]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - contrib/llvm/utils/TableGen/X86RecognizableInstr.cpp
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / contrib / llvm / utils / TableGen / X86RecognizableInstr.cpp
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86DisassemblerShared.h"
18 #include "X86RecognizableInstr.h"
19 #include "X86ModRMFilters.h"
20
21 #include "llvm/Support/ErrorHandling.h"
22
23 #include <string>
24
25 using namespace llvm;
26
27 #define MRM_MAPPING     \
28   MAP(C1, 33)           \
29   MAP(C2, 34)           \
30   MAP(C3, 35)           \
31   MAP(C4, 36)           \
32   MAP(C8, 37)           \
33   MAP(C9, 38)           \
34   MAP(E8, 39)           \
35   MAP(F0, 40)           \
36   MAP(F8, 41)           \
37   MAP(F9, 42)           \
38   MAP(D0, 45)           \
39   MAP(D1, 46)
40
41 // A clone of X86 since we can't depend on something that is generated.
42 namespace X86Local {
43   enum {
44     Pseudo      = 0,
45     RawFrm      = 1,
46     AddRegFrm   = 2,
47     MRMDestReg  = 3,
48     MRMDestMem  = 4,
49     MRMSrcReg   = 5,
50     MRMSrcMem   = 6,
51     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 
52     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
53     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
54     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
55     MRMInitReg  = 32,
56 #define MAP(from, to) MRM_##from = to,
57     MRM_MAPPING
58 #undef MAP
59     RawFrmImm8  = 43,
60     RawFrmImm16 = 44,
61     lastMRM
62   };
63   
64   enum {
65     TB  = 1,
66     REP = 2,
67     D8 = 3, D9 = 4, DA = 5, DB = 6,
68     DC = 7, DD = 8, DE = 9, DF = 10,
69     XD = 11,  XS = 12,
70     T8 = 13,  P_TA = 14,
71     A6 = 15,  A7 = 16, TF = 17
72   };
73 }
74
75 // If rows are added to the opcode extension tables, then corresponding entries
76 // must be added here.  
77 //
78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
79 // that byte to ONE_BYTE_EXTENSION_TABLES.
80 //
81 // If the row corresponds to two bytes where the first is 0f, add an entry for 
82 // the second byte to TWO_BYTE_EXTENSION_TABLES.
83 //
84 // If the row corresponds to some other set of bytes, you will need to modify
85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
86 // to the X86 TD files, except in two cases: if the first two bytes of such a 
87 // new combination are 0f 38 or 0f 3a, you just have to add maps called
88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
90 // in RecognizableInstr::emitDecodePath().
91
92 #define ONE_BYTE_EXTENSION_TABLES \
93   EXTENSION_TABLE(80)             \
94   EXTENSION_TABLE(81)             \
95   EXTENSION_TABLE(82)             \
96   EXTENSION_TABLE(83)             \
97   EXTENSION_TABLE(8f)             \
98   EXTENSION_TABLE(c0)             \
99   EXTENSION_TABLE(c1)             \
100   EXTENSION_TABLE(c6)             \
101   EXTENSION_TABLE(c7)             \
102   EXTENSION_TABLE(d0)             \
103   EXTENSION_TABLE(d1)             \
104   EXTENSION_TABLE(d2)             \
105   EXTENSION_TABLE(d3)             \
106   EXTENSION_TABLE(f6)             \
107   EXTENSION_TABLE(f7)             \
108   EXTENSION_TABLE(fe)             \
109   EXTENSION_TABLE(ff)
110   
111 #define TWO_BYTE_EXTENSION_TABLES \
112   EXTENSION_TABLE(00)             \
113   EXTENSION_TABLE(01)             \
114   EXTENSION_TABLE(18)             \
115   EXTENSION_TABLE(71)             \
116   EXTENSION_TABLE(72)             \
117   EXTENSION_TABLE(73)             \
118   EXTENSION_TABLE(ae)             \
119   EXTENSION_TABLE(ba)             \
120   EXTENSION_TABLE(c7)
121
122 using namespace X86Disassembler;
123
124 /// needsModRMForDecode - Indicates whether a particular instruction requires a
125 ///   ModR/M byte for the instruction to be properly decoded.  For example, a 
126 ///   MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
127 ///   0b11.
128 ///
129 /// @param form - The form of the instruction.
130 /// @return     - true if the form implies that a ModR/M byte is required, false
131 ///               otherwise.
132 static bool needsModRMForDecode(uint8_t form) {
133   if (form == X86Local::MRMDestReg    ||
134      form == X86Local::MRMDestMem    ||
135      form == X86Local::MRMSrcReg     ||
136      form == X86Local::MRMSrcMem     ||
137      (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
138      (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
139     return true;
140   else
141     return false;
142 }
143
144 /// isRegFormat - Indicates whether a particular form requires the Mod field of
145 ///   the ModR/M byte to be 0b11.
146 ///
147 /// @param form - The form of the instruction.
148 /// @return     - true if the form implies that Mod must be 0b11, false
149 ///               otherwise.
150 static bool isRegFormat(uint8_t form) {
151   if (form == X86Local::MRMDestReg ||
152      form == X86Local::MRMSrcReg  ||
153      (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
154     return true;
155   else
156     return false;
157 }
158
159 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
160 ///   Useful for switch statements and the like.
161 ///
162 /// @param init - A reference to the BitsInit to be decoded.
163 /// @return     - The field, with the first bit in the BitsInit as the lowest
164 ///               order bit.
165 static uint8_t byteFromBitsInit(BitsInit &init) {
166   int width = init.getNumBits();
167
168   assert(width <= 8 && "Field is too large for uint8_t!");
169
170   int     index;
171   uint8_t mask = 0x01;
172
173   uint8_t ret = 0;
174
175   for (index = 0; index < width; index++) {
176     if (static_cast<BitInit*>(init.getBit(index))->getValue())
177       ret |= mask;
178
179     mask <<= 1;
180   }
181
182   return ret;
183 }
184
185 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
186 ///   name of the field.
