]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/geom/raid/g_raid.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / geom / raid / g_raid.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 u_int g_raid_aggressive_spare = 0;
56 TUNABLE_INT("kern.geom.raid.aggressive_spare", &g_raid_aggressive_spare);
57 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RW,
58     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
59 u_int g_raid_debug = 0;
60 TUNABLE_INT("kern.geom.raid.debug", &g_raid_debug);
61 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RW, &g_raid_debug, 0,
62     "Debug level");
63 int g_raid_read_err_thresh = 10;
64 TUNABLE_INT("kern.geom.raid.read_err_thresh", &g_raid_read_err_thresh);
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RW,
66     &g_raid_read_err_thresh, 0,
67     "Number of read errors equated to disk failure");
68 u_int g_raid_start_timeout = 30;
69 TUNABLE_INT("kern.geom.raid.start_timeout", &g_raid_start_timeout);
70 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RW,
71     &g_raid_start_timeout, 0,
72     "Time to wait for all array components");
73 static u_int g_raid_clean_time = 5;
74 TUNABLE_INT("kern.geom.raid.clean_time", &g_raid_clean_time);
75 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RW,
76     &g_raid_clean_time, 0, "Mark volume as clean when idling");
77 static u_int g_raid_disconnect_on_failure = 1;
78 TUNABLE_INT("kern.geom.raid.disconnect_on_failure",
79     &g_raid_disconnect_on_failure);
80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
81     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
82 static u_int g_raid_name_format = 0;
83 TUNABLE_INT("kern.geom.raid.name_format", &g_raid_name_format);
84 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RW,
85     &g_raid_name_format, 0, "Providers name format.");
86 static u_int g_raid_idle_threshold = 1000000;
87 TUNABLE_INT("kern.geom.raid.idle_threshold", &g_raid_idle_threshold);
88 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RW,
89     &g_raid_idle_threshold, 1000000,
90     "Time in microseconds to consider a volume idle.");
91
92 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout)        do {    \
93         G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));         \
94         rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));    \
95         G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));         \
96 } while (0)
97
98 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
99     LIST_HEAD_INITIALIZER(g_raid_md_classes);
100
101 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
102     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
103
104 LIST_HEAD(, g_raid_volume) g_raid_volumes =
105     LIST_HEAD_INITIALIZER(g_raid_volumes);
106
107 static eventhandler_tag g_raid_pre_sync = NULL;
108 static int g_raid_started = 0;
109
110 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
111     struct g_geom *gp);
112 static g_taste_t g_raid_taste;
113 static void g_raid_init(struct g_class *mp);
114 static void g_raid_fini(struct g_class *mp);
115
116 struct g_class g_raid_class = {
117         .name = G_RAID_CLASS_NAME,
118         .version = G_VERSION,
119         .ctlreq = g_raid_ctl,
120         .taste = g_raid_taste,
121         .destroy_geom = g_raid_destroy_geom,
122         .init = g_raid_init,
123         .fini = g_raid_fini
124 };
125
126 static void g_raid_destroy_provider(struct g_raid_volume *vol);
127 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
128 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
129 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
130 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
131 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
132     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
133 static void g_raid_start(struct bio *bp);
134 static void g_raid_start_request(struct bio *bp);
135 static void g_raid_disk_done(struct bio *bp);
136 static void g_raid_poll(struct g_raid_softc *sc);
137
138 static const char *
139 g_raid_node_event2str(int event)
140 {
141
142         switch (event) {
143         case G_RAID_NODE_E_WAKE:
144                 return ("WAKE");
145         case G_RAID_NODE_E_START:
146                 return ("START");
147         default:
148                 return ("INVALID");
149         }
150 }
151
152 const char *
153 g_raid_disk_state2str(int state)
154 {
155
156         switch (state) {
157         case G_RAID_DISK_S_NONE:
