]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/dev/ti/if_ti.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / dev / ti / if_ti.c
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81
82 #include "opt_ti.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103
104 #include <net/bpf.h>
105
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114
115 /* #define TI_PRIVATE_JUMBOS */
116 #ifndef TI_PRIVATE_JUMBOS
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128
129 #define TI_CSUM_FEATURES        (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130 /*
131  * We can only turn on header splitting if we're using extended receive
132  * BDs.
133  */
134 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138 typedef enum {
139         TI_SWAP_HTON,
140         TI_SWAP_NTOH
141 } ti_swap_type;
142
143
144 /*
145  * Various supported device vendors/types and their names.
146  */
147
148 static const struct ti_type const ti_devs[] = {
149         { ALT_VENDORID, ALT_DEVICEID_ACENIC,
150                 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151         { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
152                 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
153         { TC_VENDORID,  TC_DEVICEID_3C985,
154                 "3Com 3c985-SX Gigabit Ethernet" },
155         { NG_VENDORID, NG_DEVICEID_GA620,
156                 "Netgear GA620 1000baseSX Gigabit Ethernet" },
157         { NG_VENDORID, NG_DEVICEID_GA620T,
158                 "Netgear GA620 1000baseT Gigabit Ethernet" },
159         { SGI_VENDORID, SGI_DEVICEID_TIGON,
160                 "Silicon Graphics Gigabit Ethernet" },
161         { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162                 "Farallon PN9000SX Gigabit Ethernet" },
163         { 0, 0, NULL }
164 };
165
166
167 static  d_open_t        ti_open;
168 static  d_close_t       ti_close;
169 static  d_ioctl_t       ti_ioctl2;
170
171 static struct cdevsw ti_cdevsw = {
172         .d_version =    D_VERSION,
173         .d_flags =      0,
174         .d_open =       ti_open,
175         .d_close =      ti_close,
176         .d_ioctl =      ti_ioctl2,
177         .d_name =       "ti",
178 };
179
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185
186 static void ti_stats_update(struct ti_softc *);
187 static int ti_encap(struct ti_softc *, struct mbuf **);
188
189 static void ti_intr(void *);
190 static void ti_start(struct ifnet *);
191 static void ti_start_locked(struct ifnet *);
192 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(void *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(struct ifnet *);
200 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
203 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
204 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208 static void ti_setmulti(struct ti_softc *);
209
210 static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
211 static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
212 static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
213 static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
214 static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
215                 int, int, int);
216 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217 static void ti_loadfw(struct ti_softc *);
218 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220 static void ti_handle_events(struct ti_softc *);
221 static int ti_alloc_dmamaps(struct ti_softc *);
222 static void ti_free_dmamaps(struct ti_softc *);
223 static int ti_alloc_jumbo_mem(struct ti_softc *);
224 #ifdef TI_PRIVATE_JUMBOS
225 static void *ti_jalloc(struct ti_softc *);
226 static void ti_jfree(void *, void *);
227 #endif /* TI_PRIVATE_JUMBOS */
228 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231 static int ti_init_rx_ring_std(struct ti_softc *);
232 static void ti_free_rx_ring_std(struct ti_softc *);
233 static int ti_init_rx_ring_jumbo(struct ti_softc *);
234 static void ti_free_rx_ring_jumbo(struct ti_softc *);
235 static int ti_init_rx_ring_mini(struct ti_softc *);
236 static void ti_free_rx_ring_mini(struct ti_softc *);
237 static void ti_free_tx_ring(struct ti_softc *);
238 static int ti_init_tx_ring(struct ti_softc *);
239
240 static int ti_64bitslot_war(struct ti_softc *);
241 static int ti_chipinit(struct ti_softc *);
242 static int ti_gibinit(struct ti_softc *);
243
244 #ifdef TI_JUMBO_HDRSPLIT
245 static __inline void ti_hdr_split       (struct mbuf *top, int hdr_len,
246                                              int pkt_len, int idx);
247 #endif /* TI_JUMBO_HDRSPLIT */
248
249 static device_method_t ti_methods[] = {
250         /* Device interface */
251         DEVMETHOD(device_probe,         ti_probe),
252         DEVMETHOD(device_attach,        ti_attach),
253         DEVMETHOD(device_detach,        ti_detach),
254         DEVMETHOD(device_shutdown,      ti_shutdown),
255         { 0, 0 }
256 };
257
258 static driver_t ti_driver = {
259         "ti",
260         ti_methods,
261         sizeof(struct ti_softc)
262 };
263
264 static devclass_t ti_devclass;
265
266 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267 MODULE_DEPEND(ti, pci, 1, 1, 1);
268 MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270 /*
271  * Send an instruction or address to the EEPROM, check for ACK.
272  */
273 static u_int32_t ti_eeprom_putbyte(sc, byte)
274         struct ti_softc         *sc;
275         int                     byte;
276 {
277         int                     i, ack = 0;
278
279         /*
280          * Make sure we're in TX mode.
281          */
282         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284         /*
285          * Feed in each bit and stobe the clock.
286          */
287         for (i = 0x80; i; i >>= 1) {
288                 if (byte & i) {
289                         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290                 } else {
291                         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292                 }
293                 DELAY(1);
294                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295                 DELAY(1);
296                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297         }
298
299         /*
300          * Turn off TX mode.
301          */
302         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304         /*
305          * Check for ack.
306          */
307         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308         ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311         return (ack);
312 }
313
314 /*
315  * Read a byte of data stored in the EEPROM at address 'addr.'
316  * We have to send two address bytes since the EEPROM can hold
317  * more than 256 bytes of data.
318  */
319 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
320         struct ti_softc         *sc;
321         int                     addr;
322         u_int8_t                *dest;
323 {
324         int                     i;
325         u_int8_t                byte = 0;
326
327         EEPROM_START;
328
329         /*
330          * Send write control code to EEPROM.
331          */
332         if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
333                 device_printf(sc->ti_dev,
334                     "failed to send write command, status: %x\n",
335                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
336                 return (1);
337         }
338
339         /*
340          * Send first byte of address of byte we want to read.
341          */
342         if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
343                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
344                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345                 return (1);
346         }
347         /*
348          * Send second byte address of byte we want to read.
349          */
350         if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
351                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
352                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
353                 return (1);
354         }
355
356         EEPROM_STOP;
357         EEPROM_START;
358         /*
359          * Send read control code to EEPROM.
360          */
361         if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
362                 device_printf(sc->ti_dev,
363                     "failed to send read command, status: %x\n",
364                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365                 return (1);
366         }
367
368         /*
369          * Start reading bits from EEPROM.
370          */
371         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
372         for (i = 0x80; i; i >>= 1) {
373                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
374                 DELAY(1);
375                 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
376                         byte |= i;
377                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378                 DELAY(1);
379         }
380
381         EEPROM_STOP;
382
383         /*
384          * No ACK generated for read, so just return byte.
385          */
386
387         *dest = byte;
388
389         return (0);
390 }
391
392 /*
393  * Read a sequence of bytes from the EEPROM.
394  */
395 static int
396 ti_read_eeprom(sc, dest, off, cnt)
397         struct ti_softc         *sc;
398         caddr_t                 dest;
399         int                     off;
400         int                     cnt;
401 {
402         int                     err = 0, i;
403         u_int8_t                byte = 0;
404
405         for (i = 0; i < cnt; i++) {
406                 err = ti_eeprom_getbyte(sc, off + i, &byte);
407                 if (err)
408                         break;
409                 *(dest + i) = byte;
410         }
411
412         return (err ? 1 : 0);
413 }
414
415 /*
416  * NIC memory read function.
417  * Can be used to copy data from NIC local memory.
418  */
419 static void
420 ti_mem_read(sc, addr, len, buf)
421         struct ti_softc         *sc;
422         u_int32_t               addr, len;
423         void                    *buf;
424 {
425         int                     segptr, segsize, cnt;
426         char                    *ptr;
427
428         segptr = addr;
429         cnt = len;
430         ptr = buf;
431
432         while (cnt) {
433                 if (cnt < TI_WINLEN)
434                         segsize = cnt;
435                 else
436                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
437                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
440                     segsize / 4);
441                 ptr += segsize;
442                 segptr += segsize;
443                 cnt -= segsize;
444         }
445 }
446
447
448 /*
449  * NIC memory write function.
450  * Can be used to copy data into NIC local memory.
451  */
452 static void
453 ti_mem_write(sc, addr, len, buf)
454         struct ti_softc         *sc;
455         u_int32_t               addr, len;
456         void                    *buf;
457 {
458         int                     segptr, segsize, cnt;
459         char                    *ptr;
460
461         segptr = addr;
462         cnt = len;
463         ptr = buf;
464
465         while (cnt) {
466                 if (cnt < TI_WINLEN)
467                         segsize = cnt;
468                 else
469                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
470                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
471                 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
472                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
473                     segsize / 4);
474                 ptr += segsize;
475                 segptr += segsize;
476                 cnt -= segsize;
477         }
478 }
479
480 /*
481  * NIC memory read function.
482  * Can be used to clear a section of NIC local memory.
483  */
484 static void
485 ti_mem_zero(sc, addr, len)
486         struct ti_softc         *sc;
487         u_int32_t               addr, len;
488 {
489         int                     segptr, segsize, cnt;
490
491         segptr = addr;
492         cnt = len;
493
494         while (cnt) {
495                 if (cnt < TI_WINLEN)
496                         segsize = cnt;
497                 else
498                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
499                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
500                 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
501                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
502                 segptr += segsize;
503                 cnt -= segsize;
504         }
505 }
506
507 static int
508 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
509         struct ti_softc         *sc;
510         u_int32_t               tigon_addr, len;
511         caddr_t                 buf;
512         int                     useraddr, readdata;
513 {
514         int             segptr, segsize, cnt;
515         caddr_t         ptr;
516         u_int32_t       origwin;
517         u_int8_t        tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
518         int             resid, segresid;
519         int             first_pass;
520
521         TI_LOCK_ASSERT(sc);
522
523         /*
524          * At the moment, we don't handle non-aligned cases, we just bail.
525          * If this proves to be a problem, it will be fixed.
526          */
527         if ((readdata == 0)
528          && (tigon_addr & 0x3)) {
529                 device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
530                     "word-aligned\n", __func__, tigon_addr);
531                 device_printf(sc->ti_dev, "%s: unaligned writes aren't "
532                     "yet supported\n", __func__);
533                 return (EINVAL);
534         }
535
536         segptr = tigon_addr & ~0x3;
537         segresid = tigon_addr - segptr;
538
539         /*
540          * This is the non-aligned amount left over that we'll need to
541          * copy.
542          */
543         resid = len & 0x3;
544
545         /* Add in the left over amount at the front of the buffer */
546         resid += segresid;
547
548         cnt = len & ~0x3;
549         /*
550          * If resid + segresid is >= 4, add multiples of 4 to the count and
551          * decrease the residual by that much.
552          */
553         cnt += resid & ~0x3;
554         resid -= resid & ~0x3;
555
556         ptr = buf;
557
558         first_pass = 1;
559
560         /*
561          * Save the old window base value.
562          */
563         origwin = CSR_READ_4(sc, TI_WINBASE);
564
565         while (cnt) {
566                 bus_size_t ti_offset;
567
568                 if (cnt < TI_WINLEN)
569                         segsize = cnt;
570                 else
571                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
572                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
573
574                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
575
576                 if (readdata) {
577
578                         bus_space_read_region_4(sc->ti_btag,
579                                                 sc->ti_bhandle, ti_offset,
580                                                 (u_int32_t *)tmparray,
581                                                 segsize >> 2);
582                         if (useraddr) {
583                                 /*
584                                  * Yeah, this is a little on the kludgy
585                                  * side, but at least this code is only
586                                  * used for debugging.
587                                  */
588                                 ti_bcopy_swap(tmparray, tmparray2, segsize,
589                                               TI_SWAP_NTOH);
590
591                                 TI_UNLOCK(sc);
592                                 if (first_pass) {
593                                         copyout(&tmparray2[segresid], ptr,
594                                                 segsize - segresid);
595                                         first_pass = 0;
596                                 } else
597                                         copyout(tmparray2, ptr, segsize);
598                                 TI_LOCK(sc);
599                         } else {
600                                 if (first_pass) {
601
602                                         ti_bcopy_swap(tmparray, tmparray2,
603                                                       segsize, TI_SWAP_NTOH);
604                                         TI_UNLOCK(sc);
605                                         bcopy(&tmparray2[segresid], ptr,
606                                               segsize - segresid);
607                                         TI_LOCK(sc);
608                                         first_pass = 0;
609                                 } else
610                                         ti_bcopy_swap(tmparray, ptr, segsize,
611                                                       TI_SWAP_NTOH);
612                         }
613
614                 } else {
615                         if (useraddr) {
616                                 TI_UNLOCK(sc);
617                                 copyin(ptr, tmparray2, segsize);
618                                 TI_LOCK(sc);
619                                 ti_bcopy_swap(tmparray2, tmparray, segsize,
620                                               TI_SWAP_HTON);
621                         } else
622                                 ti_bcopy_swap(ptr, tmparray, segsize,
623                                               TI_SWAP_HTON);
624
625                         bus_space_write_region_4(sc->ti_btag,
626                                                  sc->ti_bhandle, ti_offset,
627                                                  (u_int32_t *)tmparray,
628                                                  segsize >> 2);
629                 }
630                 segptr += segsize;
631                 ptr += segsize;
632                 cnt -= segsize;
633         }
634
635         /*
636          * Handle leftover, non-word-aligned bytes.
637          */
638         if (resid != 0) {
639                 u_int32_t       tmpval, tmpval2;
640                 bus_size_t      ti_offset;
641
642                 /*
643                  * Set the segment pointer.
644                  */
645                 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
646
647                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
648
649                 /*
650                  * First, grab whatever is in our source/destination.
