]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/dev/age/if_age.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / dev / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76
77 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
78
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93         uint16_t        age_vendorid;
94         uint16_t        age_deviceid;
95         const char      *age_name;
96 } age_devs[] = {
97         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98             "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int age_mediachange(struct ifnet *);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(struct ifnet *);
122 static void age_start_locked(struct ifnet *);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146 static void age_rxvlan(struct age_softc *);
147 static void age_rxfilter(struct age_softc *);
148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154 static device_method_t age_methods[] = {
155         /* Device interface. */
156         DEVMETHOD(device_probe,         age_probe),
157         DEVMETHOD(device_attach,        age_attach),
158         DEVMETHOD(device_detach,        age_detach),
159         DEVMETHOD(device_shutdown,      age_shutdown),
160         DEVMETHOD(device_suspend,       age_suspend),
161         DEVMETHOD(device_resume,        age_resume),
162
163         /* MII interface. */
164         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
165         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
166         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
167
168         { NULL, NULL }
169 };
170
171 static driver_t age_driver = {
172         "age",
173         age_methods,
174         sizeof(struct age_softc)
175 };
176
177 static devclass_t age_devclass;
178
179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182 static struct resource_spec age_res_spec_mem[] = {
183         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
184         { -1,                   0,              0 }
185 };
186
187 static struct resource_spec age_irq_spec_legacy[] = {
188         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
189         { -1,                   0,              0 }
190 };
191
192 static struct resource_spec age_irq_spec_msi[] = {
193         { SYS_RES_IRQ,          1,              RF_ACTIVE },
194         { -1,                   0,              0 }
195 };
196
197 static struct resource_spec age_irq_spec_msix[] = {
198         { SYS_RES_IRQ,          1,              RF_ACTIVE },
199         { -1,                   0,              0 }
200 };
201
202 /*
203  *      Read a PHY register on the MII of the L1.
204  */
205 static int
206 age_miibus_readreg(device_t dev, int phy, int reg)
207 {
208         struct age_softc *sc;
209         uint32_t v;
210         int i;
211
212         sc = device_get_softc(dev);
213
214         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217                 DELAY(1);
218                 v = CSR_READ_4(sc, AGE_MDIO);
219                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220                         break;
221         }
222
223         if (i == 0) {
224                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225                 return (0);
226         }
227
228         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229 }
230
231 /*
232  *      Write a PHY register on the MII of the L1.
233  */
234 static int
235 age_miibus_writereg(device_t dev, int phy, int reg, int val)
236 {
237         struct age_softc *sc;
238         uint32_t v;
239         int i;
240
241         sc = device_get_softc(dev);
242
243         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247                 DELAY(1);
248                 v = CSR_READ_4(sc, AGE_MDIO);
249                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250                         break;
251         }
252
253         if (i == 0)
254                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255
256         return (0);
257 }
258
259 /*
260  *      Callback from MII layer when media changes.
261  */
262 static void
263 age_miibus_statchg(device_t dev)
264 {
265         struct age_softc *sc;
266
267         sc = device_get_softc(dev);
268         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269 }
270
271 /*
272  *      Get the current interface media status.
273  */
274 static void
275 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276 {
277         struct age_softc *sc;
278         struct mii_data *mii;
279
280         sc = ifp->if_softc;
281         AGE_LOCK(sc);
282         mii = device_get_softc(sc->age_miibus);
283
284         mii_pollstat(mii);
285         AGE_UNLOCK(sc);
286         ifmr->ifm_status = mii->mii_media_status;
287         ifmr->ifm_active = mii->mii_media_active;
288 }
289
290 /*
291  *      Set hardware to newly-selected media.
292  */
293 static int
294 age_mediachange(struct ifnet *ifp)
295 {
296         struct age_softc *sc;
297         struct mii_data *mii;
298         struct mii_softc *miisc;
299         int error;
300
301         sc = ifp->if_softc;
302         AGE_LOCK(sc);
303         mii = device_get_softc(sc->age_miibus);
304         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
305                 PHY_RESET(miisc);
306         error = mii_mediachg(mii);
307         AGE_UNLOCK(sc);
308
309         return (error);
310 }
311
312 static int
313 age_probe(device_t dev)
314 {
315         struct age_dev *sp;
316         int i;
317         uint16_t vendor, devid;
318
319         vendor = pci_get_vendor(dev);
320         devid = pci_get_device(dev);
321         sp = age_devs;
322         for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
323             i++, sp++) {
324                 if (vendor == sp->age_vendorid &&
325                     devid == sp->age_deviceid) {
326                         device_set_desc(dev, sp->age_name);
327                         return (BUS_PROBE_DEFAULT);
328                 }
329         }
330
331         return (ENXIO);
332 }
333
334 static void
335 age_get_macaddr(struct age_softc *sc)
336 {
337         uint32_t ea[2], reg;
338         int i, vpdc;
339
340         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341         if ((reg & SPI_VPD_ENB) != 0) {
342                 /* Get VPD stored in TWSI EEPROM. */
343                 reg &= ~SPI_VPD_ENB;
344                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345         }
346
347         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348                 /*
349                  * PCI VPD capability found, let TWSI reload EEPROM.
350                  * This will set ethernet address of controller.
351                  */
352                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353                     TWSI_CTRL_SW_LD_START);
354                 for (i = 100; i > 0; i--) {
355                         DELAY(1000);
356                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358                                 break;
359                 }
360                 if (i == 0)
361                         device_printf(sc->age_dev,
362                             "reloading EEPROM timeout!\n");
363         } else {
364                 if (bootverbose)
365                         device_printf(sc->age_dev,
366                             "PCI VPD capability not found!\n");
367         }
368
369         ea[0] = CSR_READ_4(sc, AGE_PAR0);
370         ea[1] = CSR_READ_4(sc, AGE_PAR1);
371         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377 }
378
379 static void
380 age_phy_reset(struct age_softc *sc)
381 {
382         uint16_t reg, pn;
383         int i, linkup;
384
385         /* Reset PHY. */
386         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387         DELAY(2000);
388         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389         DELAY(2000);
390
391 #define ATPHY_DBG_ADDR          0x1D
392 #define ATPHY_DBG_DATA          0x1E
393 #define ATPHY_CDTC              0x16
394 #define PHY_CDTC_ENB            0x0001
395 #define PHY_CDTC_POFF           8
396 #define ATPHY_CDTS              0x1C
397 #define PHY_CDTS_STAT_OK        0x0000
398 #define PHY_CDTS_STAT_SHORT     0x0100
399 #define PHY_CDTS_STAT_OPEN      0x0200
400 #define PHY_CDTS_STAT_INVAL     0x0300
401 #define PHY_CDTS_STAT_MASK      0x0300
402
403         /* Check power saving mode. Magic from Linux. */
404         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405         for (linkup = 0, pn = 0; pn < 4; pn++) {
406                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408                 for (i = 200; i > 0; i--) {
409                         DELAY(1000);
410                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411                             ATPHY_CDTC);
412                         if ((reg & PHY_CDTC_ENB) == 0)
413                                 break;
414                 }
415                 DELAY(1000);
416                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417                     ATPHY_CDTS);
418                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419                         linkup++;
420                         break;
421                 }
422         }
423         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425         if (linkup == 0) {
426                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427                     ATPHY_DBG_ADDR, 0);
428                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429                     ATPHY_DBG_DATA, 0x124E);
430                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431                     ATPHY_DBG_ADDR, 1);
432                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433                     ATPHY_DBG_DATA);
434                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435                     ATPHY_DBG_DATA, reg | 0x03);
436                 /* XXX */
437                 DELAY(1500 * 1000);
438                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439                     ATPHY_DBG_ADDR, 0);
440                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441                     ATPHY_DBG_DATA, 0x024E);
442     }
443
444 #undef  ATPHY_DBG_ADDR
445 #undef  ATPHY_DBG_DATA
446 #undef  ATPHY_CDTC
447 #undef  PHY_CDTC_ENB
448 #undef  PHY_CDTC_POFF
449 #undef  ATPHY_CDTS
450 #undef  PHY_CDTS_STAT_OK
451 #undef  PHY_CDTS_STAT_SHORT
452 #undef  PHY_CDTS_STAT_OPEN
453 #undef  PHY_CDTS_STAT_INVAL
454 #undef  PHY_CDTS_STAT_MASK
455 }
456
457 static int
458 age_attach(device_t dev)
459 {
460         struct age_softc *sc;
461         struct ifnet *ifp;
462         uint16_t burst;
463         int error, i, msic, msixc, pmc;
464
465         error = 0;
466         sc = device_get_softc(dev);
467         sc->age_dev = dev;
468
469         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470             MTX_DEF);
471         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474
475         /* Map the device. */
476         pci_enable_busmaster(dev);
477         sc->age_res_spec = age_res_spec_mem;
478         sc->age_irq_spec = age_irq_spec_legacy;
479         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480         if (error != 0) {
481                 device_printf(dev, "cannot allocate memory resources.\n");
482                 goto fail;
483         }
484
485         /* Set PHY address. */
486         sc->age_phyaddr = AGE_PHY_ADDR;
487
488         /* Reset PHY. */
489         age_phy_reset(sc);
490
491         /* Reset the ethernet controller. */
492         age_reset(sc);
493
494         /* Get PCI and chip id/revision. */
495         sc->age_rev = pci_get_revid(dev);
496         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497             MASTER_CHIP_REV_SHIFT;
498         if (bootverbose) {
499                 device_printf(dev, "PCI device revision : 0x%04x\n",
500                     sc->age_rev);
501                 device_printf(dev, "Chip id/revision : 0x%04x\n",
502                     sc->age_chip_rev);
503         }
504
505         /*
506          * XXX
507          * Unintialized hardware returns an invalid chip id/revision
508          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509          * unplugged cable results in putting hardware into automatic
510          * power down mode which in turn returns invalld chip revision.