158                 return ("NONE");
159         case G_RAID_DISK_S_OFFLINE:
160                 return ("OFFLINE");
161         case G_RAID_DISK_S_FAILED:
162                 return ("FAILED");
163         case G_RAID_DISK_S_STALE_FAILED:
164                 return ("STALE_FAILED");
165         case G_RAID_DISK_S_SPARE:
166                 return ("SPARE");
167         case G_RAID_DISK_S_STALE:
168                 return ("STALE");
169         case G_RAID_DISK_S_ACTIVE:
170                 return ("ACTIVE");
171         default:
172                 return ("INVALID");
173         }
174 }
175
176 static const char *
177 g_raid_disk_event2str(int event)
178 {
179
180         switch (event) {
181         case G_RAID_DISK_E_DISCONNECTED:
182                 return ("DISCONNECTED");
183         default:
184                 return ("INVALID");
185         }
186 }
187
188 const char *
189 g_raid_subdisk_state2str(int state)
190 {
191
192         switch (state) {
193         case G_RAID_SUBDISK_S_NONE:
194                 return ("NONE");
195         case G_RAID_SUBDISK_S_FAILED:
196                 return ("FAILED");
197         case G_RAID_SUBDISK_S_NEW:
198                 return ("NEW");
199         case G_RAID_SUBDISK_S_REBUILD:
200                 return ("REBUILD");
201         case G_RAID_SUBDISK_S_UNINITIALIZED:
202                 return ("UNINITIALIZED");
203         case G_RAID_SUBDISK_S_STALE:
204                 return ("STALE");
205         case G_RAID_SUBDISK_S_RESYNC:
206                 return ("RESYNC");
207         case G_RAID_SUBDISK_S_ACTIVE:
208                 return ("ACTIVE");
209         default:
210                 return ("INVALID");
211         }
212 }
213
214 static const char *
215 g_raid_subdisk_event2str(int event)
216 {
217
218         switch (event) {
219         case G_RAID_SUBDISK_E_NEW:
220                 return ("NEW");
221         case G_RAID_SUBDISK_E_DISCONNECTED:
222                 return ("DISCONNECTED");
223         default:
224                 return ("INVALID");
225         }
226 }
227
228 const char *
229 g_raid_volume_state2str(int state)
230 {
231
232         switch (state) {
233         case G_RAID_VOLUME_S_STARTING:
234                 return ("STARTING");
235         case G_RAID_VOLUME_S_BROKEN:
236                 return ("BROKEN");
237         case G_RAID_VOLUME_S_DEGRADED:
238                 return ("DEGRADED");
239         case G_RAID_VOLUME_S_SUBOPTIMAL:
240                 return ("SUBOPTIMAL");
241         case G_RAID_VOLUME_S_OPTIMAL:
242                 return ("OPTIMAL");
243         case G_RAID_VOLUME_S_UNSUPPORTED:
244                 return ("UNSUPPORTED");
245         case G_RAID_VOLUME_S_STOPPED:
246                 return ("STOPPED");
247         default:
248                 return ("INVALID");
249         }
250 }
251
252 static const char *
253 g_raid_volume_event2str(int event)
254 {
255
256         switch (event) {
257         case G_RAID_VOLUME_E_UP:
258                 return ("UP");
259         case G_RAID_VOLUME_E_DOWN:
260                 return ("DOWN");
261         case G_RAID_VOLUME_E_START:
262                 return ("START");
263         case G_RAID_VOLUME_E_STARTMD:
264                 return ("STARTMD");
265         default:
266                 return ("INVALID");
267         }
268 }
269
270 const char *
271 g_raid_volume_level2str(int level, int qual)
272 {
273
274         switch (level) {
275         case G_RAID_VOLUME_RL_RAID0:
276                 return ("RAID0");
277         case G_RAID_VOLUME_RL_RAID1:
278                 return ("RAID1");
279         case G_RAID_VOLUME_RL_RAID3:
280                 return ("RAID3");
281         case G_RAID_VOLUME_RL_RAID4:
282                 return ("RAID4");
283         case G_RAID_VOLUME_RL_RAID5:
284                 return ("RAID5");
285         case G_RAID_VOLUME_RL_RAID6:
286                 return ("RAID6");
287         case G_RAID_VOLUME_RL_RAID1E:
288                 return ("RAID1E");
289         case G_RAID_VOLUME_RL_SINGLE:
290                 return ("SINGLE");
291         case G_RAID_VOLUME_RL_CONCAT:
292                 return ("CONCAT");
293         case G_RAID_VOLUME_RL_RAID5E:
294                 return ("RAID5E");
295         case G_RAID_VOLUME_RL_RAID5EE:
296                 return ("RAID5EE");
297         default:
298                 return ("UNKNOWN");
299         }
300 }
301
302 int
303 g_raid_volume_str2level(const char *str, int *level, int *qual)
304 {
305