651                  * We'll obviously need this for reads, but also for
652                  * writes, since we'll be doing read/modify/write.
653                  */
654                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
655                                         ti_offset, &tmpval, 1);
656
657                 /*
658                  * Next, translate this from little-endian to big-endian
659                  * (at least on i386 boxes).
660                  */
661                 tmpval2 = ntohl(tmpval);
662
663                 if (readdata) {
664                         /*
665                          * If we're reading, just copy the leftover number
666                          * of bytes from the host byte order buffer to
667                          * the user's buffer.
668                          */
669                         if (useraddr) {
670                                 TI_UNLOCK(sc);
671                                 copyout(&tmpval2, ptr, resid);
672                                 TI_LOCK(sc);
673                         } else
674                                 bcopy(&tmpval2, ptr, resid);
675                 } else {
676                         /*
677                          * If we're writing, first copy the bytes to be
678                          * written into the network byte order buffer,
679                          * leaving the rest of the buffer with whatever was
680                          * originally in there.  Then, swap the bytes
681                          * around into host order and write them out.
682                          *
683                          * XXX KDM the read side of this has been verified
684                          * to work, but the write side of it has not been
685                          * verified.  So user beware.
686                          */
687                         if (useraddr) {
688                                 TI_UNLOCK(sc);
689                                 copyin(ptr, &tmpval2, resid);
690                                 TI_LOCK(sc);
691                         } else
692                                 bcopy(ptr, &tmpval2, resid);
693
694                         tmpval = htonl(tmpval2);
695
696                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
697                                                  ti_offset, &tmpval, 1);
698                 }
699         }
700
701         CSR_WRITE_4(sc, TI_WINBASE, origwin);
702
703         return (0);
704 }
705
706 static int
707 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
708         struct ti_softc         *sc;
709         u_int32_t               tigon_addr, len;
710         caddr_t                 buf;
711         int                     useraddr, readdata;
712         int                     cpu;
713 {
714         u_int32_t       segptr;
715         int             cnt;
716         u_int32_t       tmpval, tmpval2;
717         caddr_t         ptr;
718
719         TI_LOCK_ASSERT(sc);
720
721         /*
722          * At the moment, we don't handle non-aligned cases, we just bail.
723          * If this proves to be a problem, it will be fixed.
724          */
725         if (tigon_addr & 0x3) {
726                 device_printf(sc->ti_dev, "%s: tigon address %#x "
727                     "isn't word-aligned\n", __func__, tigon_addr);
728                 return (EINVAL);
729         }
730
731         if (len & 0x3) {
732                 device_printf(sc->ti_dev, "%s: transfer length %d "
733                     "isn't word-aligned\n", __func__, len);
734                 return (EINVAL);
735         }
736
737         segptr = tigon_addr;
738         cnt = len;
739         ptr = buf;
740
741         while (cnt) {
742                 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
743
744                 if (readdata) {
745                         tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
746
747                         tmpval = ntohl(tmpval2);
748
749                         /*
750                          * Note:  I've used this debugging interface
751                          * extensively with Alteon's 12.3.15 firmware,
752                          * compiled with GCC 2.7.2.1 and binutils 2.9.1.
753                          *
754                          * When you compile the firmware without
755                          * optimization, which is necessary sometimes in
756                          * order to properly step through it, you sometimes
757                          * read out a bogus value of 0xc0017c instead of
758                          * whatever was supposed to be in that scratchpad
759                          * location.  That value is on the stack somewhere,
760                          * but I've never been able to figure out what was
761                          * causing the problem.
762                          *
763                          * The address seems to pop up in random places,
764                          * often not in the same place on two subsequent
765                          * reads.
766                          *
767                          * In any case, the underlying data doesn't seem
768                          * to be affected, just the value read out.
769                          *
770                          * KDM, 3/7/2000
771                          */
772
773                         if (tmpval2 == 0xc0017c)
774                                 device_printf(sc->ti_dev, "found 0xc0017c at "
775                                     "%#x (tmpval2)\n", segptr);
776
777                         if (tmpval == 0xc0017c)
778                                 device_printf(sc->ti_dev, "found 0xc0017c at "
779                                     "%#x (tmpval)\n", segptr);
780
781                         if (useraddr)
782                                 copyout(&tmpval, ptr, 4);
783                         else
784                                 bcopy(&tmpval, ptr, 4);
785                 } else {
786                         if (useraddr)
787                                 copyin(ptr, &tmpval2, 4);
788                         else
789                                 bcopy(ptr, &tmpval2, 4);
790
791                         tmpval = htonl(tmpval2);
792
793                         CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
794                 }
795
796                 cnt -= 4;
797                 segptr += 4;
798                 ptr += 4;
799         }
800
801         return (0);
802 }
803
804 static int
805 ti_bcopy_swap(src, dst, len, swap_type)
806         const void      *src;
807         void            *dst;
808         size_t          len;
809         ti_swap_type    swap_type;
810 {
811         const u_int8_t *tmpsrc;
812         u_int8_t *tmpdst;
813         size_t tmplen;
814
815         if (len & 0x3) {
816                 printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
817                        len);
818                 return (-1);
819         }
820
821         tmpsrc = src;
822         tmpdst = dst;
823         tmplen = len;
824
825         while (tmplen) {
826                 if (swap_type == TI_SWAP_NTOH)
827                         *(u_int32_t *)tmpdst =
828                                 ntohl(*(const u_int32_t *)tmpsrc);
829                 else
830                         *(u_int32_t *)tmpdst =
831                                 htonl(*(const u_int32_t *)tmpsrc);
832
833                 tmpsrc += 4;
834                 tmpdst += 4;
835                 tmplen -= 4;
836         }
837
838         return (0);
839 }
840
841 /*
842  * Load firmware image into the NIC. Check that the firmware revision
843  * is acceptable and see if we want the firmware for the Tigon 1 or
844  * Tigon 2.
845  */
846 static void
847 ti_loadfw(sc)
848         struct ti_softc         *sc;
849 {
850
851         TI_LOCK_ASSERT(sc);
852
853         switch (sc->ti_hwrev) {
854         case TI_HWREV_TIGON:
855                 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
856                     tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
857                     tigonFwReleaseFix != TI_FIRMWARE_FIX) {
858                         device_printf(sc->ti_dev, "firmware revision mismatch; "
859                             "want %d.%d.%d, got %d.%d.%d\n",
860                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
861                             TI_FIRMWARE_FIX, tigonFwReleaseMajor,
862                             tigonFwReleaseMinor, tigonFwReleaseFix);
863                         return;
864                 }
865                 ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
866                 ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
867                 ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
868                     tigonFwRodata);
869                 ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
870                 ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
871                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
872                 break;
873         case TI_HWREV_TIGON_II:
874                 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
875                     tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
876                     tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
877                         device_printf(sc->ti_dev, "firmware revision mismatch; "
878                             "want %d.%d.%d, got %d.%d.%d\n",
879                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
880                             TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
881                             tigon2FwReleaseMinor, tigon2FwReleaseFix);
882                         return;
883                 }
884                 ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
885                     tigon2FwText);
886                 ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
887                     tigon2FwData);
888                 ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
889                     tigon2FwRodata);
890                 ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
891                 ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
892                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
893                 break;
894         default:
895                 device_printf(sc->ti_dev,
896                     "can't load firmware: unknown hardware rev\n");
897                 break;
898         }
899 }
900
901 /*
902  * Send the NIC a command via the command ring.
903  */
904 static void
905 ti_cmd(sc, cmd)
906         struct ti_softc         *sc;
907         struct ti_cmd_desc      *cmd;
908 {
909         int                     index;
910
911         index = sc->ti_cmd_saved_prodidx;
912         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
913         TI_INC(index, TI_CMD_RING_CNT);
914         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
915         sc->ti_cmd_saved_prodidx = index;
916 }
917
918 /*
919  * Send the NIC an extended command. The 'len' parameter specifies the
920  * number of command slots to include after the initial command.
921  */
922 static void
923 ti_cmd_ext(sc, cmd, arg, len)
924         struct ti_softc         *sc;
925         struct ti_cmd_desc      *cmd;
926         caddr_t                 arg;
927         int                     len;
928 {
929         int                     index;
930         int                     i;
931
932         index = sc->ti_cmd_saved_prodidx;
933         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
934         TI_INC(index, TI_CMD_RING_CNT);
935         for (i = 0; i < len; i++) {
936                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
937                     *(u_int32_t *)(&arg[i * 4]));
938                 TI_INC(index, TI_CMD_RING_CNT);
939         }
940         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
941         sc->ti_cmd_saved_prodidx = index;
942 }
943
944 /*
945  * Handle events that have triggered interrupts.
946  */
947 static void
948 ti_handle_events(sc)
949         struct ti_softc         *sc;
950 {
951         struct ti_event_desc    *e;
952
953         if (sc->ti_rdata->ti_event_ring == NULL)
954                 return;
955
956         while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
957                 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
958                 switch (TI_EVENT_EVENT(e)) {
959                 case TI_EV_LINKSTAT_CHANGED:
960                         sc->ti_linkstat = TI_EVENT_CODE(e);
961                         if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
962                                 device_printf(sc->ti_dev, "10/100 link up\n");
963                         else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
964                                 device_printf(sc->ti_dev, "gigabit link up\n");
965                         else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
966                                 device_printf(sc->ti_dev, "link down\n");
967                         break;
968                 case TI_EV_ERROR:
969                         if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
970                                 device_printf(sc->ti_dev, "invalid command\n");
971                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
972                                 device_printf(sc->ti_dev, "unknown command\n");
973                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
974                                 device_printf(sc->ti_dev, "bad config data\n");
975                         break;
976                 case TI_EV_FIRMWARE_UP:
977                         ti_init2(sc);
978                         break;
979                 case TI_EV_STATS_UPDATED:
980                         ti_stats_update(sc);
981                         break;
982                 case TI_EV_RESET_JUMBO_RING:
983                 case TI_EV_MCAST_UPDATED:
984                         /* Who cares. */
985                         break;
986                 default:
987                         device_printf(sc->ti_dev, "unknown event: %d\n",
988                             TI_EVENT_EVENT(e));
989                         break;
990                 }
991                 /* Advance the consumer index. */
992                 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
993                 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
994         }
995 }
996
997 static int
998 ti_alloc_dmamaps(struct ti_softc *sc)
999 {
1000         int i;
1001
1002         for (i = 0; i < TI_TX_RING_CNT; i++) {
1003                 sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
1004                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1005                 if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006                                       &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
1007                         return (ENOBUFS);
1008         }
1009         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011                                       &sc->ti_cdata.ti_rx_std_maps[i]))
1012                         return (ENOBUFS);
1013         }
1014
1015         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016                 if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017                                       &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018                         return (ENOBUFS);
1019         }
1020         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021                 if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022                                       &sc->ti_cdata.ti_rx_mini_maps[i]))
1023                         return (ENOBUFS);
1024         }
1025
1026         return (0);
1027 }
1028
1029 static void
1030 ti_free_dmamaps(struct ti_softc *sc)
1031 {
1032         int i;
1033
1034         if (sc->ti_mbuftx_dmat)
1035                 for (i = 0; i < TI_TX_RING_CNT; i++)
1036                         if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1037                                 bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038                                     sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1039                                 sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1040                         }
1041
1042         if (sc->ti_mbufrx_dmat)
1043                 for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044                         if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046                                     sc->ti_cdata.ti_rx_std_maps[i]);
1047                                 sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048                         }
1049
1050         if (sc->ti_jumbo_dmat)
1051                 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052                         if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053                                 bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054                                     sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055                                 sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056                         }
1057         if (sc->ti_mbufrx_dmat)
1058                 for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059                         if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060                                 bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061                                     sc->ti_cdata.ti_rx_mini_maps[i]);
1062                                 sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063                         }
1064 }
1065
1066 #ifdef TI_PRIVATE_JUMBOS
1067
1068 /*
1069  * Memory management for the jumbo receive ring is a pain in the
1070  * butt. We need to allocate at least 9018 bytes of space per frame,
1071  * _and_ it has to be contiguous (unless you use the extended
1072  * jumbo descriptor format). Using malloc() all the time won't
1073  * work: malloc() allocates memory in powers of two, which means we
1074  * would end up wasting a considerable amount of space by allocating
1075  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076  * to do our own memory management.
1077  *
1078  * The driver needs to allocate a contiguous chunk of memory at boot
1079  * time. We then chop this up ourselves into 9K pieces and use them
1080  * as external mbuf storage.
1081  *
1082  * One issue here is how much memory to allocate. The jumbo ring has
1083  * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084  * RAM. This is a bit much, especially considering we also need
1085  * RAM for the standard ring and mini ring (on the Tigon 2). To
1086  * save space, we only actually allocate enough memory for 64 slots
1087  * by default, which works out to between 500 and 600K. This can
1088  * be tuned by changing a #define in if_tireg.h.
1089  */
1090
1091 static int
1092 ti_alloc_jumbo_mem(sc)
1093         struct ti_softc         *sc;
1094 {
1095         caddr_t                 ptr;
1096         int                     i;
1097         struct ti_jpool_entry   *entry;
1098
1099         /*
1100          * Grab a big chunk o' storage.  Since we are chopping this pool up
1101          * into ~9k chunks, there doesn't appear to be a need to use page
1102          * alignment.
1103          */
1104         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
1105                                 1, 0,                   /* algnmnt, boundary */
1106                                 BUS_SPACE_MAXADDR,      /* lowaddr */
1107                                 BUS_SPACE_MAXADDR,      /* highaddr */
1108                                 NULL, NULL,             /* filter, filterarg */
1109                                 TI_JMEM,                /* maxsize */
1110                                 1,                      /* nsegments */
1111                                 TI_JMEM,                /* maxsegsize */
1112                                 0,                      /* flags */
1113                                 NULL, NULL,             /* lockfunc, lockarg */
1114                                 &sc->ti_jumbo_dmat) != 0) {
1115                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116                 return (ENOBUFS);
1117         }
1118
1119         if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120                              (void**)&sc->ti_cdata.ti_jumbo_buf,
1121                              BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1122                              &sc->ti_jumbo_dmamap) != 0) {
1123                 device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1124                 return (ENOBUFS);
1125         }
1126
1127         SLIST_INIT(&sc->ti_jfree_listhead);
1128         SLIST_INIT(&sc->ti_jinuse_listhead);
1129
1130         /*
1131          * Now divide it up into 9K pieces and save the addresses
1132          * in an array.