187 ///
188 /// @param rec  - The record from which to extract the value.
189 /// @param name - The name of the field in the record.
190 /// @return     - The field, as translated by byteFromBitsInit().
191 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
192   BitsInit* bits = rec->getValueAsBitsInit(name);
193   return byteFromBitsInit(*bits);
194 }
195
196 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
197                                      const CodeGenInstruction &insn,
198                                      InstrUID uid) {
199   UID = uid;
200
201   Rec = insn.TheDef;
202   Name = Rec->getName();
203   Spec = &tables.specForUID(UID);
204   
205   if (!Rec->isSubClassOf("X86Inst")) {
206     ShouldBeEmitted = false;
207     return;
208   }
209   
210   Prefix   = byteFromRec(Rec, "Prefix");
211   Opcode   = byteFromRec(Rec, "Opcode");
212   Form     = byteFromRec(Rec, "FormBits");
213   SegOvr   = byteFromRec(Rec, "SegOvrBits");
214   
215   HasOpSizePrefix  = Rec->getValueAsBit("hasOpSizePrefix");
216   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
217   HasVEXPrefix     = Rec->getValueAsBit("hasVEXPrefix");
218   HasVEX_4VPrefix  = Rec->getValueAsBit("hasVEX_4VPrefix");
219   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
220   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
221   HasLockPrefix    = Rec->getValueAsBit("hasLockPrefix");
222   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
223   
224   Name      = Rec->getName();
225   AsmString = Rec->getValueAsString("AsmString");
226   
227   Operands = &insn.Operands.OperandList;
228   
229   IsSSE            = (HasOpSizePrefix && (Name.find("16") == Name.npos)) ||
230                      (Name.find("CRC32") != Name.npos);
231   HasFROperands    = hasFROperands();
232   HasVEX_LPrefix   = has256BitOperands() || Rec->getValueAsBit("hasVEX_L");
233   
234   // Check for 64-bit inst which does not require REX
235   Is32Bit = false;
236   Is64Bit = false;
237   // FIXME: Is there some better way to check for In64BitMode?
238   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
239   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
240     if (Predicates[i]->getName().find("32Bit") != Name.npos) {
241       Is32Bit = true;
242       break;
243     }
244     if (Predicates[i]->getName().find("64Bit") != Name.npos) {
245       Is64Bit = true;
246       break;
247     }
248   }
249   // FIXME: These instructions aren't marked as 64-bit in any way
250   Is64Bit |= Rec->getName() == "JMP64pcrel32" || 
251              Rec->getName() == "MASKMOVDQU64" || 
252              Rec->getName() == "POPFS64" || 
253              Rec->getName() == "POPGS64" || 
254              Rec->getName() == "PUSHFS64" || 
255              Rec->getName() == "PUSHGS64" ||
256              Rec->getName() == "REX64_PREFIX" ||
257              Rec->getName().find("VMREAD64") != Name.npos ||
258              Rec->getName().find("VMWRITE64") != Name.npos ||
259              Rec->getName().find("INVEPT64") != Name.npos ||
260              Rec->getName().find("INVVPID64") != Name.npos ||
261              Rec->getName().find("MOV64") != Name.npos || 
262              Rec->getName().find("PUSH64") != Name.npos ||
263              Rec->getName().find("POP64") != Name.npos;
264
265   ShouldBeEmitted  = true;
266 }
267   
268 void RecognizableInstr::processInstr(DisassemblerTables &tables,
269         const CodeGenInstruction &insn,
270                                    InstrUID uid)
271 {
272   // Ignore "asm parser only" instructions.
273   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
274     return;
275   
276   RecognizableInstr recogInstr(tables, insn, uid);
277   
278   recogInstr.emitInstructionSpecifier(tables);
279   
280   if (recogInstr.shouldBeEmitted())
281     recogInstr.emitDecodePath(tables);
282 }
283
284 InstructionContext RecognizableInstr::insnContext() const {
285   InstructionContext insnContext;
286
287   if (HasVEX_4VPrefix || HasVEXPrefix) {
288     if (HasVEX_LPrefix && HasVEX_WPrefix)
289       llvm_unreachable("Don't support VEX.L and VEX.W together");
290     else if (HasOpSizePrefix && HasVEX_LPrefix)
291       insnContext = IC_VEX_L_OPSIZE;
292     else if (HasOpSizePrefix && HasVEX_WPrefix)
293       insnContext = IC_VEX_W_OPSIZE;
294     else if (HasOpSizePrefix)
295       insnContext = IC_VEX_OPSIZE;
296     else if (HasVEX_LPrefix && Prefix == X86Local::XS)
297       insnContext = IC_VEX_L_XS;
298     else if (HasVEX_LPrefix && Prefix == X86Local::XD)
299       insnContext = IC_VEX_L_XD;