306         *level = G_RAID_VOLUME_RL_UNKNOWN;
307         *qual = G_RAID_VOLUME_RLQ_NONE;
308         if (strcasecmp(str, "RAID0") == 0)
309                 *level = G_RAID_VOLUME_RL_RAID0;
310         else if (strcasecmp(str, "RAID1") == 0)
311                 *level = G_RAID_VOLUME_RL_RAID1;
312         else if (strcasecmp(str, "RAID3") == 0)
313                 *level = G_RAID_VOLUME_RL_RAID3;
314         else if (strcasecmp(str, "RAID4") == 0)
315                 *level = G_RAID_VOLUME_RL_RAID4;
316         else if (strcasecmp(str, "RAID5") == 0)
317                 *level = G_RAID_VOLUME_RL_RAID5;
318         else if (strcasecmp(str, "RAID6") == 0)
319                 *level = G_RAID_VOLUME_RL_RAID6;
320         else if (strcasecmp(str, "RAID10") == 0 ||
321                  strcasecmp(str, "RAID1E") == 0)
322                 *level = G_RAID_VOLUME_RL_RAID1E;
323         else if (strcasecmp(str, "SINGLE") == 0)
324                 *level = G_RAID_VOLUME_RL_SINGLE;
325         else if (strcasecmp(str, "CONCAT") == 0)
326                 *level = G_RAID_VOLUME_RL_CONCAT;
327         else if (strcasecmp(str, "RAID5E") == 0)
328                 *level = G_RAID_VOLUME_RL_RAID5E;
329         else if (strcasecmp(str, "RAID5EE") == 0)
330                 *level = G_RAID_VOLUME_RL_RAID5EE;
331         else
332                 return (-1);
333         return (0);
334 }
335
336 const char *
337 g_raid_get_diskname(struct g_raid_disk *disk)
338 {
339
340         if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
341                 return ("[unknown]");
342         return (disk->d_consumer->provider->name);
343 }
344
345 void
346 g_raid_report_disk_state(struct g_raid_disk *disk)
347 {
348         struct g_raid_subdisk *sd;
349         int len, state;
350         uint32_t s;
351
352         if (disk->d_consumer == NULL)
353                 return;
354         if (disk->d_state == G_RAID_DISK_S_FAILED ||
355             disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
356                 s = G_STATE_FAILED;
357         } else {
358                 state = G_RAID_SUBDISK_S_ACTIVE;
359                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
360                         if (sd->sd_state < state)
361                                 state = sd->sd_state;
362                 }
363                 if (state == G_RAID_SUBDISK_S_FAILED)
364                         s = G_STATE_FAILED;
365                 else if (state == G_RAID_SUBDISK_S_NEW ||
366                     state == G_RAID_SUBDISK_S_REBUILD)
367                         s = G_STATE_REBUILD;
368                 else if (state == G_RAID_SUBDISK_S_STALE ||
369                     state == G_RAID_SUBDISK_S_RESYNC)
370                         s = G_STATE_RESYNC;
371                 else
372                         s = G_STATE_ACTIVE;
373         }
374         len = sizeof(s);
375         g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
376         G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
377             g_raid_get_diskname(disk), s);
378 }
379
380 void
381 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
382 {
383
384         G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
385             g_raid_get_diskname(disk),
386             g_raid_disk_state2str(disk->d_state),
387             g_raid_disk_state2str(state));
388         disk->d_state = state;
389         g_raid_report_disk_state(disk);
390 }
391
392 void
393 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
394 {
395
396         G_RAID_DEBUG1(0, sd->sd_softc,
397             "Subdisk %s:%d-%s state changed from %s to %s.",
398             sd->sd_volume->v_name, sd->sd_pos,
399             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
400             g_raid_subdisk_state2str(sd->sd_state),
401             g_raid_subdisk_state2str(state));
402         sd->sd_state = state;
403         if (sd->sd_disk)
404                 g_raid_report_disk_state(sd->sd_disk);
405 }
406
407 void
408 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
409 {
410
411         G_RAID_DEBUG1(0, vol->v_softc,
412             "Volume %s state changed from %s to %s.",
413             vol->v_name,
414             g_raid_volume_state2str(vol->v_state),
415             g_raid_volume_state2str(state));
416         vol->v_state = state;
417 }
418
419 /*
420  * --- Events handling functions ---
421  * Events in geom_raid are used to maintain subdisks and volumes status
422  * from one thread to simplify locking.
