]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43
44 SYSCTL_DECL(_vfs_zfs);
45 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
46
47 /*
48  * Virtual device management.
49  */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52         &vdev_root_ops,
53         &vdev_raidz_ops,
54         &vdev_mirror_ops,
55         &vdev_replacing_ops,
56         &vdev_spare_ops,
57 #ifdef _KERNEL
58         &vdev_geom_ops,
59 #else
60         &vdev_disk_ops,
61 #endif
62         &vdev_file_ops,
63         &vdev_missing_ops,
64         &vdev_hole_ops,
65         NULL
66 };
67
68 /* maximum scrub/resilver I/O queue per leaf vdev */
69 int zfs_scrub_limit = 10;
70
71 TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
72 SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
73     "Maximum scrub/resilver I/O queue");
74
75 /*
76  * Given a vdev type, return the appropriate ops vector.
77  */
78 static vdev_ops_t *
79 vdev_getops(const char *type)
80 {
81         vdev_ops_t *ops, **opspp;
82
83         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84                 if (strcmp(ops->vdev_op_type, type) == 0)
85                         break;
86
87         return (ops);
88 }
89
90 /*
91  * Default asize function: return the MAX of psize with the asize of
92  * all children.  This is what's used by anything other than RAID-Z.
93  */
94 uint64_t
95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98         uint64_t csize;
99
100         for (int c = 0; c < vd->vdev_children; c++) {
101                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
102                 asize = MAX(asize, csize);
103         }
104
105         return (asize);
106 }
107
108 /*
109  * Get the minimum allocatable size. We define the allocatable size as
110  * the vdev's asize rounded to the nearest metaslab. This allows us to
111  * replace or attach devices which don't have the same physical size but
112  * can still satisfy the same number of allocations.
113  */
114 uint64_t
115 vdev_get_min_asize(vdev_t *vd)
116 {
117         vdev_t *pvd = vd->vdev_parent;
118
119         /*
120          * The our parent is NULL (inactive spare or cache) or is the root,
121          * just return our own asize.
122          */
123         if (pvd == NULL)
124                 return (vd->vdev_asize);
125
126         /*
127          * The top-level vdev just returns the allocatable size rounded
128          * to the nearest metaslab.
129          */
130         if (vd == vd->vdev_top)
131                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
132
133         /*
134          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
135          * so each child must provide at least 1/Nth of its asize.
136          */
137         if (pvd->vdev_ops == &vdev_raidz_ops)
138                 return (pvd->vdev_min_asize / pvd->vdev_children);
139
140         return (pvd->vdev_min_asize);
141 }
142
143 void
144 vdev_set_min_asize(vdev_t *vd)
145 {
146         vd->vdev_min_asize = vdev_get_min_asize(vd);
147
148         for (int c = 0; c < vd->vdev_children; c++)
149                 vdev_set_min_asize(vd->vdev_child[c]);
150 }
151
152 vdev_t *
153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
154 {
155         vdev_t *rvd = spa->spa_root_vdev;
156
157         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158
159         if (vdev < rvd->vdev_children) {
160                 ASSERT(rvd->vdev_child[vdev] != NULL);
161                 return (rvd->vdev_child[vdev]);
162         }
163
164         return (NULL);
165 }
166
167 vdev_t *
168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169 {
170         vdev_t *mvd;
171
172         if (vd->vdev_guid == guid)
173                 return (vd);
174
175         for (int c = 0; c < vd->vdev_children; c++)
176                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177                     NULL)
178                         return (mvd);
179
180         return (NULL);
181 }
182
183 void
184 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
185 {
186         size_t oldsize, newsize;
187         uint64_t id = cvd->vdev_id;
188         vdev_t **newchild;
189
190         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
191         ASSERT(cvd->vdev_parent == NULL);
192
193         cvd->vdev_parent = pvd;
194
195         if (pvd == NULL)
196                 return;
197
198         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
199
200         oldsize = pvd->vdev_children * sizeof (vdev_t *);
201         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
202         newsize = pvd->vdev_children * sizeof (vdev_t *);
203
204         newchild = kmem_zalloc(newsize, KM_SLEEP);
205         if (pvd->vdev_child != NULL) {
206                 bcopy(pvd->vdev_child, newchild, oldsize);
207                 kmem_free(pvd->vdev_child, oldsize);
208         }
209
210         pvd->vdev_child = newchild;
211         pvd->vdev_child[id] = cvd;
212
213         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
214         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
215
216         /*
217          * Walk up all ancestors to update guid sum.
218          */
219         for (; pvd != NULL; pvd = pvd->vdev_parent)
220                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
221 }
222
223 void
224 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
225 {
226         int c;
227         uint_t id = cvd->vdev_id;
228
229         ASSERT(cvd->vdev_parent == pvd);
230
231         if (pvd == NULL)
232                 return;
233
234         ASSERT(id < pvd->vdev_children);
235         ASSERT(pvd->vdev_child[id] == cvd);
236
237         pvd->vdev_child[id] = NULL;
238         cvd->vdev_parent = NULL;
239
240         for (c = 0; c < pvd->vdev_children; c++)
241                 if (pvd->vdev_child[c])
242                         break;
243
244         if (c == pvd->vdev_children) {
245                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
246                 pvd->vdev_child = NULL;
247                 pvd->vdev_children = 0;
248         }
249
250         /*
251          * Walk up all ancestors to update guid sum.
252          */
253         for (; pvd != NULL; pvd = pvd->vdev_parent)
254                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
255 }
256
257 /*
258  * Remove any holes in the child array.
259  */
260 void
261 vdev_compact_children(vdev_t *pvd)
262 {
263         vdev_t **newchild, *cvd;
264         int oldc = pvd->vdev_children;
265         int newc;
266
267         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
268
269         for (int c = newc = 0; c < oldc; c++)
270                 if (pvd->vdev_child[c])
271                         newc++;
272
273         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
274
275         for (int c = newc = 0; c < oldc; c++) {
276                 if ((cvd = pvd->vdev_child[c]) != NULL) {
277                         newchild[newc] = cvd;
278                         cvd->vdev_id = newc++;
279                 }
280         }
281
282         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
283         pvd->vdev_child = newchild;
284         pvd->vdev_children = newc;
285 }
286
287 /*
288  * Allocate and minimally initialize a vdev_t.
289  */
290 vdev_t *
291 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
292 {
293         vdev_t *vd;
294
295         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
296
297         if (spa->spa_root_vdev == NULL) {
298                 ASSERT(ops == &vdev_root_ops);
299                 spa->spa_root_vdev = vd;
300         }
301
302         if (guid == 0 && ops != &vdev_hole_ops) {
303                 if (spa->spa_root_vdev == vd) {
304                         /*
305                          * The root vdev's guid will also be the pool guid,
306                          * which must be unique among all pools.
307                          */
308                         guid = spa_generate_guid(NULL);
309                 } else {
310                         /*
311                          * Any other vdev's guid must be unique within the pool.
312                          */
313                         guid = spa_generate_guid(spa);
314                 }
315                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
316         }
317
318         vd->vdev_spa = spa;
319         vd->vdev_id = id;
320         vd->vdev_guid = guid;
321         vd->vdev_guid_sum = guid;
322         vd->vdev_ops = ops;
323         vd->vdev_state = VDEV_STATE_CLOSED;
324         vd->vdev_ishole = (ops == &vdev_hole_ops);
325
326         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
328         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
329         for (int t = 0; t < DTL_TYPES; t++) {
330                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
331                     &vd->vdev_dtl_lock);
332         }
333         txg_list_create(&vd->vdev_ms_list,
334             offsetof(struct metaslab, ms_txg_node));
335         txg_list_create(&vd->vdev_dtl_list,
336             offsetof(struct vdev, vdev_dtl_node));
337         vd->vdev_stat.vs_timestamp = gethrtime();
338         vdev_queue_init(vd);
339         vdev_cache_init(vd);
340
341         return (vd);
342 }
343
344 /*
345  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
346  * creating a new vdev or loading an existing one - the behavior is slightly
347  * different for each case.
348  */
349 int
350 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
351     int alloctype)
352 {
353         vdev_ops_t *ops;
354         char *type;
355         uint64_t guid = 0, islog, nparity;
356         vdev_t *vd;
357
358         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
359
360         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
361                 return (EINVAL);
362
363         if ((ops = vdev_getops(type)) == NULL)
364                 return (EINVAL);
365
366         /*
367          * If this is a load, get the vdev guid from the nvlist.
368          * Otherwise, vdev_alloc_common() will generate one for us.
369          */
370         if (alloctype == VDEV_ALLOC_LOAD) {
371                 uint64_t label_id;
372
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
374                     label_id != id)
375                         return (EINVAL);
376
377                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378                         return (EINVAL);
379         } else if (alloctype == VDEV_ALLOC_SPARE) {
380                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381                         return (EINVAL);
382         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
383                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384                         return (EINVAL);
385         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
386                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
387                         return (EINVAL);
388         }
389
390         /*
391          * The first allocated vdev must be of type 'root'.
392          */
393         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
394                 return (EINVAL);
395
396         /*
397          * Determine whether we're a log vdev.
398          */
399         islog = 0;
400         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
401         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
402                 return (ENOTSUP);
403
404         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
405                 return (ENOTSUP);
406
407         /*
408          * Set the nparity property for RAID-Z vdevs.
409          */
410         nparity = -1ULL;
411         if (ops == &vdev_raidz_ops) {
412                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
413                     &nparity) == 0) {
414                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
415                                 return (EINVAL);
416                         /*
417                          * Previous versions could only support 1 or 2 parity
418                          * device.
419                          */
420                         if (nparity > 1 &&
421                             spa_version(spa) < SPA_VERSION_RAIDZ2)
422                                 return (ENOTSUP);
423                         if (nparity > 2 &&
424                             spa_version(spa) < SPA_VERSION_RAIDZ3)
425                                 return (ENOTSUP);
426                 } else {
427                         /*
428                          * We require the parity to be specified for SPAs that
429                          * support multiple parity levels.
430                          */
431                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
432                                 return (EINVAL);
433                         /*
434                          * Otherwise, we default to 1 parity device for RAID-Z.
435                          */
436                         nparity = 1;
437                 }
438         } else {
439                 nparity = 0;
440         }
441         ASSERT(nparity != -1ULL);
442
443         vd = vdev_alloc_common(spa, id, guid, ops);
444
445         vd->vdev_islog = islog;
446         vd->vdev_nparity = nparity;
447
448         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
449                 vd->vdev_path = spa_strdup(vd->vdev_path);
450         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
451                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
452         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
453             &vd->vdev_physpath) == 0)
454                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
455         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
456                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
457
458         /*
459          * Set the whole_disk property.  If it's not specified, leave the value
460          * as -1.
461          */
462         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
463             &vd->vdev_wholedisk) != 0)
464                 vd->vdev_wholedisk = -1ULL;
465
466         /*
467          * Look for the 'not present' flag.  This will only be set if the device
468          * was not present at the time of import.
469          */
470         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
471             &vd->vdev_not_present);
472
473         /*
474          * Get the alignment requirement.
475          */
476         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
477
478         /*
479          * Retrieve the vdev creation time.
480          */
481         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
482             &vd->vdev_crtxg);
483
484         /*
485          * If we're a top-level vdev, try to load the allocation parameters.