1133          */
1134         ptr = sc->ti_cdata.ti_jumbo_buf;
1135         for (i = 0; i < TI_JSLOTS; i++) {
1136                 sc->ti_cdata.ti_jslots[i] = ptr;
1137                 ptr += TI_JLEN;
1138                 entry = malloc(sizeof(struct ti_jpool_entry),
1139                                M_DEVBUF, M_NOWAIT);
1140                 if (entry == NULL) {
1141                         device_printf(sc->ti_dev, "no memory for jumbo "
1142                             "buffer queue!\n");
1143                         return (ENOBUFS);
1144                 }
1145                 entry->slot = i;
1146                 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1147         }
1148
1149         return (0);
1150 }
1151
1152 /*
1153  * Allocate a jumbo buffer.
1154  */
1155 static void *ti_jalloc(sc)
1156         struct ti_softc         *sc;
1157 {
1158         struct ti_jpool_entry   *entry;
1159
1160         entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1161
1162         if (entry == NULL) {
1163                 device_printf(sc->ti_dev, "no free jumbo buffers\n");
1164                 return (NULL);
1165         }
1166
1167         SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1168         SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1169         return (sc->ti_cdata.ti_jslots[entry->slot]);
1170 }
1171
1172 /*
1173  * Release a jumbo buffer.
1174  */
1175 static void
1176 ti_jfree(buf, args)
1177         void                    *buf;
1178         void                    *args;
1179 {
1180         struct ti_softc         *sc;
1181         int                     i;
1182         struct ti_jpool_entry   *entry;
1183
1184         /* Extract the softc struct pointer. */
1185         sc = (struct ti_softc *)args;
1186
1187         if (sc == NULL)
1188                 panic("ti_jfree: didn't get softc pointer!");
1189
1190         /* calculate the slot this buffer belongs to */
1191         i = ((vm_offset_t)buf
1192              - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1193
1194         if ((i < 0) || (i >= TI_JSLOTS))
1195                 panic("ti_jfree: asked to free buffer that we don't manage!");
1196
1197         entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1198         if (entry == NULL)
1199                 panic("ti_jfree: buffer not in use!");
1200         entry->slot = i;
1201         SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1202         SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1203 }
1204
1205 #else
1206
1207 static int
1208 ti_alloc_jumbo_mem(sc)
1209         struct ti_softc         *sc;
1210 {
1211
1212         /*
1213          * The VM system will take care of providing aligned pages.  Alignment
1214          * is set to 1 here so that busdma resources won't be wasted.
1215          */
1216         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
1217                                 1, 0,                   /* algnmnt, boundary */
1218                                 BUS_SPACE_MAXADDR,      /* lowaddr */
1219                                 BUS_SPACE_MAXADDR,      /* highaddr */
1220                                 NULL, NULL,             /* filter, filterarg */
1221                                 PAGE_SIZE * 4 /*XXX*/,  /* maxsize */
1222                                 4,                      /* nsegments */
1223                                 PAGE_SIZE,              /* maxsegsize */
1224                                 0,                      /* flags */
1225                                 NULL, NULL,             /* lockfunc, lockarg */
1226                                 &sc->ti_jumbo_dmat) != 0) {
1227                 device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1228                 return (ENOBUFS);
1229         }
1230
1231         return (0);
1232 }
1233
1234 #endif /* TI_PRIVATE_JUMBOS */
1235
1236 /*
1237  * Intialize a standard receive ring descriptor.
1238  */
1239 static int
1240 ti_newbuf_std(sc, i, m)
1241         struct ti_softc         *sc;
1242         int                     i;
1243         struct mbuf             *m;
1244 {
1245         bus_dmamap_t            map;
1246         bus_dma_segment_t       segs;
1247         struct mbuf             *m_new = NULL;
1248         struct ti_rx_desc       *r;
1249         int                     nsegs;
1250
1251         nsegs = 0;
1252         if (m == NULL) {
1253                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1254                 if (m_new == NULL)
1255                         return (ENOBUFS);
1256
1257                 MCLGET(m_new, M_DONTWAIT);
1258                 if (!(m_new->m_flags & M_EXT)) {
1259                         m_freem(m_new);
1260                         return (ENOBUFS);
1261                 }
1262                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1263         } else {
1264                 m_new = m;
1265                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1266                 m_new->m_data = m_new->m_ext.ext_buf;
1267         }
1268
1269         m_adj(m_new, ETHER_ALIGN);
1270         sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1271         r = &sc->ti_rdata->ti_rx_std_ring[i];
1272         map = sc->ti_cdata.ti_rx_std_maps[i];
1273         if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1274                                     &nsegs, 0))
1275                 return (ENOBUFS);
1276         if (nsegs != 1)
1277                 return (ENOBUFS);
1278         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1279         r->ti_len = segs.ds_len;
1280         r->ti_type = TI_BDTYPE_RECV_BD;
1281         r->ti_flags = 0;
1282         if (sc->ti_ifp->if_hwassist)
1283                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1284         r->ti_idx = i;
1285
1286         bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1287         return (0);
1288 }
1289
1290 /*
1291  * Intialize a mini receive ring descriptor. This only applies to
1292  * the Tigon 2.
1293  */
1294 static int
1295 ti_newbuf_mini(sc, i, m)
1296         struct ti_softc         *sc;
1297         int                     i;
1298         struct mbuf             *m;
1299 {
1300         bus_dma_segment_t       segs;
1301         bus_dmamap_t            map;
1302         struct mbuf             *m_new = NULL;
1303         struct ti_rx_desc       *r;
1304         int                     nsegs;
1305
1306         nsegs = 0;
1307         if (m == NULL) {
1308                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1309                 if (m_new == NULL) {
1310                         return (ENOBUFS);
1311                 }
1312                 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1313         } else {
1314                 m_new = m;
1315                 m_new->m_data = m_new->m_pktdat;
1316                 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1317         }
1318
1319         m_adj(m_new, ETHER_ALIGN);
1320         r = &sc->ti_rdata->ti_rx_mini_ring[i];
1321         sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1322         map = sc->ti_cdata.ti_rx_mini_maps[i];
1323         if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1324                                     &nsegs, 0))
1325                 return (ENOBUFS);
1326         if (nsegs != 1)
1327                 return (ENOBUFS);
1328         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1329         r->ti_len = segs.ds_len;
1330         r->ti_type = TI_BDTYPE_RECV_BD;
1331         r->ti_flags = TI_BDFLAG_MINI_RING;
1332         if (sc->ti_ifp->if_hwassist)
1333                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1334         r->ti_idx = i;
1335
1336         bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1337         return (0);
1338 }
1339
1340 #ifdef TI_PRIVATE_JUMBOS
1341
1342 /*
1343  * Initialize a jumbo receive ring descriptor. This allocates
1344  * a jumbo buffer from the pool managed internally by the driver.
1345  */
1346 static int
1347 ti_newbuf_jumbo(sc, i, m)
1348         struct ti_softc         *sc;
1349         int                     i;
1350         struct mbuf             *m;
1351 {
1352         bus_dmamap_t            map;
1353         struct mbuf             *m_new = NULL;
1354         struct ti_rx_desc       *r;
1355         int                     nsegs;
1356         bus_dma_segment_t       segs;
1357
1358         if (m == NULL) {
1359                 caddr_t                 *buf = NULL;
1360
1361                 /* Allocate the mbuf. */
1362                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1363                 if (m_new == NULL) {
1364                         return (ENOBUFS);
1365                 }
1366
1367                 /* Allocate the jumbo buffer */
1368                 buf = ti_jalloc(sc);
1369                 if (buf == NULL) {
1370                         m_freem(m_new);
1371                         device_printf(sc->ti_dev, "jumbo allocation failed "
1372                             "-- packet dropped!\n");
1373                         return (ENOBUFS);
1374                 }
1375
1376                 /* Attach the buffer to the mbuf. */
1377                 m_new->m_data = (void *) buf;
1378                 m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1379                 MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1380                     (struct ti_softc *)sc, 0, EXT_NET_DRV);
1381         } else {
1382                 m_new = m;
1383                 m_new->m_data = m_new->m_ext.ext_buf;
1384                 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1385         }
1386
1387         m_adj(m_new, ETHER_ALIGN);
1388         /* Set up the descriptor. */
1389         r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1390         sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1391         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1392         if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1393                                     &nsegs, 0))
1394                 return (ENOBUFS);
1395         if (nsegs != 1)
1396                 return (ENOBUFS);
1397         ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1398         r->ti_len = segs.ds_len;
1399         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1400         r->ti_flags = TI_BDFLAG_JUMBO_RING;
1401         if (sc->ti_ifp->if_hwassist)
1402                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1403         r->ti_idx = i;
1404
1405         bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1406         return (0);
1407 }
1408
1409 #else
1410
1411 #if (PAGE_SIZE == 4096)
1412 #define NPAYLOAD 2
1413 #else
1414 #define NPAYLOAD 1
1415 #endif
1416
1417 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1418 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1419 #define NFS_HDR_LEN (UDP_HDR_LEN)
1420 static int HDR_LEN =  TCP_HDR_LEN;
1421
1422
1423 /*
1424  * Initialize a jumbo receive ring descriptor. This allocates
1425  * a jumbo buffer from the pool managed internally by the driver.
1426  */
1427 static int
1428 ti_newbuf_jumbo(sc, idx, m_old)
1429         struct ti_softc         *sc;
1430         int                     idx;
1431         struct mbuf             *m_old;
1432 {
1433         bus_dmamap_t            map;
1434         struct mbuf             *cur, *m_new = NULL;
1435         struct mbuf             *m[3] = {NULL, NULL, NULL};
1436         struct ti_rx_desc_ext   *r;
1437         vm_page_t               frame;
1438         static int              color;
1439                                 /* 1 extra buf to make nobufs easy*/
1440         struct sf_buf           *sf[3] = {NULL, NULL, NULL};
1441         int                     i;
1442         bus_dma_segment_t       segs[4];
1443         int                     nsegs;
1444
1445         if (m_old != NULL) {
1446                 m_new = m_old;
1447                 cur = m_old->m_next;
1448                 for (i = 0; i <= NPAYLOAD; i++){
1449                         m[i] = cur;
1450                         cur = cur->m_next;
1451                 }
1452         } else {
1453                 /* Allocate the mbufs. */
1454                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1455                 if (m_new == NULL) {
1456                         device_printf(sc->ti_dev, "mbuf allocation failed "
1457                             "-- packet dropped!\n");
1458                         goto nobufs;
1459                 }
1460                 MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1461                 if (m[NPAYLOAD] == NULL) {
1462                         device_printf(sc->ti_dev, "cluster mbuf allocation "
1463                             "failed -- packet dropped!\n");
1464                         goto nobufs;
1465                 }
1466                 MCLGET(m[NPAYLOAD], M_DONTWAIT);
1467                 if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1468                         device_printf(sc->ti_dev, "mbuf allocation failed "
1469                             "-- packet dropped!\n");
1470                         goto nobufs;
1471                 }
1472                 m[NPAYLOAD]->m_len = MCLBYTES;
1473
1474                 for (i = 0; i < NPAYLOAD; i++){
1475                         MGET(m[i], M_DONTWAIT, MT_DATA);
1476                         if (m[i] == NULL) {
1477                                 device_printf(sc->ti_dev, "mbuf allocation "
1478                                     "failed -- packet dropped!\n");
1479                                 goto nobufs;
1480                         }
1481                         frame = vm_page_alloc(NULL, color++,
1482                             VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1483                             VM_ALLOC_WIRED);
1484                         if (frame == NULL) {
1485                                 device_printf(sc->ti_dev, "buffer allocation "
1486                                     "failed -- packet dropped!\n");
1487                                 printf("      index %d page %d\n", idx, i);
1488                                 goto nobufs;
1489                         }
1490                         sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1491                         if (sf[i] == NULL) {
1492                                 vm_page_unwire(frame, 0);
1493                                 vm_page_free(frame);
1494                                 device_printf(sc->ti_dev, "buffer allocation "
1495                                     "failed -- packet dropped!\n");
1496                                 printf("      index %d page %d\n", idx, i);
1497                                 goto nobufs;
1498                         }
1499                 }
1500                 for (i = 0; i < NPAYLOAD; i++){
1501                 /* Attach the buffer to the mbuf. */
1502                         m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1503                         m[i]->m_len = PAGE_SIZE;
1504                         MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1505                             sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1506                             0, EXT_DISPOSABLE);
1507                         m[i]->m_next = m[i+1];
1508                 }
1509                 /* link the buffers to the header */
1510                 m_new->m_next = m[0];
1511                 m_new->m_data += ETHER_ALIGN;
1512                 if (sc->ti_hdrsplit)
1513                         m_new->m_len = MHLEN - ETHER_ALIGN;
1514                 else
1515                         m_new->m_len = HDR_LEN;
1516                 m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1517         }
1518
1519         /* Set up the descriptor. */
1520         r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1521         sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1522         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1523         if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1524                                     &nsegs, 0))
1525                 return (ENOBUFS);
1526         if ((nsegs < 1) || (nsegs > 4))
1527                 return (ENOBUFS);
1528         ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1529         r->ti_len0 = m_new->m_len;
1530
1531         ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1532         r->ti_len1 = PAGE_SIZE;
1533
1534         ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1535         r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1536
1537         if (PAGE_SIZE == 4096) {
1538                 ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1539                 r->ti_len3 = MCLBYTES;
1540         } else {
1541                 r->ti_len3 = 0;
1542         }
1543         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1544
1545         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1546
1547         if (sc->ti_ifp->if_hwassist)
1548                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1549
1550         r->ti_idx = idx;
1551
1552         bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1553         return (0);
1554
1555 nobufs:
1556
1557         /*
1558          * Warning! :
1559          * This can only be called before the mbufs are strung together.