511          */
512         if (sc->age_chip_rev == 0xFFFF) {
513                 device_printf(dev,"invalid chip revision : 0x%04x -- "
514                     "not initialized?\n", sc->age_chip_rev);
515                 error = ENXIO;
516                 goto fail;
517         }
518
519         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522
523         /* Allocate IRQ resources. */
524         msixc = pci_msix_count(dev);
525         msic = pci_msi_count(dev);
526         if (bootverbose) {
527                 device_printf(dev, "MSIX count : %d\n", msixc);
528                 device_printf(dev, "MSI count : %d\n", msic);
529         }
530
531         /* Prefer MSIX over MSI. */
532         if (msix_disable == 0 || msi_disable == 0) {
533                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534                     pci_alloc_msix(dev, &msixc) == 0) {
535                         if (msic == AGE_MSIX_MESSAGES) {
536                                 device_printf(dev, "Using %d MSIX messages.\n",
537                                     msixc);
538                                 sc->age_flags |= AGE_FLAG_MSIX;
539                                 sc->age_irq_spec = age_irq_spec_msix;
540                         } else
541                                 pci_release_msi(dev);
542                 }
543                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544                     msic == AGE_MSI_MESSAGES &&
545                     pci_alloc_msi(dev, &msic) == 0) {
546                         if (msic == AGE_MSI_MESSAGES) {
547                                 device_printf(dev, "Using %d MSI messages.\n",
548                                     msic);
549                                 sc->age_flags |= AGE_FLAG_MSI;
550                                 sc->age_irq_spec = age_irq_spec_msi;
551                         } else
552                                 pci_release_msi(dev);
553                 }
554         }
555
556         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557         if (error != 0) {
558                 device_printf(dev, "cannot allocate IRQ resources.\n");
559                 goto fail;
560         }
561
562
563         /* Get DMA parameters from PCIe device control register. */
564         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
565                 sc->age_flags |= AGE_FLAG_PCIE;
566                 burst = pci_read_config(dev, i + 0x08, 2);
567                 /* Max read request size. */
568                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
569                     DMA_CFG_RD_BURST_SHIFT;
570                 /* Max payload size. */
571                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
572                     DMA_CFG_WR_BURST_SHIFT;
573                 if (bootverbose) {
574                         device_printf(dev, "Read request size : %d bytes.\n",
575                             128 << ((burst >> 12) & 0x07));
576                         device_printf(dev, "TLP payload size : %d bytes.\n",
577                             128 << ((burst >> 5) & 0x07));
578                 }
579         } else {
580                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
581                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
582         }
583
584         /* Create device sysctl node. */
585         age_sysctl_node(sc);
586
587         if ((error = age_dma_alloc(sc) != 0))
588                 goto fail;
589
590         /* Load station address. */
591         age_get_macaddr(sc);
592
593         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
594         if (ifp == NULL) {
595                 device_printf(dev, "cannot allocate ifnet structure.\n");
596                 error = ENXIO;
597                 goto fail;
598         }
599
600         ifp->if_softc = sc;
601         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
602         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603         ifp->if_ioctl = age_ioctl;
604         ifp->if_start = age_start;
605         ifp->if_init = age_init;
606         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
607         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
608         IFQ_SET_READY(&ifp->if_snd);
609         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
610         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
611         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
612                 sc->age_flags |= AGE_FLAG_PMCAP;
613                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
614         }
615         ifp->if_capenable = ifp->if_capabilities;
616
617         /* Set up MII bus. */
618         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
619             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
620             0);
621         if (error != 0) {
622                 device_printf(dev, "attaching PHYs failed\n");
623                 goto fail;
624         }
625
626         ether_ifattach(ifp, sc->age_eaddr);
627
628         /* VLAN capability setup. */
629         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
630             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
631         ifp->if_capenable = ifp->if_capabilities;
632
633         /* Tell the upper layer(s) we support long frames. */
634         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
635
636         /* Create local taskq. */
637         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
638             taskqueue_thread_enqueue, &sc->age_tq);
639         if (sc->age_tq == NULL) {
640                 device_printf(dev, "could not create taskqueue.\n");
641                 ether_ifdetach(ifp);
642                 error = ENXIO;
643                 goto fail;
644         }
645         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
646             device_get_nameunit(sc->age_dev));
647
648         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
649                 msic = AGE_MSIX_MESSAGES;
650         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
651                 msic = AGE_MSI_MESSAGES;
652         else
653                 msic = 1;
654         for (i = 0; i < msic; i++) {
655                 error = bus_setup_intr(dev, sc->age_irq[i],
656                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
657                     &sc->age_intrhand[i]);
658                 if (error != 0)
659                         break;
660         }
661         if (error != 0) {
662                 device_printf(dev, "could not set up interrupt handler.\n");
663                 taskqueue_free(sc->age_tq);
664                 sc->age_tq = NULL;
665                 ether_ifdetach(ifp);
666                 goto fail;
667         }
668
669 fail:
670         if (error != 0)
671                 age_detach(dev);
672
673         return (error);
674 }
675
676 static int
677 age_detach(device_t dev)
678 {
679         struct age_softc *sc;
680         struct ifnet *ifp;
681         int i, msic;
682
683         sc = device_get_softc(dev);
684
685         ifp = sc->age_ifp;
686         if (device_is_attached(dev)) {
687                 AGE_LOCK(sc);
688                 sc->age_flags |= AGE_FLAG_DETACH;
689                 age_stop(sc);
690                 AGE_UNLOCK(sc);
691                 callout_drain(&sc->age_tick_ch);
692                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
693                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
694                 ether_ifdetach(ifp);
695         }
696
697         if (sc->age_tq != NULL) {
698                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
699                 taskqueue_free(sc->age_tq);
700                 sc->age_tq = NULL;
701         }
702
703         if (sc->age_miibus != NULL) {
704                 device_delete_child(dev, sc->age_miibus);
705                 sc->age_miibus = NULL;
706         }
707         bus_generic_detach(dev);
708         age_dma_free(sc);
709
710         if (ifp != NULL) {
711                 if_free(ifp);
712                 sc->age_ifp = NULL;
713         }
714
715         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
716                 msic = AGE_MSIX_MESSAGES;
717         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
718                 msic = AGE_MSI_MESSAGES;
719         else
720                 msic = 1;
721         for (i = 0; i < msic; i++) {
722                 if (sc->age_intrhand[i] != NULL) {
723                         bus_teardown_intr(dev, sc->age_irq[i],
724                             sc->age_intrhand[i]);
725                         sc->age_intrhand[i] = NULL;
726                 }
727         }
728
729         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
730         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
731                 pci_release_msi(dev);
732         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
733         mtx_destroy(&sc->age_mtx);
734
735         return (0);
736 }
737
738 static void
739 age_sysctl_node(struct age_softc *sc)
740 {
741         int error;
742
743         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
744             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
745             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
746             "I", "Statistics");
747
748         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
749             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
750             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
751             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
752
753         /* Pull in device tunables. */
754         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
755         error = resource_int_value(device_get_name(sc->age_dev),
756             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
757         if (error == 0) {
758                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
759                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
760                         device_printf(sc->age_dev,
761                             "int_mod value out of range; using default: %d\n",
762                             AGE_IM_TIMER_DEFAULT);
763                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
764                 }
765         }
766
767         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
768             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
769             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
770             0, sysctl_hw_age_proc_limit, "I",
771             "max number of Rx events to process");
772
773         /* Pull in device tunables. */
774         sc->age_process_limit = AGE_PROC_DEFAULT;
775         error = resource_int_value(device_get_name(sc->age_dev),
776             device_get_unit(sc->age_dev), "process_limit",
777             &sc->age_process_limit);
778         if (error == 0) {
779                 if (sc->age_process_limit < AGE_PROC_MIN ||
780                     sc->age_process_limit > AGE_PROC_MAX) {
781                         device_printf(sc->age_dev,
782                             "process_limit value out of range; "
783                             "using default: %d\n", AGE_PROC_DEFAULT);
784                         sc->age_process_limit = AGE_PROC_DEFAULT;
785                 }
786         }
787 }
788
789 struct age_dmamap_arg {
790         bus_addr_t      age_busaddr;
791 };
792
793 static void
794 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
795 {
796         struct age_dmamap_arg *ctx;
797
798         if (error != 0)
799                 return;
800
801         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
802
803         ctx = (struct age_dmamap_arg *)arg;
804         ctx->age_busaddr = segs[0].ds_addr;
805 }
806
807 /*
808  * Attansic L1 controller have single register to specify high
809  * address part of DMA blocks. So all descriptor structures and
810  * DMA memory blocks should have the same high address of given
811  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
812  */
813 static int
814 age_check_boundary(struct age_softc *sc)
815 {
816         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
817         bus_addr_t cmb_block_end, smb_block_end;
818
819         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
820         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
821         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
822         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
823         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
824         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
825
826         if ((AGE_ADDR_HI(tx_ring_end) !=
827             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
828             (AGE_ADDR_HI(rx_ring_end) !=
829             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
830             (AGE_ADDR_HI(rr_ring_end) !=
831             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
832             (AGE_ADDR_HI(cmb_block_end) !=
833             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
834             (AGE_ADDR_HI(smb_block_end) !=
835             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
836                 return (EFBIG);
837
838         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
839             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
840             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
841             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
842                 return (EFBIG);
843
844         return (0);
845 }
846
847 static int
848 age_dma_alloc(struct age_softc *sc)
849 {
850         struct age_txdesc *txd;
851         struct age_rxdesc *rxd;
852         bus_addr_t lowaddr;
853         struct age_dmamap_arg ctx;
854         int error, i;
855
856         lowaddr = BUS_SPACE_MAXADDR;
857
858 again:
859         /* Create parent ring/DMA block tag. */
860         error = bus_dma_tag_create(
861             bus_get_dma_tag(sc->age_dev), /* parent */
862             1, 0,                       /* alignment, boundary */
863             lowaddr,                    /* lowaddr */
864             BUS_SPACE_MAXADDR,          /* highaddr */
865             NULL, NULL,                 /* filter, filterarg */
866             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
867             0,                          /* nsegments */
868             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
869             0,                          /* flags */
870             NULL, NULL,                 /* lockfunc, lockarg */
871             &sc->age_cdata.age_parent_tag);
872         if (error != 0) {
873                 device_printf(sc->age_dev,
874                     "could not create parent DMA tag.\n");
875                 goto fail;
876         }
877
878         /* Create tag for Tx ring. */
879         error = bus_dma_tag_create(
880             sc->age_cdata.age_parent_tag, /* parent */
881             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
882             BUS_SPACE_MAXADDR,          /* lowaddr */
883             BUS_SPACE_MAXADDR,          /* highaddr */
884             NULL, NULL,                 /* filter, filterarg */
885             AGE_TX_RING_SZ,             /* maxsize */
886             1,                          /* nsegments */
887             AGE_TX_RING_SZ,             /* maxsegsize */
888             0,                          /* flags */
889             NULL, NULL,                 /* lockfunc, lockarg */
890             &sc->age_cdata.age_tx_ring_tag);
891         if (error != 0) {
892                 device_printf(sc->age_dev,
893                     "could not create Tx ring DMA tag.\n");
894                 goto fail;
895         }
896
897         /* Create tag for Rx ring. */
898         error = bus_dma_tag_create(
899             sc->age_cdata.age_parent_tag, /* parent */
900             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
901             BUS_SPACE_MAXADDR,          /* lowaddr */
902             BUS_SPACE_MAXADDR,          /* highaddr */
903             NULL, NULL,                 /* filter, filterarg */
904             AGE_RX_RING_SZ,             /* maxsize */
905             1,                          /* nsegments */
906             AGE_RX_RING_SZ,             /* maxsegsize */
907             0,                          /* flags */
908             NULL, NULL,                 /* lockfunc, lockarg */
909             &sc->age_cdata.age_rx_ring_tag);
910         if (error != 0) {
911                 device_printf(sc->age_dev,
912                     "could not create Rx ring DMA tag.\n");
913                 goto fail;
914         }
915
916         /* Create tag for Rx return ring. */
917         error = bus_dma_tag_create(
918             sc->age_cdata.age_parent_tag, /* parent */
919             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
920             BUS_SPACE_MAXADDR,          /* lowaddr */
921             BUS_SPACE_MAXADDR,          /* highaddr */
922             NULL, NULL,                 /* filter, filterarg */
923             AGE_RR_RING_SZ,             /* maxsize */
924             1,                          /* nsegments */
925             AGE_RR_RING_SZ,             /* maxsegsize */
926             0,                          /* flags */
927             NULL, NULL,                 /* lockfunc, lockarg */
928             &sc->age_cdata.age_rr_ring_tag);
929         if (error != 0) {
930                 device_printf(sc->age_dev,
931                     "could not create Rx return ring DMA tag.\n");
932                 goto fail;
933         }
934
935         /* Create tag for coalesing message block. */
936         error = bus_dma_tag_create(
937             sc->age_cdata.age_parent_tag, /* parent */
938             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
939             BUS_SPACE_MAXADDR,          /* lowaddr */
940             BUS_SPACE_MAXADDR,          /* highaddr */
941             NULL, NULL,                 /* filter, filterarg */
942             AGE_CMB_BLOCK_SZ,           /* maxsize */
943             1,                          /* nsegments */
944             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
945             0,                          /* flags */
946             NULL, NULL,                 /* lockfunc, lockarg */
947             &sc->age_cdata.age_cmb_block_tag);
948         if (error != 0) {
949                 device_printf(sc->age_dev,
950                     "could not create CMB DMA tag.\n");
951                 goto fail;
952         }
953
954         /* Create tag for statistics message block. */
955         error = bus_dma_tag_create(
956             sc->age_cdata.age_parent_tag, /* parent */
957             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
958             BUS_SPACE_MAXADDR,          /* lowaddr */
959             BUS_SPACE_MAXADDR,          /* highaddr */
960             NULL, NULL,                 /* filter, filterarg */
961             AGE_SMB_BLOCK_SZ,           /* maxsize */
962             1,                          /* nsegments */
963             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
964             0,                          /* flags */
965             NULL, NULL,                 /* lockfunc, lockarg */
966             &sc->age_cdata.age_smb_block_tag);
967         if (error != 0) {
968                 device_printf(sc->age_dev,
969                     "could not create SMB DMA tag.\n");
970                 goto fail;
971         }
972
973         /* Allocate DMA'able memory and load the DMA map. */
974         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
975             (void **)&sc->age_rdata.age_tx_ring,
976             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
977             &sc->age_cdata.age_tx_ring_map);
978         if (error != 0) {
979                 device_printf(sc->age_dev,
980                     "could not allocate DMA'able memory for Tx ring.\n");
981                 goto fail;
982         }
983         ctx.age_busaddr = 0;
984         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
985             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
986             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
987         if (error != 0 || ctx.age_busaddr == 0) {
988                 device_printf(sc->age_dev,
989                     "could not load DMA'able memory for Tx ring.\n");
990                 goto fail;
991         }
992         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
993         /* Rx ring */
994         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
995             (void **)&sc->age_rdata.age_rx_ring,
996             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
997             &sc->age_cdata.age_rx_ring_map);
998         if (error != 0) {
999                 device_printf(sc->age_dev,
1000                     "could not allocate DMA'able memory for Rx ring.\n");
1001                 goto fail;
1002         }
1003         ctx.age_busaddr = 0;
1004         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1005             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1006             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1007         if (error != 0 || ctx.age_busaddr == 0) {
1008                 device_printf(sc->age_dev,
1009                     "could not load DMA'able memory for Rx ring.\n");
1010                 goto fail;
1011         }
1012         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1013         /* Rx return ring */
1014         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1015             (void **)&sc->age_rdata.age_rr_ring,
1016             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1017             &sc->age_cdata.age_rr_ring_map);
1018         if (error != 0) {
1019                 device_printf(sc->age_dev,
1020                     "could not allocate DMA'able memory for Rx return ring.\n");
1021                 goto fail;
1022         }
1023         ctx.age_busaddr = 0;
1024         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1025             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1026             AGE_RR_RING_SZ, age_dmamap_cb,
1027             &ctx, 0);
1028         if (error != 0 || ctx.age_busaddr == 0) {
1029                 device_printf(sc->age_dev,
1030                     "could not load DMA'able memory for Rx return ring.\n");
1031                 goto fail;
1032         }
1033         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1034         /* CMB block */
1035         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1036             (void **)&sc->age_rdata.age_cmb_block,
1037             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1038             &sc->age_cdata.age_cmb_block_map);
1039         if (error != 0) {
1040                 device_printf(sc->age_dev,
1041                     "could not allocate DMA'able memory for CMB block.\n");
1042                 goto fail;
1043         }
1044         ctx.age_busaddr = 0;
1045         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1046             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1047             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1048         if (error != 0 || ctx.age_busaddr == 0) {
1049                 device_printf(sc->age_dev,
1050                     "could not load DMA'able memory for CMB block.\n");
1051                 goto fail;
1052         }
1053         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1054         /* SMB block */
1055         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1056             (void **)&sc->age_rdata.age_smb_block,
1057             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1058             &sc->age_cdata.age_smb_block_map);
1059         if (error != 0) {
1060                 device_printf(sc->age_dev,
1061                     "could not allocate DMA'able memory for SMB block.\n");
1062                 goto fail;
1063         }
1064         ctx.age_busaddr = 0;
1065         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1066             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1067             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1068         if (error != 0 || ctx.age_busaddr == 0) {
1069                 device_printf(sc->age_dev,
1070                     "could not load DMA'able memory for SMB block.\n");
1071                 goto fail;
1072         }
1073         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1074
1075         /*
1076          * All ring buffer and DMA blocks should have the same
1077          * high address part of 64bit DMA address space.