423  */
424 static void
425 g_raid_event_free(struct g_raid_event *ep)
426 {
427
428         free(ep, M_RAID);
429 }
430
431 int
432 g_raid_event_send(void *arg, int event, int flags)
433 {
434         struct g_raid_softc *sc;
435         struct g_raid_event *ep;
436         int error;
437
438         if ((flags & G_RAID_EVENT_VOLUME) != 0) {
439                 sc = ((struct g_raid_volume *)arg)->v_softc;
440         } else if ((flags & G_RAID_EVENT_DISK) != 0) {
441                 sc = ((struct g_raid_disk *)arg)->d_softc;
442         } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
443                 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
444         } else {
445                 sc = arg;
446         }
447         ep = malloc(sizeof(*ep), M_RAID,
448             sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
449         if (ep == NULL)
450                 return (ENOMEM);
451         ep->e_tgt = arg;
452         ep->e_event = event;
453         ep->e_flags = flags;
454         ep->e_error = 0;
455         G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
456         mtx_lock(&sc->sc_queue_mtx);
457         TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
458         mtx_unlock(&sc->sc_queue_mtx);
459         wakeup(sc);
460
461         if ((flags & G_RAID_EVENT_WAIT) == 0)
462                 return (0);
463
464         sx_assert(&sc->sc_lock, SX_XLOCKED);
465         G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
466         sx_xunlock(&sc->sc_lock);
467         while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
468                 mtx_lock(&sc->sc_queue_mtx);
469                 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
470                     hz * 5);
471         }
472         error = ep->e_error;
473         g_raid_event_free(ep);
474         sx_xlock(&sc->sc_lock);
475         return (error);
476 }
477
478 static void
479 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
480 {
481         struct g_raid_event *ep, *tmpep;
482
483         sx_assert(&sc->sc_lock, SX_XLOCKED);
484
485         mtx_lock(&sc->sc_queue_mtx);
486         TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
487                 if (ep->e_tgt != tgt)
488                         continue;
489                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
490                 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
491                         g_raid_event_free(ep);
492                 else {
493                         ep->e_error = ECANCELED;
494                         wakeup(ep);
495                 }
496         }
497         mtx_unlock(&sc->sc_queue_mtx);
498 }
499
500 static int
501 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
502 {
503         struct g_raid_event *ep;
504         int     res = 0;
505
506         sx_assert(&sc->sc_lock, SX_XLOCKED);
507
508         mtx_lock(&sc->sc_queue_mtx);
509         TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
510                 if (ep->e_tgt != tgt)
511                         continue;
512                 res = 1;
513                 break;
514         }
515         mtx_unlock(&sc->sc_queue_mtx);
516         return (res);
517 }
518
519 /*
520  * Return the number of disks in given state.
521  * If state is equal to -1, count all connected disks.
