]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/dev/re/if_re.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / dev / re / if_re.c
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *      o Descriptor based DMA mechanism. Each descriptor represents
56  *        a single packet fragment. Data buffers may be aligned on
57  *        any byte boundary.
58  *
59  *      o 64-bit DMA
60  *
61  *      o TCP/IP checksum offload for both RX and TX
62  *
63  *      o High and normal priority transmit DMA rings
64  *
65  *      o VLAN tag insertion and extraction
66  *
67  *      o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *      o 1000Mbps mode
79  *
80  *      o Jumbo frames
81  *
82  *      o GMII and TBI ports/registers for interfacing with copper
83  *        or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *      o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128
129 #include <net/if.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/if_vlan_var.h>
136
137 #include <net/bpf.h>
138
139 #include <machine/bus.h>
140 #include <machine/resource.h>
141 #include <sys/bus.h>
142 #include <sys/rman.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149
150 #include <pci/if_rlreg.h>
151
152 MODULE_DEPEND(re, pci, 1, 1, 1);
153 MODULE_DEPEND(re, ether, 1, 1, 1);
154 MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156 /* "device miibus" required.  See GENERIC if you get errors here. */
157 #include "miibus_if.h"
158
159 /* Tunables. */
160 static int intr_filter = 0;
161 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162 static int msi_disable = 0;
163 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164 static int msix_disable = 0;
165 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166 static int prefer_iomap = 0;
167 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168
169 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170
171 /*
172  * Various supported device vendors/types and their names.
173  */
174 static struct rl_type re_devs[] = {
175         { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176             "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177         { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178             "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179         { RT_VENDORID, RT_DEVICEID_8139, 0,
180             "RealTek 8139C+ 10/100BaseTX" },
181         { RT_VENDORID, RT_DEVICEID_8101E, 0,
182             "RealTek 810xE PCIe 10/100baseTX" },
183         { RT_VENDORID, RT_DEVICEID_8168, 0,
184             "RealTek 8168/8111 B/C/CP/D/DP/E PCIe Gigabit Ethernet" },
185         { RT_VENDORID, RT_DEVICEID_8169, 0,
186             "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187         { RT_VENDORID, RT_DEVICEID_8169SC, 0,
188             "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189         { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190             "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191         { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192             "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193         { USR_VENDORID, USR_DEVICEID_997902, 0,
194             "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195 };
196
197 static struct rl_hwrev re_hwrevs[] = {
198         { RL_HWREV_8139, RL_8139,  "", RL_MTU },
199         { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200         { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201         { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202         { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203         { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204         { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205         { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206         { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207         { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208         { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209         { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210         { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211         { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212         { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213         { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214         { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215         { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216         { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217         { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218         { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219         { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220         { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221         { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222         { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223         { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
224         { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
225         { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
226         { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
227         { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
228         { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
229         { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
230         { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
231         { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
232         { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
233         { 0, 0, NULL, 0 }
234 };
235
236 static int re_probe             (device_t);
237 static int re_attach            (device_t);
238 static int re_detach            (device_t);
239
240 static int re_encap             (struct rl_softc *, struct mbuf **);
241
242 static void re_dma_map_addr     (void *, bus_dma_segment_t *, int, int);
243 static int re_allocmem          (device_t, struct rl_softc *);
244 static __inline void re_discard_rxbuf
245                                 (struct rl_softc *, int);
246 static int re_newbuf            (struct rl_softc *, int);
247 static int re_jumbo_newbuf      (struct rl_softc *, int);
248 static int re_rx_list_init      (struct rl_softc *);
249 static int re_jrx_list_init     (struct rl_softc *);
250 static int re_tx_list_init      (struct rl_softc *);
251 #ifdef RE_FIXUP_RX
252 static __inline void re_fixup_rx
253                                 (struct mbuf *);
254 #endif
255 static int re_rxeof             (struct rl_softc *, int *);
256 static void re_txeof            (struct rl_softc *);
257 #ifdef DEVICE_POLLING
258 static int re_poll              (struct ifnet *, enum poll_cmd, int);
259 static int re_poll_locked       (struct ifnet *, enum poll_cmd, int);
260 #endif
261 static int re_intr              (void *);
262 static void re_intr_msi         (void *);
263 static void re_tick             (void *);
264 static void re_int_task         (void *, int);
265 static void re_start            (struct ifnet *);
266 static void re_start_locked     (struct ifnet *);
267 static int re_ioctl             (struct ifnet *, u_long, caddr_t);
268 static void re_init             (void *);
269 static void re_init_locked      (struct rl_softc *);
270 static void re_stop             (struct rl_softc *);
271 static void re_watchdog         (struct rl_softc *);
272 static int re_suspend           (device_t);
273 static int re_resume            (device_t);
274 static int re_shutdown          (device_t);
275 static int re_ifmedia_upd       (struct ifnet *);
276 static void re_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
277
278 static void re_eeprom_putbyte   (struct rl_softc *, int);
279 static void re_eeprom_getword   (struct rl_softc *, int, u_int16_t *);
280 static void re_read_eeprom      (struct rl_softc *, caddr_t, int, int);
281 static int re_gmii_readreg      (device_t, int, int);
282 static int re_gmii_writereg     (device_t, int, int, int);
283
284 static int re_miibus_readreg    (device_t, int, int);
285 static int re_miibus_writereg   (device_t, int, int, int);
286 static void re_miibus_statchg   (device_t);
287
288 static void re_set_jumbo        (struct rl_softc *, int);
289 static void re_set_rxmode               (struct rl_softc *);
290 static void re_reset            (struct rl_softc *);
291 static void re_setwol           (struct rl_softc *);
292 static void re_clrwol           (struct rl_softc *);
293
294 #ifdef RE_DIAG
295 static int re_diag              (struct rl_softc *);
296 #endif
297
298 static void re_add_sysctls      (struct rl_softc *);
299 static int re_sysctl_stats      (SYSCTL_HANDLER_ARGS);
300 static int sysctl_int_range     (SYSCTL_HANDLER_ARGS, int, int);
301 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
302
303 static device_method_t re_methods[] = {
304         /* Device interface */
305         DEVMETHOD(device_probe,         re_probe),
306         DEVMETHOD(device_attach,        re_attach),
307         DEVMETHOD(device_detach,        re_detach),
308         DEVMETHOD(device_suspend,       re_suspend),
309         DEVMETHOD(device_resume,        re_resume),
310         DEVMETHOD(device_shutdown,      re_shutdown),
311
312         /* bus interface */
313         DEVMETHOD(bus_print_child,      bus_generic_print_child),
314         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
315
316         /* MII interface */
317         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
318         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
319         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
320
321         { 0, 0 }
322 };
323
324 static driver_t re_driver = {
325         "re",
326         re_methods,
327         sizeof(struct rl_softc)
328 };
329
330 static devclass_t re_devclass;
331
332 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
333 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
334
335 #define EE_SET(x)                                       \
336         CSR_WRITE_1(sc, RL_EECMD,                       \
337                 CSR_READ_1(sc, RL_EECMD) | x)
338
339 #define EE_CLR(x)                                       \
340         CSR_WRITE_1(sc, RL_EECMD,                       \
341                 CSR_READ_1(sc, RL_EECMD) & ~x)
342
343 /*
344  * Send a read command and address to the EEPROM, check for ACK.
345  */
346 static void
347 re_eeprom_putbyte(struct rl_softc *sc, int addr)
348 {
349         int                     d, i;
350
351         d = addr | (RL_9346_READ << sc->rl_eewidth);
352
353         /*
354          * Feed in each bit and strobe the clock.
355          */
356
357         for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
358                 if (d & i) {
359                         EE_SET(RL_EE_DATAIN);
360                 } else {
361                         EE_CLR(RL_EE_DATAIN);
362                 }
363                 DELAY(100);
364                 EE_SET(RL_EE_CLK);
365                 DELAY(150);
366                 EE_CLR(RL_EE_CLK);
367                 DELAY(100);
368         }
369 }
370
371 /*
372  * Read a word of data stored in the EEPROM at address 'addr.'
373  */
374 static void
375 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
376 {
377         int                     i;
378         u_int16_t               word = 0;
379
380         /*
381          * Send address of word we want to read.
382          */
383         re_eeprom_putbyte(sc, addr);
384
385         /*
386          * Start reading bits from EEPROM.
387          */
388         for (i = 0x8000; i; i >>= 1) {
389                 EE_SET(RL_EE_CLK);
390                 DELAY(100);
391                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
392                         word |= i;
393                 EE_CLR(RL_EE_CLK);
394                 DELAY(100);
395         }
396
397         *dest = word;
398 }
399
400 /*
401  * Read a sequence of words from the EEPROM.
402  */
403 static void
404 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
405 {
406         int                     i;
407         u_int16_t               word = 0, *ptr;
408
409         CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
410
411         DELAY(100);
412
413         for (i = 0; i < cnt; i++) {
414                 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
415                 re_eeprom_getword(sc, off + i, &word);
416                 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
417                 ptr = (u_int16_t *)(dest + (i * 2));
418                 *ptr = word;
419         }
420
421         CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
422 }
423
424 static int
425 re_gmii_readreg(device_t dev, int phy, int reg)
426 {
427         struct rl_softc         *sc;
428         u_int32_t               rval;
429         int                     i;
430
431         sc = device_get_softc(dev);
432
433         /* Let the rgephy driver read the GMEDIASTAT register */
434
435         if (reg == RL_GMEDIASTAT) {
436                 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
437                 return (rval);
438         }
439
440         CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
441
442         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
443                 rval = CSR_READ_4(sc, RL_PHYAR);
444                 if (rval & RL_PHYAR_BUSY)
445                         break;
446                 DELAY(25);
447         }
448
449         if (i == RL_PHY_TIMEOUT) {
450                 device_printf(sc->rl_dev, "PHY read failed\n");
451                 return (0);
452         }
453
454         /*
455          * Controller requires a 20us delay to process next MDIO request.
456          */
457         DELAY(20);
458
459         return (rval & RL_PHYAR_PHYDATA);
460 }
461
462 static int
463 re_gmii_writereg(device_t dev, int phy, int reg, int data)
464 {
465         struct rl_softc         *sc;
466         u_int32_t               rval;
467         int                     i;
468
469         sc = device_get_softc(dev);
470
471         CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
472             (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
473
474         for (i = 0; i < RL_PHY_TIMEOUT; i++) {
475                 rval = CSR_READ_4(sc, RL_PHYAR);
476                 if (!(rval & RL_PHYAR_BUSY))
477                         break;
478                 DELAY(25);
479         }
480
481         if (i == RL_PHY_TIMEOUT) {
482                 device_printf(sc->rl_dev, "PHY write failed\n");
483                 return (0);
484         }
485
486         /*
487          * Controller requires a 20us delay to process next MDIO request.
488          */
489         DELAY(20);
490
491         return (0);
492 }
493
494 static int
495 re_miibus_readreg(device_t dev, int phy, int reg)
496 {
497         struct rl_softc         *sc;
498         u_int16_t               rval = 0;
499         u_int16_t               re8139_reg = 0;
500
501         sc = device_get_softc(dev);
502
503         if (sc->rl_type == RL_8169) {
504                 rval = re_gmii_readreg(dev, phy, reg);
505                 return (rval);
506         }
507
508         switch (reg) {
509         case MII_BMCR:
510                 re8139_reg = RL_BMCR;
511                 break;
512         case MII_BMSR:
513                 re8139_reg = RL_BMSR;
514                 break;
515         case MII_ANAR:
516                 re8139_reg = RL_ANAR;
517                 break;
518         case MII_ANER:
519                 re8139_reg = RL_ANER;
520                 break;
521         case MII_ANLPAR:
522                 re8139_reg = RL_LPAR;
523                 break;
524         case MII_PHYIDR1:
525         case MII_PHYIDR2:
526                 return (0);
527         /*
528          * Allow the rlphy driver to read the media status
529          * register. If we have a link partner which does not
530          * support NWAY, this is the register which will tell
531          * us the results of parallel detection.
532          */
533         case RL_MEDIASTAT:
534                 rval = CSR_READ_1(sc, RL_MEDIASTAT);
535                 return (rval);
536         default:
537                 device_printf(sc->rl_dev, "bad phy register\n");
538                 return (0);
539         }
540         rval = CSR_READ_2(sc, re8139_reg);
541         if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
542                 /* 8139C+ has different bit layout. */
543                 rval &= ~(BMCR_LOOP | BMCR_ISO);
544         }
545         return (rval);
546 }
547
548 static int
549 re_miibus_writereg(device_t dev, int phy, int reg, int data)
550 {
551         struct rl_softc         *sc;
552         u_int16_t               re8139_reg = 0;
553         int                     rval = 0;
554
555         sc = device_get_softc(dev);
556
557         if (sc->rl_type == RL_8169) {
558                 rval = re_gmii_writereg(dev, phy, reg, data);
559                 return (rval);
560         }
561
562         switch (reg) {
563         case MII_BMCR:
564                 re8139_reg = RL_BMCR;
565                 if (sc->rl_type == RL_8139CPLUS) {
566                         /* 8139C+ has different bit layout. */
567                         data &= ~(BMCR_LOOP | BMCR_ISO);
568                 }
569                 break;
570         case MII_BMSR:
571                 re8139_reg = RL_BMSR;
572                 break;
573         case MII_ANAR:
574                 re8139_reg = RL_ANAR;
575                 break;
576         case MII_ANER:
577                 re8139_reg = RL_ANER;
578                 break;
579         case MII_ANLPAR:
580                 re8139_reg = RL_LPAR;
581                 break;
582         case MII_PHYIDR1:
583         case MII_PHYIDR2:
584                 return (0);
585                 break;
586         default:
587                 device_printf(sc->rl_dev, "bad phy register\n");
588                 return (0);
589         }
590         CSR_WRITE_2(sc, re8139_reg, data);
591         return (0);
592 }
593
594 static void
595 re_miibus_statchg(device_t dev)
596 {
597         struct rl_softc         *sc;
598         struct ifnet            *ifp;
599         struct mii_data         *mii;
600
601         sc = device_get_softc(dev);
602         mii = device_get_softc(sc->rl_miibus);
603         ifp = sc->rl_ifp;
604         if (mii == NULL || ifp == NULL ||
605             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
606                 return;
607
608         sc->rl_flags &= ~RL_FLAG_LINK;
609         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
610             (IFM_ACTIVE | IFM_AVALID)) {
611                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
612                 case IFM_10_T:
613                 case IFM_100_TX:
614                         sc->rl_flags |= RL_FLAG_LINK;
615                         break;
616                 case IFM_1000_T:
617                         if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
618                                 break;
619                         sc->rl_flags |= RL_FLAG_LINK;
620                         break;
621                 default:
622                         break;
623                 }
624         }
625         /*
626          * RealTek controllers does not provide any interface to
627          * Tx/Rx MACs for resolved speed, duplex and flow-control
628          * parameters.