1078          */
1079         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1080             (error = age_check_boundary(sc)) != 0) {
1081                 device_printf(sc->age_dev, "4GB boundary crossed, "
1082                     "switching to 32bit DMA addressing mode.\n");
1083                 age_dma_free(sc);
1084                 /* Limit DMA address space to 32bit and try again. */
1085                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1086                 goto again;
1087         }
1088
1089         /*
1090          * Create Tx/Rx buffer parent tag.
1091          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1092          * so it needs separate parent DMA tag.
1093          * XXX
1094          * It seems enabling 64bit DMA causes data corruption. Limit
1095          * DMA address space to 32bit.
1096          */
1097         error = bus_dma_tag_create(
1098             bus_get_dma_tag(sc->age_dev), /* parent */
1099             1, 0,                       /* alignment, boundary */
1100             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1101             BUS_SPACE_MAXADDR,          /* highaddr */
1102             NULL, NULL,                 /* filter, filterarg */
1103             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1104             0,                          /* nsegments */
1105             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1106             0,                          /* flags */
1107             NULL, NULL,                 /* lockfunc, lockarg */
1108             &sc->age_cdata.age_buffer_tag);
1109         if (error != 0) {
1110                 device_printf(sc->age_dev,
1111                     "could not create parent buffer DMA tag.\n");
1112                 goto fail;
1113         }
1114
1115         /* Create tag for Tx buffers. */
1116         error = bus_dma_tag_create(
1117             sc->age_cdata.age_buffer_tag, /* parent */
1118             1, 0,                       /* alignment, boundary */
1119             BUS_SPACE_MAXADDR,          /* lowaddr */
1120             BUS_SPACE_MAXADDR,          /* highaddr */
1121             NULL, NULL,                 /* filter, filterarg */
1122             AGE_TSO_MAXSIZE,            /* maxsize */
1123             AGE_MAXTXSEGS,              /* nsegments */
1124             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1125             0,                          /* flags */
1126             NULL, NULL,                 /* lockfunc, lockarg */
1127             &sc->age_cdata.age_tx_tag);
1128         if (error != 0) {
1129                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1130                 goto fail;
1131         }
1132
1133         /* Create tag for Rx buffers. */
1134         error = bus_dma_tag_create(
1135             sc->age_cdata.age_buffer_tag, /* parent */
1136             1, 0,                       /* alignment, boundary */
1137             BUS_SPACE_MAXADDR,          /* lowaddr */
1138             BUS_SPACE_MAXADDR,          /* highaddr */
1139             NULL, NULL,                 /* filter, filterarg */
1140             MCLBYTES,                   /* maxsize */
1141             1,                          /* nsegments */
1142             MCLBYTES,                   /* maxsegsize */
1143             0,                          /* flags */
1144             NULL, NULL,                 /* lockfunc, lockarg */
1145             &sc->age_cdata.age_rx_tag);
1146         if (error != 0) {
1147                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1148                 goto fail;
1149         }
1150
1151         /* Create DMA maps for Tx buffers. */
1152         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1153                 txd = &sc->age_cdata.age_txdesc[i];
1154                 txd->tx_m = NULL;
1155                 txd->tx_dmamap = NULL;
1156                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1157                     &txd->tx_dmamap);
1158                 if (error != 0) {
1159                         device_printf(sc->age_dev,
1160                             "could not create Tx dmamap.\n");
1161                         goto fail;
1162                 }
1163         }
1164         /* Create DMA maps for Rx buffers. */
1165         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1166             &sc->age_cdata.age_rx_sparemap)) != 0) {
1167                 device_printf(sc->age_dev,
1168                     "could not create spare Rx dmamap.\n");
1169                 goto fail;
1170         }
1171         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1172                 rxd = &sc->age_cdata.age_rxdesc[i];
1173                 rxd->rx_m = NULL;
1174                 rxd->rx_dmamap = NULL;
1175                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1176                     &rxd->rx_dmamap);
1177                 if (error != 0) {
1178                         device_printf(sc->age_dev,
1179                             "could not create Rx dmamap.\n");
1180                         goto fail;
1181                 }
1182         }
1183
1184 fail:
1185         return (error);
1186 }
1187
1188 static void
1189 age_dma_free(struct age_softc *sc)
1190 {
1191         struct age_txdesc *txd;
1192         struct age_rxdesc *rxd;
1193         int i;
1194
1195         /* Tx buffers */
1196         if (sc->age_cdata.age_tx_tag != NULL) {
1197                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1198                         txd = &sc->age_cdata.age_txdesc[i];
1199                         if (txd->tx_dmamap != NULL) {
1200                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1201                                     txd->tx_dmamap);
1202                                 txd->tx_dmamap = NULL;
1203                         }
1204                 }
1205                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1206                 sc->age_cdata.age_tx_tag = NULL;
1207         }
1208         /* Rx buffers */
1209         if (sc->age_cdata.age_rx_tag != NULL) {
1210                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1211                         rxd = &sc->age_cdata.age_rxdesc[i];
1212                         if (rxd->rx_dmamap != NULL) {
1213                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1214                                     rxd->rx_dmamap);
1215                                 rxd->rx_dmamap = NULL;
1216                         }
1217                 }
1218                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1219                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1220                             sc->age_cdata.age_rx_sparemap);
1221                         sc->age_cdata.age_rx_sparemap = NULL;
1222                 }
1223                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1224                 sc->age_cdata.age_rx_tag = NULL;
1225         }
1226         /* Tx ring. */
1227         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1228                 if (sc->age_cdata.age_tx_ring_map != NULL)
1229                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1230                             sc->age_cdata.age_tx_ring_map);
1231                 if (sc->age_cdata.age_tx_ring_map != NULL &&
1232                     sc->age_rdata.age_tx_ring != NULL)
1233                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1234                             sc->age_rdata.age_tx_ring,
1235                             sc->age_cdata.age_tx_ring_map);
1236                 sc->age_rdata.age_tx_ring = NULL;
1237                 sc->age_cdata.age_tx_ring_map = NULL;
1238                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1239                 sc->age_cdata.age_tx_ring_tag = NULL;
1240         }
1241         /* Rx ring. */
1242         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1243                 if (sc->age_cdata.age_rx_ring_map != NULL)
1244                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1245                             sc->age_cdata.age_rx_ring_map);
1246                 if (sc->age_cdata.age_rx_ring_map != NULL &&
1247                     sc->age_rdata.age_rx_ring != NULL)
1248                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1249                             sc->age_rdata.age_rx_ring,
1250                             sc->age_cdata.age_rx_ring_map);
1251                 sc->age_rdata.age_rx_ring = NULL;
1252                 sc->age_cdata.age_rx_ring_map = NULL;
1253                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1254                 sc->age_cdata.age_rx_ring_tag = NULL;
1255         }
1256         /* Rx return ring. */
1257         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1258                 if (sc->age_cdata.age_rr_ring_map != NULL)
1259                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1260                             sc->age_cdata.age_rr_ring_map);
1261                 if (sc->age_cdata.age_rr_ring_map != NULL &&
1262                     sc->age_rdata.age_rr_ring != NULL)
1263                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1264                             sc->age_rdata.age_rr_ring,
1265                             sc->age_cdata.age_rr_ring_map);
1266                 sc->age_rdata.age_rr_ring = NULL;
1267                 sc->age_cdata.age_rr_ring_map = NULL;
1268                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1269                 sc->age_cdata.age_rr_ring_tag = NULL;
1270         }
1271         /* CMB block */
1272         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1273                 if (sc->age_cdata.age_cmb_block_map != NULL)
1274                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1275                             sc->age_cdata.age_cmb_block_map);
1276                 if (sc->age_cdata.age_cmb_block_map != NULL &&
1277                     sc->age_rdata.age_cmb_block != NULL)
1278                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1279                             sc->age_rdata.age_cmb_block,
1280                             sc->age_cdata.age_cmb_block_map);
1281                 sc->age_rdata.age_cmb_block = NULL;
1282                 sc->age_cdata.age_cmb_block_map = NULL;
1283                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1284                 sc->age_cdata.age_cmb_block_tag = NULL;
1285         }
1286         /* SMB block */
1287         if (sc->age_cdata.age_smb_block_tag != NULL) {
1288                 if (sc->age_cdata.age_smb_block_map != NULL)
1289                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1290                             sc->age_cdata.age_smb_block_map);
1291                 if (sc->age_cdata.age_smb_block_map != NULL &&
1292                     sc->age_rdata.age_smb_block != NULL)
1293                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1294                             sc->age_rdata.age_smb_block,
1295                             sc->age_cdata.age_smb_block_map);
1296                 sc->age_rdata.age_smb_block = NULL;
1297                 sc->age_cdata.age_smb_block_map = NULL;
1298                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1299                 sc->age_cdata.age_smb_block_tag = NULL;
1300         }
1301
1302         if (sc->age_cdata.age_buffer_tag != NULL) {
1303                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1304                 sc->age_cdata.age_buffer_tag = NULL;
1305         }
1306         if (sc->age_cdata.age_parent_tag != NULL) {
1307                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1308                 sc->age_cdata.age_parent_tag = NULL;
1309         }
1310 }
1311
1312 /*
1313  *      Make sure the interface is stopped at reboot time.
