]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / tools / clang / lib / Sema / JumpDiagnostics.cpp
1 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the JumpScopeChecker class, which is used to diagnose
11 // jumps that enter a protected scope in an invalid way.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtObjC.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "llvm/ADT/BitVector.h"
22 using namespace clang;
23
24 namespace {
25
26 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
27 /// into VLA and other protected scopes.  For example, this rejects:
28 ///    goto L;
29 ///    int a[n];
30 ///  L:
31 ///
32 class JumpScopeChecker {
33   Sema &S;
34
35   /// GotoScope - This is a record that we use to keep track of all of the
36   /// scopes that are introduced by VLAs and other things that scope jumps like
37   /// gotos.  This scope tree has nothing to do with the source scope tree,
38   /// because you can have multiple VLA scopes per compound statement, and most
39   /// compound statements don't introduce any scopes.
40   struct GotoScope {
41     /// ParentScope - The index in ScopeMap of the parent scope.  This is 0 for
42     /// the parent scope is the function body.
43     unsigned ParentScope;
44
45     /// InDiag - The diagnostic to emit if there is a jump into this scope.
46     unsigned InDiag;
47
48     /// OutDiag - The diagnostic to emit if there is an indirect jump out
49     /// of this scope.  Direct jumps always clean up their current scope
50     /// in an orderly way.
51     unsigned OutDiag;
52
53     /// Loc - Location to emit the diagnostic.
54     SourceLocation Loc;
55
56     GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
57               SourceLocation L)
58       : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
59   };
60
61   SmallVector<GotoScope, 48> Scopes;
62   llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
63   SmallVector<Stmt*, 16> Jumps;
64
65   SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
66   SmallVector<LabelDecl*, 4> IndirectJumpTargets;
67 public:
68   JumpScopeChecker(Stmt *Body, Sema &S);
69 private:
70   void BuildScopeInformation(Decl *D, unsigned &ParentScope);
71   void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl, 
72                              unsigned &ParentScope);
73   void BuildScopeInformation(Stmt *S, unsigned &origParentScope);
74   
75   void VerifyJumps();
76   void VerifyIndirectJumps();
77   void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
78                             LabelDecl *Target, unsigned TargetScope);
79   void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
80                  unsigned JumpDiag, unsigned JumpDiagWarning);
81
82   unsigned GetDeepestCommonScope(unsigned A, unsigned B);
83 };
84 } // end anonymous namespace
85
86
87 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) {
88   // Add a scope entry for function scope.
89   Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
90
91   // Build information for the top level compound statement, so that we have a
92   // defined scope record for every "goto" and label.
93   unsigned BodyParentScope = 0;
94   BuildScopeInformation(Body, BodyParentScope);
95
96   // Check that all jumps we saw are kosher.
97   VerifyJumps();
98   VerifyIndirectJumps();
99 }
100
101 /// GetDeepestCommonScope - Finds the innermost scope enclosing the
102 /// two scopes.
103 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
104   while (A != B) {
105     // Inner scopes are created after outer scopes and therefore have
106     // higher indices.
107     if (A < B) {
108       assert(Scopes[B].ParentScope < B);
109       B = Scopes[B].ParentScope;
110     } else {
111       assert(Scopes[A].ParentScope < A);
112       A = Scopes[A].ParentScope;
113     }
114   }
115   return A;
116 }
117
118 typedef std::pair<unsigned,unsigned> ScopePair;
119
120 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
121 /// diagnostic that should be emitted if control goes over it. If not, return 0.
122 static ScopePair GetDiagForGotoScopeDecl(ASTContext &Context, const Decl *D) {
123   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
124     unsigned InDiag = 0, OutDiag = 0;
125     if (VD->getType()->isVariablyModifiedType())
126       InDiag = diag::note_protected_by_vla;
127
128     if (VD->hasAttr<BlocksAttr>())
129       return ScopePair(diag::note_protected_by___block,
130                        diag::note_exits___block);
131
132     if (VD->hasAttr<CleanupAttr>())
133       return ScopePair(diag::note_protected_by_cleanup,
134                        diag::note_exits_cleanup);
135
136     if (Context.getLangOptions().ObjCAutoRefCount && VD->hasLocalStorage()) {
137       switch (VD->getType().getObjCLifetime()) {
138       case Qualifiers::OCL_None:
139       case Qualifiers::OCL_ExplicitNone:
140       case Qualifiers::OCL_Autoreleasing:
141         break;
142
143       case Qualifiers::OCL_Strong:
144       case Qualifiers::OCL_Weak:
145         return ScopePair(diag::note_protected_by_objc_ownership,
146                          diag::note_exits_objc_ownership);
147       }
148     }
149
150     if (Context.getLangOptions().CPlusPlus && VD->hasLocalStorage()) {
151       // C++0x [stmt.dcl]p3:
152       //   A program that jumps from a point where a variable with automatic
153       //   storage duration is not in scope to a point where it is in scope
154       //   is ill-formed unless the variable has scalar type, class type with
155       //   a trivial default constructor and a trivial destructor, a 
156       //   cv-qualified version of one of these types, or an array of one of
157       //   the preceding types and is declared without an initializer.