629          */
630 }
631
632 /*
633  * Set the RX configuration and 64-bit multicast hash filter.
634  */
635 static void
636 re_set_rxmode(struct rl_softc *sc)
637 {
638         struct ifnet            *ifp;
639         struct ifmultiaddr      *ifma;
640         uint32_t                hashes[2] = { 0, 0 };
641         uint32_t                h, rxfilt;
642
643         RL_LOCK_ASSERT(sc);
644
645         ifp = sc->rl_ifp;
646
647         rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
648
649         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
650                 if (ifp->if_flags & IFF_PROMISC)
651                         rxfilt |= RL_RXCFG_RX_ALLPHYS;
652                 /*
653                  * Unlike other hardwares, we have to explicitly set
654                  * RL_RXCFG_RX_MULTI to receive multicast frames in
655                  * promiscuous mode.
656                  */
657                 rxfilt |= RL_RXCFG_RX_MULTI;
658                 hashes[0] = hashes[1] = 0xffffffff;
659                 goto done;
660         }
661
662         if_maddr_rlock(ifp);
663         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
664                 if (ifma->ifma_addr->sa_family != AF_LINK)
665                         continue;
666                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
667                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
668                 if (h < 32)
669                         hashes[0] |= (1 << h);
670                 else
671                         hashes[1] |= (1 << (h - 32));
672         }
673         if_maddr_runlock(ifp);
674
675         if (hashes[0] != 0 || hashes[1] != 0) {
676                 /*
677                  * For some unfathomable reason, RealTek decided to
678                  * reverse the order of the multicast hash registers
679                  * in the PCI Express parts.  This means we have to
680                  * write the hash pattern in reverse order for those
681                  * devices.
682                  */
683                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
684                         h = bswap32(hashes[0]);
685                         hashes[0] = bswap32(hashes[1]);
686                         hashes[1] = h;
687                 }
688                 rxfilt |= RL_RXCFG_RX_MULTI;
689         }
690
691 done:
692         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
693         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
694         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
695 }
696
697 static void
698 re_reset(struct rl_softc *sc)
699 {
700         int                     i;
701
702         RL_LOCK_ASSERT(sc);
703
704         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
705
706         for (i = 0; i < RL_TIMEOUT; i++) {
707                 DELAY(10);
708                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
709                         break;
710         }
711         if (i == RL_TIMEOUT)
712                 device_printf(sc->rl_dev, "reset never completed!\n");
713
714         if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
715                 CSR_WRITE_1(sc, 0x82, 1);
716         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
717                 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
718 }
719
720 #ifdef RE_DIAG
721
722 /*
723  * The following routine is designed to test for a defect on some
724  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
725  * lines connected to the bus, however for a 32-bit only card, they
726  * should be pulled high. The result of this defect is that the
727  * NIC will not work right if you plug it into a 64-bit slot: DMA
728  * operations will be done with 64-bit transfers, which will fail
729  * because the 64-bit data lines aren't connected.
730  *
731  * There's no way to work around this (short of talking a soldering
732  * iron to the board), however we can detect it. The method we use
733  * here is to put the NIC into digital loopback mode, set the receiver
734  * to promiscuous mode, and then try to send a frame. We then compare
735  * the frame data we sent to what was received. If the data matches,
736  * then the NIC is working correctly, otherwise we know the user has
737  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
738  * slot. In the latter case, there's no way the NIC can work correctly,
739  * so we print out a message on the console and abort the device attach.
740  */
741
742 static int
743 re_diag(struct rl_softc *sc)
744 {
745         struct ifnet            *ifp = sc->rl_ifp;
746         struct mbuf             *m0;
747         struct ether_header     *eh;
748         struct rl_desc          *cur_rx;
749         u_int16_t               status;
750         u_int32_t               rxstat;
751         int                     total_len, i, error = 0, phyaddr;
752         u_int8_t                dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
753         u_int8_t                src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
754
755         /* Allocate a single mbuf */
756         MGETHDR(m0, M_DONTWAIT, MT_DATA);
757         if (m0 == NULL)
758                 return (ENOBUFS);
759
760         RL_LOCK(sc);
761
762         /*
763          * Initialize the NIC in test mode. This sets the chip up
764          * so that it can send and receive frames, but performs the
765          * following special functions:
766          * - Puts receiver in promiscuous mode
767          * - Enables digital loopback mode
768          * - Leaves interrupts turned off
769          */
770
771         ifp->if_flags |= IFF_PROMISC;
772         sc->rl_testmode = 1;
773         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
774         re_init_locked(sc);
775         sc->rl_flags |= RL_FLAG_LINK;
776         if (sc->rl_type == RL_8169)
777                 phyaddr = 1;
778         else
779                 phyaddr = 0;
780
781         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
782         for (i = 0; i < RL_TIMEOUT; i++) {
783                 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
784                 if (!(status & BMCR_RESET))
785                         break;
786         }
787
788         re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
789         CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
790
791         DELAY(100000);
792
793         /* Put some data in the mbuf */
794
795         eh = mtod(m0, struct ether_header *);
796         bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
797         bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
798         eh->ether_type = htons(ETHERTYPE_IP);
799         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
800
801         /*
802          * Queue the packet, start transmission.
803          * Note: IF_HANDOFF() ultimately calls re_start() for us.
804          */
805
806         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
807         RL_UNLOCK(sc);
808         /* XXX: re_diag must not be called when in ALTQ mode */
809         IF_HANDOFF(&ifp->if_snd, m0, ifp);
810         RL_LOCK(sc);
811         m0 = NULL;
812
813         /* Wait for it to propagate through the chip */
814
815         DELAY(100000);
816         for (i = 0; i < RL_TIMEOUT; i++) {
817                 status = CSR_READ_2(sc, RL_ISR);
818                 CSR_WRITE_2(sc, RL_ISR, status);
819                 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
820                     (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
821                         break;
822                 DELAY(10);
823         }
824
825         if (i == RL_TIMEOUT) {
826                 device_printf(sc->rl_dev,
827                     "diagnostic failed, failed to receive packet in"
828                     " loopback mode\n");
829                 error = EIO;
830                 goto done;
831         }
832
833         /*
834          * The packet should have been dumped into the first
835          * entry in the RX DMA ring. Grab it from there.
836          */
837
838         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
839             sc->rl_ldata.rl_rx_list_map,
840             BUS_DMASYNC_POSTREAD);
841         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
842             sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
843             BUS_DMASYNC_POSTREAD);
844         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
845             sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
846
847         m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
848         sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
849         eh = mtod(m0, struct ether_header *);
850
851         cur_rx = &sc->rl_ldata.rl_rx_list[0];
852         total_len = RL_RXBYTES(cur_rx);
853         rxstat = le32toh(cur_rx->rl_cmdstat);
854
855         if (total_len != ETHER_MIN_LEN) {
856                 device_printf(sc->rl_dev,
857                     "diagnostic failed, received short packet\n");
858                 error = EIO;
859                 goto done;
860         }
861
862         /* Test that the received packet data matches what we sent. */
863
864         if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
865             bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
866             ntohs(eh->ether_type) != ETHERTYPE_IP) {
867                 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
868                 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
869                     dst, ":", src, ":", ETHERTYPE_IP);
870                 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
871                     eh->ether_dhost, ":",  eh->ether_shost, ":",
872                     ntohs(eh->ether_type));
873                 device_printf(sc->rl_dev, "You may have a defective 32-bit "
874                     "NIC plugged into a 64-bit PCI slot.\n");
875                 device_printf(sc->rl_dev, "Please re-install the NIC in a "
876                     "32-bit slot for proper operation.\n");
877                 device_printf(sc->rl_dev, "Read the re(4) man page for more "
878                     "details.\n");
879                 error = EIO;
880         }
881
882 done:
883         /* Turn interface off, release resources */
884
885         sc->rl_testmode = 0;
886         sc->rl_flags &= ~RL_FLAG_LINK;
887         ifp->if_flags &= ~IFF_PROMISC;
888         re_stop(sc);
889         if (m0 != NULL)
890                 m_freem(m0);
891
892         RL_UNLOCK(sc);
893
894         return (error);
895 }
896
897 #endif
898
899 /*
900  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
901  * IDs against our list and return a device name if we find a match.
902  */
903 static int
904 re_probe(device_t dev)
905 {
906         struct rl_type          *t;
907         uint16_t                devid, vendor;
908         uint16_t                revid, sdevid;
909         int                     i;
910
911         vendor = pci_get_vendor(dev);
912         devid = pci_get_device(dev);
913         revid = pci_get_revid(dev);
914         sdevid = pci_get_subdevice(dev);
915
916         if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
917                 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
918                         /*
919                          * Only attach to rev. 3 of the Linksys EG1032 adapter.
920                          * Rev. 2 is supported by sk(4).
921                          */
922                         return (ENXIO);
923                 }
924         }
925
926         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
927                 if (revid != 0x20) {
928                         /* 8139, let rl(4) take care of this device. */
929                         return (ENXIO);
930                 }
931         }
932
933         t = re_devs;
934         for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
935                 if (vendor == t->rl_vid && devid == t->rl_did) {
936                         device_set_desc(dev, t->rl_name);
937                         return (BUS_PROBE_DEFAULT);
938                 }
939         }
940
941         return (ENXIO);
942 }
943
944 /*
945  * Map a single buffer address.
946  */
947
948 static void
949 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
950 {
951         bus_addr_t              *addr;
952
953         if (error)
954                 return;
955
956         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
957         addr = arg;
958         *addr = segs->ds_addr;
959 }
960
961 static int
962 re_allocmem(device_t dev, struct rl_softc *sc)
963 {
964         bus_addr_t              lowaddr;
965         bus_size_t              rx_list_size, tx_list_size;
966         int                     error;
967         int                     i;
968
969         rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
970         tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
971
972         /*
973          * Allocate the parent bus DMA tag appropriate for PCI.
974          * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
975          * register should be set. However some RealTek chips are known
976          * to be buggy on DAC handling, therefore disable DAC by limiting
977          * DMA address space to 32bit. PCIe variants of RealTek chips
978          * may not have the limitation.
979          */
980         lowaddr = BUS_SPACE_MAXADDR;
981         if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
982                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
983         error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
984             lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
985             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
986             NULL, NULL, &sc->rl_parent_tag);
987         if (error) {
988                 device_printf(dev, "could not allocate parent DMA tag\n");
989                 return (error);
990         }
991
992         /*
993          * Allocate map for TX mbufs.
994          */
995         error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
996             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
997             NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
998             NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
999         if (error) {
1000                 device_printf(dev, "could not allocate TX DMA tag\n");
1001                 return (error);
1002         }
1003
1004         /*
1005          * Allocate map for RX mbufs.
1006          */
1007
1008         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1009                 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1010                     0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1011                     MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1012                     &sc->rl_ldata.rl_jrx_mtag);
1013                 if (error) {
1014                         device_printf(dev,
1015                             "could not allocate jumbo RX DMA tag\n");
1016                         return (error);
1017                 }
1018         }
1019         error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1020             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1021             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1022         if (error) {
1023                 device_printf(dev, "could not allocate RX DMA tag\n");
1024                 return (error);
1025         }
1026
1027         /*
1028          * Allocate map for TX descriptor list.
1029          */
1030         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1031             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1032             NULL, tx_list_size, 1, tx_list_size, 0,
1033             NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1034         if (error) {
1035                 device_printf(dev, "could not allocate TX DMA ring tag\n");
1036                 return (error);
1037         }
1038
1039         /* Allocate DMA'able memory for the TX ring */
1040
1041         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1042             (void **)&sc->rl_ldata.rl_tx_list,
1043             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1044             &sc->rl_ldata.rl_tx_list_map);
1045         if (error) {
1046                 device_printf(dev, "could not allocate TX DMA ring\n");
1047                 return (error);
1048         }
1049
1050         /* Load the map for the TX ring. */
1051
1052         sc->rl_ldata.rl_tx_list_addr = 0;
1053         error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1054              sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1055              tx_list_size, re_dma_map_addr,
1056              &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1057         if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1058                 device_printf(dev, "could not load TX DMA ring\n");
1059                 return (ENOMEM);
1060         }
1061
1062         /* Create DMA maps for TX buffers */
1063
1064         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1065                 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1066                     &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1067                 if (error) {
1068                         device_printf(dev, "could not create DMA map for TX\n");
1069                         return (error);
1070                 }
1071         }
1072
1073         /*
1074          * Allocate map for RX descriptor list.