486          */
487         if (parent && !parent->vdev_parent &&
488             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
489                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
490                     &vd->vdev_ms_array);
491                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
492                     &vd->vdev_ms_shift);
493                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
494                     &vd->vdev_asize);
495                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
496                     &vd->vdev_removing);
497         }
498
499         if (parent && !parent->vdev_parent) {
500                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
501                     alloctype == VDEV_ALLOC_ADD ||
502                     alloctype == VDEV_ALLOC_SPLIT ||
503                     alloctype == VDEV_ALLOC_ROOTPOOL);
504                 vd->vdev_mg = metaslab_group_create(islog ?
505                     spa_log_class(spa) : spa_normal_class(spa), vd);
506         }
507
508         /*
509          * If we're a leaf vdev, try to load the DTL object and other state.
510          */
511         if (vd->vdev_ops->vdev_op_leaf &&
512             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
513             alloctype == VDEV_ALLOC_ROOTPOOL)) {
514                 if (alloctype == VDEV_ALLOC_LOAD) {
515                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
516                             &vd->vdev_dtl_smo.smo_object);
517                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
518                             &vd->vdev_unspare);
519                 }
520
521                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
522                         uint64_t spare = 0;
523
524                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
525                             &spare) == 0 && spare)
526                                 spa_spare_add(vd);
527                 }
528
529                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
530                     &vd->vdev_offline);
531
532                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
533                     &vd->vdev_resilvering);
534
535                 /*
536                  * When importing a pool, we want to ignore the persistent fault
537                  * state, as the diagnosis made on another system may not be
538                  * valid in the current context.  Local vdevs will
539                  * remain in the faulted state.
540                  */
541                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
542                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
543                             &vd->vdev_faulted);
544                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
545                             &vd->vdev_degraded);
546                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
547                             &vd->vdev_removed);
548
549                         if (vd->vdev_faulted || vd->vdev_degraded) {
550                                 char *aux;
551
552                                 vd->vdev_label_aux =
553                                     VDEV_AUX_ERR_EXCEEDED;
554                                 if (nvlist_lookup_string(nv,
555                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
556                                     strcmp(aux, "external") == 0)
557                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
558                         }
559                 }
560         }
561
562         /*
563          * Add ourselves to the parent's list of children.
564          */
565         vdev_add_child(parent, vd);
566
567         *vdp = vd;
568
569         return (0);
570 }
571
572 void
573 vdev_free(vdev_t *vd)
574 {
575         spa_t *spa = vd->vdev_spa;
576
577         /*
578          * vdev_free() implies closing the vdev first.  This is simpler than
579          * trying to ensure complicated semantics for all callers.
580          */
581         vdev_close(vd);
582
583         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586         /*
587          * Free all children.
588          */
589         for (int c = 0; c < vd->vdev_children; c++)
590                 vdev_free(vd->vdev_child[c]);
591
592         ASSERT(vd->vdev_child == NULL);
593         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595         /*
596          * Discard allocation state.
597          */
598         if (vd->vdev_mg != NULL) {
599                 vdev_metaslab_fini(vd);
600                 metaslab_group_destroy(vd->vdev_mg);
601         }
602
603         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607         /*
608          * Remove this vdev from its parent's child list.
609          */
610         vdev_remove_child(vd->vdev_parent, vd);
611
612         ASSERT(vd->vdev_parent == NULL);
613
614         /*
615          * Clean up vdev structure.
616          */
617         vdev_queue_fini(vd);
618         vdev_cache_fini(vd);
619
620         if (vd->vdev_path)
621                 spa_strfree(vd->vdev_path);
622         if (vd->vdev_devid)
623                 spa_strfree(vd->vdev_devid);
624         if (vd->vdev_physpath)
625                 spa_strfree(vd->vdev_physpath);
626         if (vd->vdev_fru)
627                 spa_strfree(vd->vdev_fru);
628
629         if (vd->vdev_isspare)
630                 spa_spare_remove(vd);
631         if (vd->vdev_isl2cache)
632                 spa_l2cache_remove(vd);
633
634         txg_list_destroy(&vd->vdev_ms_list);
635         txg_list_destroy(&vd->vdev_dtl_list);
636
637         mutex_enter(&vd->vdev_dtl_lock);
638         for (int t = 0; t < DTL_TYPES; t++) {
639                 space_map_unload(&vd->vdev_dtl[t]);
640                 space_map_destroy(&vd->vdev_dtl[t]);
641         }
642         mutex_exit(&vd->vdev_dtl_lock);
643
644         mutex_destroy(&vd->vdev_dtl_lock);
645         mutex_destroy(&vd->vdev_stat_lock);
646         mutex_destroy(&vd->vdev_probe_lock);
647
648         if (vd == spa->spa_root_vdev)
649                 spa->spa_root_vdev = NULL;
650
651         kmem_free(vd, sizeof (vdev_t));
652 }
653
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660         spa_t *spa = svd->vdev_spa;
661         metaslab_t *msp;
662         vdev_t *vd;
663         int t;
664
665         ASSERT(tvd == tvd->vdev_top);
666
667         tvd->vdev_ms_array = svd->vdev_ms_array;
668         tvd->vdev_ms_shift = svd->vdev_ms_shift;
669         tvd->vdev_ms_count = svd->vdev_ms_count;
670
671         svd->vdev_ms_array = 0;
672         svd->vdev_ms_shift = 0;
673         svd->vdev_ms_count = 0;
674
675         tvd->vdev_mg = svd->vdev_mg;
676         tvd->vdev_ms = svd->vdev_ms;
677
678         svd->vdev_mg = NULL;
679         svd->vdev_ms = NULL;
680
681         if (tvd->vdev_mg != NULL)
682                 tvd->vdev_mg->mg_vd = tvd;
683
684         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687
688         svd->vdev_stat.vs_alloc = 0;
689         svd->vdev_stat.vs_space = 0;
690         svd->vdev_stat.vs_dspace = 0;
691
692         for (t = 0; t < TXG_SIZE; t++) {
693                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699         }
700
701         if (list_link_active(&svd->vdev_config_dirty_node)) {
702                 vdev_config_clean(svd);
703                 vdev_config_dirty(tvd);
704         }
705
706         if (list_link_active(&svd->vdev_state_dirty_node)) {
707                 vdev_state_clean(svd);
708                 vdev_state_dirty(tvd);
709         }
710
711         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712         svd->vdev_deflate_ratio = 0;
713
714         tvd->vdev_islog = svd->vdev_islog;
715         svd->vdev_islog = 0;
716 }
717
718 static void
719 vdev_top_update(vdev_t *tvd, vdev_t *vd)
720 {
721         if (vd == NULL)
722                 return;
723
724         vd->vdev_top = tvd;
725
726         for (int c = 0; c < vd->vdev_children; c++)
727                 vdev_top_update(tvd, vd->vdev_child[c]);
728 }
729
730 /*
731  * Add a mirror/replacing vdev above an existing vdev.
732  */
733 vdev_t *
734 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
735 {
736         spa_t *spa = cvd->vdev_spa;
737         vdev_t *pvd = cvd->vdev_parent;
738         vdev_t *mvd;
739
740         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
741
742         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
743
744         mvd->vdev_asize = cvd->vdev_asize;
745         mvd->vdev_min_asize = cvd->vdev_min_asize;
746         mvd->vdev_ashift = cvd->vdev_ashift;
747         mvd->vdev_state = cvd->vdev_state;
748         mvd->vdev_crtxg = cvd->vdev_crtxg;
749
750         vdev_remove_child(pvd, cvd);
751         vdev_add_child(pvd, mvd);
752         cvd->vdev_id = mvd->vdev_children;
753         vdev_add_child(mvd, cvd);
754         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755
756         if (mvd == mvd->vdev_top)
757                 vdev_top_transfer(cvd, mvd);
758
759         return (mvd);
760 }
761
762 /*
763  * Remove a 1-way mirror/replacing vdev from the tree.
764  */
765 void
766 vdev_remove_parent(vdev_t *cvd)
767 {
768         vdev_t *mvd = cvd->vdev_parent;
769         vdev_t *pvd = mvd->vdev_parent;
770
771         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
772
773         ASSERT(mvd->vdev_children == 1);
774         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
775             mvd->vdev_ops == &vdev_replacing_ops ||
776             mvd->vdev_ops == &vdev_spare_ops);
777         cvd->vdev_ashift = mvd->vdev_ashift;
778
779         vdev_remove_child(mvd, cvd);
780         vdev_remove_child(pvd, mvd);
781
782         /*
783          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
784          * Otherwise, we could have detached an offline device, and when we
785          * go to import the pool we'll think we have two top-level vdevs,
786          * instead of a different version of the same top-level vdev.
787          */
788         if (mvd->vdev_top == mvd) {
789                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
790                 cvd->vdev_orig_guid = cvd->vdev_guid;
791                 cvd->vdev_guid += guid_delta;
792                 cvd->vdev_guid_sum += guid_delta;
793         }
794         cvd->vdev_id = mvd->vdev_id;
795         vdev_add_child(pvd, cvd);
796         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
797
798         if (cvd == cvd->vdev_top)
799                 vdev_top_transfer(mvd, cvd);
800
801         ASSERT(mvd->vdev_children == 0);
802         vdev_free(mvd);
803 }
804
805 int
806 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
807 {
808         spa_t *spa = vd->vdev_spa;
809         objset_t *mos = spa->spa_meta_objset;
810         uint64_t m;
811         uint64_t oldc = vd->vdev_ms_count;
812         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
813         metaslab_t **mspp;
814         int error;
815
816         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
817
818         /*
819          * This vdev is not being allocated from yet or is a hole.
820          */
821         if (vd->vdev_ms_shift == 0)
822                 return (0);
823
824         ASSERT(!vd->vdev_ishole);
825
826         /*
827          * Compute the raidz-deflation ratio.  Note, we hard-code
828          * in 128k (1 << 17) because it is the current "typical" blocksize.
829          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
830          * or we will inconsistently account for existing bp's.
831          */
832         vd->vdev_deflate_ratio = (1 << 17) /
833             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
834
835         ASSERT(oldc <= newc);
836
837         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
838
839         if (oldc != 0) {
840                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
841                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
842         }
843
844         vd->vdev_ms = mspp;
845         vd->vdev_ms_count = newc;
846
847         for (m = oldc; m < newc; m++) {
848                 space_map_obj_t smo = { 0, 0, 0 };
849                 if (txg == 0) {
850                         uint64_t object = 0;
851                         error = dmu_read(mos, vd->vdev_ms_array,
852                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
853                             DMU_READ_PREFETCH);
854                         if (error)
855                                 return (error);
856                         if (object != 0) {
857                                 dmu_buf_t *db;
858                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
859                                 if (error)
860                                         return (error);
861                                 ASSERT3U(db->db_size, >=, sizeof (smo));
862                                 bcopy(db->db_data, &smo, sizeof (smo));
863                                 ASSERT3U(smo.smo_object, ==, object);
864                                 dmu_buf_rele(db, FTAG);
865                         }
866                 }
867                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
868                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
869         }
870
871         if (txg == 0)
872                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
873
874         /*
875          * If the vdev is being removed we don't activate
876          * the metaslabs since we want to ensure that no new
877          * allocations are performed on this device.