1560          * If the mbufs are strung together, m_freem() will free the chain,
1561          * so that the later mbufs will be freed multiple times.
1562          */
1563         if (m_new)
1564                 m_freem(m_new);
1565
1566         for (i = 0; i < 3; i++) {
1567                 if (m[i])
1568                         m_freem(m[i]);
1569                 if (sf[i])
1570                         sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1571         }
1572         return (ENOBUFS);
1573 }
1574 #endif
1575
1576
1577
1578 /*
1579  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580  * that's 1MB or memory, which is a lot. For now, we fill only the first
1581  * 256 ring entries and hope that our CPU is fast enough to keep up with
1582  * the NIC.
1583  */
1584 static int
1585 ti_init_rx_ring_std(sc)
1586         struct ti_softc         *sc;
1587 {
1588         int                     i;
1589         struct ti_cmd_desc      cmd;
1590
1591         for (i = 0; i < TI_SSLOTS; i++) {
1592                 if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1593                         return (ENOBUFS);
1594         };
1595
1596         TI_UPDATE_STDPROD(sc, i - 1);
1597         sc->ti_std = i - 1;
1598
1599         return (0);
1600 }
1601
1602 static void
1603 ti_free_rx_ring_std(sc)
1604         struct ti_softc         *sc;
1605 {
1606         bus_dmamap_t            map;
1607         int                     i;
1608
1609         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1610                 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1611                         map = sc->ti_cdata.ti_rx_std_maps[i];
1612                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1613                             BUS_DMASYNC_POSTREAD);
1614                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1615                         m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1616                         sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1617                 }
1618                 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1619                     sizeof(struct ti_rx_desc));
1620         }
1621 }
1622
1623 static int
1624 ti_init_rx_ring_jumbo(sc)
1625         struct ti_softc         *sc;
1626 {
1627         int                     i;
1628         struct ti_cmd_desc      cmd;
1629
1630         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1631                 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1632                         return (ENOBUFS);
1633         };
1634
1635         TI_UPDATE_JUMBOPROD(sc, i - 1);
1636         sc->ti_jumbo = i - 1;
1637
1638         return (0);
1639 }
1640
1641 static void
1642 ti_free_rx_ring_jumbo(sc)
1643         struct ti_softc         *sc;
1644 {
1645         bus_dmamap_t            map;
1646         int                     i;
1647
1648         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1649                 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1650                         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1651                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1652                             BUS_DMASYNC_POSTREAD);
1653                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1654                         m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1655                         sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1656                 }
1657                 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1658                     sizeof(struct ti_rx_desc));
1659         }
1660 }
1661
1662 static int
1663 ti_init_rx_ring_mini(sc)
1664         struct ti_softc         *sc;
1665 {
1666         int                     i;
1667
1668         for (i = 0; i < TI_MSLOTS; i++) {
1669                 if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1670                         return (ENOBUFS);
1671         };
1672
1673         TI_UPDATE_MINIPROD(sc, i - 1);
1674         sc->ti_mini = i - 1;
1675
1676         return (0);
1677 }
1678
1679 static void
1680 ti_free_rx_ring_mini(sc)
1681         struct ti_softc         *sc;
1682 {
1683         bus_dmamap_t            map;
1684         int                     i;
1685
1686         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1687                 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1688                         map = sc->ti_cdata.ti_rx_mini_maps[i];
1689                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1690                             BUS_DMASYNC_POSTREAD);
1691                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1692                         m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1693                         sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1694                 }
1695                 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1696                     sizeof(struct ti_rx_desc));
1697         }
1698 }
1699
1700 static void
1701 ti_free_tx_ring(sc)
1702         struct ti_softc         *sc;
1703 {
1704         struct ti_txdesc        *txd;
1705         int                     i;
1706
1707         if (sc->ti_rdata->ti_tx_ring == NULL)
1708                 return;
1709
1710         for (i = 0; i < TI_TX_RING_CNT; i++) {
1711                 txd = &sc->ti_cdata.ti_txdesc[i];
1712                 if (txd->tx_m != NULL) {
1713                         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1714                             BUS_DMASYNC_POSTWRITE);
1715                         bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1716                         m_freem(txd->tx_m);
1717                         txd->tx_m = NULL;
1718                 }
1719                 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1720                     sizeof(struct ti_tx_desc));
1721         }
1722 }
1723
1724 static int
1725 ti_init_tx_ring(sc)
1726         struct ti_softc         *sc;
1727 {
1728         struct ti_txdesc        *txd;
1729         int                     i;
1730
1731         STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1732         STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1733         for (i = 0; i < TI_TX_RING_CNT; i++) {
1734                 txd = &sc->ti_cdata.ti_txdesc[i];
1735                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1736         }
1737         sc->ti_txcnt = 0;
1738         sc->ti_tx_saved_considx = 0;
1739         sc->ti_tx_saved_prodidx = 0;
1740         CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1741         return (0);
1742 }
1743
1744 /*
1745  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1746  * but we have to support the old way too so that Tigon 1 cards will
1747  * work.
1748  */
1749 static void
1750 ti_add_mcast(sc, addr)
1751         struct ti_softc         *sc;
1752         struct ether_addr       *addr;
1753 {
1754         struct ti_cmd_desc      cmd;
1755         u_int16_t               *m;
1756         u_int32_t               ext[2] = {0, 0};
1757
1758         m = (u_int16_t *)&addr->octet[0];
1759
1760         switch (sc->ti_hwrev) {
1761         case TI_HWREV_TIGON:
1762                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1763                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1764                 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1765                 break;
1766         case TI_HWREV_TIGON_II:
1767                 ext[0] = htons(m[0]);
1768                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1769                 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1770                 break;
1771         default:
1772                 device_printf(sc->ti_dev, "unknown hwrev\n");
1773                 break;
1774         }
1775 }
1776
1777 static void
1778 ti_del_mcast(sc, addr)
1779         struct ti_softc         *sc;
1780         struct ether_addr       *addr;
1781 {
1782         struct ti_cmd_desc      cmd;
1783         u_int16_t               *m;
1784         u_int32_t               ext[2] = {0, 0};
1785
1786         m = (u_int16_t *)&addr->octet[0];
1787
1788         switch (sc->ti_hwrev) {
1789         case TI_HWREV_TIGON:
1790                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1791                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1792                 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1793                 break;
1794         case TI_HWREV_TIGON_II:
1795                 ext[0] = htons(m[0]);
1796                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1797                 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1798                 break;
1799         default:
1800                 device_printf(sc->ti_dev, "unknown hwrev\n");
1801                 break;
1802         }
1803 }
1804
1805 /*
1806  * Configure the Tigon's multicast address filter.
1807  *
1808  * The actual multicast table management is a bit of a pain, thanks to
1809  * slight brain damage on the part of both Alteon and us. With our
1810  * multicast code, we are only alerted when the multicast address table
1811  * changes and at that point we only have the current list of addresses:
1812  * we only know the current state, not the previous state, so we don't
1813  * actually know what addresses were removed or added. The firmware has
1814  * state, but we can't get our grubby mits on it, and there is no 'delete
1815  * all multicast addresses' command. Hence, we have to maintain our own
1816  * state so we know what addresses have been programmed into the NIC at
1817  * any given time.
1818  */
1819 static void
1820 ti_setmulti(sc)
1821         struct ti_softc         *sc;
1822 {
1823         struct ifnet            *ifp;
1824         struct ifmultiaddr      *ifma;
1825         struct ti_cmd_desc      cmd;
1826         struct ti_mc_entry      *mc;
1827         u_int32_t               intrs;
1828
1829         TI_LOCK_ASSERT(sc);
1830
1831         ifp = sc->ti_ifp;
1832
1833         if (ifp->if_flags & IFF_ALLMULTI) {
1834                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1835                 return;
1836         } else {
1837                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1838         }
1839
1840         /* Disable interrupts. */
1841         intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1842         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1843
1844         /* First, zot all the existing filters. */
1845         while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1846                 mc = SLIST_FIRST(&sc->ti_mc_listhead);
1847                 ti_del_mcast(sc, &mc->mc_addr);
1848                 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1849                 free(mc, M_DEVBUF);
1850         }
1851
1852         /* Now program new ones. */
1853         if_maddr_rlock(ifp);
1854         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1855                 if (ifma->ifma_addr->sa_family != AF_LINK)
1856                         continue;
1857                 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1858                 if (mc == NULL) {
1859                         device_printf(sc->ti_dev,
1860                             "no memory for mcast filter entry\n");
1861                         continue;
1862                 }
1863                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1864                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1865                 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1866                 ti_add_mcast(sc, &mc->mc_addr);
1867         }
1868         if_maddr_runlock(ifp);
1869
1870         /* Re-enable interrupts. */
1871         CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1872 }
1873
1874 /*
1875  * Check to see if the BIOS has configured us for a 64 bit slot when
1876  * we aren't actually in one. If we detect this condition, we can work
1877  * around it on the Tigon 2 by setting a bit in the PCI state register,
1878  * but for the Tigon 1 we must give up and abort the interface attach.
1879  */
1880 static int ti_64bitslot_war(sc)
1881         struct ti_softc         *sc;
1882 {
1883         if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1884                 CSR_WRITE_4(sc, 0x600, 0);
1885                 CSR_WRITE_4(sc, 0x604, 0);
1886                 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1887                 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1888                         if (sc->ti_hwrev == TI_HWREV_TIGON)
1889                                 return (EINVAL);
1890                         else {
1891                                 TI_SETBIT(sc, TI_PCI_STATE,
1892                                     TI_PCISTATE_32BIT_BUS);
1893                                 return (0);
1894                         }
1895                 }
1896         }
1897
1898         return (0);
1899 }
1900
1901 /*
1902  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1903  * self-test results.
1904  */
1905 static int
1906 ti_chipinit(sc)
1907         struct ti_softc         *sc;
1908 {
1909         u_int32_t               cacheline;
1910         u_int32_t               pci_writemax = 0;
1911         u_int32_t               hdrsplit;
1912
1913         /* Initialize link to down state. */
1914         sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1915
1916         if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1917                 sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1918         else
1919                 sc->ti_ifp->if_hwassist = 0;
1920
1921         /* Set endianness before we access any non-PCI registers. */
1922 #if 0 && BYTE_ORDER == BIG_ENDIAN
1923         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1924             TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1925 #else
1926         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1927             TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1928 #endif
1929
1930         /* Check the ROM failed bit to see if self-tests passed. */
1931         if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1932                 device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1933                 return (ENODEV);
1934         }
1935
1936         /* Halt the CPU. */
1937         TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1938
1939         /* Figure out the hardware revision. */
1940         switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1941         case TI_REV_TIGON_I:
1942                 sc->ti_hwrev = TI_HWREV_TIGON;
1943                 break;
1944         case TI_REV_TIGON_II:
1945                 sc->ti_hwrev = TI_HWREV_TIGON_II;
1946                 break;
1947         default:
1948                 device_printf(sc->ti_dev, "unsupported chip revision\n");
1949                 return (ENODEV);
1950         }
1951
1952         /* Do special setup for Tigon 2. */
1953         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1954                 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1955                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1956                 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1957         }
1958
1959         /*
1960          * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1961          * can't do header splitting.
1962          */
1963 #ifdef TI_JUMBO_HDRSPLIT
1964         if (sc->ti_hwrev != TI_HWREV_TIGON)
1965                 sc->ti_hdrsplit = 1;
1966         else
1967                 device_printf(sc->ti_dev,
1968                     "can't do header splitting on a Tigon I board\n");
1969 #endif /* TI_JUMBO_HDRSPLIT */
1970
1971         /* Set up the PCI state register. */
1972         CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1973         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1974                 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1975         }
1976
1977         /* Clear the read/write max DMA parameters. */
1978         TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1979             TI_PCISTATE_READ_MAXDMA));
1980
1981         /* Get cache line size. */
1982         cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1983
1984         /*
1985          * If the system has set enabled the PCI memory write
1986          * and invalidate command in the command register, set
1987          * the write max parameter accordingly. This is necessary
1988          * to use MWI with the Tigon 2.
1989          */
1990         if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1991                 switch (cacheline) {
1992                 case 1:
1993                 case 4:
1994                 case 8:
1995                 case 16:
1996                 case 32:
1997                 case 64:
1998                         break;
1999                 default:
2000                 /* Disable PCI memory write and invalidate. */
2001                         if (bootverbose)
2002                                 device_printf(sc->ti_dev, "cache line size %d"
2003                                     " not supported; disabling PCI MWI\n",
2004                                     cacheline);
2005                         CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2006                             TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2007                         break;
2008                 }
2009         }
2010
2011         TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2012
2013         /* This sets the min dma param all the way up (0xff). */
2014         TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2015
2016         if (sc->ti_hdrsplit)
2017                 hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2018         else
2019                 hdrsplit = 0;
2020
2021         /* Configure DMA variables. */
2022 #if BYTE_ORDER == BIG_ENDIAN
2023         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2024             TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2025             TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2026             TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2027 #else /* BYTE_ORDER */
2028         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2029             TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2030             TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2031 #endif /* BYTE_ORDER */
2032
2033         /*
2034          * Only allow 1 DMA channel to be active at a time.
2035          * I don't think this is a good idea, but without it
2036          * the firmware racks up lots of nicDmaReadRingFull
2037          * errors.  This is not compatible with hardware checksums.