158
159       // C++03 [stmt.dcl.p3:
160       //   A program that jumps from a point where a local variable
161       //   with automatic storage duration is not in scope to a point
162       //   where it is in scope is ill-formed unless the variable has
163       //   POD type and is declared without an initializer.
164
165       if (const Expr *init = VD->getInit()) {
166         // We actually give variables of record type (or array thereof)
167         // an initializer even if that initializer only calls a trivial
168         // ctor.  Detect that case.
169         // FIXME: With generalized initializer lists, this may
170         // classify "X x{};" as having no initializer.
171         unsigned inDiagToUse = diag::note_protected_by_variable_init;
172
173         const CXXRecordDecl *record = 0;
174
175         if (const CXXConstructExpr *cce = dyn_cast<CXXConstructExpr>(init)) {
176           const CXXConstructorDecl *ctor = cce->getConstructor();
177           record = ctor->getParent();
178
179           if (ctor->isTrivial() && ctor->isDefaultConstructor()) {
180             if (Context.getLangOptions().CPlusPlus0x) {
181               inDiagToUse = (record->hasTrivialDestructor() ? 0 :
182                         diag::note_protected_by_variable_nontriv_destructor);
183             } else {
184               if (record->isPOD())
185                 inDiagToUse = 0;
186             }
187           }
188         } else if (VD->getType()->isArrayType()) {
189           record = VD->getType()->getBaseElementTypeUnsafe()
190                                 ->getAsCXXRecordDecl();
191         }
192
193         if (inDiagToUse)
194           InDiag = inDiagToUse;
195
196         // Also object to indirect jumps which leave scopes with dtors.
197         if (record && !record->hasTrivialDestructor())
198           OutDiag = diag::note_exits_dtor;
199       }
200     }
201     
202     return ScopePair(InDiag, OutDiag);    
203   }
204
205   if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
206     if (TD->getUnderlyingType()->isVariablyModifiedType())
207       return ScopePair(diag::note_protected_by_vla_typedef, 0);
208   }
209
210   if (const TypeAliasDecl *TD = dyn_cast<TypeAliasDecl>(D)) {
211     if (TD->getUnderlyingType()->isVariablyModifiedType())
212       return ScopePair(diag::note_protected_by_vla_type_alias, 0);
213   }
214
215   return ScopePair(0U, 0U);
216 }
217
218 /// \brief Build scope information for a declaration that is part of a DeclStmt.
219 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
220   // If this decl causes a new scope, push and switch to it.
221   std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S.Context, D);
222   if (Diags.first || Diags.second) {
223     Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
224                                D->getLocation()));
225     ParentScope = Scopes.size()-1;
226   }
227   
228   // If the decl has an initializer, walk it with the potentially new
229   // scope we just installed.
230   if (VarDecl *VD = dyn_cast<VarDecl>(D))
231     if (Expr *Init = VD->getInit())
232       BuildScopeInformation(Init, ParentScope);
233 }
234
235 /// \brief Build scope information for a captured block literal variables.
236 void JumpScopeChecker::BuildScopeInformation(VarDecl *D, 
237                                              const BlockDecl *BDecl, 
238                                              unsigned &ParentScope) {
239   // exclude captured __block variables; there's no destructor
240   // associated with the block literal for them.