300     else if (HasVEX_WPrefix && Prefix == X86Local::XS)
301       insnContext = IC_VEX_W_XS;
302     else if (HasVEX_WPrefix && Prefix == X86Local::XD)
303       insnContext = IC_VEX_W_XD;
304     else if (HasVEX_WPrefix)
305       insnContext = IC_VEX_W;
306     else if (HasVEX_LPrefix)
307       insnContext = IC_VEX_L;
308     else if (Prefix == X86Local::XD)
309       insnContext = IC_VEX_XD;
310     else if (Prefix == X86Local::XS)
311       insnContext = IC_VEX_XS;
312     else
313       insnContext = IC_VEX;
314   } else if (Is64Bit || HasREX_WPrefix) {
315     if (HasREX_WPrefix && HasOpSizePrefix)
316       insnContext = IC_64BIT_REXW_OPSIZE;
317     else if (HasOpSizePrefix &&
318              (Prefix == X86Local::XD || Prefix == X86Local::TF))
319       insnContext = IC_64BIT_XD_OPSIZE;
320     else if (HasOpSizePrefix && Prefix == X86Local::XS)
321       insnContext = IC_64BIT_XS_OPSIZE;
322     else if (HasOpSizePrefix)
323       insnContext = IC_64BIT_OPSIZE;
324     else if (HasREX_WPrefix && Prefix == X86Local::XS)
325       insnContext = IC_64BIT_REXW_XS;
326     else if (HasREX_WPrefix &&
327              (Prefix == X86Local::XD || Prefix == X86Local::TF))
328       insnContext = IC_64BIT_REXW_XD;
329     else if (Prefix == X86Local::XD || Prefix == X86Local::TF)
330       insnContext = IC_64BIT_XD;
331     else if (Prefix == X86Local::XS)
332       insnContext = IC_64BIT_XS;
333     else if (HasREX_WPrefix)
334       insnContext = IC_64BIT_REXW;
335     else
336       insnContext = IC_64BIT;
337   } else {
338     if (HasOpSizePrefix &&
339         (Prefix == X86Local::XD || Prefix == X86Local::TF))
340       insnContext = IC_XD_OPSIZE;
341     else if (HasOpSizePrefix && Prefix == X86Local::XS)
342       insnContext = IC_XS_OPSIZE;
343     else if (HasOpSizePrefix)
344       insnContext = IC_OPSIZE;
345     else if (Prefix == X86Local::XD || Prefix == X86Local::TF)
346       insnContext = IC_XD;
347     else if (Prefix == X86Local::XS || Prefix == X86Local::REP)
348       insnContext = IC_XS;
349     else
350       insnContext = IC;
351   }
352
353   return insnContext;
354 }
355   
356 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
357   ///////////////////
358   // FILTER_STRONG
359   //
360     
361   // Filter out intrinsics
362   
363   if (!Rec->isSubClassOf("X86Inst"))
364     return FILTER_STRONG;
365   
366   if (Form == X86Local::Pseudo ||
367       (IsCodeGenOnly && Name.find("_REV") == Name.npos))
368     return FILTER_STRONG;
369   
370   if (Form == X86Local::MRMInitReg)
371     return FILTER_STRONG;
372     
373     
374   // Filter out artificial instructions
375     
376   if (Name.find("TAILJMP") != Name.npos    ||
377       Name.find("_Int") != Name.npos       ||
378       Name.find("_int") != Name.npos       ||
379       Name.find("Int_") != Name.npos       ||
380       Name.find("_NOREX") != Name.npos     ||
381       Name.find("_TC") != Name.npos        ||
382       Name.find("EH_RETURN") != Name.npos  ||
383       Name.find("V_SET") != Name.npos      ||
384       Name.find("LOCK_") != Name.npos      ||
385       Name.find("WIN") != Name.npos        ||
386       Name.find("_AVX") != Name.npos       ||
387       Name.find("2SDL") != Name.npos)
388     return FILTER_STRONG;
389
390   // Filter out instructions with segment override prefixes.
391   // They're too messy to handle now and we'll special case them if needed.
392     
393   if (SegOvr)
394     return FILTER_STRONG;
395     
396   // Filter out instructions that can't be printed.
397     
398   if (AsmString.size() == 0)
399     return FILTER_STRONG;
400    
401   // Filter out instructions with subreg operands.
402    
403   if (AsmString.find("subreg") != AsmString.npos)
404     return FILTER_STRONG;
405
406   /////////////////
407   // FILTER_WEAK
408   //
409
410     
411   // Filter out instructions with a LOCK prefix;
412   //   prefer forms that do not have the prefix
413   if (HasLockPrefix)
414     return FILTER_WEAK;
415
416   // Filter out alternate forms of AVX instructions
417   if (Name.find("_alt") != Name.npos ||
418       Name.find("XrYr") != Name.npos ||
419       (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) ||
420       Name.find("_64mr") != Name.npos ||
421       Name.find("Xrr") != Name.npos ||
422       Name.find("rr64") != Name.npos)
423     return FILTER_WEAK;
424     
425   if (Name == "VMASKMOVDQU64"  ||
426       Name == "VEXTRACTPSrr64" ||
427       Name == "VMOVQd64rr"     ||
428       Name == "VMOVQs64rr")
429     return FILTER_WEAK;
430
431   // Special cases.