2038          */
2039         if (sc->ti_ifp->if_hwassist == 0)
2040                 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2041
2042         /* Recommended settings from Tigon manual. */
2043         CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2044         CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2045
2046         if (ti_64bitslot_war(sc)) {
2047                 device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2048                     "but we aren't");
2049                 return (EINVAL);
2050         }
2051
2052         return (0);
2053 }
2054
2055 /*
2056  * Initialize the general information block and firmware, and
2057  * start the CPU(s) running.
2058  */
2059 static int
2060 ti_gibinit(sc)
2061         struct ti_softc         *sc;
2062 {
2063         struct ti_rcb           *rcb;
2064         int                     i;
2065         struct ifnet            *ifp;
2066         uint32_t                rdphys;
2067
2068         TI_LOCK_ASSERT(sc);
2069
2070         ifp = sc->ti_ifp;
2071         rdphys = sc->ti_rdata_phys;
2072
2073         /* Disable interrupts for now. */
2074         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2075
2076         /*
2077          * Tell the chip where to find the general information block.
2078          * While this struct could go into >4GB memory, we allocate it in a
2079          * single slab with the other descriptors, and those don't seem to
2080          * support being located in a 64-bit region.
2081          */
2082         CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2083         CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2084
2085         /* Load the firmware into SRAM. */
2086         ti_loadfw(sc);
2087
2088         /* Set up the contents of the general info and ring control blocks. */
2089
2090         /* Set up the event ring and producer pointer. */
2091         rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2092
2093         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2094         rcb->ti_flags = 0;
2095         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2096             rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2097         sc->ti_ev_prodidx.ti_idx = 0;
2098         CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2099         sc->ti_ev_saved_considx = 0;
2100
2101         /* Set up the command ring and producer mailbox. */
2102         rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2103
2104         TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2105         rcb->ti_flags = 0;
2106         rcb->ti_max_len = 0;
2107         for (i = 0; i < TI_CMD_RING_CNT; i++) {
2108                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2109         }
2110         CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2111         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2112         sc->ti_cmd_saved_prodidx = 0;
2113
2114         /*
2115          * Assign the address of the stats refresh buffer.
2116          * We re-use the current stats buffer for this to
2117          * conserve memory.
2118          */
2119         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2120             rdphys + TI_RD_OFF(ti_info.ti_stats);
2121
2122         /* Set up the standard receive ring. */
2123         rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2124         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2125         rcb->ti_max_len = TI_FRAMELEN;
2126         rcb->ti_flags = 0;
2127         if (sc->ti_ifp->if_hwassist)
2128                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2129                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2130         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2131
2132         /* Set up the jumbo receive ring. */
2133         rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2134         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2135
2136 #ifdef TI_PRIVATE_JUMBOS
2137         rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2138         rcb->ti_flags = 0;
2139 #else
2140         rcb->ti_max_len = PAGE_SIZE;
2141         rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2142 #endif
2143         if (sc->ti_ifp->if_hwassist)
2144                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2145                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2146         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2147
2148         /*
2149          * Set up the mini ring. Only activated on the
2150          * Tigon 2 but the slot in the config block is
2151          * still there on the Tigon 1.
2152          */
2153         rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2154         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2155         rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2156         if (sc->ti_hwrev == TI_HWREV_TIGON)
2157                 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2158         else
2159                 rcb->ti_flags = 0;
2160         if (sc->ti_ifp->if_hwassist)
2161                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2162                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2163         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2164
2165         /*
2166          * Set up the receive return ring.
2167          */
2168         rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2169         TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2170         rcb->ti_flags = 0;
2171         rcb->ti_max_len = TI_RETURN_RING_CNT;
2172         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2173             rdphys + TI_RD_OFF(ti_return_prodidx_r);
2174
2175         /*
2176          * Set up the tx ring. Note: for the Tigon 2, we have the option
2177          * of putting the transmit ring in the host's address space and
2178          * letting the chip DMA it instead of leaving the ring in the NIC's
2179          * memory and accessing it through the shared memory region. We
2180          * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2181          * so we have to revert to the shared memory scheme if we detect
2182          * a Tigon 1 chip.
2183          */
2184         CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2185         bzero((char *)sc->ti_rdata->ti_tx_ring,
2186             TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2187         rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2188         if (sc->ti_hwrev == TI_HWREV_TIGON)
2189                 rcb->ti_flags = 0;
2190         else
2191                 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2192         rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2193         if (sc->ti_ifp->if_hwassist)
2194                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2195                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2196         rcb->ti_max_len = TI_TX_RING_CNT;
2197         if (sc->ti_hwrev == TI_HWREV_TIGON)
2198                 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2199         else
2200                 TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2201         TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2202             rdphys + TI_RD_OFF(ti_tx_considx_r);
2203
2204         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2205             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2206
2207         /* Set up tuneables */
2208 #if 0
2209         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2210                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2211                     (sc->ti_rx_coal_ticks / 10));
2212         else
2213 #endif
2214                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2215         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2216         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2217         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2218         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2219         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2220
2221         /* Turn interrupts on. */
2222         CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2223         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2224
2225         /* Start CPU. */
2226         TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2227
2228         return (0);
2229 }
2230
2231 static void
2232 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2233 {
2234         struct ti_softc *sc;
2235
2236         sc = arg;
2237         if (error || nseg != 1)
2238                 return;
2239
2240         /*
2241          * All of the Tigon data structures need to live at <4GB.  This
2242          * cast is fine since busdma was told about this constraint.
2243          */
2244         sc->ti_rdata_phys = segs[0].ds_addr;
2245         return;
2246 }
2247         
2248 /*
2249  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2250  * against our list and return its name if we find a match.
2251  */
2252 static int
2253 ti_probe(dev)
2254         device_t                dev;
2255 {
2256         const struct ti_type    *t;
2257
2258         t = ti_devs;
2259
2260         while (t->ti_name != NULL) {
2261                 if ((pci_get_vendor(dev) == t->ti_vid) &&
2262                     (pci_get_device(dev) == t->ti_did)) {
2263                         device_set_desc(dev, t->ti_name);
2264                         return (BUS_PROBE_DEFAULT);
2265                 }
2266                 t++;
2267         }
2268
2269         return (ENXIO);
2270 }
2271
2272 static int
2273 ti_attach(dev)
2274         device_t                dev;
2275 {
2276         struct ifnet            *ifp;
2277         struct ti_softc         *sc;
2278         int                     error = 0, rid;
2279         u_char                  eaddr[6];
2280
2281         sc = device_get_softc(dev);
2282         sc->ti_unit = device_get_unit(dev);
2283         sc->ti_dev = dev;
2284
2285         mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2286             MTX_DEF);
2287         callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2288         ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2289         ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2290         if (ifp == NULL) {
2291                 device_printf(dev, "can not if_alloc()\n");
2292                 error = ENOSPC;
2293                 goto fail;
2294         }
2295         sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2296             IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2297         sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2298
2299         /*
2300          * Map control/status registers.
2301          */
2302         pci_enable_busmaster(dev);
2303
2304         rid = TI_PCI_LOMEM;
2305         sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2306             RF_ACTIVE);
2307
2308         if (sc->ti_res == NULL) {
2309                 device_printf(dev, "couldn't map memory\n");
2310                 error = ENXIO;
2311                 goto fail;
2312         }
2313
2314         sc->ti_btag = rman_get_bustag(sc->ti_res);
2315         sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2316
2317         /* Allocate interrupt */
2318         rid = 0;
2319
2320         sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2321             RF_SHAREABLE | RF_ACTIVE);
2322
2323         if (sc->ti_irq == NULL) {
2324                 device_printf(dev, "couldn't map interrupt\n");
2325                 error = ENXIO;
2326                 goto fail;
2327         }
2328
2329         if (ti_chipinit(sc)) {
2330                 device_printf(dev, "chip initialization failed\n");
2331                 error = ENXIO;
2332                 goto fail;
2333         }
2334
2335         /* Zero out the NIC's on-board SRAM. */
2336         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2337
2338         /* Init again -- zeroing memory may have clobbered some registers. */
2339         if (ti_chipinit(sc)) {
2340                 device_printf(dev, "chip initialization failed\n");
2341                 error = ENXIO;
2342                 goto fail;
2343         }
2344
2345         /*
2346          * Get station address from the EEPROM. Note: the manual states
2347          * that the MAC address is at offset 0x8c, however the data is
2348          * stored as two longwords (since that's how it's loaded into
2349          * the NIC). This means the MAC address is actually preceded
2350          * by two zero bytes. We need to skip over those.
2351          */
2352         if (ti_read_eeprom(sc, eaddr,
2353                                 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2354                 device_printf(dev, "failed to read station address\n");
2355                 error = ENXIO;
2356                 goto fail;
2357         }
2358
2359         /* Allocate the general information block and ring buffers. */
2360         if (bus_dma_tag_create(bus_get_dma_tag(dev),    /* parent */
2361                                 1, 0,                   /* algnmnt, boundary */
2362                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2363                                 BUS_SPACE_MAXADDR,      /* highaddr */
2364                                 NULL, NULL,             /* filter, filterarg */
2365                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2366                                 0,                      /* nsegments */
2367                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2368                                 0,                      /* flags */
2369                                 NULL, NULL,             /* lockfunc, lockarg */
2370                                 &sc->ti_parent_dmat) != 0) {
2371                 device_printf(dev, "Failed to allocate parent dmat\n");
2372                 error = ENOMEM;
2373                 goto fail;
2374         }
2375
2376         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2377                                 PAGE_SIZE, 0,           /* algnmnt, boundary */
2378                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2379                                 BUS_SPACE_MAXADDR,      /* highaddr */
2380                                 NULL, NULL,             /* filter, filterarg */
2381                                 sizeof(struct ti_ring_data),    /* maxsize */
2382                                 1,                      /* nsegments */
2383                                 sizeof(struct ti_ring_data),    /* maxsegsize */
2384                                 0,                      /* flags */
2385                                 NULL, NULL,             /* lockfunc, lockarg */
2386                                 &sc->ti_rdata_dmat) != 0) {
2387                 device_printf(dev, "Failed to allocate rdata dmat\n");
2388                 error = ENOMEM;
2389                 goto fail;
2390         }
2391
2392         if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2393                              BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2394                              &sc->ti_rdata_dmamap) != 0) {
2395                 device_printf(dev, "Failed to allocate rdata memory\n");
2396                 error = ENOMEM;
2397                 goto fail;
2398         }
2399
2400         if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2401                             sc->ti_rdata, sizeof(struct ti_ring_data),
2402                             ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2403                 device_printf(dev, "Failed to load rdata segments\n");
2404                 error = ENOMEM;
2405                 goto fail;
2406         }
2407
2408         bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2409
2410         /* Try to allocate memory for jumbo buffers. */
2411         if (ti_alloc_jumbo_mem(sc)) {
2412                 device_printf(dev, "jumbo buffer allocation failed\n");
2413                 error = ENXIO;
2414                 goto fail;
2415         }
2416
2417         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2418                                 1, 0,                   /* algnmnt, boundary */
2419                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2420                                 BUS_SPACE_MAXADDR,      /* highaddr */
2421                                 NULL, NULL,             /* filter, filterarg */
2422                                 MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2423                                 TI_MAXTXSEGS,           /* nsegments */
2424                                 MCLBYTES,               /* maxsegsize */
2425                                 0,                      /* flags */
2426                                 NULL, NULL,             /* lockfunc, lockarg */
2427                                 &sc->ti_mbuftx_dmat) != 0) {
2428                 device_printf(dev, "Failed to allocate rdata dmat\n");
2429                 error = ENOMEM;
2430                 goto fail;
2431         }
2432
2433         if (bus_dma_tag_create(sc->ti_parent_dmat,      /* parent */
2434                                 1, 0,                   /* algnmnt, boundary */
2435                                 BUS_SPACE_MAXADDR,      /* lowaddr */
2436                                 BUS_SPACE_MAXADDR,      /* highaddr */
2437                                 NULL, NULL,             /* filter, filterarg */
2438                                 MCLBYTES,               /* maxsize */
2439                                 1,                      /* nsegments */
2440                                 MCLBYTES,               /* maxsegsize */
2441                                 0,                      /* flags */
2442                                 NULL, NULL,             /* lockfunc, lockarg */
2443                                 &sc->ti_mbufrx_dmat) != 0) {
2444                 device_printf(dev, "Failed to allocate rdata dmat\n");
2445                 error = ENOMEM;
2446                 goto fail;
2447         }
2448
2449         if (ti_alloc_dmamaps(sc)) {
2450                 device_printf(dev, "dma map creation failed\n");
2451                 error = ENXIO;
2452                 goto fail;
2453         }
2454
2455         /*
2456          * We really need a better way to tell a 1000baseTX card
2457          * from a 1000baseSX one, since in theory there could be
2458          * OEMed 1000baseTX cards from lame vendors who aren't
2459          * clever enough to change the PCI ID. For the moment
2460          * though, the AceNIC is the only copper card available.
2461          */
2462         if (pci_get_vendor(dev) == ALT_VENDORID &&
2463             pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2464                 sc->ti_copper = 1;
2465         /* Ok, it's not the only copper card available. */
2466         if (pci_get_vendor(dev) == NG_VENDORID &&
2467             pci_get_device(dev) == NG_DEVICEID_GA620T)
2468                 sc->ti_copper = 1;
2469
2470         /* Set default tuneable values. */
2471         sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2472 #if 0
2473         sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2474 #endif
2475         sc->ti_rx_coal_ticks = 170;
2476         sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2477         sc->ti_rx_max_coal_bds = 64;
2478 #if 0
2479         sc->ti_tx_max_coal_bds = 128;
2480 #endif
2481         sc->ti_tx_max_coal_bds = 32;
2482         sc->ti_tx_buf_ratio = 21;
2483
2484         /* Set up ifnet structure */
2485         ifp->if_softc = sc;
2486         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2487         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2488         ifp->if_ioctl = ti_ioctl;
2489         ifp->if_start = ti_start;
2490         ifp->if_init = ti_init;
2491         ifp->if_baudrate = 1000000000;
2492         ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2493
2494         /* Set up ifmedia support. */
2495         if (sc->ti_copper) {
2496                 /*
2497                  * Copper cards allow manual 10/100 mode selection,
2498                  * but not manual 1000baseTX mode selection. Why?