241   if (D->hasAttr<BlocksAttr>())
242     return;
243   QualType T = D->getType();
244   QualType::DestructionKind destructKind = T.isDestructedType();
245   if (destructKind != QualType::DK_none) {
246     std::pair<unsigned,unsigned> Diags;
247     switch (destructKind) {
248       case QualType::DK_cxx_destructor:
249         Diags = ScopePair(diag::note_enters_block_captures_cxx_obj,
250                           diag::note_exits_block_captures_cxx_obj);
251         break;
252       case QualType::DK_objc_strong_lifetime:
253         Diags = ScopePair(diag::note_enters_block_captures_strong,
254                           diag::note_exits_block_captures_strong);
255         break;
256       case QualType::DK_objc_weak_lifetime:
257         Diags = ScopePair(diag::note_enters_block_captures_weak,
258                           diag::note_exits_block_captures_weak);
259         break;
260       case QualType::DK_none:
261         llvm_unreachable("no-liftime captured variable");
262     }
263     SourceLocation Loc = D->getLocation();
264     if (Loc.isInvalid())
265       Loc = BDecl->getLocation();
266     Scopes.push_back(GotoScope(ParentScope, 
267                                Diags.first, Diags.second, Loc));
268     ParentScope = Scopes.size()-1;
269   }
270 }
271
272 /// BuildScopeInformation - The statements from CI to CE are known to form a
273 /// coherent VLA scope with a specified parent node.  Walk through the
274 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
275 /// walking the AST as needed.
276 void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) {
277   // If this is a statement, rather than an expression, scopes within it don't
278   // propagate out into the enclosing scope.  Otherwise we have to worry
279   // about block literals, which have the lifetime of their enclosing statement.
280   unsigned independentParentScope = origParentScope;
281   unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S)) 
282                             ? origParentScope : independentParentScope);
283
284   bool SkipFirstSubStmt = false;
285   
286   // If we found a label, remember that it is in ParentScope scope.
287   switch (S->getStmtClass()) {
288   case Stmt::AddrLabelExprClass:
289     IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
290     break;
291
292   case Stmt::IndirectGotoStmtClass:
293     // "goto *&&lbl;" is a special case which we treat as equivalent
294     // to a normal goto.  In addition, we don't calculate scope in the
295     // operand (to avoid recording the address-of-label use), which
296     // works only because of the restricted set of expressions which
297     // we detect as constant targets.
298     if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
299       LabelAndGotoScopes[S] = ParentScope;
300       Jumps.push_back(S);
301       return;
302     }
303
304     LabelAndGotoScopes[S] = ParentScope;
305     IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
306     break;
307
308   case Stmt::SwitchStmtClass:
309     // Evaluate the condition variable before entering the scope of the switch
310     // statement.
311     if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
312       BuildScopeInformation(Var, ParentScope);
313       SkipFirstSubStmt = true;
314     }
315     // Fall through
316       
317   case Stmt::GotoStmtClass:
318     // Remember both what scope a goto is in as well as the fact that we have
319     // it.  This makes the second scan not have to walk the AST again.
320     LabelAndGotoScopes[S] = ParentScope;
321     Jumps.push_back(S);
322     break;
323
324   default:
325     break;
326   }
327
328   for (Stmt::child_range CI = S->children(); CI; ++CI) {
329     if (SkipFirstSubStmt) {
330       SkipFirstSubStmt = false;
331       continue;
332     }
333     
334     Stmt *SubStmt = *CI;
335     if (SubStmt == 0) continue;
336
337     // Cases, labels, and defaults aren't "scope parents".  It's also
338     // important to handle these iteratively instead of recursively in
339     // order to avoid blowing out the stack.
340     while (true) {
341       Stmt *Next;
342       if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt))
343         Next = CS->getSubStmt();
344       else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt))
345         Next = DS->getSubStmt();
346       else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
347         Next = LS->getSubStmt();
348       else
349         break;
350
351       LabelAndGotoScopes[SubStmt] = ParentScope;
352       SubStmt = Next;
353     }
354
355     // If this is a declstmt with a VLA definition, it defines a scope from here
356     // to the end of the containing context.
357     if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
358       // The decl statement creates a scope if any of the decls in it are VLAs
359       // or have the cleanup attribute.
360       for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
361            I != E; ++I)
362         BuildScopeInformation(*I, ParentScope);
363       continue;
364     }
365     // Disallow jumps into any part of an @try statement by pushing a scope and
366     // walking all sub-stmts in that scope.
367     if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
368       unsigned newParentScope;
369       // Recursively walk the AST for the @try part.
370       Scopes.push_back(GotoScope(ParentScope,
371                                  diag::note_protected_by_objc_try,
372                                  diag::note_exits_objc_try,
373                                  AT->getAtTryLoc()));
374       if (Stmt *TryPart = AT->getTryBody())
375         BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1));
376
377       // Jump from the catch to the finally or try is not valid.