1075          */
1076         error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1077             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1078             NULL, rx_list_size, 1, rx_list_size, 0,
1079             NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1080         if (error) {
1081                 device_printf(dev, "could not create RX DMA ring tag\n");
1082                 return (error);
1083         }
1084
1085         /* Allocate DMA'able memory for the RX ring */
1086
1087         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1088             (void **)&sc->rl_ldata.rl_rx_list,
1089             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1090             &sc->rl_ldata.rl_rx_list_map);
1091         if (error) {
1092                 device_printf(dev, "could not allocate RX DMA ring\n");
1093                 return (error);
1094         }
1095
1096         /* Load the map for the RX ring. */
1097
1098         sc->rl_ldata.rl_rx_list_addr = 0;
1099         error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1100              sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1101              rx_list_size, re_dma_map_addr,
1102              &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1103         if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1104                 device_printf(dev, "could not load RX DMA ring\n");
1105                 return (ENOMEM);
1106         }
1107
1108         /* Create DMA maps for RX buffers */
1109
1110         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1111                 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1112                     &sc->rl_ldata.rl_jrx_sparemap);
1113                 if (error) {
1114                         device_printf(dev,
1115                             "could not create spare DMA map for jumbo RX\n");
1116                         return (error);
1117                 }
1118                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1119                         error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1120                             &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1121                         if (error) {
1122                                 device_printf(dev,
1123                                     "could not create DMA map for jumbo RX\n");
1124                                 return (error);
1125                         }
1126                 }
1127         }
1128         error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1129             &sc->rl_ldata.rl_rx_sparemap);
1130         if (error) {
1131                 device_printf(dev, "could not create spare DMA map for RX\n");
1132                 return (error);
1133         }
1134         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1135                 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1136                     &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1137                 if (error) {
1138                         device_printf(dev, "could not create DMA map for RX\n");
1139                         return (error);
1140                 }
1141         }
1142
1143         /* Create DMA map for statistics. */
1144         error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1145             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1146             sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1147             &sc->rl_ldata.rl_stag);
1148         if (error) {
1149                 device_printf(dev, "could not create statistics DMA tag\n");
1150                 return (error);
1151         }
1152         /* Allocate DMA'able memory for statistics. */
1153         error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1154             (void **)&sc->rl_ldata.rl_stats,
1155             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1156             &sc->rl_ldata.rl_smap);
1157         if (error) {
1158                 device_printf(dev,
1159                     "could not allocate statistics DMA memory\n");
1160                 return (error);
1161         }
1162         /* Load the map for statistics. */
1163         sc->rl_ldata.rl_stats_addr = 0;
1164         error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1165             sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1166              &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1167         if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1168                 device_printf(dev, "could not load statistics DMA memory\n");
1169                 return (ENOMEM);
1170         }
1171
1172         return (0);
1173 }
1174
1175 /*
1176  * Attach the interface. Allocate softc structures, do ifmedia
1177  * setup and ethernet/BPF attach.
1178  */
1179 static int
1180 re_attach(device_t dev)
1181 {
1182         u_char                  eaddr[ETHER_ADDR_LEN];
1183         u_int16_t               as[ETHER_ADDR_LEN / 2];
1184         struct rl_softc         *sc;
1185         struct ifnet            *ifp;
1186         struct rl_hwrev         *hw_rev;
1187         int                     hwrev;
1188         u_int16_t               devid, re_did = 0;
1189         int                     error = 0, i, phy, rid;
1190         int                     msic, msixc, reg;
1191         uint8_t                 cfg;
1192
1193         sc = device_get_softc(dev);
1194         sc->rl_dev = dev;
1195
1196         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1197             MTX_DEF);
1198         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1199
1200         /*
1201          * Map control/status registers.
1202          */
1203         pci_enable_busmaster(dev);
1204
1205         devid = pci_get_device(dev);
1206         /*
1207          * Prefer memory space register mapping over IO space.
1208          * Because RTL8169SC does not seem to work when memory mapping
1209          * is used always activate io mapping.
1210          */
1211         if (devid == RT_DEVICEID_8169SC)
1212                 prefer_iomap = 1;
1213         if (prefer_iomap == 0) {
1214                 sc->rl_res_id = PCIR_BAR(1);
1215                 sc->rl_res_type = SYS_RES_MEMORY;
1216                 /* RTL8168/8101E seems to use different BARs. */
1217                 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1218                         sc->rl_res_id = PCIR_BAR(2);
1219         } else {
1220                 sc->rl_res_id = PCIR_BAR(0);
1221                 sc->rl_res_type = SYS_RES_IOPORT;
1222         }
1223         sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1224             &sc->rl_res_id, RF_ACTIVE);
1225         if (sc->rl_res == NULL && prefer_iomap == 0) {
1226                 sc->rl_res_id = PCIR_BAR(0);
1227                 sc->rl_res_type = SYS_RES_IOPORT;
1228                 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1229                     &sc->rl_res_id, RF_ACTIVE);
1230         }
1231         if (sc->rl_res == NULL) {
1232                 device_printf(dev, "couldn't map ports/memory\n");
1233                 error = ENXIO;
1234                 goto fail;
1235         }
1236
1237         sc->rl_btag = rman_get_bustag(sc->rl_res);
1238         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1239
1240         msic = pci_msi_count(dev);
1241         msixc = pci_msix_count(dev);
1242         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0)
1243                 sc->rl_flags |= RL_FLAG_PCIE;
1244         if (bootverbose) {
1245                 device_printf(dev, "MSI count : %d\n", msic);
1246                 device_printf(dev, "MSI-X count : %d\n", msixc);
1247         }
1248         if (msix_disable > 0)
1249                 msixc = 0;
1250         if (msi_disable > 0)
1251                 msic = 0;
1252         /* Prefer MSI-X to MSI. */
1253         if (msixc > 0) {
1254                 msixc = 1;
1255                 rid = PCIR_BAR(4);
1256                 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1257                     &rid, RF_ACTIVE);
1258                 if (sc->rl_res_pba == NULL) {
1259                         device_printf(sc->rl_dev,
1260                             "could not allocate MSI-X PBA resource\n");
1261                 }
1262                 if (sc->rl_res_pba != NULL &&
1263                     pci_alloc_msix(dev, &msixc) == 0) {
1264                         if (msixc == 1) {
1265                                 device_printf(dev, "Using %d MSI-X message\n",
1266                                     msixc);
1267                                 sc->rl_flags |= RL_FLAG_MSIX;
1268                         } else
1269                                 pci_release_msi(dev);
1270                 }
1271                 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1272                         if (sc->rl_res_pba != NULL)
1273                                 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1274                                     sc->rl_res_pba);
1275                         sc->rl_res_pba = NULL;
1276                         msixc = 0;
1277                 }
1278         }
1279         /* Prefer MSI to INTx. */
1280         if (msixc == 0 && msic > 0) {
1281                 msic = 1;
1282                 if (pci_alloc_msi(dev, &msic) == 0) {
1283                         if (msic == RL_MSI_MESSAGES) {
1284                                 device_printf(dev, "Using %d MSI message\n",
1285                                     msic);
1286                                 sc->rl_flags |= RL_FLAG_MSI;
1287                                 /* Explicitly set MSI enable bit. */
1288                                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1289                                 cfg = CSR_READ_1(sc, RL_CFG2);
1290                                 cfg |= RL_CFG2_MSI;
1291                                 CSR_WRITE_1(sc, RL_CFG2, cfg);
1292                                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1293                         } else
1294                                 pci_release_msi(dev);
1295                 }
1296                 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1297                         msic = 0;
1298         }
1299
1300         /* Allocate interrupt */
1301         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1302                 rid = 0;
1303                 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1304                     RF_SHAREABLE | RF_ACTIVE);
1305                 if (sc->rl_irq[0] == NULL) {
1306                         device_printf(dev, "couldn't allocate IRQ resources\n");
1307                         error = ENXIO;
1308                         goto fail;
1309                 }
1310         } else {
1311                 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1312                         sc->rl_irq[i] = bus_alloc_resource_any(dev,
1313                             SYS_RES_IRQ, &rid, RF_ACTIVE);
1314                         if (sc->rl_irq[i] == NULL) {
1315                                 device_printf(dev,
1316                                     "couldn't llocate IRQ resources for "
1317                                     "message %d\n", rid);
1318                                 error = ENXIO;
1319                                 goto fail;
1320                         }
1321                 }
1322         }
1323
1324         if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1325                 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1326                 cfg = CSR_READ_1(sc, RL_CFG2);
1327                 if ((cfg & RL_CFG2_MSI) != 0) {
1328                         device_printf(dev, "turning off MSI enable bit.\n");
1329                         cfg &= ~RL_CFG2_MSI;
1330                         CSR_WRITE_1(sc, RL_CFG2, cfg);
1331                 }
1332                 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1333         }
1334
1335         hw_rev = re_hwrevs;
1336         hwrev = CSR_READ_4(sc, RL_TXCFG);
1337         switch (hwrev & 0x70000000) {
1338         case 0x00000000:
1339         case 0x10000000:
1340                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1341                 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1342                 break;
1343         default:
1344                 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1345                 hwrev &= RL_TXCFG_HWREV;
1346                 break;
1347         }
1348         device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1349         while (hw_rev->rl_desc != NULL) {
1350                 if (hw_rev->rl_rev == hwrev) {
1351                         sc->rl_type = hw_rev->rl_type;
1352                         sc->rl_hwrev = hw_rev;
1353                         break;
1354                 }
1355                 hw_rev++;
1356         }
1357         if (hw_rev->rl_desc == NULL) {
1358                 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1359                 error = ENXIO;
1360                 goto fail;
1361         }
1362
1363         switch (hw_rev->rl_rev) {
1364         case RL_HWREV_8139CPLUS:
1365                 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1366                 break;
1367         case RL_HWREV_8100E:
1368         case RL_HWREV_8101E:
1369                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1370                 break;
1371         case RL_HWREV_8102E:
1372         case RL_HWREV_8102EL:
1373         case RL_HWREV_8102EL_SPIN1:
1374                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1375                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1376                     RL_FLAG_AUTOPAD;
1377                 break;
1378         case RL_HWREV_8103E:
1379                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1380                     RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1381                     RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1382                 break;
1383         case RL_HWREV_8401E:
1384         case RL_HWREV_8105E:
1385                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1386                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1387                     RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1388                 break;
1389         case RL_HWREV_8168B_SPIN1:
1390         case RL_HWREV_8168B_SPIN2:
1391                 sc->rl_flags |= RL_FLAG_WOLRXENB;
1392                 /* FALLTHROUGH */
1393         case RL_HWREV_8168B_SPIN3:
1394                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1395                 break;
1396         case RL_HWREV_8168C_SPIN2:
1397                 sc->rl_flags |= RL_FLAG_MACSLEEP;
1398                 /* FALLTHROUGH */
1399         case RL_HWREV_8168C:
1400                 if ((hwrev & 0x00700000) == 0x00200000)
1401                         sc->rl_flags |= RL_FLAG_MACSLEEP;
1402                 /* FALLTHROUGH */
1403         case RL_HWREV_8168CP:
1404         case RL_HWREV_8168D:
1405         case RL_HWREV_8168DP:
1406                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1407                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1408                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1409                 break;
1410         case RL_HWREV_8168E:
1411                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1412                     RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1413                     RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1414                 break;
1415         case RL_HWREV_8168E_VL:
1416                 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1417                     RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1418                     RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1419                 break;
1420         case RL_HWREV_8169_8110SB:
1421         case RL_HWREV_8169_8110SBL:
1422         case RL_HWREV_8169_8110SC:
1423         case RL_HWREV_8169_8110SCE:
1424                 sc->rl_flags |= RL_FLAG_PHYWAKE;
1425                 /* FALLTHROUGH */
1426         case RL_HWREV_8169:
1427         case RL_HWREV_8169S:
1428         case RL_HWREV_8110S:
1429                 sc->rl_flags |= RL_FLAG_MACRESET;
1430                 break;
1431         default:
1432                 break;
1433         }
1434
1435         /* Reset the adapter. */
1436         RL_LOCK(sc);
1437         re_reset(sc);
1438         RL_UNLOCK(sc);
1439
1440         /* Enable PME. */
1441         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1442         cfg = CSR_READ_1(sc, RL_CFG1);
1443         cfg |= RL_CFG1_PME;
1444         CSR_WRITE_1(sc, RL_CFG1, cfg);
1445         cfg = CSR_READ_1(sc, RL_CFG5);
1446         cfg &= RL_CFG5_PME_STS;
1447         CSR_WRITE_1(sc, RL_CFG5, cfg);
1448         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1449
1450         if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1451                 /*
1452                  * XXX Should have a better way to extract station
1453                  * address from EEPROM.
1454                  */
1455                 for (i = 0; i < ETHER_ADDR_LEN; i++)
1456                         eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1457         } else {
1458                 sc->rl_eewidth = RL_9356_ADDR_LEN;
1459                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1460                 if (re_did != 0x8129)
1461                         sc->rl_eewidth = RL_9346_ADDR_LEN;
1462
1463                 /*
1464                  * Get station address from the EEPROM.
1465                  */
1466                 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1467                 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1468                         as[i] = le16toh(as[i]);
1469                 bcopy(as, eaddr, sizeof(eaddr));
1470         }
1471
1472         if (sc->rl_type == RL_8169) {
1473                 /* Set RX length mask and number of descriptors. */
1474                 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1475                 sc->rl_txstart = RL_GTXSTART;
1476                 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1477                 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1478         } else {
1479                 /* Set RX length mask and number of descriptors. */
1480                 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1481                 sc->rl_txstart = RL_TXSTART;
1482                 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1483                 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1484         }
1485
1486         error = re_allocmem(dev, sc);
1487         if (error)
1488                 goto fail;
1489         re_add_sysctls(sc);
1490
1491         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1492         if (ifp == NULL) {
1493                 device_printf(dev, "can not if_alloc()\n");
1494                 error = ENOSPC;
1495                 goto fail;
1496         }
1497
1498         /* Take controller out of deep sleep mode. */
1499         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1500                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1501                         CSR_WRITE_1(sc, RL_GPIO,
1502                             CSR_READ_1(sc, RL_GPIO) | 0x01);
1503                 else
1504                         CSR_WRITE_1(sc, RL_GPIO,
1505                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
1506         }
1507
1508         /* Take PHY out of power down mode. */
1509         if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1510                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1511                 if (hw_rev->rl_rev == RL_HWREV_8401E)
1512                         CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1513         }
1514         if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1515                 re_gmii_writereg(dev, 1, 0x1f, 0);
1516                 re_gmii_writereg(dev, 1, 0x0e, 0);
1517         }
1518
1519 #define RE_PHYAD_INTERNAL        0
1520
1521         /* Do MII setup. */
1522         phy = RE_PHYAD_INTERNAL;
1523         if (sc->rl_type == RL_8169)
1524                 phy = 1;
1525         error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1526             re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1527         if (error != 0) {
1528                 device_printf(dev, "attaching PHYs failed\n");
1529                 goto fail;
1530         }
1531
1532         ifp->if_softc = sc;
1533         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1534         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1535         ifp->if_ioctl = re_ioctl;
1536         ifp->if_start = re_start;
1537         /*
1538          * RTL8168/8111C generates wrong IP checksummed frame if the
1539          * packet has IP options so disable TX IP checksum offloading.