522  */
523 u_int
524 g_raid_ndisks(struct g_raid_softc *sc, int state)
525 {
526         struct g_raid_disk *disk;
527         u_int n;
528
529         sx_assert(&sc->sc_lock, SX_LOCKED);
530
531         n = 0;
532         TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
533                 if (disk->d_state == state || state == -1)
534                         n++;
535         }
536         return (n);
537 }
538
539 /*
540  * Return the number of subdisks in given state.
541  * If state is equal to -1, count all connected disks.
542  */
543 u_int
544 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
545 {
546         struct g_raid_subdisk *subdisk;
547         struct g_raid_softc *sc;
548         u_int i, n ;
549
550         sc = vol->v_softc;
551         sx_assert(&sc->sc_lock, SX_LOCKED);
552
553         n = 0;
554         for (i = 0; i < vol->v_disks_count; i++) {
555                 subdisk = &vol->v_subdisks[i];
556                 if ((state == -1 &&
557                      subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
558                     subdisk->sd_state == state)
559                         n++;
560         }
561         return (n);
562 }
563
564 /*
565  * Return the first subdisk in given state.
566  * If state is equal to -1, then the first connected disks.
567  */
568 struct g_raid_subdisk *
569 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
570 {
571         struct g_raid_subdisk *sd;
572         struct g_raid_softc *sc;
573         u_int i;
574
575         sc = vol->v_softc;
576         sx_assert(&sc->sc_lock, SX_LOCKED);
577
578         for (i = 0; i < vol->v_disks_count; i++) {
579                 sd = &vol->v_subdisks[i];
580                 if ((state == -1 &&
581                      sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
582                     sd->sd_state == state)
583                         return (sd);
584         }
585         return (NULL);
586 }
587
588 struct g_consumer *
589 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
590 {
591         struct g_consumer *cp;
592         struct g_provider *pp;
593
594         g_topology_assert();
595
596         if (strncmp(name, "/dev/", 5) == 0)
597                 name += 5;
598         pp = g_provider_by_name(name);
599         if (pp == NULL)
600                 return (NULL);
601         cp = g_new_consumer(sc->sc_geom);
602         if (g_attach(cp, pp) != 0) {
603                 g_destroy_consumer(cp);
604                 return (NULL);
605         }
606         if (g_access(cp, 1, 1, 1) != 0) {
607                 g_detach(cp);
608                 g_destroy_consumer(cp);
609                 return (NULL);
610         }
611         return (cp);
612 }
613
614 static u_int
615 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
616 {
617         struct bio *bp;
618         u_int nreqs = 0;
619
620         mtx_lock(&sc->sc_queue_mtx);
621         TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
622                 if (bp->bio_from == cp)
623                         nreqs++;
624         }
625         mtx_unlock(&sc->sc_queue_mtx);
626         return (nreqs);
627 }
628
629 u_int
630 g_raid_nopens(struct g_raid_softc *sc)
631 {
632         struct g_raid_volume *vol;
633         u_int opens;
634
635         opens = 0;
636         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
637                 if (vol->v_provider_open != 0)
638                         opens++;
639         }
640         return (opens);
641 }
642
643 static int
644 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
645 {
646
647         if (cp->index > 0) {
648                 G_RAID_DEBUG1(2, sc,
649                     "I/O requests for %s exist, can't destroy it now.",
650                     cp->provider->name);
651                 return (1);
652         }
653         if (g_raid_nrequests(sc, cp) > 0) {
654                 G_RAID_DEBUG1(2, sc,
655                     "I/O requests for %s in queue, can't destroy it now.",
656                     cp->provider->name);
657                 return (1);
658         }
659         return (0);
660 }
661
662 static void
663 g_raid_destroy_consumer(void *arg, int flags __unused)
664 {
665         struct g_consumer *cp;
666
667         g_topology_assert();
668
669         cp = arg;
670         G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
671         g_detach(cp);
672         g_destroy_consumer(cp);
673 }
674
675 void
676 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
677 {
678         struct g_provider *pp;
679         int retaste_wait;
680
681         g_topology_assert_not();
682
683         g_topology_lock();
684         cp->private = NULL;
685         if (g_raid_consumer_is_busy(sc, cp))
686                 goto out;
687         pp = cp->provider;
688         retaste_wait = 0;
689         if (cp->acw == 1) {
690                 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
691                         retaste_wait = 1;
692         }
693         if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
694                 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
695         if (retaste_wait) {
696                 /*
697                  * After retaste event was send (inside g_access()), we can send
698                  * event to detach and destroy consumer.