378       for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
379         ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
380         Scopes.push_back(GotoScope(ParentScope,
381                                    diag::note_protected_by_objc_catch,
382                                    diag::note_exits_objc_catch,
383                                    AC->getAtCatchLoc()));
384         // @catches are nested and it isn't
385         BuildScopeInformation(AC->getCatchBody(), 
386                               (newParentScope = Scopes.size()-1));
387       }
388
389       // Jump from the finally to the try or catch is not valid.
390       if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
391         Scopes.push_back(GotoScope(ParentScope,
392                                    diag::note_protected_by_objc_finally,
393                                    diag::note_exits_objc_finally,
394                                    AF->getAtFinallyLoc()));
395         BuildScopeInformation(AF, (newParentScope = Scopes.size()-1));
396       }
397
398       continue;
399     }
400     
401     unsigned newParentScope;
402     // Disallow jumps into the protected statement of an @synchronized, but
403     // allow jumps into the object expression it protects.
404     if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){
405       // Recursively walk the AST for the @synchronized object expr, it is
406       // evaluated in the normal scope.
407       BuildScopeInformation(AS->getSynchExpr(), ParentScope);
408
409       // Recursively walk the AST for the @synchronized part, protected by a new
410       // scope.
411       Scopes.push_back(GotoScope(ParentScope,
412                                  diag::note_protected_by_objc_synchronized,
413                                  diag::note_exits_objc_synchronized,
414                                  AS->getAtSynchronizedLoc()));
415       BuildScopeInformation(AS->getSynchBody(), 
416                             (newParentScope = Scopes.size()-1));
417       continue;
418     }
419
420     // Disallow jumps into any part of a C++ try statement. This is pretty
421     // much the same as for Obj-C.
422     if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) {
423       Scopes.push_back(GotoScope(ParentScope,
424                                  diag::note_protected_by_cxx_try,
425                                  diag::note_exits_cxx_try,
426                                  TS->getSourceRange().getBegin()));
427       if (Stmt *TryBlock = TS->getTryBlock())
428         BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1));
429
430       // Jump from the catch into the try is not allowed either.
431       for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
432         CXXCatchStmt *CS = TS->getHandler(I);
433         Scopes.push_back(GotoScope(ParentScope,
434                                    diag::note_protected_by_cxx_catch,
435                                    diag::note_exits_cxx_catch,
436                                    CS->getSourceRange().getBegin()));
437         BuildScopeInformation(CS->getHandlerBlock(), 
438                               (newParentScope = Scopes.size()-1));
439       }
440
441       continue;
442     }
443
444     // Disallow jumps into the protected statement of an @autoreleasepool.
445     if (ObjCAutoreleasePoolStmt *AS = dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)){
446       // Recursively walk the AST for the @autoreleasepool part, protected by a new
447       // scope.
448       Scopes.push_back(GotoScope(ParentScope,
449                                  diag::note_protected_by_objc_autoreleasepool,
450                                  diag::note_exits_objc_autoreleasepool,
451                                  AS->getAtLoc()));
452       BuildScopeInformation(AS->getSubStmt(), (newParentScope = Scopes.size()-1));
453       continue;
454     }
455     
456     if (const BlockExpr *BE = dyn_cast<BlockExpr>(SubStmt)) {
457         const BlockDecl *BDecl = BE->getBlockDecl();
458         for (BlockDecl::capture_const_iterator ci = BDecl->capture_begin(),
459              ce = BDecl->capture_end(); ci != ce; ++ci) {
460           VarDecl *variable = ci->getVariable();
461           BuildScopeInformation(variable, BDecl, ParentScope);
462         }
463     }
464     
465     // Recursively walk the AST.
466     BuildScopeInformation(SubStmt, ParentScope);
467   }
468 }
469
470 /// VerifyJumps - Verify each element of the Jumps array to see if they are
471 /// valid, emitting diagnostics if not.
472 void JumpScopeChecker::VerifyJumps() {
473   while (!Jumps.empty()) {
474     Stmt *Jump = Jumps.pop_back_val();
475
476     // With a goto,
477     if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
478       CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
479                 diag::err_goto_into_protected_scope,
480                 diag::warn_goto_into_protected_scope);
481       continue;
482     }
483
484     // We only get indirect gotos here when they have a constant target.