1540          */
1541         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1542             sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2)
1543                 ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
1544         else
1545                 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1546         ifp->if_hwassist |= CSUM_TSO;
1547         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1548         ifp->if_capenable = ifp->if_capabilities;
1549         ifp->if_init = re_init;
1550         IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1551         ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1552         IFQ_SET_READY(&ifp->if_snd);
1553
1554         TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1555
1556         /*
1557          * Call MI attach routine.
1558          */
1559         ether_ifattach(ifp, eaddr);
1560
1561         /* VLAN capability setup */
1562         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1563         if (ifp->if_capabilities & IFCAP_HWCSUM)
1564                 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1565         /* Enable WOL if PM is supported. */
1566         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1567                 ifp->if_capabilities |= IFCAP_WOL;
1568         ifp->if_capenable = ifp->if_capabilities;
1569         /*
1570          * Don't enable TSO by default.  It is known to generate
1571          * corrupted TCP segments(bad TCP options) under certain
1572          * circumtances.
1573          */
1574         ifp->if_hwassist &= ~CSUM_TSO;
1575         ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1576 #ifdef DEVICE_POLLING
1577         ifp->if_capabilities |= IFCAP_POLLING;
1578 #endif
1579         /*
1580          * Tell the upper layer(s) we support long frames.
1581          * Must appear after the call to ether_ifattach() because
1582          * ether_ifattach() sets ifi_hdrlen to the default value.
1583          */
1584         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1585
1586 #ifdef RE_DIAG
1587         /*
1588          * Perform hardware diagnostic on the original RTL8169.
1589          * Some 32-bit cards were incorrectly wired and would
1590          * malfunction if plugged into a 64-bit slot.
1591          */
1592
1593         if (hwrev == RL_HWREV_8169) {
1594                 error = re_diag(sc);
1595                 if (error) {
1596                         device_printf(dev,
1597                         "attach aborted due to hardware diag failure\n");
1598                         ether_ifdetach(ifp);
1599                         goto fail;
1600                 }
1601         }
1602 #endif
1603
1604 #ifdef RE_TX_MODERATION
1605         intr_filter = 1;
1606 #endif
1607         /* Hook interrupt last to avoid having to lock softc */
1608         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1609             intr_filter == 0) {
1610                 error = bus_setup_intr(dev, sc->rl_irq[0],
1611                     INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1612                     &sc->rl_intrhand[0]);
1613         } else {
1614                 error = bus_setup_intr(dev, sc->rl_irq[0],
1615                     INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1616                     &sc->rl_intrhand[0]);
1617         }
1618         if (error) {
1619                 device_printf(dev, "couldn't set up irq\n");
1620                 ether_ifdetach(ifp);
1621         }
1622
1623 fail:
1624
1625         if (error)
1626                 re_detach(dev);
1627
1628         return (error);
1629 }
1630
1631 /*
1632  * Shutdown hardware and free up resources. This can be called any
1633  * time after the mutex has been initialized. It is called in both
1634  * the error case in attach and the normal detach case so it needs
1635  * to be careful about only freeing resources that have actually been
1636  * allocated.
1637  */
1638 static int
1639 re_detach(device_t dev)
1640 {
1641         struct rl_softc         *sc;
1642         struct ifnet            *ifp;
1643         int                     i, rid;
1644
1645         sc = device_get_softc(dev);
1646         ifp = sc->rl_ifp;
1647         KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1648
1649         /* These should only be active if attach succeeded */
1650         if (device_is_attached(dev)) {
1651 #ifdef DEVICE_POLLING
1652                 if (ifp->if_capenable & IFCAP_POLLING)
1653                         ether_poll_deregister(ifp);
1654 #endif
1655                 RL_LOCK(sc);
1656 #if 0
1657                 sc->suspended = 1;
1658 #endif
1659                 re_stop(sc);
1660                 RL_UNLOCK(sc);
1661                 callout_drain(&sc->rl_stat_callout);
1662                 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1663                 /*
1664                  * Force off the IFF_UP flag here, in case someone
1665                  * still had a BPF descriptor attached to this
1666                  * interface. If they do, ether_ifdetach() will cause
1667                  * the BPF code to try and clear the promisc mode
1668                  * flag, which will bubble down to re_ioctl(),
1669                  * which will try to call re_init() again. This will
1670                  * turn the NIC back on and restart the MII ticker,
1671                  * which will panic the system when the kernel tries
1672                  * to invoke the re_tick() function that isn't there
1673                  * anymore.
1674                  */
1675                 ifp->if_flags &= ~IFF_UP;
1676                 ether_ifdetach(ifp);
1677         }
1678         if (sc->rl_miibus)
1679                 device_delete_child(dev, sc->rl_miibus);
1680         bus_generic_detach(dev);
1681
1682         /*
1683          * The rest is resource deallocation, so we should already be
1684          * stopped here.
1685          */
1686
1687         if (sc->rl_intrhand[0] != NULL) {
1688                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1689                 sc->rl_intrhand[0] = NULL;
1690         }
1691         if (ifp != NULL)
1692                 if_free(ifp);
1693         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1694                 rid = 0;
1695         else
1696                 rid = 1;
1697         if (sc->rl_irq[0] != NULL) {
1698                 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1699                 sc->rl_irq[0] = NULL;
1700         }
1701         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1702                 pci_release_msi(dev);
1703         if (sc->rl_res_pba) {
1704                 rid = PCIR_BAR(4);
1705                 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1706         }
1707         if (sc->rl_res)
1708                 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1709                     sc->rl_res);
1710
1711         /* Unload and free the RX DMA ring memory and map */
1712
1713         if (sc->rl_ldata.rl_rx_list_tag) {
1714                 if (sc->rl_ldata.rl_rx_list_map)
1715                         bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1716                             sc->rl_ldata.rl_rx_list_map);
1717                 if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1718                         bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1719                             sc->rl_ldata.rl_rx_list,
1720                             sc->rl_ldata.rl_rx_list_map);
1721                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1722         }
1723
1724         /* Unload and free the TX DMA ring memory and map */
1725
1726         if (sc->rl_ldata.rl_tx_list_tag) {
1727                 if (sc->rl_ldata.rl_tx_list_map)
1728                         bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1729                             sc->rl_ldata.rl_tx_list_map);
1730                 if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1731                         bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1732                             sc->rl_ldata.rl_tx_list,
1733                             sc->rl_ldata.rl_tx_list_map);
1734                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1735         }
1736
1737         /* Destroy all the RX and TX buffer maps */
1738
1739         if (sc->rl_ldata.rl_tx_mtag) {
1740                 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1741                         if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1742                                 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1743                                     sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1744                 }
1745                 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1746         }
1747         if (sc->rl_ldata.rl_rx_mtag) {
1748                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1749                         if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1750                                 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1751                                     sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1752                 }
1753                 if (sc->rl_ldata.rl_rx_sparemap)
1754                         bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1755                             sc->rl_ldata.rl_rx_sparemap);
1756                 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1757         }
1758         if (sc->rl_ldata.rl_jrx_mtag) {
1759                 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1760                         if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1761                                 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1762                                     sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1763                 }
1764                 if (sc->rl_ldata.rl_jrx_sparemap)
1765                         bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1766                             sc->rl_ldata.rl_jrx_sparemap);
1767                 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1768         }
1769         /* Unload and free the stats buffer and map */
1770
1771         if (sc->rl_ldata.rl_stag) {
1772                 if (sc->rl_ldata.rl_smap)
1773                         bus_dmamap_unload(sc->rl_ldata.rl_stag,
1774                             sc->rl_ldata.rl_smap);
1775                 if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1776                         bus_dmamem_free(sc->rl_ldata.rl_stag,
1777                             sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1778                 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1779         }
1780
1781         if (sc->rl_parent_tag)
1782                 bus_dma_tag_destroy(sc->rl_parent_tag);
1783
1784         mtx_destroy(&sc->rl_mtx);
1785
1786         return (0);
1787 }
1788
1789 static __inline void
1790 re_discard_rxbuf(struct rl_softc *sc, int idx)
1791 {
1792         struct rl_desc          *desc;
1793         struct rl_rxdesc        *rxd;
1794         uint32_t                cmdstat;
1795
1796         if (sc->rl_ifp->if_mtu > RL_MTU &&
1797             (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1798                 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1799         else
1800                 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1801         desc = &sc->rl_ldata.rl_rx_list[idx];
1802         desc->rl_vlanctl = 0;
1803         cmdstat = rxd->rx_size;
1804         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1805                 cmdstat |= RL_RDESC_CMD_EOR;
1806         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1807 }
1808
1809 static int
1810 re_newbuf(struct rl_softc *sc, int idx)
1811 {
1812         struct mbuf             *m;
1813         struct rl_rxdesc        *rxd;
1814         bus_dma_segment_t       segs[1];
1815         bus_dmamap_t            map;
1816         struct rl_desc          *desc;
1817         uint32_t                cmdstat;
1818         int                     error, nsegs;
1819
1820         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1821         if (m == NULL)
1822                 return (ENOBUFS);
1823
1824         m->m_len = m->m_pkthdr.len = MCLBYTES;
1825 #ifdef RE_FIXUP_RX
1826         /*
1827          * This is part of an evil trick to deal with non-x86 platforms.
1828          * The RealTek chip requires RX buffers to be aligned on 64-bit
1829          * boundaries, but that will hose non-x86 machines. To get around
1830          * this, we leave some empty space at the start of each buffer
1831          * and for non-x86 hosts, we copy the buffer back six bytes
1832          * to achieve word alignment. This is slightly more efficient
1833          * than allocating a new buffer, copying the contents, and
1834          * discarding the old buffer.
1835          */
1836         m_adj(m, RE_ETHER_ALIGN);
1837 #endif
1838         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1839             sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1840         if (error != 0) {
1841                 m_freem(m);
1842                 return (ENOBUFS);
1843         }
1844         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1845
1846         rxd = &sc->rl_ldata.rl_rx_desc[idx];
1847         if (rxd->rx_m != NULL) {
1848                 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1849                     BUS_DMASYNC_POSTREAD);
1850                 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1851         }
1852
1853         rxd->rx_m = m;
1854         map = rxd->rx_dmamap;
1855         rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1856         rxd->rx_size = segs[0].ds_len;
1857         sc->rl_ldata.rl_rx_sparemap = map;
1858         bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1859             BUS_DMASYNC_PREREAD);
1860
1861         desc = &sc->rl_ldata.rl_rx_list[idx];
1862         desc->rl_vlanctl = 0;
1863         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1864         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1865         cmdstat = segs[0].ds_len;
1866         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1867                 cmdstat |= RL_RDESC_CMD_EOR;
1868         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1869
1870         return (0);
1871 }
1872
1873 static int
1874 re_jumbo_newbuf(struct rl_softc *sc, int idx)
1875 {
1876         struct mbuf             *m;
1877         struct rl_rxdesc        *rxd;
1878         bus_dma_segment_t       segs[1];
1879         bus_dmamap_t            map;
1880         struct rl_desc          *desc;
1881         uint32_t                cmdstat;
1882         int                     error, nsegs;
1883
1884         m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1885         if (m == NULL)
1886                 return (ENOBUFS);
1887         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1888 #ifdef RE_FIXUP_RX
1889         m_adj(m, RE_ETHER_ALIGN);
1890 #endif
1891         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1892             sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1893         if (error != 0) {
1894                 m_freem(m);
1895                 return (ENOBUFS);
1896         }
1897         KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1898
1899         rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1900         if (rxd->rx_m != NULL) {
1901                 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1902                     BUS_DMASYNC_POSTREAD);
1903                 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
1904         }
1905
1906         rxd->rx_m = m;
1907         map = rxd->rx_dmamap;
1908         rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
1909         rxd->rx_size = segs[0].ds_len;
1910         sc->rl_ldata.rl_jrx_sparemap = map;
1911         bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1912             BUS_DMASYNC_PREREAD);
1913
1914         desc = &sc->rl_ldata.rl_rx_list[idx];
1915         desc->rl_vlanctl = 0;
1916         desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1917         desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1918         cmdstat = segs[0].ds_len;
1919         if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1920                 cmdstat |= RL_RDESC_CMD_EOR;
1921         desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1922
1923         return (0);
1924 }
1925
1926 #ifdef RE_FIXUP_RX
1927 static __inline void
1928 re_fixup_rx(struct mbuf *m)
1929 {
1930         int                     i;
1931         uint16_t                *src, *dst;
1932
1933         src = mtod(m, uint16_t *);
1934         dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1935
1936         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1937                 *dst++ = *src++;
1938
1939         m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1940 }
1941 #endif
1942
1943 static int
1944 re_tx_list_init(struct rl_softc *sc)
1945 {
1946         struct rl_desc          *desc;
1947         int                     i;
1948
1949         RL_LOCK_ASSERT(sc);
1950
1951         bzero(sc->rl_ldata.rl_tx_list,
1952             sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1953         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1954                 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1955         /* Set EOR. */
1956         desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1957         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1958
1959         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1960             sc->rl_ldata.rl_tx_list_map,
1961             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1962
1963         sc->rl_ldata.rl_tx_prodidx = 0;
1964         sc->rl_ldata.rl_tx_considx = 0;
1965         sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1966
1967         return (0);
1968 }
1969
1970 static int
1971 re_rx_list_init(struct rl_softc *sc)
1972 {
1973         int                     error, i;
1974
1975         bzero(sc->rl_ldata.rl_rx_list,
1976             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1977         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1978                 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1979                 if ((error = re_newbuf(sc, i)) != 0)
1980                         return (error);
1981         }
1982
1983         /* Flush the RX descriptors */
1984
1985         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1986             sc->rl_ldata.rl_rx_list_map,
1987             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1988
1989         sc->rl_ldata.rl_rx_prodidx = 0;
1990         sc->rl_head = sc->rl_tail = NULL;
1991         sc->rl_int_rx_act = 0;
1992
1993         return (0);
1994 }
1995
1996 static int
1997 re_jrx_list_init(struct rl_softc *sc)
1998 {
1999         int                     error, i;
2000
2001         bzero(sc->rl_ldata.rl_rx_list,
2002             sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2003         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2004                 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2005                 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2006                         return (error);
2007         }
2008
2009         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2010             sc->rl_ldata.rl_rx_list_map,
2011             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2012
2013         sc->rl_ldata.rl_rx_prodidx = 0;
2014         sc->rl_head = sc->rl_tail = NULL;
2015         sc->rl_int_rx_act = 0;
2016
2017         return (0);
2018 }
2019
2020 /*
2021  * RX handler for C+ and 8169. For the gigE chips, we support
2022  * the reception of jumbo frames that have been fragmented
2023  * across multiple 2K mbuf cluster buffers.