699                  * A class, which has consumer to the given provider connected
700                  * will not receive retaste event for the provider.
701                  * This is the way how I ignore retaste events when I close
702                  * consumers opened for write: I detach and destroy consumer
703                  * after retaste event is sent.
704                  */
705                 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
706                 goto out;
707         }
708         G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
709         g_detach(cp);
710         g_destroy_consumer(cp);
711 out:
712         g_topology_unlock();
713 }
714
715 static void
716 g_raid_orphan(struct g_consumer *cp)
717 {
718         struct g_raid_disk *disk;
719
720         g_topology_assert();
721
722         disk = cp->private;
723         if (disk == NULL)
724                 return;
725         g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
726             G_RAID_EVENT_DISK);
727 }
728
729 static int
730 g_raid_clean(struct g_raid_volume *vol, int acw)
731 {
732         struct g_raid_softc *sc;
733         int timeout;
734
735         sc = vol->v_softc;
736         g_topology_assert_not();
737         sx_assert(&sc->sc_lock, SX_XLOCKED);
738
739 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
740 //              return (0);
741         if (!vol->v_dirty)
742                 return (0);
743         if (vol->v_writes > 0)
744                 return (0);
745         if (acw > 0 || (acw == -1 &&
746             vol->v_provider != NULL && vol->v_provider->acw > 0)) {
747                 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
748                 if (timeout > 0)
749                         return (timeout);
750         }
751         vol->v_dirty = 0;
752         G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
753             vol->v_name);
754         g_raid_write_metadata(sc, vol, NULL, NULL);
755         return (0);
756 }
757
758 static void
759 g_raid_dirty(struct g_raid_volume *vol)
760 {
761         struct g_raid_softc *sc;
762
763         sc = vol->v_softc;
764         g_topology_assert_not();
765         sx_assert(&sc->sc_lock, SX_XLOCKED);
766
767 //      if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
768 //              return;
769         vol->v_dirty = 1;
770         G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
771             vol->v_name);
772         g_raid_write_metadata(sc, vol, NULL, NULL);
773 }
774
775 void
776 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
777 {
778         struct g_raid_softc *sc;
779         struct g_raid_volume *vol;
780         struct g_raid_subdisk *sd;
781         struct bio_queue_head queue;
782         struct bio *cbp;
783         int i;
784
785         vol = tr->tro_volume;
786         sc = vol->v_softc;
787
788         /*
789          * Allocate all bios before sending any request, so we can return
790          * ENOMEM in nice and clean way.