878          */
879         if (oldc == 0 && !vd->vdev_removing)
880                 metaslab_group_activate(vd->vdev_mg);
881
882         if (txg == 0)
883                 spa_config_exit(spa, SCL_ALLOC, FTAG);
884
885         return (0);
886 }
887
888 void
889 vdev_metaslab_fini(vdev_t *vd)
890 {
891         uint64_t m;
892         uint64_t count = vd->vdev_ms_count;
893
894         if (vd->vdev_ms != NULL) {
895                 metaslab_group_passivate(vd->vdev_mg);
896                 for (m = 0; m < count; m++)
897                         if (vd->vdev_ms[m] != NULL)
898                                 metaslab_fini(vd->vdev_ms[m]);
899                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
900                 vd->vdev_ms = NULL;
901         }
902 }
903
904 typedef struct vdev_probe_stats {
905         boolean_t       vps_readable;
906         boolean_t       vps_writeable;
907         int             vps_flags;
908 } vdev_probe_stats_t;
909
910 static void
911 vdev_probe_done(zio_t *zio)
912 {
913         spa_t *spa = zio->io_spa;
914         vdev_t *vd = zio->io_vd;
915         vdev_probe_stats_t *vps = zio->io_private;
916
917         ASSERT(vd->vdev_probe_zio != NULL);
918
919         if (zio->io_type == ZIO_TYPE_READ) {
920                 if (zio->io_error == 0)
921                         vps->vps_readable = 1;
922                 if (zio->io_error == 0 && spa_writeable(spa)) {
923                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
924                             zio->io_offset, zio->io_size, zio->io_data,
925                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
926                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
927                 } else {
928                         zio_buf_free(zio->io_data, zio->io_size);
929                 }
930         } else if (zio->io_type == ZIO_TYPE_WRITE) {
931                 if (zio->io_error == 0)
932                         vps->vps_writeable = 1;
933                 zio_buf_free(zio->io_data, zio->io_size);
934         } else if (zio->io_type == ZIO_TYPE_NULL) {
935                 zio_t *pio;
936
937                 vd->vdev_cant_read |= !vps->vps_readable;
938                 vd->vdev_cant_write |= !vps->vps_writeable;
939
940                 if (vdev_readable(vd) &&
941                     (vdev_writeable(vd) || !spa_writeable(spa))) {
942                         zio->io_error = 0;
943                 } else {
944                         ASSERT(zio->io_error != 0);
945                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
946                             spa, vd, NULL, 0, 0);
947                         zio->io_error = ENXIO;
948                 }
949
950                 mutex_enter(&vd->vdev_probe_lock);
951                 ASSERT(vd->vdev_probe_zio == zio);
952                 vd->vdev_probe_zio = NULL;
953                 mutex_exit(&vd->vdev_probe_lock);
954
955                 while ((pio = zio_walk_parents(zio)) != NULL)
956                         if (!vdev_accessible(vd, pio))
957                                 pio->io_error = ENXIO;
958
959                 kmem_free(vps, sizeof (*vps));
960         }
961 }
962
963 /*
964  * Determine whether this device is accessible by reading and writing
965  * to several known locations: the pad regions of each vdev label
966  * but the first (which we leave alone in case it contains a VTOC).
967  */
968 zio_t *
969 vdev_probe(vdev_t *vd, zio_t *zio)
970 {
971         spa_t *spa = vd->vdev_spa;
972         vdev_probe_stats_t *vps = NULL;
973         zio_t *pio;
974
975         ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977         /*
978          * Don't probe the probe.
979          */
980         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981                 return (NULL);
982
983         /*
984          * To prevent 'probe storms' when a device fails, we create
985          * just one probe i/o at a time.  All zios that want to probe
986          * this vdev will become parents of the probe io.
987          */
988         mutex_enter(&vd->vdev_probe_lock);
989
990         if ((pio = vd->vdev_probe_zio) == NULL) {
991                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995                     ZIO_FLAG_TRYHARD;
996
997                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998                         /*
999                          * vdev_cant_read and vdev_cant_write can only
1000                          * transition from TRUE to FALSE when we have the
1001                          * SCL_ZIO lock as writer; otherwise they can only
1002                          * transition from FALSE to TRUE.  This ensures that
1003                          * any zio looking at these values can assume that
1004                          * failures persist for the life of the I/O.  That's
1005                          * important because when a device has intermittent
1006                          * connectivity problems, we want to ensure that
1007                          * they're ascribed to the device (ENXIO) and not
1008                          * the zio (EIO).
1009                          *
1010                          * Since we hold SCL_ZIO as writer here, clear both
1011                          * values so the probe can reevaluate from first
1012                          * principles.
1013                          */
1014                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015                         vd->vdev_cant_read = B_FALSE;
1016                         vd->vdev_cant_write = B_FALSE;
1017                 }
1018
1019                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020                     vdev_probe_done, vps,
1021                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023                 /*
1024                  * We can't change the vdev state in this context, so we
1025                  * kick off an async task to do it on our behalf.
1026                  */
1027                 if (zio != NULL) {
1028                         vd->vdev_probe_wanted = B_TRUE;
1029                         spa_async_request(spa, SPA_ASYNC_PROBE);
1030                 }
1031         }
1032
1033         if (zio != NULL)
1034                 zio_add_child(zio, pio);
1035
1036         mutex_exit(&vd->vdev_probe_lock);
1037
1038         if (vps == NULL) {
1039                 ASSERT(zio != NULL);
1040                 return (NULL);
1041         }
1042
1043         for (int l = 1; l < VDEV_LABELS; l++) {
1044                 zio_nowait(zio_read_phys(pio, vd,
1045                     vdev_label_offset(vd->vdev_psize, l,
1046                     offsetof(vdev_label_t, vl_pad2)),
1047                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050         }
1051
1052         if (zio == NULL)
1053                 return (pio);
1054
1055         zio_nowait(pio);
1056         return (NULL);
1057 }
1058
1059 static void
1060 vdev_open_child(void *arg)
1061 {
1062         vdev_t *vd = arg;
1063
1064         vd->vdev_open_thread = curthread;
1065         vd->vdev_open_error = vdev_open(vd);
1066         vd->vdev_open_thread = NULL;
1067 }
1068
1069 boolean_t
1070 vdev_uses_zvols(vdev_t *vd)
1071 {
1072         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1073             strlen(ZVOL_DIR)) == 0)
1074                 return (B_TRUE);
1075         for (int c = 0; c < vd->vdev_children; c++)
1076                 if (vdev_uses_zvols(vd->vdev_child[c]))
1077                         return (B_TRUE);
1078         return (B_FALSE);
1079 }
1080
1081 void
1082 vdev_open_children(vdev_t *vd)
1083 {
1084         taskq_t *tq;
1085         int children = vd->vdev_children;
1086
1087         /*
1088          * in order to handle pools on top of zvols, do the opens
1089          * in a single thread so that the same thread holds the
1090          * spa_namespace_lock
1091          */
1092         if (B_TRUE || vdev_uses_zvols(vd)) {
1093                 for (int c = 0; c < children; c++)
1094                         vd->vdev_child[c]->vdev_open_error =
1095                             vdev_open(vd->vdev_child[c]);
1096                 return;
1097         }
1098         tq = taskq_create("vdev_open", children, minclsyspri,
1099             children, children, TASKQ_PREPOPULATE);
1100
1101         for (int c = 0; c < children; c++)
1102                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1103                     TQ_SLEEP) != 0);
1104
1105         taskq_destroy(tq);
1106 }
1107
1108 /*
1109  * Prepare a virtual device for access.
1110  */
1111 int
1112 vdev_open(vdev_t *vd)
1113 {
1114         spa_t *spa = vd->vdev_spa;
1115         int error;
1116         uint64_t osize = 0;
1117         uint64_t asize, psize;
1118         uint64_t ashift = 0;
1119
1120         ASSERT(vd->vdev_open_thread == curthread ||
1121             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1122         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1123             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1124             vd->vdev_state == VDEV_STATE_OFFLINE);
1125
1126         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1127         vd->vdev_cant_read = B_FALSE;
1128         vd->vdev_cant_write = B_FALSE;
1129         vd->vdev_min_asize = vdev_get_min_asize(vd);
1130
1131         /*
1132          * If this vdev is not removed, check its fault status.  If it's
1133          * faulted, bail out of the open.
1134          */
1135         if (!vd->vdev_removed && vd->vdev_faulted) {
1136                 ASSERT(vd->vdev_children == 0);
1137                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1138                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1139                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1140                     vd->vdev_label_aux);
1141                 return (ENXIO);
1142         } else if (vd->vdev_offline) {
1143                 ASSERT(vd->vdev_children == 0);
1144                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1145                 return (ENXIO);
1146         }
1147
1148         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1149
1150         /*
1151          * Reset the vdev_reopening flag so that we actually close
1152          * the vdev on error.
1153          */
1154         vd->vdev_reopening = B_FALSE;
1155         if (zio_injection_enabled && error == 0)
1156                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1157
1158         if (error) {
1159                 if (vd->vdev_removed &&
1160                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1161                         vd->vdev_removed = B_FALSE;
1162
1163                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1164                     vd->vdev_stat.vs_aux);
1165                 return (error);
1166         }
1167
1168         vd->vdev_removed = B_FALSE;
1169
1170         /*
1171          * Recheck the faulted flag now that we have confirmed that
1172          * the vdev is accessible.  If we're faulted, bail.
1173          */
1174         if (vd->vdev_faulted) {
1175                 ASSERT(vd->vdev_children == 0);
1176                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1177                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1178                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1179                     vd->vdev_label_aux);
1180                 return (ENXIO);
1181         }
1182
1183         if (vd->vdev_degraded) {
1184                 ASSERT(vd->vdev_children == 0);
1185                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1186                     VDEV_AUX_ERR_EXCEEDED);
1187         } else {
1188                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1189         }
1190
1191         /*
1192          * For hole or missing vdevs we just return success.
1193          */
1194         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1195                 return (0);
1196
1197         for (int c = 0; c < vd->vdev_children; c++) {
1198                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1199                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1200                             VDEV_AUX_NONE);
1201                         break;
1202                 }
1203         }
1204
1205         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1206
1207         if (vd->vdev_children == 0) {
1208                 if (osize < SPA_MINDEVSIZE) {
1209                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1210                             VDEV_AUX_TOO_SMALL);
1211                         return (EOVERFLOW);
1212                 }
1213                 psize = osize;
1214                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1215         } else {
1216                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1217                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1218                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1219                             VDEV_AUX_TOO_SMALL);
1220                         return (EOVERFLOW);
1221                 }
1222                 psize = 0;
1223                 asize = osize;
1224         }
1225
1226         vd->vdev_psize = psize;
1227
1228         /*
1229          * Make sure the allocatable size hasn't shrunk.
1230          */
1231         if (asize < vd->vdev_min_asize) {
1232                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233                     VDEV_AUX_BAD_LABEL);
1234                 return (EINVAL);
1235         }
1236
1237         if (vd->vdev_asize == 0) {
1238                 /*
1239                  * This is the first-ever open, so use the computed values.
1240                  * For testing purposes, a higher ashift can be requested.
1241                  */
1242                 vd->vdev_asize = asize;
1243                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1244         } else {
1245                 /*
1246                  * Make sure the alignment requirement hasn't increased.
1247                  */
1248                 if (ashift > vd->vdev_top->vdev_ashift) {
1249                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1250                             VDEV_AUX_BAD_LABEL);
1251                         return (EINVAL);
1252                 }
1253         }
1254
1255         /*
1256          * If all children are healthy and the asize has increased,
1257          * then we've experienced dynamic LUN growth.  If automatic
1258          * expansion is enabled then use the additional space.
1259          */
1260         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1261             (vd->vdev_expanding || spa->spa_autoexpand))
1262                 vd->vdev_asize = asize;
1263
1264         vdev_set_min_asize(vd);
1265
1266         /*
1267          * Ensure we can issue some IO before declaring the
1268          * vdev open for business.
