]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/dev/acpica/acpi_timer.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / dev / acpica / acpi_timer.c
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_acpi.h"
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/sysctl.h>
37 #include <sys/timetc.h>
38
39 #include <machine/bus.h>
40 #include <machine/resource.h>
41 #include <sys/rman.h>
42
43 #include <contrib/dev/acpica/include/acpi.h>
44 #include <contrib/dev/acpica/include/accommon.h>
45
46 #include <dev/acpica/acpivar.h>
47 #include <dev/pci/pcivar.h>
48
49 /*
50  * A timecounter based on the free-running ACPI timer.
51  *
52  * Based on the i386-only mp_clock.c by <phk@FreeBSD.ORG>.
53  */
54
55 /* Hooks for the ACPI CA debugging infrastructure */
56 #define _COMPONENT      ACPI_TIMER
57 ACPI_MODULE_NAME("TIMER")
58
59 static device_t                 acpi_timer_dev;
60 static struct resource          *acpi_timer_reg;
61 static bus_space_handle_t       acpi_timer_bsh;
62 static bus_space_tag_t          acpi_timer_bst;
63
64 static u_int    acpi_timer_frequency = 14318182 / 4;
65
66 static void     acpi_timer_identify(driver_t *driver, device_t parent);
67 static int      acpi_timer_probe(device_t dev);
68 static int      acpi_timer_attach(device_t dev);
69 static u_int    acpi_timer_get_timecount(struct timecounter *tc);
70 static u_int    acpi_timer_get_timecount_safe(struct timecounter *tc);
71 static int      acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS);
72 static void     acpi_timer_boot_test(void);
73
74 static int      acpi_timer_test(void);
75
76 static device_method_t acpi_timer_methods[] = {
77     DEVMETHOD(device_identify,  acpi_timer_identify),
78     DEVMETHOD(device_probe,     acpi_timer_probe),
79     DEVMETHOD(device_attach,    acpi_timer_attach),
80
81     {0, 0}
82 };
83
84 static driver_t acpi_timer_driver = {
85     "acpi_timer",
86     acpi_timer_methods,
87     0,
88 };
89
90 static devclass_t acpi_timer_devclass;
91 DRIVER_MODULE(acpi_timer, acpi, acpi_timer_driver, acpi_timer_devclass, 0, 0);
92 MODULE_DEPEND(acpi_timer, acpi, 1, 1, 1);
93
94 static struct timecounter acpi_timer_timecounter = {
95         acpi_timer_get_timecount_safe,  /* get_timecount function */
96         0,                              /* no poll_pps */
97         0,                              /* no default counter_mask */
98         0,                              /* no default frequency */
99         "ACPI",                         /* name */
100         -1                              /* quality (chosen later) */
101 };
102
103 static __inline uint32_t
104 acpi_timer_read(void)
105 {
106
107     return (bus_space_read_4(acpi_timer_bst, acpi_timer_bsh, 0));
108 }
109
110 /*
111  * Locate the ACPI timer using the FADT, set up and allocate the I/O resources
112  * we will be using.