2499                  * Becuase currently there's no way to specify the
2500                  * master/slave setting through the firmware interface,
2501                  * so Alteon decided to just bag it and handle it
2502                  * via autonegotiation.
2503                  */
2504                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2505                 ifmedia_add(&sc->ifmedia,
2506                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2507                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2508                 ifmedia_add(&sc->ifmedia,
2509                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2510                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2511                 ifmedia_add(&sc->ifmedia,
2512                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2513         } else {
2514                 /* Fiber cards don't support 10/100 modes. */
2515                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2516                 ifmedia_add(&sc->ifmedia,
2517                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2518         }
2519         ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2520         ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2521
2522         /*
2523          * We're assuming here that card initialization is a sequential
2524          * thing.  If it isn't, multiple cards probing at the same time
2525          * could stomp on the list of softcs here.
2526          */
2527
2528         /* Register the device */
2529         sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2530                            0600, "ti%d", sc->ti_unit);
2531         sc->dev->si_drv1 = sc;
2532
2533         /*
2534          * Call MI attach routine.
2535          */
2536         ether_ifattach(ifp, eaddr);
2537
2538         /* Hook interrupt last to avoid having to lock softc */
2539         error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2540            NULL, ti_intr, sc, &sc->ti_intrhand);
2541
2542         if (error) {
2543                 device_printf(dev, "couldn't set up irq\n");
2544                 goto fail;
2545         }
2546
2547 fail:
2548         if (error)
2549                 ti_detach(dev);
2550
2551         return (error);
2552 }
2553
2554 /*
2555  * Shutdown hardware and free up resources. This can be called any
2556  * time after the mutex has been initialized. It is called in both
2557  * the error case in attach and the normal detach case so it needs
2558  * to be careful about only freeing resources that have actually been
2559  * allocated.
2560  */
2561 static int
2562 ti_detach(dev)
2563         device_t                dev;
2564 {
2565         struct ti_softc         *sc;
2566         struct ifnet            *ifp;
2567
2568         sc = device_get_softc(dev);
2569         if (sc->dev)
2570                 destroy_dev(sc->dev);
2571         KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2572         ifp = sc->ti_ifp;
2573         if (device_is_attached(dev)) {
2574                 ether_ifdetach(ifp);
2575                 TI_LOCK(sc);
2576                 ti_stop(sc);
2577                 TI_UNLOCK(sc);
2578         }
2579
2580         /* These should only be active if attach succeeded */
2581         callout_drain(&sc->ti_watchdog);
2582         bus_generic_detach(dev);
2583         ti_free_dmamaps(sc);
2584         ifmedia_removeall(&sc->ifmedia);
2585
2586 #ifdef TI_PRIVATE_JUMBOS
2587         if (sc->ti_cdata.ti_jumbo_buf)
2588                 bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2589                     sc->ti_jumbo_dmamap);
2590 #endif
2591         if (sc->ti_jumbo_dmat)
2592                 bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2593         if (sc->ti_mbuftx_dmat)
2594                 bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2595         if (sc->ti_mbufrx_dmat)
2596                 bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2597         if (sc->ti_rdata)
2598                 bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2599                                 sc->ti_rdata_dmamap);
2600         if (sc->ti_rdata_dmat)
2601                 bus_dma_tag_destroy(sc->ti_rdata_dmat);
2602         if (sc->ti_parent_dmat)
2603                 bus_dma_tag_destroy(sc->ti_parent_dmat);
2604         if (sc->ti_intrhand)
2605                 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2606         if (sc->ti_irq)
2607                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2608         if (sc->ti_res) {
2609                 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2610                     sc->ti_res);
2611         }
2612         if (ifp)
2613                 if_free(ifp);
2614
2615         mtx_destroy(&sc->ti_mtx);
2616
2617         return (0);
2618 }
2619
2620 #ifdef TI_JUMBO_HDRSPLIT
2621 /*
2622  * If hdr_len is 0, that means that header splitting wasn't done on
2623  * this packet for some reason.  The two most likely reasons are that
2624  * the protocol isn't a supported protocol for splitting, or this
2625  * packet had a fragment offset that wasn't 0.
2626  *
2627  * The header length, if it is non-zero, will always be the length of
2628  * the headers on the packet, but that length could be longer than the
2629  * first mbuf.  So we take the minimum of the two as the actual
2630  * length.
2631  */
2632 static __inline void
2633 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2634 {
2635         int i = 0;
2636         int lengths[4] = {0, 0, 0, 0};
2637         struct mbuf *m, *mp;
2638
2639         if (hdr_len != 0)
2640                 top->m_len = min(hdr_len, top->m_len);
2641         pkt_len -= top->m_len;
2642         lengths[i++] = top->m_len;
2643
2644         mp = top;
2645         for (m = top->m_next; m && pkt_len; m = m->m_next) {
2646                 m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2647                 pkt_len -= m->m_len;
2648                 lengths[i++] = m->m_len;
2649                 mp = m;
2650         }
2651
2652 #if 0
2653         if (hdr_len != 0)
2654                 printf("got split packet: ");
2655         else
2656                 printf("got non-split packet: ");
2657
2658         printf("%d,%d,%d,%d = %d\n", lengths[0],
2659             lengths[1], lengths[2], lengths[3],
2660             lengths[0] + lengths[1] + lengths[2] +
2661             lengths[3]);
2662 #endif
2663
2664         if (pkt_len)
2665                 panic("header splitting didn't");
2666
2667         if (m) {
2668                 m_freem(m);
2669                 mp->m_next = NULL;
2670
2671         }
2672         if (mp->m_next != NULL)
2673                 panic("ti_hdr_split: last mbuf in chain should be null");
2674 }
2675 #endif /* TI_JUMBO_HDRSPLIT */
2676
2677 /*
2678  * Frame reception handling. This is called if there's a frame
2679  * on the receive return list.
2680  *
2681  * Note: we have to be able to handle three possibilities here:
2682  * 1) the frame is from the mini receive ring (can only happen)
2683  *    on Tigon 2 boards)
2684  * 2) the frame is from the jumbo recieve ring
2685  * 3) the frame is from the standard receive ring
2686  */
2687
2688 static void
2689 ti_rxeof(sc)
2690         struct ti_softc         *sc;
2691 {
2692         bus_dmamap_t            map;
2693         struct ifnet            *ifp;
2694         struct ti_cmd_desc      cmd;
2695
2696         TI_LOCK_ASSERT(sc);
2697
2698         ifp = sc->ti_ifp;
2699
2700         while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2701                 struct ti_rx_desc       *cur_rx;
2702                 u_int32_t               rxidx;
2703                 struct mbuf             *m = NULL;
2704                 u_int16_t               vlan_tag = 0;
2705                 int                     have_tag = 0;
2706
2707                 cur_rx =
2708                     &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2709                 rxidx = cur_rx->ti_idx;
2710                 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2711
2712                 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2713                         have_tag = 1;
2714                         vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2715                 }
2716
2717                 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2718
2719                         TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2720                         m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2721                         sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2722                         map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2723                         bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2724                             BUS_DMASYNC_POSTREAD);
2725                         bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2726                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2727                                 ifp->if_ierrors++;
2728                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2729                                 continue;
2730                         }
2731                         if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2732                                 ifp->if_ierrors++;
2733                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2734                                 continue;
2735                         }
2736 #ifdef TI_PRIVATE_JUMBOS
2737                         m->m_len = cur_rx->ti_len;
2738 #else /* TI_PRIVATE_JUMBOS */
2739 #ifdef TI_JUMBO_HDRSPLIT
2740                         if (sc->ti_hdrsplit)
2741                                 ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2742                                              cur_rx->ti_len, rxidx);
2743                         else
2744 #endif /* TI_JUMBO_HDRSPLIT */
2745                         m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2746 #endif /* TI_PRIVATE_JUMBOS */
2747                 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2748                         TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2749                         m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2750                         sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2751                         map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2752                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2753                             BUS_DMASYNC_POSTREAD);
2754                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2755                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2756                                 ifp->if_ierrors++;
2757                                 ti_newbuf_mini(sc, sc->ti_mini, m);
2758                                 continue;
2759                         }
2760                         if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2761                                 ifp->if_ierrors++;
2762                                 ti_newbuf_mini(sc, sc->ti_mini, m);
2763                                 continue;
2764                         }
2765                         m->m_len = cur_rx->ti_len;
2766                 } else {
2767                         TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2768                         m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2769                         sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2770                         map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2771                         bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2772                             BUS_DMASYNC_POSTREAD);
2773                         bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2774                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2775                                 ifp->if_ierrors++;
2776                                 ti_newbuf_std(sc, sc->ti_std, m);
2777                                 continue;
2778                         }
2779                         if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2780                                 ifp->if_ierrors++;
2781                                 ti_newbuf_std(sc, sc->ti_std, m);
2782                                 continue;
2783                         }
2784                         m->m_len = cur_rx->ti_len;
2785                 }
2786
2787                 m->m_pkthdr.len = cur_rx->ti_len;
2788                 ifp->if_ipackets++;
2789                 m->m_pkthdr.rcvif = ifp;
2790
2791                 if (ifp->if_hwassist) {
2792                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2793                             CSUM_DATA_VALID;
2794                         if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2795                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2796                         m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2797                 }
2798
2799                 /*
2800                  * If we received a packet with a vlan tag,
2801                  * tag it before passing the packet upward.
2802                  */
2803                 if (have_tag) {
2804                         m->m_pkthdr.ether_vtag = vlan_tag;
2805                         m->m_flags |= M_VLANTAG;
2806                 }
2807                 TI_UNLOCK(sc);
2808                 (*ifp->if_input)(ifp, m);
2809                 TI_LOCK(sc);
2810         }
2811
2812         /* Only necessary on the Tigon 1. */
2813         if (sc->ti_hwrev == TI_HWREV_TIGON)
2814                 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2815                     sc->ti_rx_saved_considx);
2816
2817         TI_UPDATE_STDPROD(sc, sc->ti_std);
2818         TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2819         TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2820 }
2821
2822 static void
2823 ti_txeof(sc)
2824         struct ti_softc         *sc;
2825 {
2826         struct ti_txdesc        *txd;
2827         struct ti_tx_desc       txdesc;
2828         struct ti_tx_desc       *cur_tx = NULL;
2829         struct ifnet            *ifp;
2830         int                     idx;
2831
2832         ifp = sc->ti_ifp;
2833
2834         txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2835         if (txd == NULL)
2836                 return;
2837         /*
2838          * Go through our tx ring and free mbufs for those
2839          * frames that have been sent.
2840          */
2841         for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2842             TI_INC(idx, TI_TX_RING_CNT)) {
2843                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2844                         ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2845                             sizeof(txdesc), &txdesc);
2846                         cur_tx = &txdesc;
2847                 } else
2848                         cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2849                 sc->ti_txcnt--;
2850                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2851                 if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2852                         continue;
2853                 bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2854                     BUS_DMASYNC_POSTWRITE);
2855                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2856
2857                 ifp->if_opackets++;
2858                 m_freem(txd->tx_m);
2859                 txd->tx_m = NULL;
2860                 STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2861                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2862                 txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2863         }
2864         sc->ti_tx_saved_considx = idx;
2865
2866         sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2867 }
2868
2869 static void
2870 ti_intr(xsc)
2871         void                    *xsc;
2872 {
2873         struct ti_softc         *sc;
2874         struct ifnet            *ifp;
2875
2876         sc = xsc;
2877         TI_LOCK(sc);
2878         ifp = sc->ti_ifp;
2879
2880 /*#ifdef notdef*/
2881         /* Avoid this for now -- checking this register is expensive. */
2882         /* Make sure this is really our interrupt. */
2883         if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2884                 TI_UNLOCK(sc);
2885                 return;
2886         }
2887 /*#endif*/
2888
2889         /* Ack interrupt and stop others from occuring. */
2890         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2891
2892         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2893                 /* Check RX return ring producer/consumer */
2894                 ti_rxeof(sc);
2895
2896                 /* Check TX ring producer/consumer */
2897                 ti_txeof(sc);
2898         }
2899
2900         ti_handle_events(sc);
2901
2902         /* Re-enable interrupts. */
2903         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2904
2905         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2906             ifp->if_snd.ifq_head != NULL)
2907                 ti_start_locked(ifp);
2908
2909         TI_UNLOCK(sc);
2910 }
2911
2912 static void
2913 ti_stats_update(sc)
2914         struct ti_softc         *sc;
2915 {
2916         struct ifnet            *ifp;
2917
2918         ifp = sc->ti_ifp;
2919
2920         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2921             BUS_DMASYNC_POSTREAD);
2922
2923         ifp->if_collisions +=
2924            (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2925            sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2926            sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2927            sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2928            ifp->if_collisions;
2929
2930         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2931             BUS_DMASYNC_PREREAD);
2932 }
2933
2934 /*
2935  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2936  * pointers to descriptors.