1269          */
1270         if (vd->vdev_ops->vdev_op_leaf &&
1271             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1272                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1273                     VDEV_AUX_ERR_EXCEEDED);
1274                 return (error);
1275         }
1276
1277         /*
1278          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1279          * resilver.  But don't do this if we are doing a reopen for a scrub,
1280          * since this would just restart the scrub we are already doing.
1281          */
1282         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1283             vdev_resilver_needed(vd, NULL, NULL))
1284                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1285
1286         return (0);
1287 }
1288
1289 /*
1290  * Called once the vdevs are all opened, this routine validates the label
1291  * contents.  This needs to be done before vdev_load() so that we don't
1292  * inadvertently do repair I/Os to the wrong device.
1293  *
1294  * This function will only return failure if one of the vdevs indicates that it
1295  * has since been destroyed or exported.  This is only possible if
1296  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1297  * will be updated but the function will return 0.
1298  */
1299 int
1300 vdev_validate(vdev_t *vd)
1301 {
1302         spa_t *spa = vd->vdev_spa;
1303         nvlist_t *label;
1304         uint64_t guid = 0, top_guid;
1305         uint64_t state;
1306
1307         for (int c = 0; c < vd->vdev_children; c++)
1308                 if (vdev_validate(vd->vdev_child[c]) != 0)
1309                         return (EBADF);
1310
1311         /*
1312          * If the device has already failed, or was marked offline, don't do
1313          * any further validation.  Otherwise, label I/O will fail and we will
1314          * overwrite the previous state.
1315          */
1316         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1317                 uint64_t aux_guid = 0;
1318                 nvlist_t *nvl;
1319
1320                 if ((label = vdev_label_read_config(vd)) == NULL) {
1321                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1322                             VDEV_AUX_BAD_LABEL);
1323                         return (0);
1324                 }
1325
1326                 /*
1327                  * Determine if this vdev has been split off into another
1328                  * pool.  If so, then refuse to open it.
1329                  */
1330                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1331                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1332                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1333                             VDEV_AUX_SPLIT_POOL);
1334                         nvlist_free(label);
1335                         return (0);
1336                 }
1337
1338                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1339                     &guid) != 0 || guid != spa_guid(spa)) {
1340                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1341                             VDEV_AUX_CORRUPT_DATA);
1342                         nvlist_free(label);
1343                         return (0);
1344                 }
1345
1346                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1347                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1348                     &aux_guid) != 0)
1349                         aux_guid = 0;
1350
1351                 /*
1352                  * If this vdev just became a top-level vdev because its
1353                  * sibling was detached, it will have adopted the parent's
1354                  * vdev guid -- but the label may or may not be on disk yet.
1355                  * Fortunately, either version of the label will have the
1356                  * same top guid, so if we're a top-level vdev, we can
1357                  * safely compare to that instead.
1358                  *
1359                  * If we split this vdev off instead, then we also check the
1360                  * original pool's guid.  We don't want to consider the vdev
1361                  * corrupt if it is partway through a split operation.
1362                  */
1363                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1364                     &guid) != 0 ||
1365                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1366                     &top_guid) != 0 ||
1367                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1368                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1369                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1370                             VDEV_AUX_CORRUPT_DATA);
1371                         nvlist_free(label);
1372                         return (0);
1373                 }
1374
1375                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1376                     &state) != 0) {
1377                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1378                             VDEV_AUX_CORRUPT_DATA);
1379                         nvlist_free(label);
1380                         return (0);
1381                 }
1382
1383                 nvlist_free(label);
1384
1385                 /*
1386                  * If this is a verbatim import, no need to check the
1387                  * state of the pool.
1388                  */
1389                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1390                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1391                     state != POOL_STATE_ACTIVE)
1392                         return (EBADF);
1393
1394                 /*
1395                  * If we were able to open and validate a vdev that was
1396                  * previously marked permanently unavailable, clear that state
1397                  * now.
1398                  */
1399                 if (vd->vdev_not_present)
1400                         vd->vdev_not_present = 0;
1401         }
1402
1403         return (0);
1404 }
1405
1406 /*
1407  * Close a virtual device.
1408  */
1409 void
1410 vdev_close(vdev_t *vd)
1411 {
1412         spa_t *spa = vd->vdev_spa;
1413         vdev_t *pvd = vd->vdev_parent;
1414
1415         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1416
1417         /*
1418          * If our parent is reopening, then we are as well, unless we are
1419          * going offline.
1420          */
1421         if (pvd != NULL && pvd->vdev_reopening)
1422                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1423
1424         vd->vdev_ops->vdev_op_close(vd);
1425
1426         vdev_cache_purge(vd);
1427
1428         /*
1429          * We record the previous state before we close it, so that if we are
1430          * doing a reopen(), we don't generate FMA ereports if we notice that
1431          * it's still faulted.
1432          */
1433         vd->vdev_prevstate = vd->vdev_state;
1434
1435         if (vd->vdev_offline)
1436                 vd->vdev_state = VDEV_STATE_OFFLINE;
1437         else
1438                 vd->vdev_state = VDEV_STATE_CLOSED;
1439         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1440 }
1441
1442 void
1443 vdev_hold(vdev_t *vd)
1444 {
1445         spa_t *spa = vd->vdev_spa;
1446
1447         ASSERT(spa_is_root(spa));
1448         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1449                 return;
1450
1451         for (int c = 0; c < vd->vdev_children; c++)
1452                 vdev_hold(vd->vdev_child[c]);
1453
1454         if (vd->vdev_ops->vdev_op_leaf)
1455                 vd->vdev_ops->vdev_op_hold(vd);
1456 }
1457
1458 void
1459 vdev_rele(vdev_t *vd)
1460 {
1461         spa_t *spa = vd->vdev_spa;
1462
1463         ASSERT(spa_is_root(spa));
1464         for (int c = 0; c < vd->vdev_children; c++)
1465                 vdev_rele(vd->vdev_child[c]);
1466
1467         if (vd->vdev_ops->vdev_op_leaf)
1468                 vd->vdev_ops->vdev_op_rele(vd);
1469 }
1470
1471 /*
1472  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1473  * reopen leaf vdevs which had previously been opened as they might deadlock
1474  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1475  * If the leaf has never been opened then open it, as usual.
1476  */
1477 void
1478 vdev_reopen(vdev_t *vd)
1479 {
1480         spa_t *spa = vd->vdev_spa;
1481
1482         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1483
1484         /* set the reopening flag unless we're taking the vdev offline */
1485         vd->vdev_reopening = !vd->vdev_offline;
1486         vdev_close(vd);
1487         (void) vdev_open(vd);
1488
1489         /*
1490          * Call vdev_validate() here to make sure we have the same device.
1491          * Otherwise, a device with an invalid label could be successfully
1492          * opened in response to vdev_reopen().
1493          */
1494         if (vd->vdev_aux) {
1495                 (void) vdev_validate_aux(vd);
1496                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1497                     vd->vdev_aux == &spa->spa_l2cache &&
1498                     !l2arc_vdev_present(vd))
1499                         l2arc_add_vdev(spa, vd);
1500         } else {
1501                 (void) vdev_validate(vd);
1502         }
1503
1504         /*
1505          * Reassess parent vdev's health.
1506          */
1507         vdev_propagate_state(vd);
1508 }
1509
1510 int
1511 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1512 {
1513         int error;
1514
1515         /*
1516          * Normally, partial opens (e.g. of a mirror) are allowed.
1517          * For a create, however, we want to fail the request if
1518          * there are any components we can't open.
1519          */
1520         error = vdev_open(vd);
1521
1522         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1523                 vdev_close(vd);
1524                 return (error ? error : ENXIO);
1525         }
1526
1527         /*
1528          * Recursively initialize all labels.
1529          */
1530         if ((error = vdev_label_init(vd, txg, isreplacing ?
1531             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1532                 vdev_close(vd);
1533                 return (error);
1534         }
1535
1536         return (0);
1537 }
1538
1539 void
1540 vdev_metaslab_set_size(vdev_t *vd)
1541 {
1542         /*
1543          * Aim for roughly 200 metaslabs per vdev.
1544          */
1545         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1546         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1547 }
1548
1549 void
1550 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1551 {
1552         ASSERT(vd == vd->vdev_top);
1553         ASSERT(!vd->vdev_ishole);
1554         ASSERT(ISP2(flags));
1555         ASSERT(spa_writeable(vd->vdev_spa));
1556
1557         if (flags & VDD_METASLAB)
1558                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1559
1560         if (flags & VDD_DTL)
1561                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1562
1563         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1564 }
1565
1566 /*
1567  * DTLs.
1568  *
1569  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1570  * the vdev has less than perfect replication.  There are four kinds of DTL:
1571  *
1572  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1573  *
1574  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1575  *
1576  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1577  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1578  *      txgs that was scrubbed.
1579  *
1580  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1581  *      persistent errors or just some device being offline.
1582  *      Unlike the other three, the DTL_OUTAGE map is not generally
1583  *      maintained; it's only computed when needed, typically to
1584  *      determine whether a device can be detached.
1585  *
1586  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1587  * either has the data or it doesn't.
1588  *
1589  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1590  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1591  * if any child is less than fully replicated, then so is its parent.
1592  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1593  * comprising only those txgs which appear in 'maxfaults' or more children;
1594  * those are the txgs we don't have enough replication to read.  For example,
1595  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1596  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1597  * two child DTL_MISSING maps.
1598  *
1599  * It should be clear from the above that to compute the DTLs and outage maps
1600  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1601  * Therefore, that is all we keep on disk.  When loading the pool, or after
1602  * a configuration change, we generate all other DTLs from first principles.
1603  */
1604 void
1605 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1606 {
1607         space_map_t *sm = &vd->vdev_dtl[t];
1608
1609         ASSERT(t < DTL_TYPES);
1610         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1611         ASSERT(spa_writeable(vd->vdev_spa));
1612
1613         mutex_enter(sm->sm_lock);
1614         if (!space_map_contains(sm, txg, size))
1615                 space_map_add(sm, txg, size);
1616         mutex_exit(sm->sm_lock);
1617 }
1618
1619 boolean_t
1620 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1621 {
1622         space_map_t *sm = &vd->vdev_dtl[t];
1623         boolean_t dirty = B_FALSE;
1624
1625         ASSERT(t < DTL_TYPES);
1626         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627
1628         mutex_enter(sm->sm_lock);
1629         if (sm->sm_space != 0)
1630                 dirty = space_map_contains(sm, txg, size);
1631         mutex_exit(sm->sm_lock);
1632
1633         return (dirty);
1634 }
1635
1636 boolean_t
1637 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1638 {
1639         space_map_t *sm = &vd->vdev_dtl[t];
1640         boolean_t empty;
1641
1642         mutex_enter(sm->sm_lock);
1643         empty = (sm->sm_space == 0);
1644         mutex_exit(sm->sm_lock);
1645
1646         return (empty);
1647 }
1648
1649 /*
1650  * Reassess DTLs after a config change or scrub completion.
1651  */
1652 void
1653 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1654 {
1655         spa_t *spa = vd->vdev_spa;
1656         avl_tree_t reftree;
1657         int minref;
1658
1659         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1660
1661         for (int c = 0; c < vd->vdev_children; c++)
1662                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1663                     scrub_txg, scrub_done);
1664
1665         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1666                 return;
1667
1668         if (vd->vdev_ops->vdev_op_leaf) {
1669                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1670
1671                 mutex_enter(&vd->vdev_dtl_lock);
1672                 if (scrub_txg != 0 &&
1673                     (spa->spa_scrub_started ||
1674                     (scn && scn->scn_phys.scn_errors == 0))) {
1675                         /*
1676                          * We completed a scrub up to scrub_txg.  If we
1677                          * did it without rebooting, then the scrub dtl
1678                          * will be valid, so excise the old region and
1679                          * fold in the scrub dtl.  Otherwise, leave the
1680                          * dtl as-is if there was an error.