791          */
792         bioq_init(&queue);
793         for (i = 0; i < vol->v_disks_count; i++) {
794                 sd = &vol->v_subdisks[i];
795                 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
796                     sd->sd_state == G_RAID_SUBDISK_S_FAILED)
797                         continue;
798                 cbp = g_clone_bio(bp);
799                 if (cbp == NULL)
800                         goto failure;
801                 cbp->bio_caller1 = sd;
802                 bioq_insert_tail(&queue, cbp);
803         }
804         for (cbp = bioq_first(&queue); cbp != NULL;
805             cbp = bioq_first(&queue)) {
806                 bioq_remove(&queue, cbp);
807                 sd = cbp->bio_caller1;
808                 cbp->bio_caller1 = NULL;
809                 g_raid_subdisk_iostart(sd, cbp);
810         }
811         return;
812 failure:
813         for (cbp = bioq_first(&queue); cbp != NULL;
814             cbp = bioq_first(&queue)) {
815                 bioq_remove(&queue, cbp);
816                 g_destroy_bio(cbp);
817         }
818         if (bp->bio_error == 0)
819                 bp->bio_error = ENOMEM;
820         g_raid_iodone(bp, bp->bio_error);
821 }
822
823 static void
824 g_raid_tr_kerneldump_common_done(struct bio *bp)
825 {
826
827         bp->bio_flags |= BIO_DONE;
828 }
829
830 int
831 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
832     void *virtual, vm_offset_t physical, off_t offset, size_t length)
833 {
834         struct g_raid_softc *sc;
835         struct g_raid_volume *vol;
836         struct bio bp;
837
838         vol = tr->tro_volume;
839         sc = vol->v_softc;
840
841         bzero(&bp, sizeof(bp));
842         bp.bio_cmd = BIO_WRITE;
843         bp.bio_done = g_raid_tr_kerneldump_common_done;
844         bp.bio_attribute = NULL;
845         bp.bio_offset = offset;
846         bp.bio_length = length;
847         bp.bio_data = virtual;
848         bp.bio_to = vol->v_provider;
849
850         g_raid_start(&bp);
851         while (!(bp.bio_flags & BIO_DONE)) {
852                 G_RAID_DEBUG1(4, sc, "Poll...");
853                 g_raid_poll(sc);
854                 DELAY(10);
855         }
856
857         return (bp.bio_error != 0 ? EIO : 0);
858 }
859
860 static int
861 g_raid_dump(void *arg,
862     void *virtual, vm_offset_t physical, off_t offset, size_t length)
863 {
864         struct g_raid_volume *vol;
865         int error;
866
867         vol = (struct g_raid_volume *)arg;
868         G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
869             (long long unsigned)offset, (long long unsigned)length);
870
871         error = G_RAID_TR_KERNELDUMP(vol->v_tr,
872             virtual, physical, offset, length);
873         return (error);
874 }
875
876 static void
877 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
878 {
879         struct g_kerneldump *gkd;
880         struct g_provider *pp;
881         struct g_raid_volume *vol;
882
883         gkd = (struct g_kerneldump*)bp->bio_data;
884         pp = bp->bio_to;
885         vol = pp->private;
886         g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
887                 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
888         gkd->di.dumper = g_raid_dump;
889         gkd->di.priv = vol;
890         gkd->di.blocksize = vol->v_sectorsize;
891         gkd->di.maxiosize = DFLTPHYS;
892         gkd->di.mediaoffset = gkd->offset;
893         if ((gkd->offset + gkd->length) > vol->v_mediasize)
894                 gkd->length = vol->v_mediasize - gkd->offset;
895         gkd->di.mediasize = gkd->length;
896         g_io_deliver(bp, 0);
897 }
898
899 static void
900 g_raid_start(struct bio *bp)
901 {
902         struct g_raid_softc *sc;
903
904         sc = bp->bio_to->geom->softc;
905         /*
906          * If sc == NULL or there are no valid disks, provider's error
907          * should be set and g_raid_start() should not be called at all.
908          */
909 //      KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
910 //          ("Provider's error should be set (error=%d)(mirror=%s).",
911 //          bp->bio_to->error, bp->bio_to->name));
912         G_RAID_LOGREQ(3, bp, "Request received.");
913
914         switch (bp->bio_cmd) {
915         case BIO_READ:
916         case BIO_WRITE:
917         case BIO_DELETE:
918         case BIO_FLUSH:
919                 break;
920         case BIO_GETATTR:
921                 if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
922                         g_raid_kerneldump(sc, bp);
923                 else
924                         g_io_deliver(bp, EOPNOTSUPP);
925                 return;
926         default:
927                 g_io_deliver(bp, EOPNOTSUPP);
928                 return;
929         }
930         mtx_lock(&sc->sc_queue_mtx);
931         bioq_disksort(&sc->sc_queue, bp);
932         mtx_unlock(&sc->sc_queue_mtx);
933         if (!dumping) {
934                 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
935                 wakeup(sc);
936         }
937 }
938