1314  */
1315 static int
1316 age_shutdown(device_t dev)
1317 {
1318
1319         return (age_suspend(dev));
1320 }
1321
1322 static void
1323 age_setwol(struct age_softc *sc)
1324 {
1325         struct ifnet *ifp;
1326         struct mii_data *mii;
1327         uint32_t reg, pmcs;
1328         uint16_t pmstat;
1329         int aneg, i, pmc;
1330
1331         AGE_LOCK_ASSERT(sc);
1332
1333         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1334                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1335                 /*
1336                  * No PME capability, PHY power down.
1337                  * XXX
1338                  * Due to an unknown reason powering down PHY resulted
1339                  * in unexpected results such as inaccessbility of
1340                  * hardware of freshly rebooted system. Disable
1341                  * powering down PHY until I got more information for
1342                  * Attansic/Atheros PHY hardwares.
1343                  */
1344 #ifdef notyet
1345                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1346                     MII_BMCR, BMCR_PDOWN);
1347 #endif
1348                 return;
1349         }
1350
1351         ifp = sc->age_ifp;
1352         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1353                 /*
1354                  * Note, this driver resets the link speed to 10/100Mbps with
1355                  * auto-negotiation but we don't know whether that operation
1356                  * would succeed or not as it have no control after powering
1357                  * off. If the renegotiation fail WOL may not work. Running
1358                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1359                  * specified in PCI specification and that would result in
1360                  * complete shutdowning power to ethernet controller.
1361                  *
1362                  * TODO
1363                  *  Save current negotiated media speed/duplex/flow-control
1364                  *  to softc and restore the same link again after resuming.
1365                  *  PHY handling such as power down/resetting to 100Mbps
1366                  *  may be better handled in suspend method in phy driver.
1367                  */
1368                 mii = device_get_softc(sc->age_miibus);
1369                 mii_pollstat(mii);
1370                 aneg = 0;
1371                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1372                         switch IFM_SUBTYPE(mii->mii_media_active) {
1373                         case IFM_10_T:
1374                         case IFM_100_TX:
1375                                 goto got_link;
1376                         case IFM_1000_T:
1377                                 aneg++;
1378                         default:
1379                                 break;
1380                         }
1381                 }
1382                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383                     MII_100T2CR, 0);
1384                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1386                     ANAR_10 | ANAR_CSMA);
1387                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1389                 DELAY(1000);
1390                 if (aneg != 0) {
1391                         /* Poll link state until age(4) get a 10/100 link. */
1392                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1393                                 mii_pollstat(mii);
1394                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1395                                         switch (IFM_SUBTYPE(
1396                                             mii->mii_media_active)) {
1397                                         case IFM_10_T:
1398                                         case IFM_100_TX:
1399                                                 age_mac_config(sc);
1400                                                 goto got_link;
1401                                         default:
1402                                                 break;
1403                                         }
1404                                 }
1405                                 AGE_UNLOCK(sc);
1406                                 pause("agelnk", hz);
1407                                 AGE_LOCK(sc);
1408                         }
1409                         if (i == MII_ANEGTICKS_GIGE)
1410                                 device_printf(sc->age_dev,
1411                                     "establishing link failed, "
1412                                     "WOL may not work!");
1413                 }
1414                 /*
1415                  * No link, force MAC to have 100Mbps, full-duplex link.
1416                  * This is the last resort and may/may not work.
1417                  */
1418                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1419                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1420                 age_mac_config(sc);
1421         }
1422
1423 got_link:
1424         pmcs = 0;
1425         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1426                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1427         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1428         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1429         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1430         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1431         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1432                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1433         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1434                 reg |= MAC_CFG_RX_ENB;
1435                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1436         }
1437
1438         /* Request PME. */
1439         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1440         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1441         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1442                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1443         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1444 #ifdef notyet
1445         /* See above for powering down PHY issues. */
1446         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1447                 /* No WOL, PHY power down. */
1448                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1449                     MII_BMCR, BMCR_PDOWN);
1450         }
1451 #endif
1452 }
1453
1454 static int
1455 age_suspend(device_t dev)
1456 {
1457         struct age_softc *sc;
1458
1459         sc = device_get_softc(dev);
1460
1461         AGE_LOCK(sc);
1462         age_stop(sc);
1463         age_setwol(sc);
1464         AGE_UNLOCK(sc);
1465
1466         return (0);
1467 }
1468
1469 static int
1470 age_resume(device_t dev)
1471 {
1472         struct age_softc *sc;
1473         struct ifnet *ifp;
1474
1475         sc = device_get_softc(dev);
1476
1477         AGE_LOCK(sc);
1478         age_phy_reset(sc);
1479         ifp = sc->age_ifp;
1480         if ((ifp->if_flags & IFF_UP) != 0)
1481                 age_init_locked(sc);
1482
1483         AGE_UNLOCK(sc);
1484
1485         return (0);
1486 }
1487
1488 static int
1489 age_encap(struct age_softc *sc, struct mbuf **m_head)
1490 {
1491         struct age_txdesc *txd, *txd_last;
1492         struct tx_desc *desc;
1493         struct mbuf *m;
1494         struct ip *ip;
1495         struct tcphdr *tcp;
1496         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1497         bus_dmamap_t map;
1498         uint32_t cflags, ip_off, poff, vtag;
1499         int error, i, nsegs, prod, si;
1500
1501         AGE_LOCK_ASSERT(sc);
1502
1503         M_ASSERTPKTHDR((*m_head));
1504
1505         m = *m_head;
1506         ip = NULL;
1507         tcp = NULL;
1508         cflags = vtag = 0;
1509         ip_off = poff = 0;
1510         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1511                 /*
1512                  * L1 requires offset of TCP/UDP payload in its Tx
1513                  * descriptor to perform hardware Tx checksum offload.
1514                  * Additionally, TSO requires IP/TCP header size and
1515                  * modification of IP/TCP header in order to make TSO
1516                  * engine work. This kind of operation takes many CPU
1517                  * cycles on FreeBSD so fast host CPU is needed to get
1518                  * smooth TSO performance.
1519                  */
1520                 struct ether_header *eh;
1521
1522                 if (M_WRITABLE(m) == 0) {
1523                         /* Get a writable copy. */
1524                         m = m_dup(*m_head, M_DONTWAIT);
1525                         /* Release original mbufs. */
1526                         m_freem(*m_head);
1527                         if (m == NULL) {
1528                                 *m_head = NULL;
1529                                 return (ENOBUFS);
1530                         }
1531                         *m_head = m;
1532                 }
1533                 ip_off = sizeof(struct ether_header);
1534                 m = m_pullup(m, ip_off);
1535                 if (m == NULL) {
1536                         *m_head = NULL;
1537                         return (ENOBUFS);
1538                 }
1539                 eh = mtod(m, struct ether_header *);
1540                 /*
1541                  * Check if hardware VLAN insertion is off.
1542                  * Additional check for LLC/SNAP frame?
1543                  */
1544                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1545                         ip_off = sizeof(struct ether_vlan_header);
1546                         m = m_pullup(m, ip_off);
1547                         if (m == NULL) {
1548                                 *m_head = NULL;
1549                                 return (ENOBUFS);
1550                         }
1551                 }
1552                 m = m_pullup(m, ip_off + sizeof(struct ip));
1553                 if (m == NULL) {
1554                         *m_head = NULL;
1555                         return (ENOBUFS);
1556                 }
1557                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1558                 poff = ip_off + (ip->ip_hl << 2);
1559                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1560                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1561                         if (m == NULL) {
1562                                 *m_head = NULL;
1563                                 return (ENOBUFS);
1564                         }
1565                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1566                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1567                         /*
1568                          * L1 requires IP/TCP header size and offset as
1569                          * well as TCP pseudo checksum which complicates
1570                          * TSO configuration. I guess this comes from the
1571                          * adherence to Microsoft NDIS Large Send
1572                          * specification which requires insertion of
1573                          * pseudo checksum by upper stack. The pseudo
1574                          * checksum that NDIS refers to doesn't include
1575                          * TCP payload length so age(4) should recompute
1576                          * the pseudo checksum here. Hopefully this wouldn't
1577                          * be much burden on modern CPUs.
1578                          * Reset IP checksum and recompute TCP pseudo
1579                          * checksum as NDIS specification said.
1580                          */
1581                         ip->ip_sum = 0;
1582                         if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1583                                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1584                                     ip->ip_dst.s_addr,
1585                                     htons((tcp->th_off << 2) + IPPROTO_TCP));
1586                         else
1587                                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1588                                     ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1589                 }
1590                 *m_head = m;
1591         }
1592
1593         si = prod = sc->age_cdata.age_tx_prod;
1594         txd = &sc->age_cdata.age_txdesc[prod];
1595         txd_last = txd;
1596         map = txd->tx_dmamap;
1597
1598         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1599             *m_head, txsegs, &nsegs, 0);
1600         if (error == EFBIG) {
1601                 m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1602                 if (m == NULL) {
1603                         m_freem(*m_head);
1604                         *m_head = NULL;
1605                         return (ENOMEM);
1606                 }
1607                 *m_head = m;
1608                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1609                     *m_head, txsegs, &nsegs, 0);
1610                 if (error != 0) {
1611                         m_freem(*m_head);
1612                         *m_head = NULL;
1613                         return (error);
1614                 }
1615         } else if (error != 0)
1616                 return (error);
1617         if (nsegs == 0) {
1618                 m_freem(*m_head);
1619                 *m_head = NULL;
1620                 return (EIO);
1621         }
1622
1623         /* Check descriptor overrun. */
1624         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1625                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1626                 return (ENOBUFS);
1627         }
1628
1629         m = *m_head;
1630         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1631                 /* Configure TSO. */
1632                 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1633                         /* Not TSO but IP/TCP checksum offload. */
1634                         cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1635                         /* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1636                         m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1637                 } else {
1638                         /* Request TSO and set MSS. */
1639                         cflags |= AGE_TD_TSO_IPV4;
1640                         cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1641                         cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1642                             AGE_TD_TSO_MSS_SHIFT);
1643                 }
1644                 /* Set IP/TCP header size. */
1645                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1646                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1647         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1648                 /* Configure Tx IP/TCP/UDP checksum offload. */
1649                 cflags |= AGE_TD_CSUM;
1650                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1651                         cflags |= AGE_TD_TCPCSUM;
1652                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1653                         cflags |= AGE_TD_UDPCSUM;
1654                 /* Set checksum start offset. */
1655                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1656                 /* Set checksum insertion position of TCP/UDP. */
1657                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1658                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1659         }
1660
1661         /* Configure VLAN hardware tag insertion. */
1662         if ((m->m_flags & M_VLANTAG) != 0) {
1663                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1664                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1665                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1666         }
1667
1668         desc = NULL;
1669         for (i = 0; i < nsegs; i++) {
1670                 desc = &sc->age_rdata.age_tx_ring[prod];
1671                 desc->addr = htole64(txsegs[i].ds_addr);
1672                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1673                 desc->flags = htole32(cflags);
1674                 sc->age_cdata.age_tx_cnt++;
1675                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1676         }
1677         /* Update producer index. */
1678         sc->age_cdata.age_tx_prod = prod;
1679
1680         /* Set EOP on the last descriptor. */
1681         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1682         desc = &sc->age_rdata.age_tx_ring[prod];
1683         desc->flags |= htole32(AGE_TD_EOP);
1684
1685         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1686         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1687                 desc = &sc->age_rdata.age_tx_ring[si];
1688                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1689         }
1690
1691         /* Swap dmamap of the first and the last. */
1692         txd = &sc->age_cdata.age_txdesc[prod];
1693         map = txd_last->tx_dmamap;
1694         txd_last->tx_dmamap = txd->tx_dmamap;
1695         txd->tx_dmamap = map;
1696         txd->tx_m = m;
1697
1698         /* Sync descriptors. */
1699         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1700         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1701             sc->age_cdata.age_tx_ring_map,
1702             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1703
1704         return (0);
1705 }
1706
1707 static void
1708 age_start(struct ifnet *ifp)
1709 {
1710         struct age_softc *sc;
1711
1712         sc = ifp->if_softc;
1713         AGE_LOCK(sc);
1714         age_start_locked(ifp);
1715         AGE_UNLOCK(sc);
1716 }
1717
1718 static void
1719 age_start_locked(struct ifnet *ifp)
1720 {
1721         struct age_softc *sc;
1722         struct mbuf *m_head;
1723         int enq;
1724
1725         sc = ifp->if_softc;
1726
1727         AGE_LOCK_ASSERT(sc);
1728
1729         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1730             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1731                 return;
1732
1733         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1734                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1735                 if (m_head == NULL)
1736                         break;
1737                 /*
1738                  * Pack the data into the transmit ring. If we
1739                  * don't have room, set the OACTIVE flag and wait
1740                  * for the NIC to drain the ring.