1681                          *
1682                          * There's little trick here: to excise the beginning
1683                          * of the DTL_MISSING map, we put it into a reference
1684                          * tree and then add a segment with refcnt -1 that
1685                          * covers the range [0, scrub_txg).  This means
1686                          * that each txg in that range has refcnt -1 or 0.
1687                          * We then add DTL_SCRUB with a refcnt of 2, so that
1688                          * entries in the range [0, scrub_txg) will have a
1689                          * positive refcnt -- either 1 or 2.  We then convert
1690                          * the reference tree into the new DTL_MISSING map.
1691                          */
1692                         space_map_ref_create(&reftree);
1693                         space_map_ref_add_map(&reftree,
1694                             &vd->vdev_dtl[DTL_MISSING], 1);
1695                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1696                         space_map_ref_add_map(&reftree,
1697                             &vd->vdev_dtl[DTL_SCRUB], 2);
1698                         space_map_ref_generate_map(&reftree,
1699                             &vd->vdev_dtl[DTL_MISSING], 1);
1700                         space_map_ref_destroy(&reftree);
1701                 }
1702                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1703                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1704                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1705                 if (scrub_done)
1706                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1707                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1708                 if (!vdev_readable(vd))
1709                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1710                 else
1711                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1712                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1713                 mutex_exit(&vd->vdev_dtl_lock);
1714
1715                 if (txg != 0)
1716                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1717                 return;
1718         }
1719
1720         mutex_enter(&vd->vdev_dtl_lock);
1721         for (int t = 0; t < DTL_TYPES; t++) {
1722                 /* account for child's outage in parent's missing map */
1723                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1724                 if (t == DTL_SCRUB)
1725                         continue;                       /* leaf vdevs only */
1726                 if (t == DTL_PARTIAL)
1727                         minref = 1;                     /* i.e. non-zero */
1728                 else if (vd->vdev_nparity != 0)
1729                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1730                 else
1731                         minref = vd->vdev_children;     /* any kind of mirror */
1732                 space_map_ref_create(&reftree);
1733                 for (int c = 0; c < vd->vdev_children; c++) {
1734                         vdev_t *cvd = vd->vdev_child[c];
1735                         mutex_enter(&cvd->vdev_dtl_lock);
1736                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1737                         mutex_exit(&cvd->vdev_dtl_lock);
1738                 }
1739                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1740                 space_map_ref_destroy(&reftree);
1741         }
1742         mutex_exit(&vd->vdev_dtl_lock);
1743 }
1744
1745 static int
1746 vdev_dtl_load(vdev_t *vd)
1747 {
1748         spa_t *spa = vd->vdev_spa;
1749         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1750         objset_t *mos = spa->spa_meta_objset;
1751         dmu_buf_t *db;
1752         int error;
1753
1754         ASSERT(vd->vdev_children == 0);
1755
1756         if (smo->smo_object == 0)
1757                 return (0);
1758
1759         ASSERT(!vd->vdev_ishole);
1760
1761         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1762                 return (error);
1763
1764         ASSERT3U(db->db_size, >=, sizeof (*smo));
1765         bcopy(db->db_data, smo, sizeof (*smo));
1766         dmu_buf_rele(db, FTAG);
1767
1768         mutex_enter(&vd->vdev_dtl_lock);
1769         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1770             NULL, SM_ALLOC, smo, mos);
1771         mutex_exit(&vd->vdev_dtl_lock);
1772
1773         return (error);
1774 }
1775
1776 void
1777 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1778 {
1779         spa_t *spa = vd->vdev_spa;
1780         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1781         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1782         objset_t *mos = spa->spa_meta_objset;
1783         space_map_t smsync;
1784         kmutex_t smlock;
1785         dmu_buf_t *db;
1786         dmu_tx_t *tx;
1787
1788         ASSERT(!vd->vdev_ishole);
1789
1790         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1791
1792         if (vd->vdev_detached) {
1793                 if (smo->smo_object != 0) {
1794                         int err = dmu_object_free(mos, smo->smo_object, tx);
1795                         ASSERT3U(err, ==, 0);
1796                         smo->smo_object = 0;
1797                 }
1798                 dmu_tx_commit(tx);
1799                 return;
1800         }
1801
1802         if (smo->smo_object == 0) {
1803                 ASSERT(smo->smo_objsize == 0);
1804                 ASSERT(smo->smo_alloc == 0);
1805                 smo->smo_object = dmu_object_alloc(mos,
1806                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1807                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1808                 ASSERT(smo->smo_object != 0);
1809                 vdev_config_dirty(vd->vdev_top);
1810         }
1811
1812         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1813
1814         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1815             &smlock);
1816
1817         mutex_enter(&smlock);
1818
1819         mutex_enter(&vd->vdev_dtl_lock);
1820         space_map_walk(sm, space_map_add, &smsync);
1821         mutex_exit(&vd->vdev_dtl_lock);
1822
1823         space_map_truncate(smo, mos, tx);
1824         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1825
1826         space_map_destroy(&smsync);
1827
1828         mutex_exit(&smlock);
1829         mutex_destroy(&smlock);
1830
1831         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1832         dmu_buf_will_dirty(db, tx);
1833         ASSERT3U(db->db_size, >=, sizeof (*smo));
1834         bcopy(smo, db->db_data, sizeof (*smo));
1835         dmu_buf_rele(db, FTAG);
1836
1837         dmu_tx_commit(tx);
1838 }
1839
1840 /*
1841  * Determine whether the specified vdev can be offlined/detached/removed
1842  * without losing data.
1843  */
1844 boolean_t
1845 vdev_dtl_required(vdev_t *vd)
1846 {
1847         spa_t *spa = vd->vdev_spa;
1848         vdev_t *tvd = vd->vdev_top;
1849         uint8_t cant_read = vd->vdev_cant_read;
1850         boolean_t required;
1851
1852         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1853
1854         if (vd == spa->spa_root_vdev || vd == tvd)
1855                 return (B_TRUE);
1856
1857         /*
1858          * Temporarily mark the device as unreadable, and then determine
1859          * whether this results in any DTL outages in the top-level vdev.
1860          * If not, we can safely offline/detach/remove the device.
1861          */
1862         vd->vdev_cant_read = B_TRUE;
1863         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1864         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1865         vd->vdev_cant_read = cant_read;
1866         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1867
1868         if (!required && zio_injection_enabled)
1869                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1870
1871         return (required);
1872 }
1873
1874 /*
1875  * Determine if resilver is needed, and if so the txg range.
1876  */
1877 boolean_t
1878 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1879 {
1880         boolean_t needed = B_FALSE;
1881         uint64_t thismin = UINT64_MAX;
1882         uint64_t thismax = 0;
1883
1884         if (vd->vdev_children == 0) {
1885                 mutex_enter(&vd->vdev_dtl_lock);
1886                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1887                     vdev_writeable(vd)) {
1888                         space_seg_t *ss;
1889
1890                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1891                         thismin = ss->ss_start - 1;
1892                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1893                         thismax = ss->ss_end;
1894                         needed = B_TRUE;
1895                 }
1896                 mutex_exit(&vd->vdev_dtl_lock);
1897         } else {
1898                 for (int c = 0; c < vd->vdev_children; c++) {
1899                         vdev_t *cvd = vd->vdev_child[c];
1900                         uint64_t cmin, cmax;
1901
1902                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1903                                 thismin = MIN(thismin, cmin);
1904                                 thismax = MAX(thismax, cmax);
1905                                 needed = B_TRUE;
1906                         }
1907                 }
1908         }
1909
1910         if (needed && minp) {
1911                 *minp = thismin;
1912                 *maxp = thismax;
1913         }
1914         return (needed);
1915 }
1916
1917 void
1918 vdev_load(vdev_t *vd)
1919 {
1920         /*
1921          * Recursively load all children.
1922          */
1923         for (int c = 0; c < vd->vdev_children; c++)
1924                 vdev_load(vd->vdev_child[c]);
1925
1926         /*
1927          * If this is a top-level vdev, initialize its metaslabs.
1928          */
1929         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1930             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1931             vdev_metaslab_init(vd, 0) != 0))
1932                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1933                     VDEV_AUX_CORRUPT_DATA);
1934
1935         /*
1936          * If this is a leaf vdev, load its DTL.
1937          */
1938         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1939                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1940                     VDEV_AUX_CORRUPT_DATA);
1941 }
1942
1943 /*
1944  * The special vdev case is used for hot spares and l2cache devices.  Its
1945  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1946  * we make sure that we can open the underlying device, then try to read the
1947  * label, and make sure that the label is sane and that it hasn't been
1948  * repurposed to another pool.
1949  */
1950 int
1951 vdev_validate_aux(vdev_t *vd)
1952 {
1953         nvlist_t *label;
1954         uint64_t guid, version;
1955         uint64_t state;
1956
1957         if (!vdev_readable(vd))
1958                 return (0);
1959
1960         if ((label = vdev_label_read_config(vd)) == NULL) {
1961                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1962                     VDEV_AUX_CORRUPT_DATA);
1963                 return (-1);
1964         }
1965
1966         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1967             version > SPA_VERSION ||
1968             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1969             guid != vd->vdev_guid ||
1970             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1971                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1972                     VDEV_AUX_CORRUPT_DATA);
1973                 nvlist_free(label);
1974                 return (-1);
1975         }
1976
1977         /*
1978          * We don't actually check the pool state here.  If it's in fact in
1979          * use by another pool, we update this fact on the fly when requested.
1980          */
1981         nvlist_free(label);
1982         return (0);
1983 }
1984
1985 void
1986 vdev_remove(vdev_t *vd, uint64_t txg)
1987 {
1988         spa_t *spa = vd->vdev_spa;
1989         objset_t *mos = spa->spa_meta_objset;
1990         dmu_tx_t *tx;
1991
1992         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1993
1994         if (vd->vdev_dtl_smo.smo_object) {
1995                 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1996                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1997                 vd->vdev_dtl_smo.smo_object = 0;
1998         }
1999
2000         if (vd->vdev_ms != NULL) {
2001                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2002                         metaslab_t *msp = vd->vdev_ms[m];
2003
2004                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2005                                 continue;
2006
2007                         ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2008                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2009                         msp->ms_smo.smo_object = 0;
2010                 }
2011         }
2012
2013         if (vd->vdev_ms_array) {
2014                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2015                 vd->vdev_ms_array = 0;
2016                 vd->vdev_ms_shift = 0;
2017         }
2018         dmu_tx_commit(tx);
2019 }
2020
2021 void
2022 vdev_sync_done(vdev_t *vd, uint64_t txg)
2023 {
2024         metaslab_t *msp;
2025         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2026
2027         ASSERT(!vd->vdev_ishole);
2028
2029         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2030                 metaslab_sync_done(msp, txg);
2031
2032         if (reassess)
2033                 metaslab_sync_reassess(vd->vdev_mg);
2034 }
2035
2036 void
2037 vdev_sync(vdev_t *vd, uint64_t txg)
2038 {
2039         spa_t *spa = vd->vdev_spa;
2040         vdev_t *lvd;
2041         metaslab_t *msp;
2042         dmu_tx_t *tx;
2043
2044         ASSERT(!vd->vdev_ishole);
2045
2046         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2047                 ASSERT(vd == vd->vdev_top);
2048                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2049                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2050                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2051                 ASSERT(vd->vdev_ms_array != 0);
2052                 vdev_config_dirty(vd);
2053                 dmu_tx_commit(tx);
2054         }
2055
2056         /*
2057          * Remove the metadata associated with this vdev once it's empty.