432
433   if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
434     return FILTER_WEAK;
435   if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
436     return FILTER_WEAK;
437
438   if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
439     return FILTER_WEAK;
440   if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
441     return FILTER_WEAK;
442   if (Name.find("Fs") != Name.npos)
443     return FILTER_WEAK;
444   if (Name == "MOVLPDrr"          ||
445       Name == "MOVLPSrr"          ||
446       Name == "PUSHFQ"            ||
447       Name == "BSF16rr"           ||
448       Name == "BSF16rm"           ||
449       Name == "BSR16rr"           ||
450       Name == "BSR16rm"           ||
451       Name == "MOVSX16rm8"        ||
452       Name == "MOVSX16rr8"        ||
453       Name == "MOVZX16rm8"        ||
454       Name == "MOVZX16rr8"        ||
455       Name == "PUSH32i16"         ||
456       Name == "PUSH64i16"         ||
457       Name == "MOVPQI2QImr"       ||
458       Name == "VMOVPQI2QImr"      ||
459       Name == "MOVSDmr"           ||
460       Name == "MOVSDrm"           ||
461       Name == "MOVSSmr"           ||
462       Name == "MOVSSrm"           ||
463       Name == "MMX_MOVD64rrv164"  ||
464       Name == "CRC32m16"          ||
465       Name == "MOV64ri64i32"      ||
466       Name == "CRC32r16")
467     return FILTER_WEAK;
468
469   if (HasFROperands && Name.find("MOV") != Name.npos &&
470      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 
471       (Name.find("to") != Name.npos)))
472     return FILTER_WEAK;
473
474   return FILTER_NORMAL;
475 }
476
477 bool RecognizableInstr::hasFROperands() const {
478   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
479   unsigned numOperands = OperandList.size();
480
481   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
482     const std::string &recName = OperandList[operandIndex].Rec->getName();
483       
484     if (recName.find("FR") != recName.npos)
485       return true;
486   }
487   return false;
488 }
489
490 bool RecognizableInstr::has256BitOperands() const {
491   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
492   unsigned numOperands = OperandList.size();
493     
494   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
495     const std::string &recName = OperandList[operandIndex].Rec->getName();
496        
497     if (!recName.compare("VR256") || !recName.compare("f256mem")) {
498       return true;
499     }
500   }
501   return false;
502 }
503   
504 void RecognizableInstr::handleOperand(
505   bool optional,
506   unsigned &operandIndex,
507   unsigned &physicalOperandIndex,
508   unsigned &numPhysicalOperands,
509   unsigned *operandMapping,
510   OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) {
511   if (optional) {
512     if (physicalOperandIndex >= numPhysicalOperands)
513       return;
514   } else {
515     assert(physicalOperandIndex < numPhysicalOperands);
516   }
517   
518   while (operandMapping[operandIndex] != operandIndex) {
519     Spec->operands[operandIndex].encoding = ENCODING_DUP;
520     Spec->operands[operandIndex].type =
521       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
522     ++operandIndex;
523   }
524   
525   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
526
527   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
528                                                               HasOpSizePrefix);
529   Spec->operands[operandIndex].type = typeFromString(typeName, 
530                                                      IsSSE,
531                                                      HasREX_WPrefix,
532                                                      HasOpSizePrefix);
533   
534   ++operandIndex;
535   ++physicalOperandIndex;
536 }
537
538 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
539   Spec->name       = Name;
540     
541   if (!Rec->isSubClassOf("X86Inst"))
542     return;
543   
544   switch (filter()) {
545   case FILTER_WEAK:
546     Spec->filtered = true;
547     break;
548   case FILTER_STRONG:
549     ShouldBeEmitted = false;
550     return;
551   case FILTER_NORMAL:
552     break;
553   }
554   
555   Spec->insnContext = insnContext();
556     
557   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
558   
559   unsigned operandIndex;
560   unsigned numOperands = OperandList.size();
561   unsigned numPhysicalOperands = 0;
562   
563   // operandMapping maps from operands in OperandList to their originals.
564   // If operandMapping[i] != i, then the entry is a duplicate.
565   unsigned operandMapping[X86_MAX_OPERANDS];
566   
567   bool hasFROperands = false;
568   
569   assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
570   
571   for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
572     if (OperandList[operandIndex].Constraints.size()) {
573       const CGIOperandList::ConstraintInfo &Constraint =
574         OperandList[operandIndex].Constraints[0];
575       if (Constraint.isTied()) {
576         operandMapping[operandIndex] = Constraint.getTiedOperand();
577       } else {
578         ++numPhysicalOperands;
579         operandMapping[operandIndex] = operandIndex;
580       }
581     } else {
582       ++numPhysicalOperands;
583       operandMapping[operandIndex] = operandIndex;
584     }
585
586     const std::string &recName = OperandList[operandIndex].Rec->getName();
587
588     if (recName.find("FR") != recName.npos)
589       hasFROperands = true;
590   }
591   
592   if (hasFROperands && Name.find("MOV") != Name.npos &&
593      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
594       (Name.find("to") != Name.npos)))
595     ShouldBeEmitted = false;
596   
597   if (!ShouldBeEmitted)
598     return;
599
600 #define HANDLE_OPERAND(class)               \
601   handleOperand(false,                      \
602                 operandIndex,               \
603                 physicalOperandIndex,       \
604                 numPhysicalOperands,        \
605                 operandMapping,             \
606                 class##EncodingFromString);
607   
608 #define HANDLE_OPTIONAL(class)              \
609   handleOperand(true,                       \
610                 operandIndex,               \
611                 physicalOperandIndex,       \
612                 numPhysicalOperands,        \
613                 operandMapping,             \
614                 class##EncodingFromString);
615   
616   // operandIndex should always be < numOperands
617   operandIndex = 0;
618   // physicalOperandIndex should always be < numPhysicalOperands
619   unsigned physicalOperandIndex = 0;
620     
621   switch (Form) {
622   case X86Local::RawFrm:
623     // Operand 1 (optional) is an address or immediate.
624     // Operand 2 (optional) is an immediate.
625     assert(numPhysicalOperands <= 2 && 
626            "Unexpected number of operands for RawFrm");
627     HANDLE_OPTIONAL(relocation)
628     HANDLE_OPTIONAL(immediate)
629     break;
630   case X86Local::AddRegFrm:
631     // Operand 1 is added to the opcode.
632     // Operand 2 (optional) is an address.
633     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
634            "Unexpected number of operands for AddRegFrm");
635     HANDLE_OPERAND(opcodeModifier)
636     HANDLE_OPTIONAL(relocation)
637     break;
638   case X86Local::MRMDestReg:
639     // Operand 1 is a register operand in the R/M field.
640     // Operand 2 is a register operand in the Reg/Opcode field.
641     // - In AVX, there is a register operand in the VEX.vvvv field here -
642     // Operand 3 (optional) is an immediate.
643     if (HasVEX_4VPrefix)
644       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
645              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
646     else
647       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
648              "Unexpected number of operands for MRMDestRegFrm");
649   
650     HANDLE_OPERAND(rmRegister)
651
652     if (HasVEX_4VPrefix)
653       // FIXME: In AVX, the register below becomes the one encoded
654       // in ModRMVEX and the one above the one in the VEX.VVVV field
655       HANDLE_OPERAND(vvvvRegister)
656           
657     HANDLE_OPERAND(roRegister)
658     HANDLE_OPTIONAL(immediate)
659     break;
660   case X86Local::MRMDestMem:
661     // Operand 1 is a memory operand (possibly SIB-extended)
662     // Operand 2 is a register operand in the Reg/Opcode field.
663     // - In AVX, there is a register operand in the VEX.vvvv field here -
664     // Operand 3 (optional) is an immediate.