1741                  */
1742                 if (age_encap(sc, &m_head)) {
1743                         if (m_head == NULL)
1744                                 break;
1745                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1746                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1747                         break;
1748                 }
1749
1750                 enq++;
1751                 /*
1752                  * If there's a BPF listener, bounce a copy of this frame
1753                  * to him.
1754                  */
1755                 ETHER_BPF_MTAP(ifp, m_head);
1756         }
1757
1758         if (enq > 0) {
1759                 /* Update mbox. */
1760                 AGE_COMMIT_MBOX(sc);
1761                 /* Set a timeout in case the chip goes out to lunch. */
1762                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1763         }
1764 }
1765
1766 static void
1767 age_watchdog(struct age_softc *sc)
1768 {
1769         struct ifnet *ifp;
1770
1771         AGE_LOCK_ASSERT(sc);
1772
1773         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1774                 return;
1775
1776         ifp = sc->age_ifp;
1777         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1778                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1779                 ifp->if_oerrors++;
1780                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1781                 age_init_locked(sc);
1782                 return;
1783         }
1784         if (sc->age_cdata.age_tx_cnt == 0) {
1785                 if_printf(sc->age_ifp,
1786                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1787                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1788                         age_start_locked(ifp);
1789                 return;
1790         }
1791         if_printf(sc->age_ifp, "watchdog timeout\n");
1792         ifp->if_oerrors++;
1793         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1794         age_init_locked(sc);
1795         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1796                 age_start_locked(ifp);
1797 }
1798
1799 static int
1800 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1801 {
1802         struct age_softc *sc;
1803         struct ifreq *ifr;
1804         struct mii_data *mii;
1805         uint32_t reg;
1806         int error, mask;
1807
1808         sc = ifp->if_softc;
1809         ifr = (struct ifreq *)data;
1810         error = 0;
1811         switch (cmd) {
1812         case SIOCSIFMTU:
1813                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1814                         error = EINVAL;
1815                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1816                         AGE_LOCK(sc);
1817                         ifp->if_mtu = ifr->ifr_mtu;
1818                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1819                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1820                                 age_init_locked(sc);
1821                         }
1822                         AGE_UNLOCK(sc);
1823                 }
1824                 break;
1825         case SIOCSIFFLAGS:
1826                 AGE_LOCK(sc);
1827                 if ((ifp->if_flags & IFF_UP) != 0) {
1828                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1829                                 if (((ifp->if_flags ^ sc->age_if_flags)
1830                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1831                                         age_rxfilter(sc);
1832                         } else {
1833                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1834                                         age_init_locked(sc);
1835                         }
1836                 } else {
1837                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1838                                 age_stop(sc);
1839                 }
1840                 sc->age_if_flags = ifp->if_flags;
1841                 AGE_UNLOCK(sc);
1842                 break;
1843         case SIOCADDMULTI:
1844         case SIOCDELMULTI:
1845                 AGE_LOCK(sc);
1846                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1847                         age_rxfilter(sc);
1848                 AGE_UNLOCK(sc);
1849                 break;
1850         case SIOCSIFMEDIA:
1851         case SIOCGIFMEDIA:
1852                 mii = device_get_softc(sc->age_miibus);
1853                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1854                 break;
1855         case SIOCSIFCAP:
1856                 AGE_LOCK(sc);
1857                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1858                 if ((mask & IFCAP_TXCSUM) != 0 &&
1859                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1860                         ifp->if_capenable ^= IFCAP_TXCSUM;
1861                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1862                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1863                         else
1864                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1865                 }
1866                 if ((mask & IFCAP_RXCSUM) != 0 &&
1867                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1868                         ifp->if_capenable ^= IFCAP_RXCSUM;
1869                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1870                         reg &= ~MAC_CFG_RXCSUM_ENB;
1871                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1872                                 reg |= MAC_CFG_RXCSUM_ENB;
1873                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1874                 }
1875                 if ((mask & IFCAP_TSO4) != 0 &&
1876                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1877                         ifp->if_capenable ^= IFCAP_TSO4;
1878                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1879                                 ifp->if_hwassist |= CSUM_TSO;
1880                         else
1881                                 ifp->if_hwassist &= ~CSUM_TSO;
1882                 }
1883
1884                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1885                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1886                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1887                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1888                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1889                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1890                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1891                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1892                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1893                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1894                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1895                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1896                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1897                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1898                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1899                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1900                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1901                         age_rxvlan(sc);
1902                 }
1903                 AGE_UNLOCK(sc);
1904                 VLAN_CAPABILITIES(ifp);
1905                 break;
1906         default:
1907                 error = ether_ioctl(ifp, cmd, data);
1908                 break;
1909         }
1910
1911         return (error);
1912 }
1913
1914 static void
1915 age_mac_config(struct age_softc *sc)
1916 {
1917         struct mii_data *mii;
1918         uint32_t reg;
1919
1920         AGE_LOCK_ASSERT(sc);
1921
1922         mii = device_get_softc(sc->age_miibus);
1923         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1924         reg &= ~MAC_CFG_FULL_DUPLEX;
1925         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1926         reg &= ~MAC_CFG_SPEED_MASK;
1927         /* Reprogram MAC with resolved speed/duplex. */
1928         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1929         case IFM_10_T:
1930         case IFM_100_TX:
1931                 reg |= MAC_CFG_SPEED_10_100;
1932                 break;
1933         case IFM_1000_T:
1934                 reg |= MAC_CFG_SPEED_1000;
1935                 break;
1936         }
1937         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1938                 reg |= MAC_CFG_FULL_DUPLEX;
1939 #ifdef notyet
1940                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1941                         reg |= MAC_CFG_TX_FC;
1942                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1943                         reg |= MAC_CFG_RX_FC;
1944 #endif
1945         }
1946
1947         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1948 }
1949
1950 static void
1951 age_link_task(void *arg, int pending)
1952 {
1953         struct age_softc *sc;
1954         struct mii_data *mii;
1955         struct ifnet *ifp;
1956         uint32_t reg;
1957
1958         sc = (struct age_softc *)arg;
1959
1960         AGE_LOCK(sc);
1961         mii = device_get_softc(sc->age_miibus);
1962         ifp = sc->age_ifp;
1963         if (mii == NULL || ifp == NULL ||
1964             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1965                 AGE_UNLOCK(sc);
1966                 return;
1967         }
1968
1969         sc->age_flags &= ~AGE_FLAG_LINK;
1970         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1971                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1972                 case IFM_10_T:
1973                 case IFM_100_TX:
1974                 case IFM_1000_T:
1975                         sc->age_flags |= AGE_FLAG_LINK;
1976                         break;
1977                 default:
1978                         break;
1979                 }
1980         }
1981
1982         /* Stop Rx/Tx MACs. */
1983         age_stop_rxmac(sc);
1984         age_stop_txmac(sc);
1985
1986         /* Program MACs with resolved speed/duplex/flow-control. */
1987         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1988                 age_mac_config(sc);
1989                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1990                 /* Restart DMA engine and Tx/Rx MAC. */
1991                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1992                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1993                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1994                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1995         }
1996
1997         AGE_UNLOCK(sc);
1998 }
1999
2000 static void
2001 age_stats_update(struct age_softc *sc)
2002 {
2003         struct age_stats *stat;
2004         struct smb *smb;
2005         struct ifnet *ifp;
2006
2007         AGE_LOCK_ASSERT(sc);
2008
2009         stat = &sc->age_stat;
2010
2011         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2012             sc->age_cdata.age_smb_block_map,
2013             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2014
2015         smb = sc->age_rdata.age_smb_block;
2016         if (smb->updated == 0)
2017                 return;
2018
2019         ifp = sc->age_ifp;
2020         /* Rx stats. */
2021         stat->rx_frames += smb->rx_frames;
2022         stat->rx_bcast_frames += smb->rx_bcast_frames;
2023         stat->rx_mcast_frames += smb->rx_mcast_frames;
2024         stat->rx_pause_frames += smb->rx_pause_frames;
2025         stat->rx_control_frames += smb->rx_control_frames;
2026         stat->rx_crcerrs += smb->rx_crcerrs;
2027         stat->rx_lenerrs += smb->rx_lenerrs;
2028         stat->rx_bytes += smb->rx_bytes;
2029         stat->rx_runts += smb->rx_runts;
2030         stat->rx_fragments += smb->rx_fragments;
2031         stat->rx_pkts_64 += smb->rx_pkts_64;
2032         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2033         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2034         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2035         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2036         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2037         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2038         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2039         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2040         stat->rx_desc_oflows += smb->rx_desc_oflows;
2041         stat->rx_alignerrs += smb->rx_alignerrs;
2042         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2043         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2044         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2045
2046         /* Tx stats. */
2047         stat->tx_frames += smb->tx_frames;
2048         stat->tx_bcast_frames += smb->tx_bcast_frames;
2049         stat->tx_mcast_frames += smb->tx_mcast_frames;
2050         stat->tx_pause_frames += smb->tx_pause_frames;
2051         stat->tx_excess_defer += smb->tx_excess_defer;
2052         stat->tx_control_frames += smb->tx_control_frames;
2053         stat->tx_deferred += smb->tx_deferred;
2054         stat->tx_bytes += smb->tx_bytes;
2055         stat->tx_pkts_64 += smb->tx_pkts_64;
2056         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2057         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2058         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2059         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2060         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2061         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2062         stat->tx_single_colls += smb->tx_single_colls;
2063         stat->tx_multi_colls += smb->tx_multi_colls;
2064         stat->tx_late_colls += smb->tx_late_colls;
2065         stat->tx_excess_colls += smb->tx_excess_colls;
2066         stat->tx_underrun += smb->tx_underrun;
2067         stat->tx_desc_underrun += smb->tx_desc_underrun;
2068         stat->tx_lenerrs += smb->tx_lenerrs;
2069         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2070         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2071         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2072
2073         /* Update counters in ifnet. */
2074         ifp->if_opackets += smb->tx_frames;
2075
2076         ifp->if_collisions += smb->tx_single_colls +
2077             smb->tx_multi_colls + smb->tx_late_colls +
2078             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2079
2080         ifp->if_oerrors += smb->tx_excess_colls +
2081             smb->tx_late_colls + smb->tx_underrun +
2082             smb->tx_pkts_truncated;
2083
2084         ifp->if_ipackets += smb->rx_frames;
2085
2086         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2087             smb->rx_runts + smb->rx_pkts_truncated +
2088             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2089             smb->rx_alignerrs;
2090
2091         /* Update done, clear. */
2092         smb->updated = 0;
2093
2094         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2095             sc->age_cdata.age_smb_block_map,
2096             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2097 }
2098
2099 static int
2100 age_intr(void *arg)
2101 {
2102         struct age_softc *sc;
2103         uint32_t status;
2104
2105         sc = (struct age_softc *)arg;
2106
2107         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2108         if (status == 0 || (status & AGE_INTRS) == 0)
2109                 return (FILTER_STRAY);
2110         /* Disable interrupts. */
2111         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2112         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2113
2114         return (FILTER_HANDLED);
2115 }
2116
2117 static void
2118 age_int_task(void *arg, int pending)
2119 {
2120         struct age_softc *sc;
2121         struct ifnet *ifp;
2122         struct cmb *cmb;
2123         uint32_t status;
2124
2125         sc = (struct age_softc *)arg;
2126
2127         AGE_LOCK(sc);
2128
2129         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2130             sc->age_cdata.age_cmb_block_map,
2131             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2132         cmb = sc->age_rdata.age_cmb_block;
2133         status = le32toh(cmb->intr_status);
2134         if (sc->age_morework != 0)
2135                 status |= INTR_CMB_RX;
2136         if ((status & AGE_INTRS) == 0)
2137                 goto done;
2138
2139         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2140             TPD_CONS_SHIFT;
2141         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2142             RRD_PROD_SHIFT;
2143         /* Let hardware know CMB was served. */
2144         cmb->intr_status = 0;
2145         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2146             sc->age_cdata.age_cmb_block_map,
2147             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2148
2149 #if 0
2150         printf("INTR: 0x%08x\n", status);
2151         status &= ~INTR_DIS_DMA;
2152         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2153 #endif
2154         ifp = sc->age_ifp;
2155         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2156                 if ((status & INTR_CMB_RX) != 0)
2157                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2158                             sc->age_process_limit);
2159                 if ((status & INTR_CMB_TX) != 0)
2160                         age_txintr(sc, sc->age_tpd_cons);
2161                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2162                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2163                                 device_printf(sc->age_dev,
2164                                     "DMA read error! -- resetting\n");
2165                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2166                                 device_printf(sc->age_dev,
2167                                     "DMA write error! -- resetting\n");
2168                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2169                         age_init_locked(sc);
2170                 }
2171                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2172                         age_start_locked(ifp);
2173                 if ((status & INTR_SMB) != 0)
2174                         age_stats_update(sc);
2175         }
2176
2177         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2178         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2179             sc->age_cdata.age_cmb_block_map,
2180             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2181         status = le32toh(cmb->intr_status);
2182         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2183                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2184                 AGE_UNLOCK(sc);
2185                 return;
2186         }
2187
2188 done:
2189         /* Re-enable interrupts. */
2190         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2191         AGE_UNLOCK(sc);
2192 }
2193
2194 static void
2195 age_txintr(struct age_softc *sc, int tpd_cons)
2196 {
2197         struct ifnet *ifp;
2198         struct age_txdesc *txd;
2199         int cons, prog;
2200
2201         AGE_LOCK_ASSERT(sc);
2202
2203         ifp = sc->age_ifp;
2204
2205         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2206             sc->age_cdata.age_tx_ring_map,
2207             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2208
2209         /*
2210          * Go through our Tx list and free mbufs for those
2211          * frames which have been transmitted.