2058          */
2059         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2060                 vdev_remove(vd, txg);
2061
2062         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2063                 metaslab_sync(msp, txg);
2064                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2065         }
2066
2067         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2068                 vdev_dtl_sync(lvd, txg);
2069
2070         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2071 }
2072
2073 uint64_t
2074 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2075 {
2076         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2077 }
2078
2079 /*
2080  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2081  * not be opened, and no I/O is attempted.
2082  */
2083 int
2084 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2085 {
2086         vdev_t *vd, *tvd;
2087
2088         spa_vdev_state_enter(spa, SCL_NONE);
2089
2090         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2091                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2092
2093         if (!vd->vdev_ops->vdev_op_leaf)
2094                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2095
2096         tvd = vd->vdev_top;
2097
2098         /*
2099          * We don't directly use the aux state here, but if we do a
2100          * vdev_reopen(), we need this value to be present to remember why we
2101          * were faulted.
2102          */
2103         vd->vdev_label_aux = aux;
2104
2105         /*
2106          * Faulted state takes precedence over degraded.
2107          */
2108         vd->vdev_delayed_close = B_FALSE;
2109         vd->vdev_faulted = 1ULL;
2110         vd->vdev_degraded = 0ULL;
2111         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2112
2113         /*
2114          * If this device has the only valid copy of the data, then
2115          * back off and simply mark the vdev as degraded instead.
2116          */
2117         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2118                 vd->vdev_degraded = 1ULL;
2119                 vd->vdev_faulted = 0ULL;
2120
2121                 /*
2122                  * If we reopen the device and it's not dead, only then do we
2123                  * mark it degraded.
2124                  */
2125                 vdev_reopen(tvd);
2126
2127                 if (vdev_readable(vd))
2128                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2129         }
2130
2131         return (spa_vdev_state_exit(spa, vd, 0));
2132 }
2133
2134 /*
2135  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2136  * user that something is wrong.  The vdev continues to operate as normal as far
2137  * as I/O is concerned.
2138  */
2139 int
2140 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2141 {
2142         vdev_t *vd;
2143
2144         spa_vdev_state_enter(spa, SCL_NONE);
2145
2146         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2147                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2148
2149         if (!vd->vdev_ops->vdev_op_leaf)
2150                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2151
2152         /*
2153          * If the vdev is already faulted, then don't do anything.
2154          */
2155         if (vd->vdev_faulted || vd->vdev_degraded)
2156                 return (spa_vdev_state_exit(spa, NULL, 0));
2157
2158         vd->vdev_degraded = 1ULL;
2159         if (!vdev_is_dead(vd))
2160                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2161                     aux);
2162
2163         return (spa_vdev_state_exit(spa, vd, 0));
2164 }
2165
2166 /*
2167  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2168  * any attached spare device should be detached when the device finishes
2169  * resilvering.  Second, the online should be treated like a 'test' online case,
2170  * so no FMA events are generated if the device fails to open.
2171  */
2172 int
2173 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2174 {
2175         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2176
2177         spa_vdev_state_enter(spa, SCL_NONE);
2178
2179         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2180                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2181
2182         if (!vd->vdev_ops->vdev_op_leaf)
2183                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2184
2185         tvd = vd->vdev_top;
2186         vd->vdev_offline = B_FALSE;
2187         vd->vdev_tmpoffline = B_FALSE;
2188         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2189         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2190
2191         /* XXX - L2ARC 1.0 does not support expansion */
2192         if (!vd->vdev_aux) {
2193                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2194                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2195         }
2196
2197         vdev_reopen(tvd);
2198         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2199
2200         if (!vd->vdev_aux) {
2201                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2202                         pvd->vdev_expanding = B_FALSE;
2203         }
2204
2205         if (newstate)
2206                 *newstate = vd->vdev_state;
2207         if ((flags & ZFS_ONLINE_UNSPARE) &&
2208             !vdev_is_dead(vd) && vd->vdev_parent &&
2209             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2210             vd->vdev_parent->vdev_child[0] == vd)
2211                 vd->vdev_unspare = B_TRUE;
2212
2213         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2214
2215                 /* XXX - L2ARC 1.0 does not support expansion */
2216                 if (vd->vdev_aux)
2217                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2218                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2219         }
2220         return (spa_vdev_state_exit(spa, vd, 0));
2221 }
2222
2223 static int
2224 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2225 {
2226         vdev_t *vd, *tvd;
2227         int error = 0;
2228         uint64_t generation;
2229         metaslab_group_t *mg;
2230
2231 top:
2232         spa_vdev_state_enter(spa, SCL_ALLOC);
2233
2234         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2235                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2236
2237         if (!vd->vdev_ops->vdev_op_leaf)
2238                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2239
2240         tvd = vd->vdev_top;
2241         mg = tvd->vdev_mg;
2242         generation = spa->spa_config_generation + 1;
2243
2244         /*
2245          * If the device isn't already offline, try to offline it.
2246          */
2247         if (!vd->vdev_offline) {
2248                 /*
2249                  * If this device has the only valid copy of some data,
2250                  * don't allow it to be offlined. Log devices are always
2251                  * expendable.
2252                  */
2253                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2254                     vdev_dtl_required(vd))
2255                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2256
2257                 /*
2258                  * If the top-level is a slog and it has had allocations
2259                  * then proceed.  We check that the vdev's metaslab group
2260                  * is not NULL since it's possible that we may have just
2261                  * added this vdev but not yet initialized its metaslabs.
2262                  */
2263                 if (tvd->vdev_islog && mg != NULL) {
2264                         /*
2265                          * Prevent any future allocations.
2266                          */
2267                         metaslab_group_passivate(mg);
2268                         (void) spa_vdev_state_exit(spa, vd, 0);
2269
2270                         error = spa_offline_log(spa);
2271
2272                         spa_vdev_state_enter(spa, SCL_ALLOC);
2273
2274                         /*
2275                          * Check to see if the config has changed.
2276                          */
2277                         if (error || generation != spa->spa_config_generation) {
2278                                 metaslab_group_activate(mg);
2279                                 if (error)
2280                                         return (spa_vdev_state_exit(spa,
2281                                             vd, error));
2282                                 (void) spa_vdev_state_exit(spa, vd, 0);
2283                                 goto top;
2284                         }
2285                         ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2286                 }
2287
2288                 /*
2289                  * Offline this device and reopen its top-level vdev.
2290                  * If the top-level vdev is a log device then just offline
2291                  * it. Otherwise, if this action results in the top-level
2292                  * vdev becoming unusable, undo it and fail the request.
2293                  */
2294                 vd->vdev_offline = B_TRUE;
2295                 vdev_reopen(tvd);
2296
2297                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2298                     vdev_is_dead(tvd)) {
2299                         vd->vdev_offline = B_FALSE;
2300                         vdev_reopen(tvd);
2301                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2302                 }
2303
2304                 /*
2305                  * Add the device back into the metaslab rotor so that
2306                  * once we online the device it's open for business.
2307                  */
2308                 if (tvd->vdev_islog && mg != NULL)
2309                         metaslab_group_activate(mg);
2310         }
2311
2312         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2313
2314         return (spa_vdev_state_exit(spa, vd, 0));
2315 }
2316
2317 int
2318 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2319 {
2320         int error;
2321
2322         mutex_enter(&spa->spa_vdev_top_lock);
2323         error = vdev_offline_locked(spa, guid, flags);
2324         mutex_exit(&spa->spa_vdev_top_lock);
2325
2326         return (error);
2327 }
2328
2329 /*
2330  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2331  * vdev_offline(), we assume the spa config is locked.  We also clear all
2332  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2333  */
2334 void
2335 vdev_clear(spa_t *spa, vdev_t *vd)
2336 {
2337         vdev_t *rvd = spa->spa_root_vdev;
2338
2339         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2340
2341         if (vd == NULL)
2342                 vd = rvd;
2343
2344         vd->vdev_stat.vs_read_errors = 0;
2345         vd->vdev_stat.vs_write_errors = 0;
2346         vd->vdev_stat.vs_checksum_errors = 0;
2347
2348         for (int c = 0; c < vd->vdev_children; c++)
2349                 vdev_clear(spa, vd->vdev_child[c]);
2350
2351         /*
2352          * If we're in the FAULTED state or have experienced failed I/O, then
2353          * clear the persistent state and attempt to reopen the device.  We
2354          * also mark the vdev config dirty, so that the new faulted state is
2355          * written out to disk.
2356          */
2357         if (vd->vdev_faulted || vd->vdev_degraded ||
2358             !vdev_readable(vd) || !vdev_writeable(vd)) {
2359
2360                 /*
2361                  * When reopening in reponse to a clear event, it may be due to
2362                  * a fmadm repair request.  In this case, if the device is
2363                  * still broken, we want to still post the ereport again.
2364                  */
2365                 vd->vdev_forcefault = B_TRUE;
2366
2367                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2368                 vd->vdev_cant_read = B_FALSE;
2369                 vd->vdev_cant_write = B_FALSE;
2370
2371                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2372
2373                 vd->vdev_forcefault = B_FALSE;
2374
2375                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2376                         vdev_state_dirty(vd->vdev_top);
2377
2378                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2379                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2380
2381                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2382         }
2383
2384         /*
2385          * When clearing a FMA-diagnosed fault, we always want to
2386          * unspare the device, as we assume that the original spare was
2387          * done in response to the FMA fault.
2388          */
2389         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2390             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2391             vd->vdev_parent->vdev_child[0] == vd)
2392                 vd->vdev_unspare = B_TRUE;
2393 }
2394
2395 boolean_t
2396 vdev_is_dead(vdev_t *vd)
2397 {
2398         /*
2399          * Holes and missing devices are always considered "dead".
2400          * This simplifies the code since we don't have to check for
2401          * these types of devices in the various code paths.
2402          * Instead we rely on the fact that we skip over dead devices
2403          * before issuing I/O to them.
2404          */
2405         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2406             vd->vdev_ops == &vdev_missing_ops);
2407 }
2408
2409 boolean_t
2410 vdev_readable(vdev_t *vd)
2411 {
2412         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2413 }
2414
2415 boolean_t
2416 vdev_writeable(vdev_t *vd)
2417 {
2418         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2419 }
2420
2421 boolean_t
2422 vdev_allocatable(vdev_t *vd)
2423 {
2424         uint64_t state = vd->vdev_state;
2425
2426         /*
2427          * We currently allow allocations from vdevs which may be in the
2428          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2429          * fails to reopen then we'll catch it later when we're holding
2430          * the proper locks.  Note that we have to get the vdev state
2431          * in a local variable because although it changes atomically,
2432          * we're asking two separate questions about it.
2433          */
2434         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2435             !vd->vdev_cant_write && !vd->vdev_ishole);
2436 }
2437
2438 boolean_t
2439 vdev_accessible(vdev_t *vd, zio_t *zio)
2440 {
2441         ASSERT(zio->io_vd == vd);
2442
2443         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2444                 return (B_FALSE);
2445
2446         if (zio->io_type == ZIO_TYPE_READ)
2447                 return (!vd->vdev_cant_read);
2448
2449         if (zio->io_type == ZIO_TYPE_WRITE)
2450                 return (!vd->vdev_cant_write);
2451
2452         return (B_TRUE);
2453 }
2454
2455 /*
2456  * Get statistics for the given vdev.