2024  */
2025 static int
2026 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2027 {
2028         struct mbuf             *m;
2029         struct ifnet            *ifp;
2030         int                     i, rxerr, total_len;
2031         struct rl_desc          *cur_rx;
2032         u_int32_t               rxstat, rxvlan;
2033         int                     jumbo, maxpkt = 16, rx_npkts = 0;
2034
2035         RL_LOCK_ASSERT(sc);
2036
2037         ifp = sc->rl_ifp;
2038         if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2039                 jumbo = 1;
2040         else
2041                 jumbo = 0;
2042
2043         /* Invalidate the descriptor memory */
2044
2045         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2046             sc->rl_ldata.rl_rx_list_map,
2047             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2048
2049         for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2050             i = RL_RX_DESC_NXT(sc, i)) {
2051                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2052                         break;
2053                 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2054                 rxstat = le32toh(cur_rx->rl_cmdstat);
2055                 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2056                         break;
2057                 total_len = rxstat & sc->rl_rxlenmask;
2058                 rxvlan = le32toh(cur_rx->rl_vlanctl);
2059                 if (jumbo != 0)
2060                         m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2061                 else
2062                         m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2063
2064                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2065                     (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2066                     (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2067                         /*
2068                          * RTL8168C or later controllers do not
2069                          * support multi-fragment packet.
2070                          */
2071                         re_discard_rxbuf(sc, i);
2072                         continue;
2073                 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2074                         if (re_newbuf(sc, i) != 0) {
2075                                 /*
2076                                  * If this is part of a multi-fragment packet,
2077                                  * discard all the pieces.
2078                                  */
2079                                 if (sc->rl_head != NULL) {
2080                                         m_freem(sc->rl_head);
2081                                         sc->rl_head = sc->rl_tail = NULL;
2082                                 }
2083                                 re_discard_rxbuf(sc, i);
2084                                 continue;
2085                         }
2086                         m->m_len = RE_RX_DESC_BUFLEN;
2087                         if (sc->rl_head == NULL)
2088                                 sc->rl_head = sc->rl_tail = m;
2089                         else {
2090                                 m->m_flags &= ~M_PKTHDR;
2091                                 sc->rl_tail->m_next = m;
2092                                 sc->rl_tail = m;
2093                         }
2094                         continue;
2095                 }
2096
2097                 /*
2098                  * NOTE: for the 8139C+, the frame length field
2099                  * is always 12 bits in size, but for the gigE chips,
2100                  * it is 13 bits (since the max RX frame length is 16K).
2101                  * Unfortunately, all 32 bits in the status word
2102                  * were already used, so to make room for the extra
2103                  * length bit, RealTek took out the 'frame alignment
2104                  * error' bit and shifted the other status bits
2105                  * over one slot. The OWN, EOR, FS and LS bits are
2106                  * still in the same places. We have already extracted
2107                  * the frame length and checked the OWN bit, so rather
2108                  * than using an alternate bit mapping, we shift the
2109                  * status bits one space to the right so we can evaluate
2110                  * them using the 8169 status as though it was in the
2111                  * same format as that of the 8139C+.
2112                  */
2113                 if (sc->rl_type == RL_8169)
2114                         rxstat >>= 1;
2115
2116                 /*
2117                  * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2118                  * set, but if CRC is clear, it will still be a valid frame.
2119                  */
2120                 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2121                         rxerr = 1;
2122                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2123                             total_len > 8191 &&
2124                             (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2125                                 rxerr = 0;
2126                         if (rxerr != 0) {
2127                                 ifp->if_ierrors++;
2128                                 /*
2129                                  * If this is part of a multi-fragment packet,
2130                                  * discard all the pieces.
2131                                  */
2132                                 if (sc->rl_head != NULL) {
2133                                         m_freem(sc->rl_head);
2134                                         sc->rl_head = sc->rl_tail = NULL;
2135                                 }
2136                                 re_discard_rxbuf(sc, i);
2137                                 continue;
2138                         }
2139                 }
2140
2141                 /*
2142                  * If allocating a replacement mbuf fails,
2143                  * reload the current one.
2144                  */
2145                 if (jumbo != 0)
2146                         rxerr = re_jumbo_newbuf(sc, i);
2147                 else
2148                         rxerr = re_newbuf(sc, i);
2149                 if (rxerr != 0) {
2150                         ifp->if_iqdrops++;
2151                         if (sc->rl_head != NULL) {
2152                                 m_freem(sc->rl_head);
2153                                 sc->rl_head = sc->rl_tail = NULL;
2154                         }
2155                         re_discard_rxbuf(sc, i);
2156                         continue;
2157                 }
2158
2159                 if (sc->rl_head != NULL) {
2160                         if (jumbo != 0)
2161                                 m->m_len = total_len;
2162                         else {
2163                                 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2164                                 if (m->m_len == 0)
2165                                         m->m_len = RE_RX_DESC_BUFLEN;
2166                         }
2167                         /*
2168                          * Special case: if there's 4 bytes or less
2169                          * in this buffer, the mbuf can be discarded:
2170                          * the last 4 bytes is the CRC, which we don't
2171                          * care about anyway.
2172                          */
2173                         if (m->m_len <= ETHER_CRC_LEN) {
2174                                 sc->rl_tail->m_len -=
2175                                     (ETHER_CRC_LEN - m->m_len);
2176                                 m_freem(m);
2177                         } else {
2178                                 m->m_len -= ETHER_CRC_LEN;
2179                                 m->m_flags &= ~M_PKTHDR;
2180                                 sc->rl_tail->m_next = m;
2181                         }
2182                         m = sc->rl_head;
2183                         sc->rl_head = sc->rl_tail = NULL;
2184                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2185                 } else
2186                         m->m_pkthdr.len = m->m_len =
2187                             (total_len - ETHER_CRC_LEN);
2188
2189 #ifdef RE_FIXUP_RX
2190                 re_fixup_rx(m);
2191 #endif
2192                 ifp->if_ipackets++;
2193                 m->m_pkthdr.rcvif = ifp;
2194
2195                 /* Do RX checksumming if enabled */
2196
2197                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2198                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2199                                 /* Check IP header checksum */
2200                                 if (rxstat & RL_RDESC_STAT_PROTOID)
2201                                         m->m_pkthdr.csum_flags |=
2202                                             CSUM_IP_CHECKED;
2203                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2204                                         m->m_pkthdr.csum_flags |=
2205                                             CSUM_IP_VALID;
2206
2207                                 /* Check TCP/UDP checksum */
2208                                 if ((RL_TCPPKT(rxstat) &&
2209                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2210                                     (RL_UDPPKT(rxstat) &&
2211                                      !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2212                                         m->m_pkthdr.csum_flags |=
2213                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2214                                         m->m_pkthdr.csum_data = 0xffff;
2215                                 }
2216                         } else {
2217                                 /*
2218                                  * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2219                                  */
2220                                 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2221                                     (rxvlan & RL_RDESC_IPV4))
2222                                         m->m_pkthdr.csum_flags |=
2223                                             CSUM_IP_CHECKED;
2224                                 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2225                                     (rxvlan & RL_RDESC_IPV4))
2226                                         m->m_pkthdr.csum_flags |=
2227                                             CSUM_IP_VALID;
2228                                 if (((rxstat & RL_RDESC_STAT_TCP) &&
2229                                     !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2230                                     ((rxstat & RL_RDESC_STAT_UDP) &&
2231                                     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2232                                         m->m_pkthdr.csum_flags |=
2233                                                 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2234                                         m->m_pkthdr.csum_data = 0xffff;
2235                                 }
2236                         }
2237                 }
2238                 maxpkt--;
2239                 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2240                         m->m_pkthdr.ether_vtag =
2241                             bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2242                         m->m_flags |= M_VLANTAG;
2243                 }
2244                 RL_UNLOCK(sc);
2245                 (*ifp->if_input)(ifp, m);
2246                 RL_LOCK(sc);
2247                 rx_npkts++;
2248         }
2249
2250         /* Flush the RX DMA ring */
2251
2252         bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2253             sc->rl_ldata.rl_rx_list_map,
2254             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2255
2256         sc->rl_ldata.rl_rx_prodidx = i;
2257
2258         if (rx_npktsp != NULL)
2259                 *rx_npktsp = rx_npkts;
2260         if (maxpkt)
2261                 return (EAGAIN);
2262
2263         return (0);
2264 }
2265
2266 static void
2267 re_txeof(struct rl_softc *sc)
2268 {
2269         struct ifnet            *ifp;
2270         struct rl_txdesc        *txd;
2271         u_int32_t               txstat;
2272         int                     cons;
2273
2274         cons = sc->rl_ldata.rl_tx_considx;
2275         if (cons == sc->rl_ldata.rl_tx_prodidx)
2276                 return;
2277
2278         ifp = sc->rl_ifp;
2279         /* Invalidate the TX descriptor list */
2280         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2281             sc->rl_ldata.rl_tx_list_map,
2282             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2283
2284         for (; cons != sc->rl_ldata.rl_tx_prodidx;
2285             cons = RL_TX_DESC_NXT(sc, cons)) {
2286                 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2287                 if (txstat & RL_TDESC_STAT_OWN)
2288                         break;
2289                 /*
2290                  * We only stash mbufs in the last descriptor
2291                  * in a fragment chain, which also happens to
2292                  * be the only place where the TX status bits
2293                  * are valid.
2294                  */
2295                 if (txstat & RL_TDESC_CMD_EOF) {
2296                         txd = &sc->rl_ldata.rl_tx_desc[cons];
2297                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2298                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2299                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2300                             txd->tx_dmamap);
2301                         KASSERT(txd->tx_m != NULL,
2302                             ("%s: freeing NULL mbufs!", __func__));
2303                         m_freem(txd->tx_m);
2304                         txd->tx_m = NULL;
2305                         if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2306                             RL_TDESC_STAT_COLCNT))
2307                                 ifp->if_collisions++;
2308                         if (txstat & RL_TDESC_STAT_TXERRSUM)
2309                                 ifp->if_oerrors++;
2310                         else
2311                                 ifp->if_opackets++;
2312                 }
2313                 sc->rl_ldata.rl_tx_free++;
2314                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2315         }
2316         sc->rl_ldata.rl_tx_considx = cons;
2317
2318         /* No changes made to the TX ring, so no flush needed */
2319
2320         if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2321 #ifdef RE_TX_MODERATION
2322                 /*
2323                  * If not all descriptors have been reaped yet, reload
2324                  * the timer so that we will eventually get another
2325                  * interrupt that will cause us to re-enter this routine.
2326                  * This is done in case the transmitter has gone idle.
2327                  */
2328                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2329 #endif
2330         } else
2331                 sc->rl_watchdog_timer = 0;
2332 }
2333
2334 static void
2335 re_tick(void *xsc)
2336 {
2337         struct rl_softc         *sc;
2338         struct mii_data         *mii;
2339
2340         sc = xsc;
2341
2342         RL_LOCK_ASSERT(sc);
2343
2344         mii = device_get_softc(sc->rl_miibus);
2345         mii_tick(mii);
2346         if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2347                 re_miibus_statchg(sc->rl_dev);
2348         /*
2349          * Reclaim transmitted frames here. Technically it is not
2350          * necessary to do here but it ensures periodic reclamation
2351          * regardless of Tx completion interrupt which seems to be
2352          * lost on PCIe based controllers under certain situations.
2353          */
2354         re_txeof(sc);
2355         re_watchdog(sc);
2356         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2357 }
2358
2359 #ifdef DEVICE_POLLING
2360 static int
2361 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2362 {
2363         struct rl_softc *sc = ifp->if_softc;
2364         int rx_npkts = 0;
2365
2366         RL_LOCK(sc);
2367         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2368                 rx_npkts = re_poll_locked(ifp, cmd, count);
2369         RL_UNLOCK(sc);
2370         return (rx_npkts);
2371 }
2372
2373 static int
2374 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2375 {
2376         struct rl_softc *sc = ifp->if_softc;
2377         int rx_npkts;
2378
2379         RL_LOCK_ASSERT(sc);
2380
2381         sc->rxcycles = count;
2382         re_rxeof(sc, &rx_npkts);
2383         re_txeof(sc);
2384
2385         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2386                 re_start_locked(ifp);
2387
2388         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2389                 u_int16_t       status;
2390
2391                 status = CSR_READ_2(sc, RL_ISR);
2392                 if (status == 0xffff)
2393                         return (rx_npkts);
2394                 if (status)
2395                         CSR_WRITE_2(sc, RL_ISR, status);
2396                 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2397                     (sc->rl_flags & RL_FLAG_PCIE))
2398                         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2399
2400                 /*
2401                  * XXX check behaviour on receiver stalls.