485     if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
486       LabelDecl *Target = IGS->getConstantTarget();
487       CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
488                 diag::err_goto_into_protected_scope,
489                 diag::warn_goto_into_protected_scope);
490       continue;
491     }
492
493     SwitchStmt *SS = cast<SwitchStmt>(Jump);
494     for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
495          SC = SC->getNextSwitchCase()) {
496       assert(LabelAndGotoScopes.count(SC) && "Case not visited?");
497       CheckJump(SS, SC, SC->getLocStart(),
498                 diag::err_switch_into_protected_scope, 0);
499     }
500   }
501 }
502
503 /// VerifyIndirectJumps - Verify whether any possible indirect jump
504 /// might cross a protection boundary.  Unlike direct jumps, indirect
505 /// jumps count cleanups as protection boundaries:  since there's no
506 /// way to know where the jump is going, we can't implicitly run the
507 /// right cleanups the way we can with direct jumps.
508 ///
509 /// Thus, an indirect jump is "trivial" if it bypasses no
510 /// initializations and no teardowns.  More formally, an indirect jump
511 /// from A to B is trivial if the path out from A to DCA(A,B) is
512 /// trivial and the path in from DCA(A,B) to B is trivial, where
513 /// DCA(A,B) is the deepest common ancestor of A and B.
514 /// Jump-triviality is transitive but asymmetric.
515 ///
516 /// A path in is trivial if none of the entered scopes have an InDiag.
517 /// A path out is trivial is none of the exited scopes have an OutDiag.
518 ///
519 /// Under these definitions, this function checks that the indirect
520 /// jump between A and B is trivial for every indirect goto statement A
521 /// and every label B whose address was taken in the function.
522 void JumpScopeChecker::VerifyIndirectJumps() {
523   if (IndirectJumps.empty()) return;
524
525   // If there aren't any address-of-label expressions in this function,
526   // complain about the first indirect goto.
527   if (IndirectJumpTargets.empty()) {
528     S.Diag(IndirectJumps[0]->getGotoLoc(),
529            diag::err_indirect_goto_without_addrlabel);
530     return;
531   }
532
533   // Collect a single representative of every scope containing an
534   // indirect goto.  For most code bases, this substantially cuts
535   // down on the number of jump sites we'll have to consider later.
536   typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
537   SmallVector<JumpScope, 32> JumpScopes;
538   {
539     llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
540     for (SmallVectorImpl<IndirectGotoStmt*>::iterator
541            I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
542       IndirectGotoStmt *IG = *I;
543       assert(LabelAndGotoScopes.count(IG) &&
544              "indirect jump didn't get added to scopes?");
545       unsigned IGScope = LabelAndGotoScopes[IG];
546       IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
547       if (!Entry) Entry = IG;
548     }
549     JumpScopes.reserve(JumpScopesMap.size());
550     for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
551            I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
552       JumpScopes.push_back(*I);
553   }
554
555   // Collect a single representative of every scope containing a
556   // label whose address was taken somewhere in the function.
557   // For most code bases, there will be only one such scope.
558   llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
559   for (SmallVectorImpl<LabelDecl*>::iterator
560          I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
561        I != E; ++I) {
562     LabelDecl *TheLabel = *I;
563     assert(LabelAndGotoScopes.count(TheLabel->getStmt()) &&
564            "Referenced label didn't get added to scopes?");
565     unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
566     LabelDecl *&Target = TargetScopes[LabelScope];
567     if (!Target) Target = TheLabel;
568   }
569
570   // For each target scope, make sure it's trivially reachable from
571   // every scope containing a jump site.
572   //
573   // A path between scopes always consists of exitting zero or more
574   // scopes, then entering zero or more scopes.  We build a set of
575   // of scopes S from which the target scope can be trivially
576   // entered, then verify that every jump scope can be trivially
577   // exitted to reach a scope in S.
578   llvm::BitVector Reachable(Scopes.size(), false);
579   for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
580          TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
581     unsigned TargetScope = TI->first;
582     LabelDecl *TargetLabel = TI->second;
583
584     Reachable.reset();
585
586     // Mark all the enclosing scopes from which you can safely jump
587     // into the target scope.  'Min' will end up being the index of
588     // the shallowest such scope.
589     unsigned Min = TargetScope;
590     while (true) {
591       Reachable.set(Min);
592
593       // Don't go beyond the outermost scope.
594       if (Min == 0) break;
595
596       // Stop if we can't trivially enter the current scope.