2457  */
2458 void
2459 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2460 {
2461         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2462
2463         mutex_enter(&vd->vdev_stat_lock);
2464         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2465         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2466         vs->vs_state = vd->vdev_state;
2467         vs->vs_rsize = vdev_get_min_asize(vd);
2468         if (vd->vdev_ops->vdev_op_leaf)
2469                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2470         mutex_exit(&vd->vdev_stat_lock);
2471
2472         /*
2473          * If we're getting stats on the root vdev, aggregate the I/O counts
2474          * over all top-level vdevs (i.e. the direct children of the root).
2475          */
2476         if (vd == rvd) {
2477                 for (int c = 0; c < rvd->vdev_children; c++) {
2478                         vdev_t *cvd = rvd->vdev_child[c];
2479                         vdev_stat_t *cvs = &cvd->vdev_stat;
2480
2481                         mutex_enter(&vd->vdev_stat_lock);
2482                         for (int t = 0; t < ZIO_TYPES; t++) {
2483                                 vs->vs_ops[t] += cvs->vs_ops[t];
2484                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2485                         }
2486                         cvs->vs_scan_removing = cvd->vdev_removing;
2487                         mutex_exit(&vd->vdev_stat_lock);
2488                 }
2489         }
2490 }
2491
2492 void
2493 vdev_clear_stats(vdev_t *vd)
2494 {
2495         mutex_enter(&vd->vdev_stat_lock);
2496         vd->vdev_stat.vs_space = 0;
2497         vd->vdev_stat.vs_dspace = 0;
2498         vd->vdev_stat.vs_alloc = 0;
2499         mutex_exit(&vd->vdev_stat_lock);
2500 }
2501
2502 void
2503 vdev_scan_stat_init(vdev_t *vd)
2504 {
2505         vdev_stat_t *vs = &vd->vdev_stat;
2506
2507         for (int c = 0; c < vd->vdev_children; c++)
2508                 vdev_scan_stat_init(vd->vdev_child[c]);
2509
2510         mutex_enter(&vd->vdev_stat_lock);
2511         vs->vs_scan_processed = 0;
2512         mutex_exit(&vd->vdev_stat_lock);
2513 }
2514
2515 void
2516 vdev_stat_update(zio_t *zio, uint64_t psize)
2517 {
2518         spa_t *spa = zio->io_spa;
2519         vdev_t *rvd = spa->spa_root_vdev;
2520         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2521         vdev_t *pvd;
2522         uint64_t txg = zio->io_txg;
2523         vdev_stat_t *vs = &vd->vdev_stat;
2524         zio_type_t type = zio->io_type;
2525         int flags = zio->io_flags;
2526
2527         /*
2528          * If this i/o is a gang leader, it didn't do any actual work.
2529          */
2530         if (zio->io_gang_tree)
2531                 return;
2532
2533         if (zio->io_error == 0) {
2534                 /*
2535                  * If this is a root i/o, don't count it -- we've already
2536                  * counted the top-level vdevs, and vdev_get_stats() will
2537                  * aggregate them when asked.  This reduces contention on
2538                  * the root vdev_stat_lock and implicitly handles blocks
2539                  * that compress away to holes, for which there is no i/o.
2540                  * (Holes never create vdev children, so all the counters
2541                  * remain zero, which is what we want.)
2542                  *
2543                  * Note: this only applies to successful i/o (io_error == 0)
2544                  * because unlike i/o counts, errors are not additive.
2545                  * When reading a ditto block, for example, failure of
2546                  * one top-level vdev does not imply a root-level error.
2547                  */
2548                 if (vd == rvd)
2549                         return;
2550
2551                 ASSERT(vd == zio->io_vd);
2552
2553                 if (flags & ZIO_FLAG_IO_BYPASS)
2554                         return;
2555
2556                 mutex_enter(&vd->vdev_stat_lock);
2557
2558                 if (flags & ZIO_FLAG_IO_REPAIR) {
2559                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2560                                 dsl_scan_phys_t *scn_phys =
2561                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2562                                 uint64_t *processed = &scn_phys->scn_processed;
2563
2564                                 /* XXX cleanup? */
2565                                 if (vd->vdev_ops->vdev_op_leaf)
2566                                         atomic_add_64(processed, psize);
2567                                 vs->vs_scan_processed += psize;
2568                         }
2569
2570                         if (flags & ZIO_FLAG_SELF_HEAL)
2571                                 vs->vs_self_healed += psize;
2572                 }
2573
2574                 vs->vs_ops[type]++;
2575                 vs->vs_bytes[type] += psize;
2576
2577                 mutex_exit(&vd->vdev_stat_lock);
2578                 return;
2579         }
2580
2581         if (flags & ZIO_FLAG_SPECULATIVE)
2582                 return;
2583
2584         /*
2585          * If this is an I/O error that is going to be retried, then ignore the
2586          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2587          * hard errors, when in reality they can happen for any number of
2588          * innocuous reasons (bus resets, MPxIO link failure, etc).
2589          */
2590         if (zio->io_error == EIO &&
2591             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2592                 return;
2593
2594         /*
2595          * Intent logs writes won't propagate their error to the root
2596          * I/O so don't mark these types of failures as pool-level
2597          * errors.
2598          */
2599         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2600                 return;
2601
2602         mutex_enter(&vd->vdev_stat_lock);
2603         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2604                 if (zio->io_error == ECKSUM)
2605                         vs->vs_checksum_errors++;
2606                 else
2607                         vs->vs_read_errors++;
2608         }
2609         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2610                 vs->vs_write_errors++;
2611         mutex_exit(&vd->vdev_stat_lock);
2612
2613         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2614             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2615             (flags & ZIO_FLAG_SCAN_THREAD) ||
2616             spa->spa_claiming)) {
2617                 /*
2618                  * This is either a normal write (not a repair), or it's
2619                  * a repair induced by the scrub thread, or it's a repair
2620                  * made by zil_claim() during spa_load() in the first txg.
2621                  * In the normal case, we commit the DTL change in the same
2622                  * txg as the block was born.  In the scrub-induced repair
2623                  * case, we know that scrubs run in first-pass syncing context,
2624                  * so we commit the DTL change in spa_syncing_txg(spa).
2625                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2626                  *
2627                  * We currently do not make DTL entries for failed spontaneous
2628                  * self-healing writes triggered by normal (non-scrubbing)
2629                  * reads, because we have no transactional context in which to
2630                  * do so -- and it's not clear that it'd be desirable anyway.
2631                  */
2632                 if (vd->vdev_ops->vdev_op_leaf) {
2633                         uint64_t commit_txg = txg;
2634                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2635                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2636                                 ASSERT(spa_sync_pass(spa) == 1);
2637                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2638                                 commit_txg = spa_syncing_txg(spa);
2639                         } else if (spa->spa_claiming) {
2640                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2641                                 commit_txg = spa_first_txg(spa);
2642                         }
2643                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2644                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2645                                 return;
2646                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2647                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2648                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2649                 }
2650                 if (vd != rvd)
2651                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2652         }
2653 }
2654
2655 /*
2656  * Update the in-core space usage stats for this vdev, its metaslab class,
2657  * and the root vdev.
2658  */
2659 void
2660 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2661     int64_t space_delta)
2662 {
2663         int64_t dspace_delta = space_delta;
2664         spa_t *spa = vd->vdev_spa;
2665         vdev_t *rvd = spa->spa_root_vdev;
2666         metaslab_group_t *mg = vd->vdev_mg;
2667         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2668
2669         ASSERT(vd == vd->vdev_top);
2670
2671         /*
2672          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2673          * factor.  We must calculate this here and not at the root vdev
2674          * because the root vdev's psize-to-asize is simply the max of its
2675          * childrens', thus not accurate enough for us.
2676          */
2677         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2678         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2679         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2680             vd->vdev_deflate_ratio;
2681
2682         mutex_enter(&vd->vdev_stat_lock);
2683         vd->vdev_stat.vs_alloc += alloc_delta;
2684         vd->vdev_stat.vs_space += space_delta;
2685         vd->vdev_stat.vs_dspace += dspace_delta;
2686         mutex_exit(&vd->vdev_stat_lock);
2687
2688         if (mc == spa_normal_class(spa)) {
2689                 mutex_enter(&rvd->vdev_stat_lock);
2690                 rvd->vdev_stat.vs_alloc += alloc_delta;
2691                 rvd->vdev_stat.vs_space += space_delta;
2692                 rvd->vdev_stat.vs_dspace += dspace_delta;
2693                 mutex_exit(&rvd->vdev_stat_lock);
2694         }
2695
2696         if (mc != NULL) {
2697                 ASSERT(rvd == vd->vdev_parent);
2698                 ASSERT(vd->vdev_ms_count != 0);
2699
2700                 metaslab_class_space_update(mc,
2701                     alloc_delta, defer_delta, space_delta, dspace_delta);
2702         }
2703 }
2704
2705 /*
2706  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2707  * so that it will be written out next time the vdev configuration is synced.
2708  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2709  */
2710 void
2711 vdev_config_dirty(vdev_t *vd)
2712 {
2713         spa_t *spa = vd->vdev_spa;
2714         vdev_t *rvd = spa->spa_root_vdev;
2715         int c;
2716
2717         ASSERT(spa_writeable(spa));
2718
2719         /*
2720          * If this is an aux vdev (as with l2cache and spare devices), then we
2721          * update the vdev config manually and set the sync flag.
2722          */
2723         if (vd->vdev_aux != NULL) {
2724                 spa_aux_vdev_t *sav = vd->vdev_aux;
2725                 nvlist_t **aux;
2726                 uint_t naux;
2727
2728                 for (c = 0; c < sav->sav_count; c++) {
2729                         if (sav->sav_vdevs[c] == vd)
2730                                 break;
2731                 }
2732
2733                 if (c == sav->sav_count) {
2734                         /*
2735                          * We're being removed.  There's nothing more to do.
2736                          */
2737                         ASSERT(sav->sav_sync == B_TRUE);
2738                         return;
2739                 }
2740
2741                 sav->sav_sync = B_TRUE;
2742
2743                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2744                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2745                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2746                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2747                 }
2748
2749                 ASSERT(c < naux);
2750
2751                 /*
2752                  * Setting the nvlist in the middle if the array is a little
2753                  * sketchy, but it will work.
2754                  */
2755                 nvlist_free(aux[c]);
2756                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2757
2758                 return;
2759         }
2760
2761         /*
2762          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2763          * must either hold SCL_CONFIG as writer, or must be the sync thread
2764          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2765          * so this is sufficient to ensure mutual exclusion.
2766          */
2767         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2768             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2769             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2770
2771         if (vd == rvd) {
2772                 for (c = 0; c < rvd->vdev_children; c++)
2773                         vdev_config_dirty(rvd->vdev_child[c]);
2774         } else {
2775                 ASSERT(vd == vd->vdev_top);
2776
2777                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2778                     !vd->vdev_ishole)
2779                         list_insert_head(&spa->spa_config_dirty_list, vd);
2780         }
2781 }
2782
2783 void
2784 vdev_config_clean(vdev_t *vd)
2785 {
2786         spa_t *spa = vd->vdev_spa;
2787
2788         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2789             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2790             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2791
2792         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2793         list_remove(&spa->spa_config_dirty_list, vd);
2794 }
2795
2796 /*
2797  * Mark a top-level vdev's state as dirty, so that the next pass of
2798  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2799  * the state changes from larger config changes because they require
2800  * much less locking, and are often needed for administrative actions.