2212          */
2213         cons = sc->age_cdata.age_tx_cons;
2214         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2215                 if (sc->age_cdata.age_tx_cnt <= 0)
2216                         break;
2217                 prog++;
2218                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2219                 sc->age_cdata.age_tx_cnt--;
2220                 txd = &sc->age_cdata.age_txdesc[cons];
2221                 /*
2222                  * Clear Tx descriptors, it's not required but would
2223                  * help debugging in case of Tx issues.
2224                  */
2225                 txd->tx_desc->addr = 0;
2226                 txd->tx_desc->len = 0;
2227                 txd->tx_desc->flags = 0;
2228
2229                 if (txd->tx_m == NULL)
2230                         continue;
2231                 /* Reclaim transmitted mbufs. */
2232                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2233                     BUS_DMASYNC_POSTWRITE);
2234                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2235                 m_freem(txd->tx_m);
2236                 txd->tx_m = NULL;
2237         }
2238
2239         if (prog > 0) {
2240                 sc->age_cdata.age_tx_cons = cons;
2241
2242                 /*
2243                  * Unarm watchdog timer only when there are no pending
2244                  * Tx descriptors in queue.
2245                  */
2246                 if (sc->age_cdata.age_tx_cnt == 0)
2247                         sc->age_watchdog_timer = 0;
2248                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2249                     sc->age_cdata.age_tx_ring_map,
2250                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2251         }
2252 }
2253
2254 /* Receive a frame. */
2255 static void
2256 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2257 {
2258         struct age_rxdesc *rxd;
2259         struct rx_desc *desc;
2260         struct ifnet *ifp;
2261         struct mbuf *mp, *m;
2262         uint32_t status, index, vtag;
2263         int count, nsegs, pktlen;
2264         int rx_cons;
2265
2266         AGE_LOCK_ASSERT(sc);
2267
2268         ifp = sc->age_ifp;
2269         status = le32toh(rxrd->flags);
2270         index = le32toh(rxrd->index);
2271         rx_cons = AGE_RX_CONS(index);
2272         nsegs = AGE_RX_NSEGS(index);
2273
2274         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2275         if ((status & AGE_RRD_ERROR) != 0 &&
2276             (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2277             AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2278                 /*
2279                  * We want to pass the following frames to upper
2280                  * layer regardless of error status of Rx return
2281                  * ring.
2282                  *
2283                  *  o IP/TCP/UDP checksum is bad.
2284                  *  o frame length and protocol specific length
2285                  *     does not match.
2286                  */
2287                 sc->age_cdata.age_rx_cons += nsegs;
2288                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2289                 return;
2290         }
2291
2292         pktlen = 0;
2293         for (count = 0; count < nsegs; count++,
2294             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2295                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2296                 mp = rxd->rx_m;
2297                 desc = rxd->rx_desc;
2298                 /* Add a new receive buffer to the ring. */
2299                 if (age_newbuf(sc, rxd) != 0) {
2300                         ifp->if_iqdrops++;
2301                         /* Reuse Rx buffers. */
2302                         if (sc->age_cdata.age_rxhead != NULL) {
2303                                 m_freem(sc->age_cdata.age_rxhead);
2304                                 AGE_RXCHAIN_RESET(sc);
2305                         }
2306                         break;
2307                 }
2308
2309                 /* The length of the first mbuf is computed last. */
2310                 if (count != 0) {
2311                         mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2312                         pktlen += mp->m_len;
2313                 }
2314
2315                 /* Chain received mbufs. */
2316                 if (sc->age_cdata.age_rxhead == NULL) {
2317                         sc->age_cdata.age_rxhead = mp;
2318                         sc->age_cdata.age_rxtail = mp;
2319                 } else {
2320                         mp->m_flags &= ~M_PKTHDR;
2321                         sc->age_cdata.age_rxprev_tail =
2322                             sc->age_cdata.age_rxtail;
2323                         sc->age_cdata.age_rxtail->m_next = mp;
2324                         sc->age_cdata.age_rxtail = mp;
2325                 }
2326
2327                 if (count == nsegs - 1) {
2328                         /*
2329                          * It seems that L1 controller has no way
2330                          * to tell hardware to strip CRC bytes.
2331                          */
2332                         sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2333                         if (nsegs > 1) {
2334                                 /* Remove the CRC bytes in chained mbufs. */
2335                                 pktlen -= ETHER_CRC_LEN;
2336                                 if (mp->m_len <= ETHER_CRC_LEN) {
2337                                         sc->age_cdata.age_rxtail =
2338                                             sc->age_cdata.age_rxprev_tail;
2339                                         sc->age_cdata.age_rxtail->m_len -=
2340                                             (ETHER_CRC_LEN - mp->m_len);
2341                                         sc->age_cdata.age_rxtail->m_next = NULL;
2342                                         m_freem(mp);
2343                                 } else {
2344                                         mp->m_len -= ETHER_CRC_LEN;
2345                                 }
2346                         }
2347
2348                         m = sc->age_cdata.age_rxhead;
2349                         m->m_flags |= M_PKTHDR;
2350                         m->m_pkthdr.rcvif = ifp;
2351                         m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2352                         /* Set the first mbuf length. */
2353                         m->m_len = sc->age_cdata.age_rxlen - pktlen;
2354
2355                         /*
2356                          * Set checksum information.
2357                          * It seems that L1 controller can compute partial
2358                          * checksum. The partial checksum value can be used
2359                          * to accelerate checksum computation for fragmented
2360                          * TCP/UDP packets. Upper network stack already
2361                          * takes advantage of the partial checksum value in
2362                          * IP reassembly stage. But I'm not sure the
2363                          * correctness of the partial hardware checksum
2364                          * assistance due to lack of data sheet. If it is
2365                          * proven to work on L1 I'll enable it.
2366                          */
2367                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2368                             (status & AGE_RRD_IPV4) != 0) {
2369                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2370                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2371                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2372                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2373                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2374                                         m->m_pkthdr.csum_flags |=
2375                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2376                                         m->m_pkthdr.csum_data = 0xffff;
2377                                 }
2378                                 /*
2379                                  * Don't mark bad checksum for TCP/UDP frames
2380                                  * as fragmented frames may always have set
2381                                  * bad checksummed bit of descriptor status.
2382                                  */
2383                         }
2384
2385                         /* Check for VLAN tagged frames. */
2386                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2387                             (status & AGE_RRD_VLAN) != 0) {
2388                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2389                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2390                                 m->m_flags |= M_VLANTAG;
2391                         }
2392
2393                         /* Pass it on. */
2394                         AGE_UNLOCK(sc);
2395                         (*ifp->if_input)(ifp, m);
2396                         AGE_LOCK(sc);
2397
2398                         /* Reset mbuf chains. */
2399                         AGE_RXCHAIN_RESET(sc);
2400                 }
2401         }
2402
2403         if (count != nsegs) {
2404                 sc->age_cdata.age_rx_cons += nsegs;
2405                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2406         } else
2407                 sc->age_cdata.age_rx_cons = rx_cons;
2408 }
2409
2410 static int
2411 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2412 {
2413         struct rx_rdesc *rxrd;
2414         int rr_cons, nsegs, pktlen, prog;
2415
2416         AGE_LOCK_ASSERT(sc);
2417
2418         rr_cons = sc->age_cdata.age_rr_cons;
2419         if (rr_cons == rr_prod)
2420                 return (0);
2421
2422         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2423             sc->age_cdata.age_rr_ring_map,
2424             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2425         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2426             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2427
2428         for (prog = 0; rr_cons != rr_prod; prog++) {
2429                 if (count <= 0)
2430                         break;
2431                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2432                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2433                 if (nsegs == 0)
2434                         break;
2435                 /*
2436                  * Check number of segments against received bytes.
2437                  * Non-matching value would indicate that hardware
2438                  * is still trying to update Rx return descriptors.
2439                  * I'm not sure whether this check is really needed.