113  */
114 static void
115 acpi_timer_identify(driver_t *driver, device_t parent)
116 {
117     device_t dev;
118     u_long rlen, rstart;
119     int rid, rtype;
120
121     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
122
123     if (acpi_disabled("timer") || (acpi_quirks & ACPI_Q_TIMER) ||
124         acpi_timer_dev)
125         return_VOID;
126
127     if ((dev = BUS_ADD_CHILD(parent, 0, "acpi_timer", 0)) == NULL) {
128         device_printf(parent, "could not add acpi_timer0\n");
129         return_VOID;
130     }
131     acpi_timer_dev = dev;
132
133     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
134     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
135         rtype = SYS_RES_MEMORY;
136         break;
137     case ACPI_ADR_SPACE_SYSTEM_IO:
138         rtype = SYS_RES_IOPORT;
139         break;
140     default:
141         return_VOID;
142     }
143     rid = 0;
144     rlen = AcpiGbl_FADT.PmTimerLength;
145     rstart = AcpiGbl_FADT.XPmTimerBlock.Address;
146     if (bus_set_resource(dev, rtype, rid, rstart, rlen))
147         device_printf(dev, "couldn't set resource (%s 0x%lx+0x%lx)\n",
148             (rtype == SYS_RES_IOPORT) ? "port" : "mem", rstart, rlen);
149     return_VOID;
150 }
151
152 static int
153 acpi_timer_probe(device_t dev)
154 {
155     char desc[40];
156     int i, j, rid, rtype;
157
158     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
159
160     if (dev != acpi_timer_dev)
161         return (ENXIO);
162
163     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
164     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
165         rtype = SYS_RES_MEMORY;
166         break;
167     case ACPI_ADR_SPACE_SYSTEM_IO:
168         rtype = SYS_RES_IOPORT;
169         break;
170     default:
171         return (ENXIO);
172     }
173     rid = 0;
174     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
175     if (acpi_timer_reg == NULL) {
176         device_printf(dev, "couldn't allocate resource (%s 0x%lx)\n",
177             (rtype == SYS_RES_IOPORT) ? "port" : "mem",
178             (u_long)AcpiGbl_FADT.XPmTimerBlock.Address);
179         return (ENXIO);
180     }
181     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
182     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
183     if (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER)
184         acpi_timer_timecounter.tc_counter_mask = 0xffffffff;
185     else
186         acpi_timer_timecounter.tc_counter_mask = 0x00ffffff;
187     acpi_timer_timecounter.tc_frequency = acpi_timer_frequency;
188     if (testenv("debug.acpi.timer_test"))
189         acpi_timer_boot_test();
190
191     /*
192      * If all tests of the counter succeed, use the ACPI-fast method.  If
193      * at least one failed, default to using the safe routine, which reads
194      * the timer multiple times to get a consistent value before returning.
195      */
196     j = 0;
197     if (bootverbose)
198         printf("ACPI timer:");
199     for (i = 0; i < 10; i++)
200         j += acpi_timer_test();
201     if (bootverbose)
202         printf(" -> %d\n", j);
203     if (j == 10) {
204         acpi_timer_timecounter.tc_name = "ACPI-fast";
205         acpi_timer_timecounter.tc_get_timecount = acpi_timer_get_timecount;
206         acpi_timer_timecounter.tc_quality = 900;
207     } else {
208         acpi_timer_timecounter.tc_name = "ACPI-safe";
209         acpi_timer_timecounter.tc_get_timecount = acpi_timer_get_timecount_safe;
210         acpi_timer_timecounter.tc_quality = 850;
211     }
212     tc_init(&acpi_timer_timecounter);
213
214     sprintf(desc, "%d-bit timer at %u.%06uMHz",
215         (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) != 0 ? 32 : 24,
216         acpi_timer_frequency / 1000000, acpi_timer_frequency % 1000000);
217     device_set_desc_copy(dev, desc);
218
219     /* Release the resource, we'll allocate it again during attach. */
220     bus_release_resource(dev, rtype, rid, acpi_timer_reg);
221     return (0);
222 }
223
224 static int
225 acpi_timer_attach(device_t dev)
226 {
227     int rid, rtype;
228
229     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
230
231     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
232     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
233         rtype = SYS_RES_MEMORY;
234         break;
235     case ACPI_ADR_SPACE_SYSTEM_IO:
236         rtype = SYS_RES_IOPORT;
237         break;
238     default:
239         return (ENXIO);
240     }
241     rid = 0;
242     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
243     if (acpi_timer_reg == NULL)
244         return (ENXIO);
245     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
246     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
247     return (0);
248 }
249
250 /*
251  * Fetch current time value from reliable hardware.
252  */
253 static u_int
254 acpi_timer_get_timecount(struct timecounter *tc)
255 {
256     return (acpi_timer_read());
257 }
258
259 /*
260  * Fetch current time value from hardware that may not correctly
261  * latch the counter.  We need to read until we have three monotonic
262  * samples and then use the middle one, otherwise we are not protected
263  * against the fact that the bits can be wrong in two directions.  If
264  * we only cared about monosity, two reads would be enough.
265  */
266 static u_int
267 acpi_timer_get_timecount_safe(struct timecounter *tc)
268 {
269     u_int u1, u2, u3;
270
271     u2 = acpi_timer_read();
272     u3 = acpi_timer_read();
273     do {
274         u1 = u2;
275         u2 = u3;
276         u3 = acpi_timer_read();
277     } while (u1 > u2 || u2 > u3);
278
279     return (u2);
280 }
281
282 /*
283  * Timecounter freqency adjustment interface.
