
3453   return new PHINode(*this);
3454 }
3455
3456 LandingPadInst *LandingPadInst::clone_impl() const {
3457   return new LandingPadInst(*this);
3458 }
3459
3460 ReturnInst *ReturnInst::clone_impl() const {
3461   return new(getNumOperands()) ReturnInst(*this);
3462 }
3463
3464 BranchInst *BranchInst::clone_impl() const {
3465   return new(getNumOperands()) BranchInst(*this);
3466 }
3467
3468 SwitchInst *SwitchInst::clone_impl() const {
3469   return new SwitchInst(*this);
3470 }
3471
3472 IndirectBrInst *IndirectBrInst::clone_impl() const {
3473   return new IndirectBrInst(*this);
3474 }
3475
3476
3477 InvokeInst *InvokeInst::clone_impl() const {
3478   return new(getNumOperands()) InvokeInst(*this);
3479 }
3480
3481 ResumeInst *ResumeInst::clone_impl() const {
3482   return new(1) ResumeInst(*this);
3483 }
3484
3485 UnwindInst *UnwindInst::clone_impl() const {
3486   LLVMContext &Context = getContext();
3487   return new UnwindInst(Context);
3488 }
3489
3490 UnreachableInst *UnreachableInst::clone_impl() const {
3491   LLVMContext &Context = getContext();
3492   return new UnreachableInst(Context);
3493 }