665     if (HasVEX_4VPrefix)
666       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
667              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
668     else
669       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
670              "Unexpected number of operands for MRMDestMemFrm");
671     HANDLE_OPERAND(memory)
672
673     if (HasVEX_4VPrefix)
674       // FIXME: In AVX, the register below becomes the one encoded
675       // in ModRMVEX and the one above the one in the VEX.VVVV field
676       HANDLE_OPERAND(vvvvRegister)
677           
678     HANDLE_OPERAND(roRegister)
679     HANDLE_OPTIONAL(immediate)
680     break;
681   case X86Local::MRMSrcReg:
682     // Operand 1 is a register operand in the Reg/Opcode field.
683     // Operand 2 is a register operand in the R/M field.
684     // - In AVX, there is a register operand in the VEX.vvvv field here -
685     // Operand 3 (optional) is an immediate.
686
687     if (HasVEX_4VPrefix)
688       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
689              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 
690     else
691       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
692              "Unexpected number of operands for MRMSrcRegFrm");
693   
694     HANDLE_OPERAND(roRegister)
695        
696     if (HasVEX_4VPrefix)
697       // FIXME: In AVX, the register below becomes the one encoded
698       // in ModRMVEX and the one above the one in the VEX.VVVV field
699       HANDLE_OPERAND(vvvvRegister)
700           
701     HANDLE_OPERAND(rmRegister)
702     HANDLE_OPTIONAL(immediate)
703     break;
704   case X86Local::MRMSrcMem:
705     // Operand 1 is a register operand in the Reg/Opcode field.
706     // Operand 2 is a memory operand (possibly SIB-extended)
707     // - In AVX, there is a register operand in the VEX.vvvv field here -
708     // Operand 3 (optional) is an immediate.
709     
710     if (HasVEX_4VPrefix)
711       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
712              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 
713     else
714       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
715              "Unexpected number of operands for MRMSrcMemFrm");
716     
717     HANDLE_OPERAND(roRegister)
718
719     if (HasVEX_4VPrefix)
720       // FIXME: In AVX, the register below becomes the one encoded
721       // in ModRMVEX and the one above the one in the VEX.VVVV field
722       HANDLE_OPERAND(vvvvRegister)
723
724     HANDLE_OPERAND(memory)
725     HANDLE_OPTIONAL(immediate)
726     break;
727   case X86Local::MRM0r:
728   case X86Local::MRM1r:
729   case X86Local::MRM2r:
730   case X86Local::MRM3r:
731   case X86Local::MRM4r:
732   case X86Local::MRM5r:
733   case X86Local::MRM6r:
734   case X86Local::MRM7r:
735     // Operand 1 is a register operand in the R/M field.
736     // Operand 2 (optional) is an immediate or relocation.
737     if (HasVEX_4VPrefix)
738       assert(numPhysicalOperands <= 3 &&
739              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
740     else
741       assert(numPhysicalOperands <= 2 &&
742              "Unexpected number of operands for MRMnRFrm");
743     if (HasVEX_4VPrefix)
744       HANDLE_OPERAND(vvvvRegister);
745     HANDLE_OPTIONAL(rmRegister)
746     HANDLE_OPTIONAL(relocation)
747     break;
748   case X86Local::MRM0m:
749   case X86Local::MRM1m:
750   case X86Local::MRM2m:
751   case X86Local::MRM3m:
752   case X86Local::MRM4m:
753   case X86Local::MRM5m:
754   case X86Local::MRM6m:
755   case X86Local::MRM7m:
756     // Operand 1 is a memory operand (possibly SIB-extended)
757     // Operand 2 (optional) is an immediate or relocation.
758     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
759            "Unexpected number of operands for MRMnMFrm");
760     HANDLE_OPERAND(memory)
761     HANDLE_OPTIONAL(relocation)
762     break;
763   case X86Local::RawFrmImm8:
764     // operand 1 is a 16-bit immediate
765     // operand 2 is an 8-bit immediate
766     assert(numPhysicalOperands == 2 &&
767            "Unexpected number of operands for X86Local::RawFrmImm8");
768     HANDLE_OPERAND(immediate)
769     HANDLE_OPERAND(immediate)
770     break;
771   case X86Local::RawFrmImm16:
772     // operand 1 is a 16-bit immediate
773     // operand 2 is a 16-bit immediate
774     HANDLE_OPERAND(immediate)
775     HANDLE_OPERAND(immediate)
776     break;
777   case X86Local::MRMInitReg:
778     // Ignored.