597       if (Scopes[Min].InDiag) break;
598
599       Min = Scopes[Min].ParentScope;
600     }
601
602     // Walk through all the jump sites, checking that they can trivially
603     // reach this label scope.
604     for (SmallVectorImpl<JumpScope>::iterator
605            I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
606       unsigned Scope = I->first;
607
608       // Walk out the "scope chain" for this scope, looking for a scope
609       // we've marked reachable.  For well-formed code this amortizes
610       // to O(JumpScopes.size() / Scopes.size()):  we only iterate
611       // when we see something unmarked, and in well-formed code we
612       // mark everything we iterate past.
613       bool IsReachable = false;
614       while (true) {
615         if (Reachable.test(Scope)) {
616           // If we find something reachable, mark all the scopes we just
617           // walked through as reachable.
618           for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
619             Reachable.set(S);
620           IsReachable = true;
621           break;
622         }
623
624         // Don't walk out if we've reached the top-level scope or we've
625         // gotten shallower than the shallowest reachable scope.
626         if (Scope == 0 || Scope < Min) break;
627
628         // Don't walk out through an out-diagnostic.
629         if (Scopes[Scope].OutDiag) break;
630
631         Scope = Scopes[Scope].ParentScope;
632       }
633
634       // Only diagnose if we didn't find something.
635       if (IsReachable) continue;
636
637       DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
638     }
639   }
640 }
641
642 /// Diagnose an indirect jump which is known to cross scopes.
643 void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
644                                             unsigned JumpScope,
645                                             LabelDecl *Target,
646                                             unsigned TargetScope) {
647   assert(JumpScope != TargetScope);
648
649   S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
650   S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
651
652   unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
653
654   // Walk out the scope chain until we reach the common ancestor.
655   for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
656     if (Scopes[I].OutDiag)
657       S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
658
659   // Now walk into the scopes containing the label whose address was taken.
660   for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
661     if (Scopes[I].InDiag)
662       S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
663 }
664
665 /// Return true if a particular error+note combination must be downgraded
666 /// to a warning in Microsoft mode.
667 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote)
668 {
669     return (JumpDiag == diag::err_goto_into_protected_scope && 
670            (InDiagNote == diag::note_protected_by_variable_init || 
671             InDiagNote == diag::note_protected_by_variable_nontriv_destructor));
672 }
673
674
675 /// CheckJump - Validate that the specified jump statement is valid: that it is
676 /// jumping within or out of its current scope, not into a deeper one.
677 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
678                              unsigned JumpDiagError, unsigned JumpDiagWarning) {
679   assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?");
680   unsigned FromScope = LabelAndGotoScopes[From];
681
682   assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?");
683   unsigned ToScope = LabelAndGotoScopes[To];
684
685   // Common case: exactly the same scope, which is fine.
686   if (FromScope == ToScope) return;
687
688   unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
689
690   // It's okay to jump out from a nested scope.
691   if (CommonScope == ToScope) return;
692
693   // Pull out (and reverse) any scopes we might need to diagnose skipping.
694   SmallVector<unsigned, 10> ToScopesError;
695   SmallVector<unsigned, 10> ToScopesWarning;
696   for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) {
697     if (S.getLangOptions().MicrosoftMode && JumpDiagWarning != 0 &&
698         IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag))
699       ToScopesWarning.push_back(I);
700     else if (Scopes[I].InDiag)
701       ToScopesError.push_back(I);
702   }
703
704   // Handle warnings.
705   if (!ToScopesWarning.empty()) {
706     S.Diag(DiagLoc, JumpDiagWarning);
707     for (unsigned i = 0, e = ToScopesWarning.size(); i != e; ++i)
708       S.Diag(Scopes[ToScopesWarning[i]].Loc, Scopes[ToScopesWarning[i]].InDiag);
709   }
710
711   // Handle errors.
712   if (!ToScopesError.empty()) {
713     S.Diag(DiagLoc, JumpDiagError);
714     // Emit diagnostics note for whatever is left in ToScopesError.
715     for (unsigned i = 0, e = ToScopesError.size(); i != e; ++i)
716       S.Diag(Scopes[ToScopesError[i]].Loc, Scopes[ToScopesError[i]].InDiag);
717   }
718 }
719
720 void Sema::DiagnoseInvalidJumps(Stmt *Body) {
721   (void)JumpScopeChecker(Body, *this);
722 }