2440                  */
2441                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2442                 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2443                     (MCLBYTES - ETHER_ALIGN)))
2444                         break;
2445
2446                 prog++;
2447                 /* Received a frame. */
2448                 age_rxeof(sc, rxrd);
2449                 /* Clear return ring. */
2450                 rxrd->index = 0;
2451                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2452         }
2453
2454         if (prog > 0) {
2455                 /* Update the consumer index. */
2456                 sc->age_cdata.age_rr_cons = rr_cons;
2457
2458                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2459                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2460                 /* Sync descriptors. */
2461                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2462                     sc->age_cdata.age_rr_ring_map,
2463                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2464
2465                 /* Notify hardware availability of new Rx buffers. */
2466                 AGE_COMMIT_MBOX(sc);
2467         }
2468
2469         return (count > 0 ? 0 : EAGAIN);
2470 }
2471
2472 static void
2473 age_tick(void *arg)
2474 {
2475         struct age_softc *sc;
2476         struct mii_data *mii;
2477
2478         sc = (struct age_softc *)arg;
2479
2480         AGE_LOCK_ASSERT(sc);
2481
2482         mii = device_get_softc(sc->age_miibus);
2483         mii_tick(mii);
2484         age_watchdog(sc);
2485         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2486 }
2487
2488 static void
2489 age_reset(struct age_softc *sc)
2490 {
2491         uint32_t reg;
2492         int i;
2493
2494         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2495         CSR_READ_4(sc, AGE_MASTER_CFG);
2496         DELAY(1000);
2497         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2498                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2499                         break;
2500                 DELAY(10);
2501         }
2502
2503         if (i == 0)
2504                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2505         /* Initialize PCIe module. From Linux. */
2506         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2507         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2508 }
2509
2510 static void
2511 age_init(void *xsc)
2512 {
2513         struct age_softc *sc;
2514
2515         sc = (struct age_softc *)xsc;
2516         AGE_LOCK(sc);
2517         age_init_locked(sc);
2518         AGE_UNLOCK(sc);
2519 }
2520
2521 static void
2522 age_init_locked(struct age_softc *sc)
2523 {
2524         struct ifnet *ifp;
2525         struct mii_data *mii;
2526         uint8_t eaddr[ETHER_ADDR_LEN];
2527         bus_addr_t paddr;
2528         uint32_t reg, fsize;
2529         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2530         int error;
2531
2532         AGE_LOCK_ASSERT(sc);
2533
2534         ifp = sc->age_ifp;
2535         mii = device_get_softc(sc->age_miibus);
2536
2537         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2538                 return;
2539
2540         /*
2541          * Cancel any pending I/O.
2542          */
2543         age_stop(sc);
2544
2545         /*
2546          * Reset the chip to a known state.
2547          */
2548         age_reset(sc);
2549
2550         /* Initialize descriptors. */
2551         error = age_init_rx_ring(sc);
2552         if (error != 0) {
2553                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2554                 age_stop(sc);
2555                 return;
2556         }
2557         age_init_rr_ring(sc);
2558         age_init_tx_ring(sc);
2559         age_init_cmb_block(sc);
2560         age_init_smb_block(sc);
2561
2562         /* Reprogram the station address. */
2563         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2564         CSR_WRITE_4(sc, AGE_PAR0,
2565             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2566         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2567
2568         /* Set descriptor base addresses. */
2569         paddr = sc->age_rdata.age_tx_ring_paddr;
2570         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2571         paddr = sc->age_rdata.age_rx_ring_paddr;
2572         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2573         paddr = sc->age_rdata.age_rr_ring_paddr;
2574         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2575         paddr = sc->age_rdata.age_tx_ring_paddr;
2576         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2577         paddr = sc->age_rdata.age_cmb_block_paddr;
2578         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2579         paddr = sc->age_rdata.age_smb_block_paddr;
2580         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2581         /* Set Rx/Rx return descriptor counter. */
2582         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2583             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2584             DESC_RRD_CNT_MASK) |
2585             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2586         /* Set Tx descriptor counter. */
2587         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2588             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2589
2590         /* Tell hardware that we're ready to load descriptors. */
2591         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2592
2593         /*
2594          * Initialize mailbox register.
2595          * Updated producer/consumer index information is exchanged
2596          * through this mailbox register. However Tx producer and
2597          * Rx return consumer/Rx producer are all shared such that
2598          * it's hard to separate code path between Tx and Rx without
2599          * locking. If L1 hardware have a separate mail box register
2600          * for Tx and Rx consumer/producer management we could have
2601          * indepent Tx/Rx handler which in turn Rx handler could have
2602          * been run without any locking.
2603          */
2604         AGE_COMMIT_MBOX(sc);
2605
2606         /* Configure IPG/IFG parameters. */
2607         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2608             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2609             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2610             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2611             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2612
2613         /* Set parameters for half-duplex media. */
2614         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2615             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2616             HDPX_CFG_LCOL_MASK) |
2617             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2618             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2619             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2620             HDPX_CFG_ABEBT_MASK) |
2621             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2622             HDPX_CFG_JAMIPG_MASK));
2623
2624         /* Configure interrupt moderation timer. */
2625         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2626         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2627         reg &= ~MASTER_MTIMER_ENB;
2628         if (AGE_USECS(sc->age_int_mod) == 0)
2629                 reg &= ~MASTER_ITIMER_ENB;
2630         else
2631                 reg |= MASTER_ITIMER_ENB;
2632         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2633         if (bootverbose)
2634                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2635                     sc->age_int_mod);
2636         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2637
2638         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2639         if (ifp->if_mtu < ETHERMTU)
2640                 sc->age_max_frame_size = ETHERMTU;
2641         else
2642                 sc->age_max_frame_size = ifp->if_mtu;
2643         sc->age_max_frame_size += ETHER_HDR_LEN +
2644             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2645         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2646         /* Configure jumbo frame. */
2647         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2648         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2649             (((fsize / sizeof(uint64_t)) <<
2650             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2651             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2652             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2653             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2654             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2655
2656         /* Configure flow-control parameters. From Linux. */
2657         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2658                 /*
2659                  * Magic workaround for old-L1.
2660                  * Don't know which hw revision requires this magic.
2661                  */
2662                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2663                 /*
2664                  * Another magic workaround for flow-control mode
2665                  * change. From Linux.
2666                  */
2667                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2668         }
2669         /*
2670          * TODO
2671          *  Should understand pause parameter relationships between FIFO
2672          *  size and number of Rx descriptors and Rx return descriptors.
2673          *
2674          *  Magic parameters came from Linux.
2675          */
2676         switch (sc->age_chip_rev) {
2677         case 0x8001:
2678         case 0x9001:
2679         case 0x9002:
2680         case 0x9003:
2681                 rxf_hi = AGE_RX_RING_CNT / 16;
2682                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2683                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2684                 rrd_lo = AGE_RR_RING_CNT / 16;
2685                 break;
2686         default:
2687                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2688                 rxf_lo = reg / 16;
2689                 if (rxf_lo < 192)
2690                         rxf_lo = 192;
2691                 rxf_hi = (reg * 7) / 8;
2692                 if (rxf_hi < rxf_lo)
2693                         rxf_hi = rxf_lo + 16;
2694                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2695                 rrd_lo = reg / 8;
2696                 rrd_hi = (reg * 7) / 8;
2697                 if (rrd_lo < 2)
2698                         rrd_lo = 2;
2699                 if (rrd_hi < rrd_lo)
2700                         rrd_hi = rrd_lo + 3;
2701                 break;
2702         }
2703         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2704             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2705             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2706             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2707             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2708         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2709             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2710             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2711             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2712             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2713
2714         /* Configure RxQ. */
2715         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2716             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2717             RXQ_CFG_RD_BURST_MASK) |
2718             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2719             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2720             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2721             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2722             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2723
2724         /* Configure TxQ. */
2725         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2726             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2727             TXQ_CFG_TPD_BURST_MASK) |
2728             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2729             TXQ_CFG_TX_FIFO_BURST_MASK) |
2730             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2731             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2732             TXQ_CFG_ENB);
2733
2734         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2735             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2736             TX_JUMBO_TPD_TH_MASK) |
2737             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2738             TX_JUMBO_TPD_IPG_MASK));
2739         /* Configure DMA parameters. */
2740         CSR_WRITE_4(sc, AGE_DMA_CFG,
2741             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2742             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2743             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2744
2745         /* Configure CMB DMA write threshold. */
2746         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2747             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2748             CMB_WR_THRESH_RRD_MASK) |
2749             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2750             CMB_WR_THRESH_TPD_MASK));
2751
2752         /* Set CMB/SMB timer and enable them. */
2753         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2754             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2755             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2756         /* Request SMB updates for every seconds. */
2757         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2758         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2759
2760         /*
2761          * Disable all WOL bits as WOL can interfere normal Rx
2762          * operation.
2763          */
2764         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2765
2766         /*
2767          * Configure Tx/Rx MACs.
2768          *  - Auto-padding for short frames.
2769          *  - Enable CRC generation.
2770          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2771          *  of MAC is followed after link establishment.
2772          */
2773         CSR_WRITE_4(sc, AGE_MAC_CFG,
2774             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2775             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2776             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2777             MAC_CFG_PREAMBLE_MASK));
2778         /* Set up the receive filter. */
2779         age_rxfilter(sc);
2780         age_rxvlan(sc);
2781
2782         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2783         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2784                 reg |= MAC_CFG_RXCSUM_ENB;
2785
2786         /* Ack all pending interrupts and clear it. */
2787         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2788         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2789
2790         /* Finally enable Tx/Rx MAC. */
2791         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2792
2793         sc->age_flags &= ~AGE_FLAG_LINK;
2794         /* Switch to the current media. */
2795         mii_mediachg(mii);
2796
2797         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2798
2799         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2800         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2801 }
2802
2803 static void
2804 age_stop(struct age_softc *sc)
2805 {
2806         struct ifnet *ifp;
2807         struct age_txdesc *txd;
2808         struct age_rxdesc *rxd;
2809         uint32_t reg;
2810         int i;
2811
2812         AGE_LOCK_ASSERT(sc);
2813         /*
2814          * Mark the interface down and cancel the watchdog timer.
2815          */
2816         ifp = sc->age_ifp;
2817         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2818         sc->age_flags &= ~AGE_FLAG_LINK;
2819         callout_stop(&sc->age_tick_ch);
2820         sc->age_watchdog_timer = 0;
2821
2822         /*
2823          * Disable interrupts.
2824          */
2825         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2826         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2827         /* Stop CMB/SMB updates. */
2828         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2829         /* Stop Rx/Tx MAC. */
2830         age_stop_rxmac(sc);
2831         age_stop_txmac(sc);
2832         /* Stop DMA. */
2833         CSR_WRITE_4(sc, AGE_DMA_CFG,
2834             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2835         /* Stop TxQ/RxQ. */
2836         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2837             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2838         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2839             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2840         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2841                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2842                         break;
2843                 DELAY(10);
2844         }
2845         if (i == 0)
2846                 device_printf(sc->age_dev,
2847                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2848
2849          /* Reclaim Rx buffers that have been processed. */
2850         if (sc->age_cdata.age_rxhead != NULL)
2851                 m_freem(sc->age_cdata.age_rxhead);
2852         AGE_RXCHAIN_RESET(sc);
2853         /*
2854          * Free RX and TX mbufs still in the queues.