2402                  */
2403
2404                 if (status & RL_ISR_SYSTEM_ERR) {
2405                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2406                         re_init_locked(sc);
2407                 }
2408         }
2409         return (rx_npkts);
2410 }
2411 #endif /* DEVICE_POLLING */
2412
2413 static int
2414 re_intr(void *arg)
2415 {
2416         struct rl_softc         *sc;
2417         uint16_t                status;
2418
2419         sc = arg;
2420
2421         status = CSR_READ_2(sc, RL_ISR);
2422         if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2423                 return (FILTER_STRAY);
2424         CSR_WRITE_2(sc, RL_IMR, 0);
2425
2426         taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2427
2428         return (FILTER_HANDLED);
2429 }
2430
2431 static void
2432 re_int_task(void *arg, int npending)
2433 {
2434         struct rl_softc         *sc;
2435         struct ifnet            *ifp;
2436         u_int16_t               status;
2437         int                     rval = 0;
2438
2439         sc = arg;
2440         ifp = sc->rl_ifp;
2441
2442         RL_LOCK(sc);
2443
2444         status = CSR_READ_2(sc, RL_ISR);
2445         CSR_WRITE_2(sc, RL_ISR, status);
2446
2447         if (sc->suspended ||
2448             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2449                 RL_UNLOCK(sc);
2450                 return;
2451         }
2452
2453 #ifdef DEVICE_POLLING
2454         if  (ifp->if_capenable & IFCAP_POLLING) {
2455                 RL_UNLOCK(sc);
2456                 return;
2457         }
2458 #endif
2459
2460         if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2461                 rval = re_rxeof(sc, NULL);
2462
2463         /*
2464          * Some chips will ignore a second TX request issued
2465          * while an existing transmission is in progress. If
2466          * the transmitter goes idle but there are still
2467          * packets waiting to be sent, we need to restart the
2468          * channel here to flush them out. This only seems to
2469          * be required with the PCIe devices.
2470          */
2471         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2472             (sc->rl_flags & RL_FLAG_PCIE))
2473                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2474         if (status & (
2475 #ifdef RE_TX_MODERATION
2476             RL_ISR_TIMEOUT_EXPIRED|
2477 #else
2478             RL_ISR_TX_OK|
2479 #endif
2480             RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2481                 re_txeof(sc);
2482
2483         if (status & RL_ISR_SYSTEM_ERR) {
2484                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2485                 re_init_locked(sc);
2486         }
2487
2488         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2489                 re_start_locked(ifp);
2490
2491         RL_UNLOCK(sc);
2492
2493         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2494                 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2495                 return;
2496         }
2497
2498         CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2499 }
2500
2501 static void
2502 re_intr_msi(void *xsc)
2503 {
2504         struct rl_softc         *sc;
2505         struct ifnet            *ifp;
2506         uint16_t                intrs, status;
2507
2508         sc = xsc;
2509         RL_LOCK(sc);
2510
2511         ifp = sc->rl_ifp;
2512 #ifdef DEVICE_POLLING
2513         if (ifp->if_capenable & IFCAP_POLLING) {
2514                 RL_UNLOCK(sc);
2515                 return;
2516         }
2517 #endif
2518         /* Disable interrupts. */
2519         CSR_WRITE_2(sc, RL_IMR, 0);
2520         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2521                 RL_UNLOCK(sc);
2522                 return;
2523         }
2524
2525         intrs = RL_INTRS_CPLUS;
2526         status = CSR_READ_2(sc, RL_ISR);
2527         CSR_WRITE_2(sc, RL_ISR, status);
2528         if (sc->rl_int_rx_act > 0) {
2529                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2530                     RL_ISR_RX_OVERRUN);
2531                 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2532                     RL_ISR_RX_OVERRUN);
2533         }
2534
2535         if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2536             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2537                 re_rxeof(sc, NULL);
2538                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2539                         if (sc->rl_int_rx_mod != 0 &&
2540                             (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2541                             RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2542                                 /* Rearm one-shot timer. */
2543                                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2544                                 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2545                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2546                                 sc->rl_int_rx_act = 1;
2547                         } else {
2548                                 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2549                                     RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2550                                 sc->rl_int_rx_act = 0;
2551                         }
2552                 }
2553         }
2554
2555         /*
2556          * Some chips will ignore a second TX request issued
2557          * while an existing transmission is in progress. If
2558          * the transmitter goes idle but there are still
2559          * packets waiting to be sent, we need to restart the
2560          * channel here to flush them out. This only seems to
2561          * be required with the PCIe devices.
2562          */
2563         if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2564             (sc->rl_flags & RL_FLAG_PCIE))
2565                 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2566         if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2567                 re_txeof(sc);
2568
2569         if (status & RL_ISR_SYSTEM_ERR) {
2570                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2571                 re_init_locked(sc);
2572         }
2573
2574         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2575                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2576                         re_start_locked(ifp);
2577                 CSR_WRITE_2(sc, RL_IMR, intrs);
2578         }
2579         RL_UNLOCK(sc);
2580 }
2581
2582 static int
2583 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2584 {
2585         struct rl_txdesc        *txd, *txd_last;
2586         bus_dma_segment_t       segs[RL_NTXSEGS];
2587         bus_dmamap_t            map;
2588         struct mbuf             *m_new;
2589         struct rl_desc          *desc;
2590         int                     nsegs, prod;
2591         int                     i, error, ei, si;
2592         int                     padlen;
2593         uint32_t                cmdstat, csum_flags, vlanctl;
2594
2595         RL_LOCK_ASSERT(sc);
2596         M_ASSERTPKTHDR((*m_head));
2597
2598         /*
2599          * With some of the RealTek chips, using the checksum offload
2600          * support in conjunction with the autopadding feature results
2601          * in the transmission of corrupt frames. For example, if we
2602          * need to send a really small IP fragment that's less than 60
2603          * bytes in size, and IP header checksumming is enabled, the
2604          * resulting ethernet frame that appears on the wire will
2605          * have garbled payload. To work around this, if TX IP checksum
2606          * offload is enabled, we always manually pad short frames out
2607          * to the minimum ethernet frame size.
2608          */
2609         if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2610             (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2611             ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2612                 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2613                 if (M_WRITABLE(*m_head) == 0) {
2614                         /* Get a writable copy. */
2615                         m_new = m_dup(*m_head, M_DONTWAIT);
2616                         m_freem(*m_head);
2617                         if (m_new == NULL) {
2618                                 *m_head = NULL;
2619                                 return (ENOBUFS);
2620                         }
2621                         *m_head = m_new;
2622                 }
2623                 if ((*m_head)->m_next != NULL ||
2624                     M_TRAILINGSPACE(*m_head) < padlen) {
2625                         m_new = m_defrag(*m_head, M_DONTWAIT);
2626                         if (m_new == NULL) {
2627                                 m_freem(*m_head);
2628                                 *m_head = NULL;
2629                                 return (ENOBUFS);
2630                         }
2631                 } else
2632                         m_new = *m_head;
2633
2634                 /*
2635                  * Manually pad short frames, and zero the pad space
2636                  * to avoid leaking data.
2637                  */
2638                 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2639                 m_new->m_pkthdr.len += padlen;
2640                 m_new->m_len = m_new->m_pkthdr.len;
2641                 *m_head = m_new;
2642         }
2643
2644         prod = sc->rl_ldata.rl_tx_prodidx;
2645         txd = &sc->rl_ldata.rl_tx_desc[prod];
2646         error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2647             *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2648         if (error == EFBIG) {
2649                 m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2650                 if (m_new == NULL) {
2651                         m_freem(*m_head);
2652                         *m_head = NULL;
2653                         return (ENOBUFS);
2654                 }
2655                 *m_head = m_new;
2656                 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2657                     txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2658                 if (error != 0) {
2659                         m_freem(*m_head);
2660                         *m_head = NULL;
2661                         return (error);
2662                 }
2663         } else if (error != 0)
2664                 return (error);
2665         if (nsegs == 0) {
2666                 m_freem(*m_head);
2667                 *m_head = NULL;
2668                 return (EIO);
2669         }
2670
2671         /* Check for number of available descriptors. */
2672         if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2673                 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2674                 return (ENOBUFS);
2675         }
2676
2677         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2678             BUS_DMASYNC_PREWRITE);
2679
2680         /*
2681          * Set up checksum offload. Note: checksum offload bits must
2682          * appear in all descriptors of a multi-descriptor transmit
2683          * attempt. This is according to testing done with an 8169
2684          * chip. This is a requirement.
2685          */
2686         vlanctl = 0;
2687         csum_flags = 0;
2688         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2689                 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2690                         csum_flags |= RL_TDESC_CMD_LGSEND;
2691                         vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2692                             RL_TDESC_CMD_MSSVALV2_SHIFT);
2693                 } else {
2694                         csum_flags |= RL_TDESC_CMD_LGSEND |
2695                             ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2696                             RL_TDESC_CMD_MSSVAL_SHIFT);
2697                 }
2698         } else {
2699                 /*
2700                  * Unconditionally enable IP checksum if TCP or UDP
2701                  * checksum is required. Otherwise, TCP/UDP checksum
2702                  * does't make effects.
2703                  */
2704                 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2705                         if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2706                                 csum_flags |= RL_TDESC_CMD_IPCSUM;
2707                                 if (((*m_head)->m_pkthdr.csum_flags &
2708                                     CSUM_TCP) != 0)
2709                                         csum_flags |= RL_TDESC_CMD_TCPCSUM;
2710                                 if (((*m_head)->m_pkthdr.csum_flags &
2711                                     CSUM_UDP) != 0)
2712                                         csum_flags |= RL_TDESC_CMD_UDPCSUM;
2713                         } else {
2714                                 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2715                                 if (((*m_head)->m_pkthdr.csum_flags &
2716                                     CSUM_TCP) != 0)
2717                                         vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2718                                 if (((*m_head)->m_pkthdr.csum_flags &
2719                                     CSUM_UDP) != 0)
2720                                         vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2721                         }
2722                 }
2723         }
2724
2725         /*
2726          * Set up hardware VLAN tagging. Note: vlan tag info must
2727          * appear in all descriptors of a multi-descriptor
2728          * transmission attempt.
2729          */
2730         if ((*m_head)->m_flags & M_VLANTAG)
2731                 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2732                     RL_TDESC_VLANCTL_TAG;
2733
2734         si = prod;
2735         for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2736                 desc = &sc->rl_ldata.rl_tx_list[prod];
2737                 desc->rl_vlanctl = htole32(vlanctl);
2738                 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2739                 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2740                 cmdstat = segs[i].ds_len;
2741                 if (i != 0)
2742                         cmdstat |= RL_TDESC_CMD_OWN;
2743                 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2744                         cmdstat |= RL_TDESC_CMD_EOR;
2745                 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2746                 sc->rl_ldata.rl_tx_free--;
2747         }
2748         /* Update producer index. */
2749         sc->rl_ldata.rl_tx_prodidx = prod;
2750
2751         /* Set EOF on the last descriptor. */
2752         ei = RL_TX_DESC_PRV(sc, prod);
2753         desc = &sc->rl_ldata.rl_tx_list[ei];
2754         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2755
2756         desc = &sc->rl_ldata.rl_tx_list[si];
2757         /* Set SOF and transfer ownership of packet to the chip. */
2758         desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2759
2760         /*
2761          * Insure that the map for this transmission
2762          * is placed at the array index of the last descriptor
2763          * in this chain.  (Swap last and first dmamaps.)
2764          */
2765         txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2766         map = txd->tx_dmamap;
2767         txd->tx_dmamap = txd_last->tx_dmamap;
2768         txd_last->tx_dmamap = map;
2769         txd_last->tx_m = *m_head;
2770
2771         return (0);
2772 }
2773
2774 static void
2775 re_start(struct ifnet *ifp)
2776 {
2777         struct rl_softc         *sc;
2778
2779         sc = ifp->if_softc;
2780         RL_LOCK(sc);
2781         re_start_locked(ifp);
2782         RL_UNLOCK(sc);
2783 }
2784
2785 /*
2786  * Main transmit routine for C+ and gigE NICs.
2787  */
2788 static void
2789 re_start_locked(struct ifnet *ifp)
2790 {
2791         struct rl_softc         *sc;
2792         struct mbuf             *m_head;
2793         int                     queued;
2794
2795         sc = ifp->if_softc;
2796
2797         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2798             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2799                 return;
2800
2801         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2802             sc->rl_ldata.rl_tx_free > 1;) {
2803                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2804                 if (m_head == NULL)
2805                         break;
2806
2807                 if (re_encap(sc, &m_head) != 0) {
2808                         if (m_head == NULL)
2809                                 break;
2810                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2811                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2812                         break;
2813                 }
2814
2815                 /*
2816                  * If there's a BPF listener, bounce a copy of this frame
2817                  * to him.
2818                  */
2819                 ETHER_BPF_MTAP(ifp, m_head);
2820
2821                 queued++;
2822         }
2823
2824         if (queued == 0) {
2825 #ifdef RE_TX_MODERATION
2826                 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2827                         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2828 #endif
2829                 return;
2830         }
2831
2832         /* Flush the TX descriptors */
2833
2834         bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2835             sc->rl_ldata.rl_tx_list_map,
2836             BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2837
2838         CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2839
2840 #ifdef RE_TX_MODERATION
2841         /*
2842          * Use the countdown timer for interrupt moderation.
2843          * 'TX done' interrupts are disabled. Instead, we reset the
2844          * countdown timer, which will begin counting until it hits
2845          * the value in the TIMERINT register, and then trigger an
2846          * interrupt. Each time we write to the TIMERCNT register,
2847          * the timer count is reset to 0.
2848          */
2849         CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2850 #endif
2851
2852         /*
2853          * Set a timeout in case the chip goes out to lunch.