284  */ 
285 static int
286 acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS)
287 {
288     int error;
289     u_int freq;
290  
291     if (acpi_timer_timecounter.tc_frequency == 0)
292         return (EOPNOTSUPP);
293     freq = acpi_timer_frequency;
294     error = sysctl_handle_int(oidp, &freq, 0, req);
295     if (error == 0 && req->newptr != NULL) {
296         acpi_timer_frequency = freq;
297         acpi_timer_timecounter.tc_frequency = acpi_timer_frequency;
298     }
299
300     return (error);
301 }
302  
303 SYSCTL_PROC(_machdep, OID_AUTO, acpi_timer_freq, CTLTYPE_INT | CTLFLAG_RW,
304     0, sizeof(u_int), acpi_timer_sysctl_freq, "I", "ACPI timer frequency");
305
306 /*
307  * Some ACPI timers are known or believed to suffer from implementation
308  * problems which can lead to erroneous values being read.  This function
309  * tests for consistent results from the timer and returns 1 if it believes
310  * the timer is consistent, otherwise it returns 0.
311  *
312  * It appears the cause is that the counter is not latched to the PCI bus
313  * clock when read:
314  *
315  * ] 20. ACPI Timer Errata
316  * ]
317  * ]   Problem: The power management timer may return improper result when
318  * ]   read. Although the timer value settles properly after incrementing,
319  * ]   while incrementing there is a 3nS window every 69.8nS where the
320  * ]   timer value is indeterminate (a 4.2% chance that the data will be
321  * ]   incorrect when read). As a result, the ACPI free running count up
322  * ]   timer specification is violated due to erroneous reads.  Implication:
323  * ]   System hangs due to the "inaccuracy" of the timer when used by
324  * ]   software for time critical events and delays.
325  * ]
326  * ] Workaround: Read the register twice and compare.
327  * ] Status: This will not be fixed in the PIIX4 or PIIX4E, it is fixed
328  * ] in the PIIX4M.
329  */
330 #define N 2000
331 static int
332 acpi_timer_test()
333 {
334     uint32_t last, this;
335     int delta, max, max2, min, n;
336     register_t s;
337
338     min = INT32_MAX;
339     max = max2 = 0;
340
341     /* Test the timer with interrupts disabled to get accurate results. */
342     s = intr_disable();
343     last = acpi_timer_read();
344     for (n = 0; n < N; n++) {
345         this = acpi_timer_read();
346         delta = acpi_TimerDelta(this, last);
347         if (delta > max) {
348             max2 = max;
349             max = delta;
350         } else if (delta > max2)
351             max2 = delta;
352         if (delta < min)
353             min = delta;
354         last = this;
355     }
356     intr_restore(s);
357
358     delta = max2 - min;
359     if ((max - min > 8 || delta > 3) && vm_guest == VM_GUEST_NO)
360         n = 0;
361     else if (min < 0 || max == 0 || max2 == 0)
362         n = 0;
363     else
364         n = 1;
365     if (bootverbose)
366         printf(" %d/%d", n, delta);
367
368     return (n);
369 }
370 #undef N
371
372 /*
373  * Test harness for verifying ACPI timer behaviour.
374  * Boot with debug.acpi.timer_test set to invoke this.
375  */
376 static void
377 acpi_timer_boot_test(void)
378 {
379     uint32_t u1, u2, u3;
380
381     u1 = acpi_timer_read();
382     u2 = acpi_timer_read();
383     u3 = acpi_timer_read();
384
385     device_printf(acpi_timer_dev, "timer test in progress, reboot to quit.\n");
386     for (;;) {
387         /*
388          * The failure case is where u3 > u1, but u2 does not fall between
389          * the two, ie. it contains garbage.
390          */
391         if (u3 > u1) {
392             if (u2 < u1 || u2 > u3)
393                 device_printf(acpi_timer_dev,
394                               "timer is not monotonic: 0x%08x,0x%08x,0x%08x\n",
395                               u1, u2, u3);
396         }
397         u1 = u2;
398         u2 = u3;
399         u3 = acpi_timer_read();
400     }
401 }