2855          */
2856         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2857                 rxd = &sc->age_cdata.age_rxdesc[i];
2858                 if (rxd->rx_m != NULL) {
2859                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2860                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2861                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2862                             rxd->rx_dmamap);
2863                         m_freem(rxd->rx_m);
2864                         rxd->rx_m = NULL;
2865                 }
2866         }
2867         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2868                 txd = &sc->age_cdata.age_txdesc[i];
2869                 if (txd->tx_m != NULL) {
2870                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2871                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2872                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2873                             txd->tx_dmamap);
2874                         m_freem(txd->tx_m);
2875                         txd->tx_m = NULL;
2876                 }
2877         }
2878 }
2879
2880 static void
2881 age_stop_txmac(struct age_softc *sc)
2882 {
2883         uint32_t reg;
2884         int i;
2885
2886         AGE_LOCK_ASSERT(sc);
2887
2888         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2889         if ((reg & MAC_CFG_TX_ENB) != 0) {
2890                 reg &= ~MAC_CFG_TX_ENB;
2891                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2892         }
2893         /* Stop Tx DMA engine. */
2894         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2895         if ((reg & DMA_CFG_RD_ENB) != 0) {
2896                 reg &= ~DMA_CFG_RD_ENB;
2897                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2898         }
2899         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2900                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2901                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2902                         break;
2903                 DELAY(10);
2904         }
2905         if (i == 0)
2906                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2907 }
2908
2909 static void
2910 age_stop_rxmac(struct age_softc *sc)
2911 {
2912         uint32_t reg;
2913         int i;
2914
2915         AGE_LOCK_ASSERT(sc);
2916
2917         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2918         if ((reg & MAC_CFG_RX_ENB) != 0) {
2919                 reg &= ~MAC_CFG_RX_ENB;
2920                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2921         }
2922         /* Stop Rx DMA engine. */
2923         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2924         if ((reg & DMA_CFG_WR_ENB) != 0) {
2925                 reg &= ~DMA_CFG_WR_ENB;
2926                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2927         }
2928         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2929                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2930                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2931                         break;
2932                 DELAY(10);
2933         }
2934         if (i == 0)
2935                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2936 }
2937
2938 static void
2939 age_init_tx_ring(struct age_softc *sc)
2940 {
2941         struct age_ring_data *rd;
2942         struct age_txdesc *txd;
2943         int i;
2944
2945         AGE_LOCK_ASSERT(sc);
2946
2947         sc->age_cdata.age_tx_prod = 0;
2948         sc->age_cdata.age_tx_cons = 0;
2949         sc->age_cdata.age_tx_cnt = 0;
2950
2951         rd = &sc->age_rdata;
2952         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2953         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2954                 txd = &sc->age_cdata.age_txdesc[i];
2955                 txd->tx_desc = &rd->age_tx_ring[i];
2956                 txd->tx_m = NULL;
2957         }
2958
2959         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2960             sc->age_cdata.age_tx_ring_map,
2961             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2962 }
2963
2964 static int
2965 age_init_rx_ring(struct age_softc *sc)
2966 {
2967         struct age_ring_data *rd;
2968         struct age_rxdesc *rxd;
2969         int i;
2970
2971         AGE_LOCK_ASSERT(sc);
2972
2973         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2974         sc->age_morework = 0;
2975         rd = &sc->age_rdata;
2976         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2977         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2978                 rxd = &sc->age_cdata.age_rxdesc[i];
2979                 rxd->rx_m = NULL;
2980                 rxd->rx_desc = &rd->age_rx_ring[i];
2981                 if (age_newbuf(sc, rxd) != 0)
2982                         return (ENOBUFS);
2983         }
2984
2985         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2986             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2987
2988         return (0);
2989 }
2990
2991 static void
2992 age_init_rr_ring(struct age_softc *sc)
2993 {
2994         struct age_ring_data *rd;
2995
2996         AGE_LOCK_ASSERT(sc);
2997
2998         sc->age_cdata.age_rr_cons = 0;
2999         AGE_RXCHAIN_RESET(sc);
3000
3001         rd = &sc->age_rdata;
3002         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3003         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3004             sc->age_cdata.age_rr_ring_map,
3005             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3006 }
3007
3008 static void
3009 age_init_cmb_block(struct age_softc *sc)
3010 {
3011         struct age_ring_data *rd;
3012
3013         AGE_LOCK_ASSERT(sc);
3014
3015         rd = &sc->age_rdata;
3016         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3017         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3018             sc->age_cdata.age_cmb_block_map,
3019             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3020 }
3021
3022 static void
3023 age_init_smb_block(struct age_softc *sc)
3024 {
3025         struct age_ring_data *rd;
3026
3027         AGE_LOCK_ASSERT(sc);
3028
3029         rd = &sc->age_rdata;
3030         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3031         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3032             sc->age_cdata.age_smb_block_map,
3033             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3034 }
3035
3036 static int
3037 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3038 {
3039         struct rx_desc *desc;
3040         struct mbuf *m;
3041         bus_dma_segment_t segs[1];
3042         bus_dmamap_t map;
3043         int nsegs;
3044
3045         AGE_LOCK_ASSERT(sc);
3046
3047         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3048         if (m == NULL)
3049                 return (ENOBUFS);
3050         m->m_len = m->m_pkthdr.len = MCLBYTES;
3051         m_adj(m, ETHER_ALIGN);
3052
3053         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3054             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3055                 m_freem(m);
3056                 return (ENOBUFS);
3057         }
3058         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3059
3060         if (rxd->rx_m != NULL) {
3061                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3062                     BUS_DMASYNC_POSTREAD);
3063                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3064         }
3065         map = rxd->rx_dmamap;
3066         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3067         sc->age_cdata.age_rx_sparemap = map;
3068         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3069             BUS_DMASYNC_PREREAD);
3070         rxd->rx_m = m;
3071
3072         desc = rxd->rx_desc;
3073         desc->addr = htole64(segs[0].ds_addr);
3074         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3075             AGE_RD_LEN_SHIFT);
3076         return (0);
3077 }
3078
3079 static void
3080 age_rxvlan(struct age_softc *sc)
3081 {
3082         struct ifnet *ifp;
3083         uint32_t reg;
3084
3085         AGE_LOCK_ASSERT(sc);
3086
3087         ifp = sc->age_ifp;
3088         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3089         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3090         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3091                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3092         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3093 }
3094
3095 static void
3096 age_rxfilter(struct age_softc *sc)
3097 {
3098         struct ifnet *ifp;
3099         struct ifmultiaddr *ifma;
3100         uint32_t crc;
3101         uint32_t mchash[2];
3102         uint32_t rxcfg;
3103
3104         AGE_LOCK_ASSERT(sc);
3105
3106         ifp = sc->age_ifp;
3107
3108         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3109         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3110         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3111                 rxcfg |= MAC_CFG_BCAST;
3112         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3113                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3114                         rxcfg |= MAC_CFG_PROMISC;
3115                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3116                         rxcfg |= MAC_CFG_ALLMULTI;
3117                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3118                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3119                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3120                 return;
3121         }
3122
3123         /* Program new filter. */
3124         bzero(mchash, sizeof(mchash));
3125
3126         if_maddr_rlock(ifp);
3127         TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3128                 if (ifma->ifma_addr->sa_family != AF_LINK)
3129                         continue;
3130                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3131                     ifma->ifma_addr), ETHER_ADDR_LEN);
3132                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3133         }
3134         if_maddr_runlock(ifp);
3135
3136         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3137         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3138         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3139 }
3140
3141 static int
3142 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3143 {
3144         struct age_softc *sc;
3145         struct age_stats *stats;
3146         int error, result;
3147
3148         result = -1;
3149         error = sysctl_handle_int(oidp, &result, 0, req);
3150
3151         if (error != 0 || req->newptr == NULL)
3152                 return (error);
3153
3154         if (result != 1)
3155                 return (error);
3156
3157         sc = (struct age_softc *)arg1;
3158         stats = &sc->age_stat;
3159         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3160         printf("Transmit good frames : %ju\n",
3161             (uintmax_t)stats->tx_frames);
3162         printf("Transmit good broadcast frames : %ju\n",
3163             (uintmax_t)stats->tx_bcast_frames);
3164         printf("Transmit good multicast frames : %ju\n",
3165             (uintmax_t)stats->tx_mcast_frames);
3166         printf("Transmit pause control frames : %u\n",
3167             stats->tx_pause_frames);
3168         printf("Transmit control frames : %u\n",
3169             stats->tx_control_frames);
3170         printf("Transmit frames with excessive deferrals : %u\n",
3171             stats->tx_excess_defer);
3172         printf("Transmit deferrals : %u\n",
3173             stats->tx_deferred);
3174         printf("Transmit good octets : %ju\n",
3175             (uintmax_t)stats->tx_bytes);
3176         printf("Transmit good broadcast octets : %ju\n",
3177             (uintmax_t)stats->tx_bcast_bytes);
3178         printf("Transmit good multicast octets : %ju\n",
3179             (uintmax_t)stats->tx_mcast_bytes);
3180         printf("Transmit frames 64 bytes : %ju\n",
3181             (uintmax_t)stats->tx_pkts_64);
3182         printf("Transmit frames 65 to 127 bytes : %ju\n",
3183             (uintmax_t)stats->tx_pkts_65_127);
3184         printf("Transmit frames 128 to 255 bytes : %ju\n",
3185             (uintmax_t)stats->tx_pkts_128_255);
3186         printf("Transmit frames 256 to 511 bytes : %ju\n",
3187             (uintmax_t)stats->tx_pkts_256_511);
3188         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3189             (uintmax_t)stats->tx_pkts_512_1023);
3190         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3191             (uintmax_t)stats->tx_pkts_1024_1518);
3192         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3193             (uintmax_t)stats->tx_pkts_1519_max);
3194         printf("Transmit single collisions : %u\n",
3195             stats->tx_single_colls);
3196         printf("Transmit multiple collisions : %u\n",
3197             stats->tx_multi_colls);
3198         printf("Transmit late collisions : %u\n",
3199             stats->tx_late_colls);
3200         printf("Transmit abort due to excessive collisions : %u\n",
3201             stats->tx_excess_colls);
3202         printf("Transmit underruns due to FIFO underruns : %u\n",
3203             stats->tx_underrun);
3204         printf("Transmit descriptor write-back errors : %u\n",
3205             stats->tx_desc_underrun);
3206         printf("Transmit frames with length mismatched frame size : %u\n",
3207             stats->tx_lenerrs);
3208         printf("Transmit frames with truncated due to MTU size : %u\n",
3209             stats->tx_lenerrs);
3210
3211         printf("Receive good frames : %ju\n",
3212             (uintmax_t)stats->rx_frames);
3213         printf("Receive good broadcast frames : %ju\n",
3214             (uintmax_t)stats->rx_bcast_frames);
3215         printf("Receive good multicast frames : %ju\n",
3216             (uintmax_t)stats->rx_mcast_frames);
3217         printf("Receive pause control frames : %u\n",
3218             stats->rx_pause_frames);
3219         printf("Receive control frames : %u\n",
3220             stats->rx_control_frames);
3221         printf("Receive CRC errors : %u\n",
3222             stats->rx_crcerrs);
3223         printf("Receive frames with length errors : %u\n",
3224             stats->rx_lenerrs);
3225         printf("Receive good octets : %ju\n",
3226             (uintmax_t)stats->rx_bytes);
3227         printf("Receive good broadcast octets : %ju\n",
3228             (uintmax_t)stats->rx_bcast_bytes);
3229         printf("Receive good multicast octets : %ju\n",
3230             (uintmax_t)stats->rx_mcast_bytes);
3231         printf("Receive frames too short : %u\n",
3232             stats->rx_runts);
3233         printf("Receive fragmented frames : %ju\n",
3234             (uintmax_t)stats->rx_fragments);
3235         printf("Receive frames 64 bytes : %ju\n",
3236             (uintmax_t)stats->rx_pkts_64);
3237         printf("Receive frames 65 to 127 bytes : %ju\n",
3238             (uintmax_t)stats->rx_pkts_65_127);
3239         printf("Receive frames 128 to 255 bytes : %ju\n",
3240             (uintmax_t)stats->rx_pkts_128_255);
3241         printf("Receive frames 256 to 511 bytes : %ju\n",
3242             (uintmax_t)stats->rx_pkts_256_511);
3243         printf("Receive frames 512 to 1024 bytes : %ju\n",
3244             (uintmax_t)stats->rx_pkts_512_1023);
3245         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3246             (uintmax_t)stats->rx_pkts_1024_1518);
3247         printf("Receive frames 1519 to MTU bytes : %ju\n",
3248             (uintmax_t)stats->rx_pkts_1519_max);
3249         printf("Receive frames too long : %ju\n",
3250             (uint64_t)stats->rx_pkts_truncated);
3251         printf("Receive frames with FIFO overflow : %u\n",
3252             stats->rx_fifo_oflows);
3253         printf("Receive frames with return descriptor overflow : %u\n",
3254             stats->rx_desc_oflows);
3255         printf("Receive frames with alignment errors : %u\n",
3256             stats->rx_alignerrs);
3257         printf("Receive frames dropped due to address filtering : %ju\n",
3258             (uint64_t)stats->rx_pkts_filtered);
3259
3260         return (error);
3261 }
3262
3263 static int
3264 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3265 {
3266         int error, value;
3267
3268         if (arg1 == NULL)
3269                 return (EINVAL);
3270         value = *(int *)arg1;
3271         error = sysctl_handle_int(oidp, &value, 0, req);
3272         if (error || req->newptr == NULL)
3273                 return (error);
3274         if (value < low || value > high)
3275                 return (EINVAL);
3276         *(int *)arg1 = value;
3277
3278         return (0);
3279 }
3280
3281 static int
3282 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3283 {
3284         return (sysctl_int_range(oidp, arg1, arg2, req,
3285             AGE_PROC_MIN, AGE_PROC_MAX));
3286 }
3287
3288 static int
3289 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3290 {
3291
3292         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3293             AGE_IM_TIMER_MAX));
3294 }