2854          */
2855         sc->rl_watchdog_timer = 5;
2856 }
2857
2858 static void
2859 re_set_jumbo(struct rl_softc *sc, int jumbo)
2860 {
2861
2862         if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2863                 pci_set_max_read_req(sc->rl_dev, 4096);
2864                 return;
2865         }
2866
2867         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2868         if (jumbo != 0) {
2869                 CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) |
2870                     RL_CFG3_JUMBO_EN0);
2871                 switch (sc->rl_hwrev->rl_rev) {
2872                 case RL_HWREV_8168DP:
2873                         break;
2874                 case RL_HWREV_8168E:
2875                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2876                             0x01);
2877                         break;
2878                 default:
2879                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2880                             RL_CFG4_JUMBO_EN1);
2881                 }
2882         } else {
2883                 CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) &
2884                     ~RL_CFG3_JUMBO_EN0);
2885                 switch (sc->rl_hwrev->rl_rev) {
2886                 case RL_HWREV_8168DP:
2887                         break;
2888                 case RL_HWREV_8168E:
2889                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2890                             ~0x01);
2891                         break;
2892                 default:
2893                         CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2894                             ~RL_CFG4_JUMBO_EN1);
2895                 }
2896         }
2897         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2898
2899         switch (sc->rl_hwrev->rl_rev) {
2900         case RL_HWREV_8168DP:
2901                 pci_set_max_read_req(sc->rl_dev, 4096);
2902                 break;
2903         default:
2904                 if (jumbo != 0)
2905                         pci_set_max_read_req(sc->rl_dev, 512);
2906                 else
2907                         pci_set_max_read_req(sc->rl_dev, 4096);
2908         }
2909 }
2910
2911 static void
2912 re_init(void *xsc)
2913 {
2914         struct rl_softc         *sc = xsc;
2915
2916         RL_LOCK(sc);
2917         re_init_locked(sc);
2918         RL_UNLOCK(sc);
2919 }
2920
2921 static void
2922 re_init_locked(struct rl_softc *sc)
2923 {
2924         struct ifnet            *ifp = sc->rl_ifp;
2925         struct mii_data         *mii;
2926         uint32_t                reg;
2927         uint16_t                cfg;
2928         union {
2929                 uint32_t align_dummy;
2930                 u_char eaddr[ETHER_ADDR_LEN];
2931         } eaddr;
2932
2933         RL_LOCK_ASSERT(sc);
2934
2935         mii = device_get_softc(sc->rl_miibus);
2936
2937         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2938                 return;
2939
2940         /*
2941          * Cancel pending I/O and free all RX/TX buffers.
2942          */
2943         re_stop(sc);
2944
2945         /* Put controller into known state. */
2946         re_reset(sc);
2947
2948         /*
2949          * For C+ mode, initialize the RX descriptors and mbufs.
2950          */
2951         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
2952                 if (ifp->if_mtu > RL_MTU) {
2953                         if (re_jrx_list_init(sc) != 0) {
2954                                 device_printf(sc->rl_dev,
2955                                     "no memory for jumbo RX buffers\n");
2956                                 re_stop(sc);
2957                                 return;
2958                         }
2959                         /* Disable checksum offloading for jumbo frames. */
2960                         ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
2961                         ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
2962                 } else {
2963                         if (re_rx_list_init(sc) != 0) {
2964                                 device_printf(sc->rl_dev,
2965                                     "no memory for RX buffers\n");
2966                                 re_stop(sc);
2967                                 return;
2968                         }
2969                 }
2970                 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
2971         } else {
2972                 if (re_rx_list_init(sc) != 0) {
2973                         device_printf(sc->rl_dev, "no memory for RX buffers\n");
2974                         re_stop(sc);
2975                         return;
2976                 }
2977                 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
2978                     pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
2979                         if (ifp->if_mtu > RL_MTU)
2980                                 pci_set_max_read_req(sc->rl_dev, 512);
2981                         else
2982                                 pci_set_max_read_req(sc->rl_dev, 4096);
2983                 }
2984         }
2985         re_tx_list_init(sc);
2986
2987         /*
2988          * Enable C+ RX and TX mode, as well as VLAN stripping and
2989          * RX checksum offload. We must configure the C+ register
2990          * before all others.
2991          */
2992         cfg = RL_CPLUSCMD_PCI_MRW;
2993         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2994                 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2995         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2996                 cfg |= RL_CPLUSCMD_VLANSTRIP;
2997         if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2998                 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2999                 /* XXX magic. */
3000                 cfg |= 0x0001;
3001         } else
3002                 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3003         CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3004         if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3005             sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3006                 reg = 0x000fff00;
3007                 if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
3008                         reg |= 0x000000ff;
3009                 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3010                         reg |= 0x00f00000;
3011                 CSR_WRITE_4(sc, 0x7c, reg);
3012                 /* Disable interrupt mitigation. */
3013                 CSR_WRITE_2(sc, 0xe2, 0);
3014         }
3015         /*
3016          * Disable TSO if interface MTU size is greater than MSS
3017          * allowed in controller.
3018          */
3019         if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3020                 ifp->if_capenable &= ~IFCAP_TSO4;
3021                 ifp->if_hwassist &= ~CSUM_TSO;
3022         }
3023
3024         /*
3025          * Init our MAC address.  Even though the chipset
3026          * documentation doesn't mention it, we need to enter "Config
3027          * register write enable" mode to modify the ID registers.
3028          */
3029         /* Copy MAC address on stack to align. */
3030         bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3031         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3032         CSR_WRITE_4(sc, RL_IDR0,
3033             htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3034         CSR_WRITE_4(sc, RL_IDR4,
3035             htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3036         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3037
3038         /*
3039          * Load the addresses of the RX and TX lists into the chip.
3040          */
3041
3042         CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3043             RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3044         CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3045             RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3046
3047         CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3048             RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3049         CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3050             RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3051
3052         /*
3053          * Enable transmit and receive.
3054          */
3055         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3056
3057         /*
3058          * Set the initial TX configuration.
3059          */
3060         if (sc->rl_testmode) {
3061                 if (sc->rl_type == RL_8169)
3062                         CSR_WRITE_4(sc, RL_TXCFG,
3063                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3064                 else
3065                         CSR_WRITE_4(sc, RL_TXCFG,
3066                             RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3067         } else
3068                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3069
3070         CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3071
3072         /*
3073          * Set the initial RX configuration.
3074          */
3075         re_set_rxmode(sc);
3076
3077         /* Configure interrupt moderation. */
3078         if (sc->rl_type == RL_8169) {
3079                 /* Magic from vendor. */
3080                 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3081         }
3082
3083 #ifdef DEVICE_POLLING
3084         /*
3085          * Disable interrupts if we are polling.
3086          */
3087         if (ifp->if_capenable & IFCAP_POLLING)
3088                 CSR_WRITE_2(sc, RL_IMR, 0);
3089         else    /* otherwise ... */
3090 #endif
3091
3092         /*
3093          * Enable interrupts.
3094          */
3095         if (sc->rl_testmode)
3096                 CSR_WRITE_2(sc, RL_IMR, 0);
3097         else
3098                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3099         CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3100
3101         /* Set initial TX threshold */
3102         sc->rl_txthresh = RL_TX_THRESH_INIT;
3103
3104         /* Start RX/TX process. */
3105         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3106 #ifdef notdef
3107         /* Enable receiver and transmitter. */
3108         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3109 #endif
3110
3111         /*
3112          * Initialize the timer interrupt register so that
3113          * a timer interrupt will be generated once the timer
3114          * reaches a certain number of ticks. The timer is
3115          * reloaded on each transmit.
3116          */
3117 #ifdef RE_TX_MODERATION
3118         /*
3119          * Use timer interrupt register to moderate TX interrupt
3120          * moderation, which dramatically improves TX frame rate.
3121          */
3122         if (sc->rl_type == RL_8169)
3123                 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3124         else
3125                 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3126 #else
3127         /*
3128          * Use timer interrupt register to moderate RX interrupt
3129          * moderation.
3130          */
3131         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3132             intr_filter == 0) {
3133                 if (sc->rl_type == RL_8169)
3134                         CSR_WRITE_4(sc, RL_TIMERINT_8169,
3135                             RL_USECS(sc->rl_int_rx_mod));
3136         } else {
3137                 if (sc->rl_type == RL_8169)
3138                         CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3139         }
3140 #endif
3141
3142         /*
3143          * For 8169 gigE NICs, set the max allowed RX packet
3144          * size so we can receive jumbo frames.
3145          */
3146         if (sc->rl_type == RL_8169) {
3147                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3148                         /*
3149                          * For controllers that use new jumbo frame scheme,
3150                          * set maximum size of jumbo frame depedning on
3151                          * controller revisions.
3152                          */
3153                         if (ifp->if_mtu > RL_MTU)
3154                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3155                                     sc->rl_hwrev->rl_max_mtu +
3156                                     ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3157                                     ETHER_CRC_LEN);
3158                         else
3159                                 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3160                                     RE_RX_DESC_BUFLEN);
3161                 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3162                     sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3163                         /* RTL810x has no jumbo frame support. */
3164                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3165                 } else
3166                         CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3167         }
3168
3169         if (sc->rl_testmode)
3170                 return;
3171
3172         mii_mediachg(mii);
3173
3174         CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
3175
3176         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3177         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3178
3179         sc->rl_flags &= ~RL_FLAG_LINK;
3180         sc->rl_watchdog_timer = 0;
3181         callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3182 }
3183
3184 /*
3185  * Set media options.
3186  */
3187 static int
3188 re_ifmedia_upd(struct ifnet *ifp)
3189 {
3190         struct rl_softc         *sc;
3191         struct mii_data         *mii;
3192         int                     error;
3193
3194         sc = ifp->if_softc;
3195         mii = device_get_softc(sc->rl_miibus);
3196         RL_LOCK(sc);
3197         error = mii_mediachg(mii);
3198         RL_UNLOCK(sc);
3199
3200         return (error);
3201 }
3202
3203 /*
3204  * Report current media status.
3205  */
3206 static void
3207 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3208 {
3209         struct rl_softc         *sc;
3210         struct mii_data         *mii;
3211
3212         sc = ifp->if_softc;
3213         mii = device_get_softc(sc->rl_miibus);
3214
3215         RL_LOCK(sc);
3216         mii_pollstat(mii);
3217         RL_UNLOCK(sc);
3218         ifmr->ifm_active = mii->mii_media_active;
3219         ifmr->ifm_status = mii->mii_media_status;
3220 }
3221
3222 static int
3223 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3224 {
3225         struct rl_softc         *sc = ifp->if_softc;
3226         struct ifreq            *ifr = (struct ifreq *) data;
3227         struct mii_data         *mii;
3228         uint32_t                rev;
3229         int                     error = 0;
3230
3231         switch (command) {
3232         case SIOCSIFMTU:
3233                 if (ifr->ifr_mtu < ETHERMIN ||
3234                     ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
3235                         error = EINVAL;
3236                         break;
3237                 }
3238                 RL_LOCK(sc);
3239                 if (ifp->if_mtu != ifr->ifr_mtu) {
3240                         ifp->if_mtu = ifr->ifr_mtu;
3241                         if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3242                             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3243                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3244                                 re_init_locked(sc);
3245                         }
3246                         if (ifp->if_mtu > RL_TSO_MTU &&
3247                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3248                                 ifp->if_capenable &= ~(IFCAP_TSO4 |
3249                                     IFCAP_VLAN_HWTSO);
3250                                 ifp->if_hwassist &= ~CSUM_TSO;
3251                         }
3252                         VLAN_CAPABILITIES(ifp);
3253                 }
3254                 RL_UNLOCK(sc);
3255                 break;
3256         case SIOCSIFFLAGS:
3257                 RL_LOCK(sc);
3258                 if ((ifp->if_flags & IFF_UP) != 0) {
3259                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3260                                 if (((ifp->if_flags ^ sc->rl_if_flags)
3261                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3262                                         re_set_rxmode(sc);
3263                         } else
3264                                 re_init_locked(sc);
3265                 } else {
3266                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3267                                 re_stop(sc);
3268                 }
3269                 sc->rl_if_flags = ifp->if_flags;
3270                 RL_UNLOCK(sc);
3271                 break;
3272         case SIOCADDMULTI:
3273         case SIOCDELMULTI:
3274                 RL_LOCK(sc);
3275                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3276                         re_set_rxmode(sc);
3277                 RL_UNLOCK(sc);
3278                 break;
3279         case SIOCGIFMEDIA:
3280         case SIOCSIFMEDIA:
3281                 mii = device_get_softc(sc->rl_miibus);
3282                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3283                 break;
3284         case SIOCSIFCAP:
3285             {
3286                 int mask, reinit;
3287
3288                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3289                 reinit = 0;
3290 #ifdef DEVICE_POLLING
3291                 if (mask & IFCAP_POLLING) {
3292                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
3293                                 error = ether_poll_register(re_poll, ifp);
3294                                 if (error)
3295                                         return (error);
3296                                 RL_LOCK(sc);
3297                                 /* Disable interrupts */
3298                                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3299                                 ifp->if_capenable |= IFCAP_POLLING;
3300                                 RL_UNLOCK(sc);
3301                         } else {
3302                                 error = ether_poll_deregister(ifp);
3303                                 /* Enable interrupts. */
3304                                 RL_LOCK(sc);
3305                                 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3306                                 ifp->if_capenable &= ~IFCAP_POLLING;
3307                                 RL_UNLOCK(sc);
3308                         }
3309                 }
3310 #endif /* DEVICE_POLLING */
3311                 if ((mask & IFCAP_TXCSUM) != 0 &&
3312                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3313                         ifp->if_capenable ^= IFCAP_TXCSUM;
3314                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
3315                                 rev = sc->rl_hwrev->rl_rev;
3316                                 if (rev == RL_HWREV_8168C ||
3317                                     rev == RL_HWREV_8168C_SPIN2)
3318                                         ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
3319                                 else
3320                                         ifp->if_hwassist |= RE_CSUM_FEATURES;
3321                         } else
3322                                 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3323                         reinit = 1;
3324                 }
3325                 if ((mask & IFCAP_RXCSUM) != 0 &&
3326                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3327                         ifp->if_capenable ^= IFCAP_RXCSUM;
3328                         reinit = 1;
3329                 }
3330                 if ((mask & IFCAP_TSO4) != 0 &&
3331                     (ifp->if_capabilities & IFCAP_TSO) != 0) {
3332                         ifp->if_capenable ^= IFCAP_TSO4;
3333                         if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3334                                 ifp->if_hwassist |= CSUM_TSO;
3335                         else
3336                                 ifp->if_hwassist &= ~CSUM_TSO;
3337                         if (ifp->if_mtu > RL_TSO_MTU &&
3338                             (ifp->if_capenable & IFCAP_TSO4) != 0) {
3339                                 ifp->if_capenable &= ~IFCAP_TSO4;
3340                                 ifp->if_hwassist &= ~CSUM_TSO;
3341                         }
3342                 }
3343                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3344                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3345                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3346                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3347                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3348                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3349                         /* TSO over VLAN requires VLAN hardware tagging. */
3350                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3351                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3352                         reinit = 1;
3353                 }
3354                 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3355                     (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3356                     IFCAP_VLAN_HWTSO)) != 0)
3357                                 reinit = 1;
3358                 if ((mask & IFCAP_WOL) != 0 &&
3359                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
3360                         if ((mask & IFCAP_WOL_UCAST) != 0)
3361                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
3362                         if ((mask & IFCAP_WOL_MCAST) != 0)
3363                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
3364                         if ((mask & IFCAP_WOL_MAGIC) != 0)
3365                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3366                 }
3367                 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3368                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3369                         re_init(sc);
3370                 }
3371                 VLAN_CAPABILITIES(ifp);
3372             }
3373                 break;
3374         default:
3375                 error = ether_ioctl(ifp, command, data);
3376                 break;
3377         }
3378
3379         return (error);
3380 }
3381
3382 static void
3383 re_watchdog(struct rl_softc *sc)
3384 {
3385         struct ifnet            *ifp;
3386
3387         RL_LOCK_ASSERT(sc);
3388
3389         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3390                 return;
3391
3392         ifp = sc->rl_ifp;
3393         re_txeof(sc);
3394         if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3395                 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3396                     "-- recovering\n");
3397                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3398                         re_start_locked(ifp);
3399                 return;
3400         }
3401
3402         if_printf(ifp, "watchdog timeout\n");
3403         ifp->if_oerrors++;
3404
3405         re_rxeof(sc, NULL);
3406         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3407         re_init_locked(sc);
3408         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3409                 re_start_locked(ifp);
3410 }
3411
3412 /*
3413  * Stop the adapter and free any mbufs allocated to the
3414  * RX and TX lists.