2937  */
2938 static int
2939 ti_encap(sc, m_head)
2940         struct ti_softc         *sc;
2941         struct mbuf             **m_head;
2942 {
2943         struct ti_txdesc        *txd;
2944         struct ti_tx_desc       *f;
2945         struct ti_tx_desc       txdesc;
2946         struct mbuf             *m;
2947         bus_dma_segment_t       txsegs[TI_MAXTXSEGS];
2948         u_int16_t               csum_flags;
2949         int                     error, frag, i, nseg;
2950
2951         if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2952                 return (ENOBUFS);
2953
2954         error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2955             *m_head, txsegs, &nseg, 0);
2956         if (error == EFBIG) {
2957                 m = m_defrag(*m_head, M_DONTWAIT);
2958                 if (m == NULL) {
2959                         m_freem(*m_head);
2960                         *m_head = NULL;
2961                         return (ENOMEM);
2962                 }
2963                 *m_head = m;
2964                 error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2965                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2966                 if (error) {
2967                         m_freem(*m_head);
2968                         *m_head = NULL;
2969                         return (error);
2970                 }
2971         } else if (error != 0)
2972                 return (error);
2973         if (nseg == 0) {
2974                 m_freem(*m_head);
2975                 *m_head = NULL;
2976                 return (EIO);
2977         }
2978
2979         if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2980                 bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2981                 return (ENOBUFS);
2982         }
2983
2984         m = *m_head;
2985         csum_flags = 0;
2986         if (m->m_pkthdr.csum_flags) {
2987                 if (m->m_pkthdr.csum_flags & CSUM_IP)
2988                         csum_flags |= TI_BDFLAG_IP_CKSUM;
2989                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2990                         csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2991                 if (m->m_flags & M_LASTFRAG)
2992                         csum_flags |= TI_BDFLAG_IP_FRAG_END;
2993                 else if (m->m_flags & M_FRAG)
2994                         csum_flags |= TI_BDFLAG_IP_FRAG;
2995         }
2996
2997         bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2998             BUS_DMASYNC_PREWRITE);
2999         bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3000             BUS_DMASYNC_PREWRITE);
3001
3002         frag = sc->ti_tx_saved_prodidx;
3003         for (i = 0; i < nseg; i++) {
3004                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3005                         bzero(&txdesc, sizeof(txdesc));
3006                         f = &txdesc;
3007                 } else
3008                         f = &sc->ti_rdata->ti_tx_ring[frag];
3009                 ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3010                 f->ti_len = txsegs[i].ds_len;
3011                 f->ti_flags = csum_flags;
3012                 if (m->m_flags & M_VLANTAG) {
3013                         f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3014                         f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
3015                 } else {
3016                         f->ti_vlan_tag = 0;
3017                 }
3018
3019                 if (sc->ti_hwrev == TI_HWREV_TIGON)
3020                         ti_mem_write(sc, TI_TX_RING_BASE + frag *
3021                             sizeof(txdesc), sizeof(txdesc), &txdesc);
3022                 TI_INC(frag, TI_TX_RING_CNT);
3023         }
3024
3025         sc->ti_tx_saved_prodidx = frag;
3026         /* set TI_BDFLAG_END on the last descriptor */
3027         frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3028         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3029                 txdesc.ti_flags |= TI_BDFLAG_END;
3030                 ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3031                     sizeof(txdesc), &txdesc);
3032         } else
3033                 sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3034
3035         STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3036         STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3037         txd->tx_m = m;
3038         sc->ti_txcnt += nseg;
3039
3040         return (0);
3041 }
3042
3043 static void
3044 ti_start(ifp)
3045         struct ifnet            *ifp;
3046 {
3047         struct ti_softc         *sc;
3048
3049         sc = ifp->if_softc;
3050         TI_LOCK(sc);
3051         ti_start_locked(ifp);
3052         TI_UNLOCK(sc);
3053 }
3054
3055 /*
3056  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3057  * to the mbuf data regions directly in the transmit descriptors.
3058  */
3059 static void
3060 ti_start_locked(ifp)
3061         struct ifnet            *ifp;
3062 {
3063         struct ti_softc         *sc;
3064         struct mbuf             *m_head = NULL;
3065         int                     enq = 0;
3066
3067         sc = ifp->if_softc;
3068
3069         for (; ifp->if_snd.ifq_head != NULL &&
3070             sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3071                 IF_DEQUEUE(&ifp->if_snd, m_head);
3072                 if (m_head == NULL)
3073                         break;
3074
3075                 /*
3076                  * XXX
3077                  * safety overkill.  If this is a fragmented packet chain
3078                  * with delayed TCP/UDP checksums, then only encapsulate
3079                  * it if we have enough descriptors to handle the entire
3080                  * chain at once.
3081                  * (paranoia -- may not actually be needed)
3082                  */
3083                 if (m_head->m_flags & M_FIRSTFRAG &&
3084                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3085                         if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3086                             m_head->m_pkthdr.csum_data + 16) {
3087                                 IF_PREPEND(&ifp->if_snd, m_head);
3088                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3089                                 break;
3090                         }
3091                 }
3092
3093                 /*
3094                  * Pack the data into the transmit ring. If we
3095                  * don't have room, set the OACTIVE flag and wait
3096                  * for the NIC to drain the ring.
3097                  */
3098                 if (ti_encap(sc, &m_head)) {
3099                         if (m_head == NULL)
3100                                 break;
3101                         IF_PREPEND(&ifp->if_snd, m_head);
3102                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3103                         break;
3104                 }
3105
3106                 enq++;
3107                 /*
3108                  * If there's a BPF listener, bounce a copy of this frame
3109                  * to him.
3110                  */
3111                 ETHER_BPF_MTAP(ifp, m_head);
3112         }
3113
3114         if (enq > 0) {
3115                 /* Transmit */
3116                 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3117
3118                 /*
3119                  * Set a timeout in case the chip goes out to lunch.
3120                  */
3121                 sc->ti_timer = 5;
3122         }
3123 }
3124
3125 static void
3126 ti_init(xsc)
3127         void                    *xsc;
3128 {
3129         struct ti_softc         *sc;
3130
3131         sc = xsc;
3132         TI_LOCK(sc);
3133         ti_init_locked(sc);
3134         TI_UNLOCK(sc);
3135 }
3136
3137 static void
3138 ti_init_locked(xsc)
3139         void                    *xsc;
3140 {
3141         struct ti_softc         *sc = xsc;
3142
3143         /* Cancel pending I/O and flush buffers. */
3144         ti_stop(sc);
3145
3146         /* Init the gen info block, ring control blocks and firmware. */
3147         if (ti_gibinit(sc)) {
3148                 device_printf(sc->ti_dev, "initialization failure\n");
3149                 return;
3150         }
3151 }
3152
3153 static void ti_init2(sc)
3154         struct ti_softc         *sc;
3155 {
3156         struct ti_cmd_desc      cmd;
3157         struct ifnet            *ifp;
3158         u_int8_t                *ea;
3159         struct ifmedia          *ifm;
3160         int                     tmp;
3161
3162         TI_LOCK_ASSERT(sc);
3163
3164         ifp = sc->ti_ifp;
3165
3166         /* Specify MTU and interface index. */
3167         CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3168         CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3169             ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3170         TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3171
3172         /* Load our MAC address. */
3173         ea = IF_LLADDR(sc->ti_ifp);
3174         CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3175         CSR_WRITE_4(sc, TI_GCR_PAR1,
3176             (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3177         TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3178
3179         /* Enable or disable promiscuous mode as needed. */
3180         if (ifp->if_flags & IFF_PROMISC) {
3181                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3182         } else {
3183                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3184         }
3185
3186         /* Program multicast filter. */
3187         ti_setmulti(sc);
3188
3189         /*
3190          * If this is a Tigon 1, we should tell the
3191          * firmware to use software packet filtering.
3192          */
3193         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3194                 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3195         }
3196
3197         /* Init RX ring. */
3198         ti_init_rx_ring_std(sc);
3199
3200         /* Init jumbo RX ring. */
3201         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3202                 ti_init_rx_ring_jumbo(sc);
3203
3204         /*
3205          * If this is a Tigon 2, we can also configure the
3206          * mini ring.
3207          */
3208         if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3209                 ti_init_rx_ring_mini(sc);
3210
3211         CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3212         sc->ti_rx_saved_considx = 0;
3213
3214         /* Init TX ring. */
3215         ti_init_tx_ring(sc);
3216
3217         /* Tell firmware we're alive. */
3218         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3219
3220         /* Enable host interrupts. */
3221         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3222
3223         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3224         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3225         callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3226
3227         /*
3228          * Make sure to set media properly. We have to do this
3229          * here since we have to issue commands in order to set
3230          * the link negotiation and we can't issue commands until
3231          * the firmware is running.
3232          */
3233         ifm = &sc->ifmedia;
3234         tmp = ifm->ifm_media;
3235         ifm->ifm_media = ifm->ifm_cur->ifm_media;
3236         ti_ifmedia_upd(ifp);
3237         ifm->ifm_media = tmp;
3238 }
3239
3240 /*
3241  * Set media options.
3242  */
3243 static int
3244 ti_ifmedia_upd(ifp)
3245         struct ifnet            *ifp;
3246 {
3247         struct ti_softc         *sc;
3248         struct ifmedia          *ifm;
3249         struct ti_cmd_desc      cmd;
3250         u_int32_t               flowctl;
3251
3252         sc = ifp->if_softc;
3253         ifm = &sc->ifmedia;
3254
3255         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3256                 return (EINVAL);
3257
3258         flowctl = 0;
3259
3260         switch (IFM_SUBTYPE(ifm->ifm_media)) {
3261         case IFM_AUTO:
3262                 /*
3263                  * Transmit flow control doesn't work on the Tigon 1.
3264                  */
3265                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3266
3267                 /*
3268                  * Transmit flow control can also cause problems on the
3269                  * Tigon 2, apparantly with both the copper and fiber
3270                  * boards.  The symptom is that the interface will just
3271                  * hang.  This was reproduced with Alteon 180 switches.
3272                  */
3273 #if 0
3274                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3275                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3276 #endif
3277
3278                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3279                     TI_GLNK_FULL_DUPLEX| flowctl |
3280                     TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3281
3282                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3283 #if 0
3284                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3285                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3286 #endif
3287
3288                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3289                     TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3290                     TI_LNK_AUTONEGENB|TI_LNK_ENB);
3291                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3292                     TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3293                 break;
3294         case IFM_1000_SX:
3295         case IFM_1000_T:
3296                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
3297 #if 0
3298                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3299                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3300 #endif
3301
3302                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3303                     flowctl |TI_GLNK_ENB);
3304                 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3305                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3306                         TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3307                 }
3308                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3309                     TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3310                 break;
3311         case IFM_100_FX:
3312         case IFM_10_FL:
3313         case IFM_100_TX:
3314         case IFM_10_T:
3315                 flowctl = TI_LNK_RX_FLOWCTL_Y;
3316 #if 0
3317                 if (sc->ti_hwrev != TI_HWREV_TIGON)
3318                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
3319 #endif
3320
3321                 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3322                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3323                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3324                     IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3325                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3326                 } else {
3327                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3328                 }
3329                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3330                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3331                 } else {
3332                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3333                 }
3334                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3335                     TI_CMD_CODE_NEGOTIATE_10_100, 0);
3336                 break;
3337         }
3338
3339         return (0);
3340 }
3341
3342 /*
3343  * Report current media status.
3344  */
3345 static void
3346 ti_ifmedia_sts(ifp, ifmr)
3347         struct ifnet            *ifp;
3348         struct ifmediareq       *ifmr;
3349 {
3350         struct ti_softc         *sc;
3351         u_int32_t               media = 0;
3352
3353         sc = ifp->if_softc;
3354
3355         ifmr->ifm_status = IFM_AVALID;
3356         ifmr->ifm_active = IFM_ETHER;
3357
3358         if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3359                 return;
3360
3361         ifmr->ifm_status |= IFM_ACTIVE;
3362
3363         if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3364                 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3365                 if (sc->ti_copper)
3366                         ifmr->ifm_active |= IFM_1000_T;
3367                 else
3368                         ifmr->ifm_active |= IFM_1000_SX;
3369                 if (media & TI_GLNK_FULL_DUPLEX)
3370                         ifmr->ifm_active |= IFM_FDX;
3371                 else
3372                         ifmr->ifm_active |= IFM_HDX;
3373         } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3374                 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3375                 if (sc->ti_copper) {
3376                         if (media & TI_LNK_100MB)
3377                                 ifmr->ifm_active |= IFM_100_TX;
3378                         if (media & TI_LNK_10MB)
3379                                 ifmr->ifm_active |= IFM_10_T;
3380                 } else {
3381                         if (media & TI_LNK_100MB)
3382                                 ifmr->ifm_active |= IFM_100_FX;
3383                         if (media & TI_LNK_10MB)
3384                                 ifmr->ifm_active |= IFM_10_FL;
3385                 }
3386                 if (media & TI_LNK_FULL_DUPLEX)
3387                         ifmr->ifm_active |= IFM_FDX;
3388                 if (media & TI_LNK_HALF_DUPLEX)
3389                         ifmr->ifm_active |= IFM_HDX;
3390         }
3391 }
3392
3393 static int
3394 ti_ioctl(ifp, command, data)
3395         struct ifnet            *ifp;
3396         u_long                  command;
3397         caddr_t                 data;
3398 {
3399         struct ti_softc         *sc = ifp->if_softc;
3400         struct ifreq            *ifr = (struct ifreq *) data;
3401         int                     mask, error = 0;
3402         struct ti_cmd_desc      cmd;
3403
3404         switch (command) {
3405         case SIOCSIFMTU:
3406                 TI_LOCK(sc);
3407                 if (ifr->ifr_mtu > TI_JUMBO_MTU)
3408                         error = EINVAL;
3409                 else {
3410                         ifp->if_mtu = ifr->ifr_mtu;
3411                         ti_init_locked(sc);
3412                 }
3413                 TI_UNLOCK(sc);
3414                 break;
3415         case SIOCSIFFLAGS:
3416                 TI_LOCK(sc);
3417                 if (ifp->if_flags & IFF_UP) {
3418                         /*
3419                          * If only the state of the PROMISC flag changed,
3420                          * then just use the 'set promisc mode' command
3421                          * instead of reinitializing the entire NIC. Doing
3422                          * a full re-init means reloading the firmware and
3423                          * waiting for it to start up, which may take a
3424                          * second or two.