779     break;
780   }
781   
782   #undef HANDLE_OPERAND
783   #undef HANDLE_OPTIONAL
784 }
785
786 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
787   // Special cases where the LLVM tables are not complete
788
789 #define MAP(from, to)                     \
790   case X86Local::MRM_##from:              \
791     filter = new ExactFilter(0x##from);   \
792     break;
793
794   OpcodeType    opcodeType  = (OpcodeType)-1;
795   
796   ModRMFilter*  filter      = NULL; 
797   uint8_t       opcodeToSet = 0;
798
799   switch (Prefix) {
800   // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
801   case X86Local::XD:
802   case X86Local::XS:
803   case X86Local::TB:
804     opcodeType = TWOBYTE;
805
806     switch (Opcode) {
807     default:
808       if (needsModRMForDecode(Form))
809         filter = new ModFilter(isRegFormat(Form));
810       else
811         filter = new DumbFilter();
812       break;
813 #define EXTENSION_TABLE(n) case 0x##n:
814     TWO_BYTE_EXTENSION_TABLES
815 #undef EXTENSION_TABLE
816       switch (Form) {
817       default:
818         llvm_unreachable("Unhandled two-byte extended opcode");
819       case X86Local::MRM0r:
820       case X86Local::MRM1r:
821       case X86Local::MRM2r:
822       case X86Local::MRM3r:
823       case X86Local::MRM4r:
824       case X86Local::MRM5r:
825       case X86Local::MRM6r:
826       case X86Local::MRM7r:
827         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
828         break;
829       case X86Local::MRM0m:
830       case X86Local::MRM1m:
831       case X86Local::MRM2m:
832       case X86Local::MRM3m:
833       case X86Local::MRM4m:
834       case X86Local::MRM5m:
835       case X86Local::MRM6m:
836       case X86Local::MRM7m:
837         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
838         break;
839       MRM_MAPPING
840       } // switch (Form)
841       break;
842     } // switch (Opcode)
843     opcodeToSet = Opcode;
844     break;
845   case X86Local::T8:
846   case X86Local::TF:
847     opcodeType = THREEBYTE_38;
848     if (needsModRMForDecode(Form))
849       filter = new ModFilter(isRegFormat(Form));
850     else
851       filter = new DumbFilter();
852     opcodeToSet = Opcode;
853     break;
854   case X86Local::P_TA:
855     opcodeType = THREEBYTE_3A;
856     if (needsModRMForDecode(Form))
857       filter = new ModFilter(isRegFormat(Form));
858     else
859       filter = new DumbFilter();
860     opcodeToSet = Opcode;
861     break;
862   case X86Local::A6:
863     opcodeType = THREEBYTE_A6;
864     if (needsModRMForDecode(Form))
865       filter = new ModFilter(isRegFormat(Form));
866     else
867       filter = new DumbFilter();
868     opcodeToSet = Opcode;
869     break;
870   case X86Local::A7:
871     opcodeType = THREEBYTE_A7;
872     if (needsModRMForDecode(Form))
873       filter = new ModFilter(isRegFormat(Form));
874     else
875       filter = new DumbFilter();
876     opcodeToSet = Opcode;
877     break;
878   case X86Local::D8:
879   case X86Local::D9:
880   case X86Local::DA:
881   case X86Local::DB:
882   case X86Local::DC:
883   case X86Local::DD:
884   case X86Local::DE:
885   case X86Local::DF:
886     assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
887     opcodeType = ONEBYTE;
888     if (Form == X86Local::AddRegFrm) {
889       Spec->modifierType = MODIFIER_MODRM;
890       Spec->modifierBase = Opcode;
891       filter = new AddRegEscapeFilter(Opcode);
892     } else {
893       filter = new EscapeFilter(true, Opcode);
894     }
895     opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
896     break;
897   case X86Local::REP:
898   default:
899     opcodeType = ONEBYTE;
900     switch (Opcode) {
901 #define EXTENSION_TABLE(n) case 0x##n:
902     ONE_BYTE_EXTENSION_TABLES
903 #undef EXTENSION_TABLE
904       switch (Form) {
905       default:
906         llvm_unreachable("Fell through the cracks of a single-byte "
907                          "extended opcode");
908       case X86Local::MRM0r:
909       case X86Local::MRM1r:
910       case X86Local::MRM2r:
911       case X86Local::MRM3r:
912       case X86Local::MRM4r:
913       case X86Local::MRM5r:
914       case X86Local::MRM6r:
915       case X86Local::MRM7r:
916         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
917         break;
918       case X86Local::MRM0m:
919       case X86Local::MRM1m:
920       case X86Local::MRM2m:
921       case X86Local::MRM3m:
922       case X86Local::MRM4m:
923       case X86Local::MRM5m:
924       case X86Local::MRM6m:
925       case X86Local::MRM7m:
926         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
927         break;
928       MRM_MAPPING
929       } // switch (Form)
930       break;
931     case 0xd8:
932     case 0xd9:
933     case 0xda:
934     case 0xdb:
935     case 0xdc:
936     case 0xdd:
937     case 0xde:
938     case 0xdf:
939       filter = new EscapeFilter(false, Form - X86Local::MRM0m);
940       break;
941     default:
942       if (needsModRMForDecode(Form))
943         filter = new ModFilter(isRegFormat(Form));
944       else
945         filter = new DumbFilter();
946       break;
947     } // switch (Opcode)
948     opcodeToSet = Opcode;
949   } // switch (Prefix)
950
951   assert(opcodeType != (OpcodeType)-1 &&
952          "Opcode type not set");
953   assert(filter && "Filter not set");
954
955   if (Form == X86Local::AddRegFrm) {
956     if(Spec->modifierType != MODIFIER_MODRM) {
957       assert(opcodeToSet < 0xf9 &&
958              "Not enough room for all ADDREG_FRM operands");
959     
960       uint8_t currentOpcode;
961
962       for (currentOpcode = opcodeToSet;
963            currentOpcode < opcodeToSet + 8;
964            ++currentOpcode)
965         tables.setTableFields(opcodeType, 
966                               insnContext(), 
967                               currentOpcode, 
968                               *filter, 
969                               UID, Is32Bit, IgnoresVEX_L);
970     
971       Spec->modifierType = MODIFIER_OPCODE;
972       Spec->modifierBase = opcodeToSet;
973     } else {
974       // modifierBase was set where MODIFIER_MODRM was set
975       tables.setTableFields(opcodeType, 
976                             insnContext(), 
977                             opcodeToSet, 
978                             *filter, 
979                             UID, Is32Bit, IgnoresVEX_L);
980     }
981   } else {
982     tables.setTableFields(opcodeType,
983                           insnContext(),
984                           opcodeToSet,
985                           *filter,
986                           UID, Is32Bit, IgnoresVEX_L);
987     
988     Spec->modifierType = MODIFIER_NONE;
989     Spec->modifierBase = opcodeToSet;
990   }
991   
992   delete filter;
993   
994 #undef MAP
995 }
996
997 #define TYPE(str, type) if (s == str) return type;
998 OperandType RecognizableInstr::typeFromString(const std::string &s,
999                                               bool isSSE,
1000                                               bool hasREX_WPrefix,
1001                                               bool hasOpSizePrefix) {
1002   if (isSSE) {
1003     // For SSE instructions, we ignore the OpSize prefix and force operand 
1004     // sizes.