2801  */
2802 void
2803 vdev_state_dirty(vdev_t *vd)
2804 {
2805         spa_t *spa = vd->vdev_spa;
2806
2807         ASSERT(spa_writeable(spa));
2808         ASSERT(vd == vd->vdev_top);
2809
2810         /*
2811          * The state list is protected by the SCL_STATE lock.  The caller
2812          * must either hold SCL_STATE as writer, or must be the sync thread
2813          * (which holds SCL_STATE as reader).  There's only one sync thread,
2814          * so this is sufficient to ensure mutual exclusion.
2815          */
2816         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2817             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2818             spa_config_held(spa, SCL_STATE, RW_READER)));
2819
2820         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2821                 list_insert_head(&spa->spa_state_dirty_list, vd);
2822 }
2823
2824 void
2825 vdev_state_clean(vdev_t *vd)
2826 {
2827         spa_t *spa = vd->vdev_spa;
2828
2829         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2830             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2831             spa_config_held(spa, SCL_STATE, RW_READER)));
2832
2833         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2834         list_remove(&spa->spa_state_dirty_list, vd);
2835 }
2836
2837 /*
2838  * Propagate vdev state up from children to parent.
2839  */
2840 void
2841 vdev_propagate_state(vdev_t *vd)
2842 {
2843         spa_t *spa = vd->vdev_spa;
2844         vdev_t *rvd = spa->spa_root_vdev;
2845         int degraded = 0, faulted = 0;
2846         int corrupted = 0;
2847         vdev_t *child;
2848
2849         if (vd->vdev_children > 0) {
2850                 for (int c = 0; c < vd->vdev_children; c++) {
2851                         child = vd->vdev_child[c];
2852
2853                         /*
2854                          * Don't factor holes into the decision.
2855                          */
2856                         if (child->vdev_ishole)
2857                                 continue;
2858
2859                         if (!vdev_readable(child) ||
2860                             (!vdev_writeable(child) && spa_writeable(spa))) {
2861                                 /*
2862                                  * Root special: if there is a top-level log
2863                                  * device, treat the root vdev as if it were
2864                                  * degraded.
2865                                  */
2866                                 if (child->vdev_islog && vd == rvd)
2867                                         degraded++;
2868                                 else
2869                                         faulted++;
2870                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2871                                 degraded++;
2872                         }
2873
2874                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2875                                 corrupted++;
2876                 }
2877
2878                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2879
2880                 /*
2881                  * Root special: if there is a top-level vdev that cannot be
2882                  * opened due to corrupted metadata, then propagate the root
2883                  * vdev's aux state as 'corrupt' rather than 'insufficient
2884                  * replicas'.
2885                  */
2886                 if (corrupted && vd == rvd &&
2887                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2888                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2889                             VDEV_AUX_CORRUPT_DATA);
2890         }
2891
2892         if (vd->vdev_parent)
2893                 vdev_propagate_state(vd->vdev_parent);
2894 }
2895
2896 /*
2897  * Set a vdev's state.  If this is during an open, we don't update the parent
2898  * state, because we're in the process of opening children depth-first.
2899  * Otherwise, we propagate the change to the parent.
2900  *
2901  * If this routine places a device in a faulted state, an appropriate ereport is
2902  * generated.
2903  */
2904 void
2905 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2906 {
2907         uint64_t save_state;
2908         spa_t *spa = vd->vdev_spa;
2909
2910         if (state == vd->vdev_state) {
2911                 vd->vdev_stat.vs_aux = aux;
2912                 return;
2913         }
2914
2915         save_state = vd->vdev_state;
2916
2917         vd->vdev_state = state;
2918         vd->vdev_stat.vs_aux = aux;
2919
2920         /*
2921          * If we are setting the vdev state to anything but an open state, then
2922          * always close the underlying device unless the device has requested
2923          * a delayed close (i.e. we're about to remove or fault the device).
2924          * Otherwise, we keep accessible but invalid devices open forever.
2925          * We don't call vdev_close() itself, because that implies some extra
2926          * checks (offline, etc) that we don't want here.  This is limited to
2927          * leaf devices, because otherwise closing the device will affect other
2928          * children.
2929          */
2930         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2931             vd->vdev_ops->vdev_op_leaf)
2932                 vd->vdev_ops->vdev_op_close(vd);
2933
2934         /*
2935          * If we have brought this vdev back into service, we need
2936          * to notify fmd so that it can gracefully repair any outstanding
2937          * cases due to a missing device.  We do this in all cases, even those
2938          * that probably don't correlate to a repaired fault.  This is sure to
2939          * catch all cases, and we let the zfs-retire agent sort it out.  If
2940          * this is a transient state it's OK, as the retire agent will
2941          * double-check the state of the vdev before repairing it.
2942          */
2943         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2944             vd->vdev_prevstate != state)
2945                 zfs_post_state_change(spa, vd);
2946
2947         if (vd->vdev_removed &&
2948             state == VDEV_STATE_CANT_OPEN &&
2949             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2950                 /*
2951                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2952                  * device was previously marked removed and someone attempted to
2953                  * reopen it.  If this failed due to a nonexistent device, then
2954                  * keep the device in the REMOVED state.  We also let this be if
2955                  * it is one of our special test online cases, which is only
2956                  * attempting to online the device and shouldn't generate an FMA
2957                  * fault.
2958                  */
2959                 vd->vdev_state = VDEV_STATE_REMOVED;
2960                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2961         } else if (state == VDEV_STATE_REMOVED) {
2962                 vd->vdev_removed = B_TRUE;
2963         } else if (state == VDEV_STATE_CANT_OPEN) {
2964                 /*
2965                  * If we fail to open a vdev during an import or recovery, we
2966                  * mark it as "not available", which signifies that it was
2967                  * never there to begin with.  Failure to open such a device
2968                  * is not considered an error.
2969                  */
2970                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2971                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2972                     vd->vdev_ops->vdev_op_leaf)
2973                         vd->vdev_not_present = 1;
2974
2975                 /*
2976                  * Post the appropriate ereport.  If the 'prevstate' field is
2977                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2978                  * that this is part of a vdev_reopen().  In this case, we don't
2979                  * want to post the ereport if the device was already in the
2980                  * CANT_OPEN state beforehand.
2981                  *
2982                  * If the 'checkremove' flag is set, then this is an attempt to
2983                  * online the device in response to an insertion event.  If we
2984                  * hit this case, then we have detected an insertion event for a
2985                  * faulted or offline device that wasn't in the removed state.
2986                  * In this scenario, we don't post an ereport because we are
2987                  * about to replace the device, or attempt an online with
2988                  * vdev_forcefault, which will generate the fault for us.
2989                  */
2990                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2991                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2992                     vd != spa->spa_root_vdev) {
2993                         const char *class;
2994
2995                         switch (aux) {
2996                         case VDEV_AUX_OPEN_FAILED:
2997                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2998                                 break;
2999                         case VDEV_AUX_CORRUPT_DATA:
3000                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3001                                 break;
3002                         case VDEV_AUX_NO_REPLICAS:
3003                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3004                                 break;
3005                         case VDEV_AUX_BAD_GUID_SUM:
3006                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3007                                 break;
3008                         case VDEV_AUX_TOO_SMALL:
3009                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3010                                 break;
3011                         case VDEV_AUX_BAD_LABEL:
3012                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3013                                 break;
3014                         default:
3015                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3016                         }
3017
3018                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3019                 }
3020
3021                 /* Erase any notion of persistent removed state */
3022                 vd->vdev_removed = B_FALSE;
3023         } else {
3024                 vd->vdev_removed = B_FALSE;
3025         }
3026
3027         if (!isopen && vd->vdev_parent)
3028                 vdev_propagate_state(vd->vdev_parent);
3029 }
3030
3031 /*
3032  * Check the vdev configuration to ensure that it's capable of supporting
3033  * a root pool.
3034  *
3035  * On Solaris, we do not support RAID-Z or partial configuration.  In
3036  * addition, only a single top-level vdev is allowed and none of the
3037  * leaves can be wholedisks.
3038  *
3039  * For FreeBSD, we can boot from any configuration. There is a
3040  * limitation that the boot filesystem must be either uncompressed or
3041  * compresses with lzjb compression but I'm not sure how to enforce
3042  * that here.
3043  */
3044 boolean_t
3045 vdev_is_bootable(vdev_t *vd)
3046 {
3047 #ifdef sun
3048         if (!vd->vdev_ops->vdev_op_leaf) {
3049                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3050
3051                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3052                     vd->vdev_children > 1) {
3053                         return (B_FALSE);
3054                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3055                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3056                         return (B_FALSE);
3057                 }
3058         } else if (vd->vdev_wholedisk == 1) {
3059                 return (B_FALSE);
3060         }
3061
3062         for (int c = 0; c < vd->vdev_children; c++) {
3063                 if (!vdev_is_bootable(vd->vdev_child[c]))
3064                         return (B_FALSE);
3065         }
3066 #endif  /* sun */
3067         return (B_TRUE);
3068 }
3069
3070 /*
3071  * Load the state from the original vdev tree (ovd) which
3072  * we've retrieved from the MOS config object. If the original
3073  * vdev was offline or faulted then we transfer that state to the
3074  * device in the current vdev tree (nvd).
3075  */
3076 void
3077 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3078 {
3079         spa_t *spa = nvd->vdev_spa;
3080
3081         ASSERT(nvd->vdev_top->vdev_islog);
3082         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3083         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3084
3085         for (int c = 0; c < nvd->vdev_children; c++)
3086                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3087
3088         if (nvd->vdev_ops->vdev_op_leaf) {
3089                 /*
3090                  * Restore the persistent vdev state
3091                  */
3092                 nvd->vdev_offline = ovd->vdev_offline;
3093                 nvd->vdev_faulted = ovd->vdev_faulted;
3094                 nvd->vdev_degraded = ovd->vdev_degraded;
3095                 nvd->vdev_removed = ovd->vdev_removed;
3096         }
3097 }
3098
3099 /*
3100  * Determine if a log device has valid content.  If the vdev was
3101  * removed or faulted in the MOS config then we know that
3102  * the content on the log device has already been written to the pool.
3103  */
3104 boolean_t
3105 vdev_log_state_valid(vdev_t *vd)
3106 {
3107         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3108             !vd->vdev_removed)
3109                 return (B_TRUE);
3110
3111         for (int c = 0; c < vd->vdev_children; c++)
3112                 if (vdev_log_state_valid(vd->vdev_child[c]))
3113                         return (B_TRUE);
3114
3115         return (B_FALSE);
3116 }
3117
3118 /*
3119  * Expand a vdev if possible.
3120  */
3121 void
3122 vdev_expand(vdev_t *vd, uint64_t txg)
3123 {
3124         ASSERT(vd->vdev_top == vd);
3125         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3126
3127         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3128                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3129                 vdev_config_dirty(vd);
3130         }
3131 }
3132
3133 /*
3134  * Split a vdev.
3135  */
3136 void
3137 vdev_split(vdev_t *vd)
3138 {
3139         vdev_t *cvd, *pvd = vd->vdev_parent;
3140
3141         vdev_remove_child(pvd, vd);
3142         vdev_compact_children(pvd);
3143
3144         cvd = pvd->vdev_child[0];
3145         if (pvd->vdev_children == 1) {
3146                 vdev_remove_parent(cvd);
3147                 cvd->vdev_splitting = B_TRUE;
3148         }
3149         vdev_propagate_state(cvd);
3150 }