3425                          */
3426                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3427                             ifp->if_flags & IFF_PROMISC &&
3428                             !(sc->ti_if_flags & IFF_PROMISC)) {
3429                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3430                                     TI_CMD_CODE_PROMISC_ENB, 0);
3431                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3432                             !(ifp->if_flags & IFF_PROMISC) &&
3433                             sc->ti_if_flags & IFF_PROMISC) {
3434                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3435                                     TI_CMD_CODE_PROMISC_DIS, 0);
3436                         } else
3437                                 ti_init_locked(sc);
3438                 } else {
3439                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3440                                 ti_stop(sc);
3441                         }
3442                 }
3443                 sc->ti_if_flags = ifp->if_flags;
3444                 TI_UNLOCK(sc);
3445                 break;
3446         case SIOCADDMULTI:
3447         case SIOCDELMULTI:
3448                 TI_LOCK(sc);
3449                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3450                         ti_setmulti(sc);
3451                 TI_UNLOCK(sc);
3452                 break;
3453         case SIOCSIFMEDIA:
3454         case SIOCGIFMEDIA:
3455                 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3456                 break;
3457         case SIOCSIFCAP:
3458                 TI_LOCK(sc);
3459                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3460                 if (mask & IFCAP_HWCSUM) {
3461                         if (IFCAP_HWCSUM & ifp->if_capenable)
3462                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3463                         else
3464                                 ifp->if_capenable |= IFCAP_HWCSUM;
3465                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3466                                 ti_init_locked(sc);
3467                 }
3468                 TI_UNLOCK(sc);
3469                 break;
3470         default:
3471                 error = ether_ioctl(ifp, command, data);
3472                 break;
3473         }
3474
3475         return (error);
3476 }
3477
3478 static int
3479 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3480 {
3481         struct ti_softc *sc;
3482
3483         sc = dev->si_drv1;
3484         if (sc == NULL)
3485                 return (ENODEV);
3486
3487         TI_LOCK(sc);
3488         sc->ti_flags |= TI_FLAG_DEBUGING;
3489         TI_UNLOCK(sc);
3490
3491         return (0);
3492 }
3493
3494 static int
3495 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3496 {
3497         struct ti_softc *sc;
3498
3499         sc = dev->si_drv1;
3500         if (sc == NULL)
3501                 return (ENODEV);
3502
3503         TI_LOCK(sc);
3504         sc->ti_flags &= ~TI_FLAG_DEBUGING;
3505         TI_UNLOCK(sc);
3506
3507         return (0);
3508 }
3509
3510 /*
3511  * This ioctl routine goes along with the Tigon character device.
3512  */
3513 static int
3514 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3515     struct thread *td)
3516 {
3517         int error;
3518         struct ti_softc *sc;
3519
3520         sc = dev->si_drv1;
3521         if (sc == NULL)
3522                 return (ENODEV);
3523
3524         error = 0;
3525
3526         switch (cmd) {
3527         case TIIOCGETSTATS:
3528         {
3529                 struct ti_stats *outstats;
3530
3531                 outstats = (struct ti_stats *)addr;
3532
3533                 TI_LOCK(sc);
3534                 bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3535                       sizeof(struct ti_stats));
3536                 TI_UNLOCK(sc);
3537                 break;
3538         }
3539         case TIIOCGETPARAMS:
3540         {
3541                 struct ti_params        *params;
3542
3543                 params = (struct ti_params *)addr;
3544
3545                 TI_LOCK(sc);
3546                 params->ti_stat_ticks = sc->ti_stat_ticks;
3547                 params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3548                 params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3549                 params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3550                 params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3551                 params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3552                 params->param_mask = TI_PARAM_ALL;
3553                 TI_UNLOCK(sc);
3554
3555                 error = 0;
3556
3557                 break;
3558         }
3559         case TIIOCSETPARAMS:
3560         {
3561                 struct ti_params *params;
3562
3563                 params = (struct ti_params *)addr;
3564
3565                 TI_LOCK(sc);
3566                 if (params->param_mask & TI_PARAM_STAT_TICKS) {
3567                         sc->ti_stat_ticks = params->ti_stat_ticks;
3568                         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3569                 }
3570
3571                 if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3572                         sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3573                         CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3574                                     sc->ti_rx_coal_ticks);
3575                 }
3576
3577                 if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3578                         sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3579                         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3580                                     sc->ti_tx_coal_ticks);
3581                 }
3582
3583                 if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3584                         sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3585                         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3586                                     sc->ti_rx_max_coal_bds);
3587                 }
3588
3589                 if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3590                         sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3591                         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3592                                     sc->ti_tx_max_coal_bds);
3593                 }
3594
3595                 if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3596                         sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3597                         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3598                                     sc->ti_tx_buf_ratio);
3599                 }
3600                 TI_UNLOCK(sc);
3601
3602                 error = 0;
3603
3604                 break;
3605         }
3606         case TIIOCSETTRACE: {
3607                 ti_trace_type   trace_type;
3608
3609                 trace_type = *(ti_trace_type *)addr;
3610
3611                 /*
3612                  * Set tracing to whatever the user asked for.  Setting
3613                  * this register to 0 should have the effect of disabling
3614                  * tracing.
3615                  */
3616                 CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3617
3618                 error = 0;
3619
3620                 break;
3621         }
3622         case TIIOCGETTRACE: {
3623                 struct ti_trace_buf     *trace_buf;
3624                 u_int32_t               trace_start, cur_trace_ptr, trace_len;
3625
3626                 trace_buf = (struct ti_trace_buf *)addr;
3627
3628                 TI_LOCK(sc);
3629                 trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3630                 cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3631                 trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3632
3633 #if 0
3634                 if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3635                        "trace_len = %d\n", trace_start,
3636                        cur_trace_ptr, trace_len);
3637                 if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3638                        trace_buf->buf_len);
3639 #endif
3640
3641                 error = ti_copy_mem(sc, trace_start, min(trace_len,
3642                                     trace_buf->buf_len),
3643                                     (caddr_t)trace_buf->buf, 1, 1);
3644
3645                 if (error == 0) {
3646                         trace_buf->fill_len = min(trace_len,
3647                                                   trace_buf->buf_len);
3648                         if (cur_trace_ptr < trace_start)
3649                                 trace_buf->cur_trace_ptr =
3650                                         trace_start - cur_trace_ptr;
3651                         else
3652                                 trace_buf->cur_trace_ptr =
3653                                         cur_trace_ptr - trace_start;
3654                 } else
3655                         trace_buf->fill_len = 0;
3656                 TI_UNLOCK(sc);
3657
3658                 break;
3659         }
3660
3661         /*
3662          * For debugging, five ioctls are needed:
3663          * ALT_ATTACH
3664          * ALT_READ_TG_REG
3665          * ALT_WRITE_TG_REG
3666          * ALT_READ_TG_MEM
3667          * ALT_WRITE_TG_MEM
3668          */
3669         case ALT_ATTACH:
3670                 /*
3671                  * From what I can tell, Alteon's Solaris Tigon driver
3672                  * only has one character device, so you have to attach
3673                  * to the Tigon board you're interested in.  This seems
3674                  * like a not-so-good way to do things, since unless you
3675                  * subsequently specify the unit number of the device
3676                  * you're interested in every ioctl, you'll only be
3677                  * able to debug one board at a time.
3678                  */
3679                 error = 0;
3680                 break;
3681         case ALT_READ_TG_MEM:
3682         case ALT_WRITE_TG_MEM:
3683         {
3684                 struct tg_mem *mem_param;
3685                 u_int32_t sram_end, scratch_end;
3686
3687                 mem_param = (struct tg_mem *)addr;
3688
3689                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
3690                         sram_end = TI_END_SRAM_I;
3691                         scratch_end = TI_END_SCRATCH_I;
3692                 } else {
3693                         sram_end = TI_END_SRAM_II;
3694                         scratch_end = TI_END_SCRATCH_II;
3695                 }
3696
3697                 /*
3698                  * For now, we'll only handle accessing regular SRAM,
3699                  * nothing else.
3700                  */
3701                 TI_LOCK(sc);
3702                 if ((mem_param->tgAddr >= TI_BEG_SRAM)
3703                  && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3704                         /*
3705                          * In this instance, we always copy to/from user
3706                          * space, so the user space argument is set to 1.
3707                          */
3708                         error = ti_copy_mem(sc, mem_param->tgAddr,
3709                                             mem_param->len,
3710                                             mem_param->userAddr, 1,
3711                                             (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3712                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3713                         && (mem_param->tgAddr <= scratch_end)) {
3714                         error = ti_copy_scratch(sc, mem_param->tgAddr,
3715                                                 mem_param->len,
3716                                                 mem_param->userAddr, 1,
3717                                                 (cmd == ALT_READ_TG_MEM) ?
3718                                                 1 : 0, TI_PROCESSOR_A);
3719                 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3720                         && (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3721                         if (sc->ti_hwrev == TI_HWREV_TIGON) {
3722                                 if_printf(sc->ti_ifp,
3723                                     "invalid memory range for Tigon I\n");
3724                                 error = EINVAL;
3725                                 break;
3726                         }
3727                         error = ti_copy_scratch(sc, mem_param->tgAddr -
3728                                                 TI_SCRATCH_DEBUG_OFF,
3729                                                 mem_param->len,
3730                                                 mem_param->userAddr, 1,
3731                                                 (cmd == ALT_READ_TG_MEM) ?
3732                                                 1 : 0, TI_PROCESSOR_B);
3733                 } else {
3734                         if_printf(sc->ti_ifp, "memory address %#x len %d is "
3735                                 "out of supported range\n",
3736                                 mem_param->tgAddr, mem_param->len);
3737                         error = EINVAL;
3738                 }
3739                 TI_UNLOCK(sc);
3740
3741                 break;
3742         }
3743         case ALT_READ_TG_REG:
3744         case ALT_WRITE_TG_REG:
3745         {
3746                 struct tg_reg   *regs;
3747                 u_int32_t       tmpval;
3748
3749                 regs = (struct tg_reg *)addr;
3750
3751                 /*
3752                  * Make sure the address in question isn't out of range.
3753                  */
3754                 if (regs->addr > TI_REG_MAX) {
3755                         error = EINVAL;
3756                         break;
3757                 }
3758                 TI_LOCK(sc);
3759                 if (cmd == ALT_READ_TG_REG) {
3760                         bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3761                                                 regs->addr, &tmpval, 1);
3762                         regs->data = ntohl(tmpval);
3763 #if 0
3764                         if ((regs->addr == TI_CPU_STATE)
3765                          || (regs->addr == TI_CPU_CTL_B)) {
3766                                 if_printf(sc->ti_ifp, "register %#x = %#x\n",
3767                                        regs->addr, tmpval);
3768                         }
3769 #endif
3770                 } else {
3771                         tmpval = htonl(regs->data);
3772                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3773                                                  regs->addr, &tmpval, 1);
3774                 }
3775                 TI_UNLOCK(sc);
3776
3777                 break;
3778         }
3779         default:
3780                 error = ENOTTY;
3781                 break;
3782         }
3783         return (error);
3784 }
3785
3786 static void
3787 ti_watchdog(void *arg)
3788 {
3789         struct ti_softc         *sc;
3790         struct ifnet            *ifp;
3791
3792         sc = arg;
3793         TI_LOCK_ASSERT(sc);
3794         callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3795         if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3796                 return;
3797
3798         /*
3799          * When we're debugging, the chip is often stopped for long periods
3800          * of time, and that would normally cause the watchdog timer to fire.
3801          * Since that impedes debugging, we don't want to do that.
3802          */
3803         if (sc->ti_flags & TI_FLAG_DEBUGING)
3804                 return;
3805
3806         ifp = sc->ti_ifp;
3807         if_printf(ifp, "watchdog timeout -- resetting\n");
3808         ti_stop(sc);
3809         ti_init_locked(sc);
3810
3811         ifp->if_oerrors++;
3812 }
3813
3814 /*
3815  * Stop the adapter and free any mbufs allocated to the
3816  * RX and TX lists.
3817  */
3818 static void
3819 ti_stop(sc)
3820         struct ti_softc         *sc;
3821 {
3822         struct ifnet            *ifp;
3823         struct ti_cmd_desc      cmd;
3824
3825         TI_LOCK_ASSERT(sc);
3826
3827         ifp = sc->ti_ifp;
3828
3829         /* Disable host interrupts. */
3830         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3831         /*
3832          * Tell firmware we're shutting down.
3833          */
3834         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3835
3836         /* Halt and reinitialize. */
3837         if (ti_chipinit(sc) != 0)
3838                 return;
3839         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3840         if (ti_chipinit(sc) != 0)
3841                 return;
3842
3843         /* Free the RX lists. */
3844         ti_free_rx_ring_std(sc);
3845
3846         /* Free jumbo RX list. */
3847         ti_free_rx_ring_jumbo(sc);
3848
3849         /* Free mini RX list. */
3850         ti_free_rx_ring_mini(sc);
3851
3852         /* Free TX buffers. */
3853         ti_free_tx_ring(sc);
3854
3855         sc->ti_ev_prodidx.ti_idx = 0;
3856         sc->ti_return_prodidx.ti_idx = 0;
3857         sc->ti_tx_considx.ti_idx = 0;
3858         sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3859
3860         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3861         callout_stop(&sc->ti_watchdog);
3862 }
3863
3864 /*
3865  * Stop all chip I/O so that the kernel's probe routines don't
3866  * get confused by errant DMAs when rebooting.
3867  */
3868 static int
3869 ti_shutdown(dev)
3870         device_t                dev;
3871 {
3872         struct ti_softc         *sc;
3873
3874         sc = device_get_softc(dev);
3875         TI_LOCK(sc);
3876         ti_chipinit(sc);
3877         TI_UNLOCK(sc);
3878
3879         return (0);
3880 }