1005     TYPE("GR16",              TYPE_R16)
1006     TYPE("GR32",              TYPE_R32)
1007     TYPE("GR64",              TYPE_R64)
1008   }
1009   if(hasREX_WPrefix) {
1010     // For instructions with a REX_W prefix, a declared 32-bit register encoding
1011     // is special.
1012     TYPE("GR32",              TYPE_R32)
1013   }
1014   if(!hasOpSizePrefix) {
1015     // For instructions without an OpSize prefix, a declared 16-bit register or
1016     // immediate encoding is special.
1017     TYPE("GR16",              TYPE_R16)
1018     TYPE("i16imm",            TYPE_IMM16)
1019   }
1020   TYPE("i16mem",              TYPE_Mv)
1021   TYPE("i16imm",              TYPE_IMMv)
1022   TYPE("i16i8imm",            TYPE_IMMv)
1023   TYPE("GR16",                TYPE_Rv)
1024   TYPE("i32mem",              TYPE_Mv)
1025   TYPE("i32imm",              TYPE_IMMv)
1026   TYPE("i32i8imm",            TYPE_IMM32)
1027   TYPE("u32u8imm",            TYPE_IMM32)
1028   TYPE("GR32",                TYPE_Rv)
1029   TYPE("i64mem",              TYPE_Mv)
1030   TYPE("i64i32imm",           TYPE_IMM64)
1031   TYPE("i64i8imm",            TYPE_IMM64)
1032   TYPE("GR64",                TYPE_R64)
1033   TYPE("i8mem",               TYPE_M8)
1034   TYPE("i8imm",               TYPE_IMM8)
1035   TYPE("GR8",                 TYPE_R8)
1036   TYPE("VR128",               TYPE_XMM128)
1037   TYPE("f128mem",             TYPE_M128)
1038   TYPE("f256mem",             TYPE_M256)
1039   TYPE("FR64",                TYPE_XMM64)
1040   TYPE("f64mem",              TYPE_M64FP)
1041   TYPE("sdmem",               TYPE_M64FP)
1042   TYPE("FR32",                TYPE_XMM32)
1043   TYPE("f32mem",              TYPE_M32FP)
1044   TYPE("ssmem",               TYPE_M32FP)
1045   TYPE("RST",                 TYPE_ST)
1046   TYPE("i128mem",             TYPE_M128)
1047   TYPE("i256mem",             TYPE_M256)
1048   TYPE("i64i32imm_pcrel",     TYPE_REL64)
1049   TYPE("i16imm_pcrel",        TYPE_REL16)
1050   TYPE("i32imm_pcrel",        TYPE_REL32)
1051   TYPE("SSECC",               TYPE_IMM3)
1052   TYPE("brtarget",            TYPE_RELv)
1053   TYPE("uncondbrtarget",      TYPE_RELv)
1054   TYPE("brtarget8",           TYPE_REL8)
1055   TYPE("f80mem",              TYPE_M80FP)
1056   TYPE("lea32mem",            TYPE_LEA)
1057   TYPE("lea64_32mem",         TYPE_LEA)
1058   TYPE("lea64mem",            TYPE_LEA)
1059   TYPE("VR64",                TYPE_MM64)
1060   TYPE("i64imm",              TYPE_IMMv)
1061   TYPE("opaque32mem",         TYPE_M1616)
1062   TYPE("opaque48mem",         TYPE_M1632)
1063   TYPE("opaque80mem",         TYPE_M1664)
1064   TYPE("opaque512mem",        TYPE_M512)
1065   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
1066   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
1067   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
1068   TYPE("offset8",             TYPE_MOFFS8)
1069   TYPE("offset16",            TYPE_MOFFS16)
1070   TYPE("offset32",            TYPE_MOFFS32)
1071   TYPE("offset64",            TYPE_MOFFS64)
1072   TYPE("VR256",               TYPE_XMM256)
1073   TYPE("GR16_NOAX",           TYPE_Rv)
1074   TYPE("GR32_NOAX",           TYPE_Rv)
1075   TYPE("GR64_NOAX",           TYPE_R64)
1076   errs() << "Unhandled type string " << s << "\n";
1077   llvm_unreachable("Unhandled type string");
1078 }
1079 #undef TYPE
1080
1081 #define ENCODING(str, encoding) if (s == str) return encoding;
1082 OperandEncoding RecognizableInstr::immediateEncodingFromString
1083   (const std::string &s,
1084    bool hasOpSizePrefix) {
1085   if(!hasOpSizePrefix) {
1086     // For instructions without an OpSize prefix, a declared 16-bit register or
1087     // immediate encoding is special.
1088     ENCODING("i16imm",        ENCODING_IW)
1089   }
1090   ENCODING("i32i8imm",        ENCODING_IB)
1091   ENCODING("u32u8imm",        ENCODING_IB)
1092   ENCODING("SSECC",           ENCODING_IB)
1093   ENCODING("i16imm",          ENCODING_Iv)
1094   ENCODING("i16i8imm",        ENCODING_IB)
1095   ENCODING("i32imm",          ENCODING_Iv)
1096   ENCODING("i64i32imm",       ENCODING_ID)
1097   ENCODING("i64i8imm",        ENCODING_IB)
1098   ENCODING("i8imm",           ENCODING_IB)
1099   // This is not a typo.  Instructions like BLENDVPD put
1100   // register IDs in 8-bit immediates nowadays.