3415  */
3416 static void
3417 re_stop(struct rl_softc *sc)
3418 {
3419         int                     i;
3420         struct ifnet            *ifp;
3421         struct rl_txdesc        *txd;
3422         struct rl_rxdesc        *rxd;
3423
3424         RL_LOCK_ASSERT(sc);
3425
3426         ifp = sc->rl_ifp;
3427
3428         sc->rl_watchdog_timer = 0;
3429         callout_stop(&sc->rl_stat_callout);
3430         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3431
3432         if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
3433                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3434                     RL_CMD_RX_ENB);
3435         else
3436                 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3437         DELAY(1000);
3438         CSR_WRITE_2(sc, RL_IMR, 0x0000);
3439         CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3440
3441         if (sc->rl_head != NULL) {
3442                 m_freem(sc->rl_head);
3443                 sc->rl_head = sc->rl_tail = NULL;
3444         }
3445
3446         /* Free the TX list buffers. */
3447
3448         for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3449                 txd = &sc->rl_ldata.rl_tx_desc[i];
3450                 if (txd->tx_m != NULL) {
3451                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3452                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3453                         bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3454                             txd->tx_dmamap);
3455                         m_freem(txd->tx_m);
3456                         txd->tx_m = NULL;
3457                 }
3458         }
3459
3460         /* Free the RX list buffers. */
3461
3462         for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3463                 rxd = &sc->rl_ldata.rl_rx_desc[i];
3464                 if (rxd->rx_m != NULL) {
3465                         bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3466                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3467                         bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3468                             rxd->rx_dmamap);
3469                         m_freem(rxd->rx_m);
3470                         rxd->rx_m = NULL;
3471                 }
3472         }
3473 }
3474
3475 /*
3476  * Device suspend routine.  Stop the interface and save some PCI
3477  * settings in case the BIOS doesn't restore them properly on
3478  * resume.
3479  */
3480 static int
3481 re_suspend(device_t dev)
3482 {
3483         struct rl_softc         *sc;
3484
3485         sc = device_get_softc(dev);
3486
3487         RL_LOCK(sc);
3488         re_stop(sc);
3489         re_setwol(sc);
3490         sc->suspended = 1;
3491         RL_UNLOCK(sc);
3492
3493         return (0);
3494 }
3495
3496 /*
3497  * Device resume routine.  Restore some PCI settings in case the BIOS
3498  * doesn't, re-enable busmastering, and restart the interface if
3499  * appropriate.
3500  */
3501 static int
3502 re_resume(device_t dev)
3503 {
3504         struct rl_softc         *sc;
3505         struct ifnet            *ifp;
3506
3507         sc = device_get_softc(dev);
3508
3509         RL_LOCK(sc);
3510
3511         ifp = sc->rl_ifp;
3512         /* Take controller out of sleep mode. */
3513         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3514                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3515                         CSR_WRITE_1(sc, RL_GPIO,
3516                             CSR_READ_1(sc, RL_GPIO) | 0x01);
3517         }
3518
3519         /*
3520          * Clear WOL matching such that normal Rx filtering
3521          * wouldn't interfere with WOL patterns.
3522          */
3523         re_clrwol(sc);
3524
3525         /* reinitialize interface if necessary */
3526         if (ifp->if_flags & IFF_UP)
3527                 re_init_locked(sc);
3528
3529         sc->suspended = 0;
3530         RL_UNLOCK(sc);
3531
3532         return (0);
3533 }
3534
3535 /*
3536  * Stop all chip I/O so that the kernel's probe routines don't
3537  * get confused by errant DMAs when rebooting.
3538  */
3539 static int
3540 re_shutdown(device_t dev)
3541 {
3542         struct rl_softc         *sc;
3543
3544         sc = device_get_softc(dev);
3545
3546         RL_LOCK(sc);
3547         re_stop(sc);
3548         /*
3549          * Mark interface as down since otherwise we will panic if
3550          * interrupt comes in later on, which can happen in some
3551          * cases.
3552          */
3553         sc->rl_ifp->if_flags &= ~IFF_UP;
3554         re_setwol(sc);
3555         RL_UNLOCK(sc);
3556
3557         return (0);
3558 }
3559
3560 static void
3561 re_setwol(struct rl_softc *sc)
3562 {
3563         struct ifnet            *ifp;
3564         int                     pmc;
3565         uint16_t                pmstat;
3566         uint8_t                 v;
3567
3568         RL_LOCK_ASSERT(sc);
3569
3570         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3571                 return;
3572
3573         ifp = sc->rl_ifp;
3574         /* Put controller into sleep mode. */
3575         if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3576                 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3577                         CSR_WRITE_1(sc, RL_GPIO,
3578                             CSR_READ_1(sc, RL_GPIO) & ~0x01);
3579         }
3580         if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3581             (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3582                 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3583         /* Enable config register write. */
3584         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3585
3586         /* Enable PME. */
3587         v = CSR_READ_1(sc, RL_CFG1);
3588         v &= ~RL_CFG1_PME;
3589         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3590                 v |= RL_CFG1_PME;
3591         CSR_WRITE_1(sc, RL_CFG1, v);
3592
3593         v = CSR_READ_1(sc, RL_CFG3);
3594         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3595         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3596                 v |= RL_CFG3_WOL_MAGIC;
3597         CSR_WRITE_1(sc, RL_CFG3, v);
3598
3599         /* Config register write done. */
3600         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3601
3602         v = CSR_READ_1(sc, RL_CFG5);
3603         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3604         v &= ~RL_CFG5_WOL_LANWAKE;
3605         if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3606                 v |= RL_CFG5_WOL_UCAST;
3607         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3608                 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3609         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3610                 v |= RL_CFG5_WOL_LANWAKE;
3611         CSR_WRITE_1(sc, RL_CFG5, v);
3612
3613         if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3614             (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3615                 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3616         /*
3617          * It seems that hardware resets its link speed to 100Mbps in
3618          * power down mode so switching to 100Mbps in driver is not
3619          * needed.
3620          */
3621
3622         /* Request PME if WOL is requested. */
3623         pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3624         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3625         if ((ifp->if_capenable & IFCAP_WOL) != 0)
3626                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3627         pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3628 }
3629
3630 static void
3631 re_clrwol(struct rl_softc *sc)
3632 {
3633         int                     pmc;
3634         uint8_t                 v;
3635
3636         RL_LOCK_ASSERT(sc);
3637
3638         if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3639                 return;
3640
3641         /* Enable config register write. */
3642         CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3643
3644         v = CSR_READ_1(sc, RL_CFG3);
3645         v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3646         CSR_WRITE_1(sc, RL_CFG3, v);
3647
3648         /* Config register write done. */
3649         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3650
3651         v = CSR_READ_1(sc, RL_CFG5);
3652         v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3653         v &= ~RL_CFG5_WOL_LANWAKE;
3654         CSR_WRITE_1(sc, RL_CFG5, v);
3655 }
3656
3657 static void
3658 re_add_sysctls(struct rl_softc *sc)
3659 {
3660         struct sysctl_ctx_list  *ctx;
3661         struct sysctl_oid_list  *children;
3662         int                     error;
3663
3664         ctx = device_get_sysctl_ctx(sc->rl_dev);
3665         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3666
3667         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3668             CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3669             "Statistics Information");
3670         if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3671                 return;
3672
3673         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3674             CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3675             sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3676         /* Pull in device tunables. */
3677         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3678         error = resource_int_value(device_get_name(sc->rl_dev),
3679             device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3680         if (error == 0) {
3681                 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3682                     sc->rl_int_rx_mod > RL_TIMER_MAX) {
3683                         device_printf(sc->rl_dev, "int_rx_mod value out of "
3684                             "range; using default: %d\n",
3685                             RL_TIMER_DEFAULT);
3686                         sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3687                 }
3688         }
3689
3690 }
3691
3692 static int
3693 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3694 {
3695         struct rl_softc         *sc;
3696         struct rl_stats         *stats;
3697         int                     error, i, result;
3698
3699         result = -1;
3700         error = sysctl_handle_int(oidp, &result, 0, req);
3701         if (error || req->newptr == NULL)
3702                 return (error);
3703
3704         if (result == 1) {
3705                 sc = (struct rl_softc *)arg1;
3706                 RL_LOCK(sc);
3707                 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3708                         RL_UNLOCK(sc);
3709                         goto done;
3710                 }
3711                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3712                     sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3713                 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3714                     RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3715                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3716                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3717                 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3718                     RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3719                     RL_DUMPSTATS_START));
3720                 for (i = RL_TIMEOUT; i > 0; i--) {
3721                         if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3722                             RL_DUMPSTATS_START) == 0)
3723                                 break;
3724                         DELAY(1000);
3725                 }
3726                 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3727                     sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3728                 RL_UNLOCK(sc);
3729                 if (i == 0) {
3730                         device_printf(sc->rl_dev,
3731                             "DUMP statistics request timedout\n");
3732                         return (ETIMEDOUT);
3733                 }
3734 done:
3735                 stats = sc->rl_ldata.rl_stats;
3736                 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3737                 printf("Tx frames : %ju\n",
3738                     (uintmax_t)le64toh(stats->rl_tx_pkts));
3739                 printf("Rx frames : %ju\n",
3740                     (uintmax_t)le64toh(stats->rl_rx_pkts));
3741                 printf("Tx errors : %ju\n",
3742                     (uintmax_t)le64toh(stats->rl_tx_errs));
3743                 printf("Rx errors : %u\n",
3744                     le32toh(stats->rl_rx_errs));
3745                 printf("Rx missed frames : %u\n",
3746                     (uint32_t)le16toh(stats->rl_missed_pkts));
3747                 printf("Rx frame alignment errs : %u\n",
3748                     (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3749                 printf("Tx single collisions : %u\n",
3750                     le32toh(stats->rl_tx_onecoll));
3751                 printf("Tx multiple collisions : %u\n",
3752                     le32toh(stats->rl_tx_multicolls));
3753                 printf("Rx unicast frames : %ju\n",
3754                     (uintmax_t)le64toh(stats->rl_rx_ucasts));
3755                 printf("Rx broadcast frames : %ju\n",
3756                     (uintmax_t)le64toh(stats->rl_rx_bcasts));
3757                 printf("Rx multicast frames : %u\n",
3758                     le32toh(stats->rl_rx_mcasts));
3759                 printf("Tx aborts : %u\n",
3760                     (uint32_t)le16toh(stats->rl_tx_aborts));
3761                 printf("Tx underruns : %u\n",
3762                     (uint32_t)le16toh(stats->rl_rx_underruns));
3763         }
3764
3765         return (error);
3766 }
3767
3768 static int
3769 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3770 {
3771         int error, value;
3772
3773         if (arg1 == NULL)
3774                 return (EINVAL);
3775         value = *(int *)arg1;
3776         error = sysctl_handle_int(oidp, &value, 0, req);
3777         if (error || req->newptr == NULL)
3778                 return (error);
3779         if (value < low || value > high)
3780                 return (EINVAL);
3781         *(int *)arg1 = value;
3782
3783         return (0);
3784 }
3785
3786 static int
3787 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
3788 {
3789
3790         return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
3791             RL_TIMER_MAX));
3792 }