1101   ENCODING("VR256",           ENCODING_IB)
1102   ENCODING("VR128",           ENCODING_IB)
1103   errs() << "Unhandled immediate encoding " << s << "\n";
1104   llvm_unreachable("Unhandled immediate encoding");
1105 }
1106
1107 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
1108   (const std::string &s,
1109    bool hasOpSizePrefix) {
1110   ENCODING("GR16",            ENCODING_RM)
1111   ENCODING("GR32",            ENCODING_RM)
1112   ENCODING("GR64",            ENCODING_RM)
1113   ENCODING("GR8",             ENCODING_RM)
1114   ENCODING("VR128",           ENCODING_RM)
1115   ENCODING("FR64",            ENCODING_RM)
1116   ENCODING("FR32",            ENCODING_RM)
1117   ENCODING("VR64",            ENCODING_RM)
1118   ENCODING("VR256",           ENCODING_RM)
1119   errs() << "Unhandled R/M register encoding " << s << "\n";
1120   llvm_unreachable("Unhandled R/M register encoding");
1121 }
1122
1123 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
1124   (const std::string &s,
1125    bool hasOpSizePrefix) {
1126   ENCODING("GR16",            ENCODING_REG)
1127   ENCODING("GR32",            ENCODING_REG)
1128   ENCODING("GR64",            ENCODING_REG)
1129   ENCODING("GR8",             ENCODING_REG)
1130   ENCODING("VR128",           ENCODING_REG)
1131   ENCODING("FR64",            ENCODING_REG)
1132   ENCODING("FR32",            ENCODING_REG)
1133   ENCODING("VR64",            ENCODING_REG)
1134   ENCODING("SEGMENT_REG",     ENCODING_REG)
1135   ENCODING("DEBUG_REG",       ENCODING_REG)
1136   ENCODING("CONTROL_REG",     ENCODING_REG)
1137   ENCODING("VR256",           ENCODING_REG)
1138   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1139   llvm_unreachable("Unhandled reg/opcode register encoding");
1140 }
1141
1142 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
1143   (const std::string &s,
1144    bool hasOpSizePrefix) {
1145   ENCODING("GR32",            ENCODING_VVVV)
1146   ENCODING("GR64",            ENCODING_VVVV)
1147   ENCODING("FR32",            ENCODING_VVVV)
1148   ENCODING("FR64",            ENCODING_VVVV)
1149   ENCODING("VR128",           ENCODING_VVVV)
1150   ENCODING("VR256",           ENCODING_VVVV)
1151   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1152   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1153 }
1154
1155 OperandEncoding RecognizableInstr::memoryEncodingFromString
1156   (const std::string &s,
1157    bool hasOpSizePrefix) {
1158   ENCODING("i16mem",          ENCODING_RM)
1159   ENCODING("i32mem",          ENCODING_RM)
1160   ENCODING("i64mem",          ENCODING_RM)
1161   ENCODING("i8mem",           ENCODING_RM)
1162   ENCODING("ssmem",           ENCODING_RM)
1163   ENCODING("sdmem",           ENCODING_RM)
1164   ENCODING("f128mem",         ENCODING_RM)
1165   ENCODING("f256mem",         ENCODING_RM)
1166   ENCODING("f64mem",          ENCODING_RM)
1167   ENCODING("f32mem",          ENCODING_RM)
1168   ENCODING("i128mem",         ENCODING_RM)
1169   ENCODING("i256mem",         ENCODING_RM)
1170   ENCODING("f80mem",          ENCODING_RM)
1171   ENCODING("lea32mem",        ENCODING_RM)
1172   ENCODING("lea64_32mem",     ENCODING_RM)
1173   ENCODING("lea64mem",        ENCODING_RM)
1174   ENCODING("opaque32mem",     ENCODING_RM)
1175   ENCODING("opaque48mem",     ENCODING_RM)
1176   ENCODING("opaque80mem",     ENCODING_RM)
1177   ENCODING("opaque512mem",    ENCODING_RM)
1178   errs() << "Unhandled memory encoding " << s << "\n";
1179   llvm_unreachable("Unhandled memory encoding");
1180 }
1181
1182 OperandEncoding RecognizableInstr::relocationEncodingFromString
1183   (const std::string &s,
1184    bool hasOpSizePrefix) {
1185   if(!hasOpSizePrefix) {
1186     // For instructions without an OpSize prefix, a declared 16-bit register or
1187     // immediate encoding is special.
1188     ENCODING("i16imm",        ENCODING_IW)
1189   }
1190   ENCODING("i16imm",          ENCODING_Iv)
1191   ENCODING("i16i8imm",        ENCODING_IB)
1192   ENCODING("i32imm",          ENCODING_Iv)
1193   ENCODING("i32i8imm",        ENCODING_IB)
1194   ENCODING("i64i32imm",       ENCODING_ID)
1195   ENCODING("i64i8imm",        ENCODING_IB)
1196   ENCODING("i8imm",           ENCODING_IB)
1197   ENCODING("i64i32imm_pcrel", ENCODING_ID)
1198   ENCODING("i16imm_pcrel",    ENCODING_IW)
1199   ENCODING("i32imm_pcrel",    ENCODING_ID)
1200   ENCODING("brtarget",        ENCODING_Iv)
1201   ENCODING("brtarget8",       ENCODING_IB)
1202   ENCODING("i64imm",          ENCODING_IO)
1203   ENCODING("offset8",         ENCODING_Ia)
1204   ENCODING("offset16",        ENCODING_Ia)
1205   ENCODING("offset32",        ENCODING_Ia)
1206   ENCODING("offset64",        ENCODING_Ia)
1207   errs() << "Unhandled relocation encoding " << s << "\n";
1208   llvm_unreachable("Unhandled relocation encoding");
1209 }
1210
1211 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
1212   (const std::string &s,
1213    bool hasOpSizePrefix) {
1214   ENCODING("RST",             ENCODING_I)
1215   ENCODING("GR32",            ENCODING_Rv)
1216   ENCODING("GR64",            ENCODING_RO)
1217   ENCODING("GR16",            ENCODING_Rv)
1218   ENCODING("GR8",             ENCODING_RB)
1219   ENCODING("GR16_NOAX",       ENCODING_Rv)
1220   ENCODING("GR32_NOAX",       ENCODING_Rv)
1221   ENCODING("GR64_NOAX",       ENCODING_RO)
1222   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1223   llvm_unreachable("Unhandled opcode modifier encoding");
1224 }
1225 #undef ENCODING