939 static int
940 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
941 {
942         /*
943          * 5 cases:
944          * (1) bp entirely below NO
945          * (2) bp entirely above NO
946          * (3) bp start below, but end in range YES
947          * (4) bp entirely within YES
948          * (5) bp starts within, ends above YES
949          *
950          * lock range 10-19 (offset 10 length 10)
951          * (1) 1-5: first if kicks it out
952          * (2) 30-35: second if kicks it out
953          * (3) 5-15: passes both ifs
954          * (4) 12-14: passes both ifs
955          * (5) 19-20: passes both
956          */
957         off_t lend = lstart + len - 1;
958         off_t bstart = bp->bio_offset;
959         off_t bend = bp->bio_offset + bp->bio_length - 1;
960
961         if (bend < lstart)
962                 return (0);
963         if (lend < bstart)
964                 return (0);
965         return (1);
966 }
967
968 static int
969 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
970 {
971         struct g_raid_lock *lp;
972
973         sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
974
975         LIST_FOREACH(lp, &vol->v_locks, l_next) {
976                 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
977                         return (1);
978         }
979         return (0);
980 }
981
982 static void
983 g_raid_start_request(struct bio *bp)
984 {
985         struct g_raid_softc *sc;
986         struct g_raid_volume *vol;
987
988         sc = bp->bio_to->geom->softc;
989         sx_assert(&sc->sc_lock, SX_LOCKED);
990         vol = bp->bio_to->private;
991
992         /*
993          * Check to see if this item is in a locked range.  If so,
994          * queue it to our locked queue and return.  We'll requeue
995          * it when the range is unlocked.  Internal I/O for the
996          * rebuild/rescan/recovery process is excluded from this
997          * check so we can actually do the recovery.
998          */
999         if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1000             g_raid_is_in_locked_range(vol, bp)) {
1001                 G_RAID_LOGREQ(3, bp, "Defer request.");
1002                 bioq_insert_tail(&vol->v_locked, bp);
1003                 return;
1004         }
1005
1006         /*
1007          * If we're actually going to do the write/delete, then
1008          * update the idle stats for the volume.
1009          */
1010         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1011                 if (!vol->v_dirty)
1012                         g_raid_dirty(vol);
1013                 vol->v_writes++;
1014         }
1015
1016         /*
1017          * Put request onto inflight queue, so we can check if new
1018          * synchronization requests don't collide with it.  Then tell
1019          * the transformation layer to start the I/O.
1020          */
1021         bioq_insert_tail(&vol->v_inflight, bp);
1022         G_RAID_LOGREQ(4, bp, "Request started");
1023         G_RAID_TR_IOSTART(vol->v_tr, bp);
1024 }
1025
1026 static void
1027 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1028 {
1029         off_t off, len;
1030         struct bio *nbp;
1031         struct g_raid_lock *lp;
1032
1033         vol->v_pending_lock = 0;
1034         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1035                 if (lp->l_pending) {
1036                         off = lp->l_offset;
1037                         len = lp->l_length;
1038                         lp->l_pending = 0;
1039                         TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1040                                 if (g_raid_bio_overlaps(nbp, off, len))
1041                                         lp->l_pending++;
1042                         }
1043                         if (lp->l_pending) {
1044                                 vol->v_pending_lock = 1;
1045                                 G_RAID_DEBUG1(4, vol->v_softc,
1046                                     "Deferred lock(%jd, %jd) has %d pending",
1047                                     (intmax_t)off, (intmax_t)(off + len),
1048                                     lp->l_pending);
1049                                 continue;
1050                         }
1051                         G_RAID_DEBUG1(4, vol->v_softc,
1052                             "Deferred lock of %jd to %jd completed",
1053                             (intmax_t)off, (intmax_t)(off + len));
1054                         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1055                 }
1056         }
1057 }
1058
1059 void
1060 g_raid_iodone(struct bio *bp, int error)
1061 {
1062         struct g_raid_softc *sc;
1063         struct g_raid_volume *vol;
1064
1065         sc = bp->bio_to->geom->softc;
1066         sx_assert(&sc->sc_lock, SX_LOCKED);
1067         vol = bp->bio_to->private;
1068         G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1069
1070         /* Update stats if we done write/delete. */
1071         if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1072                 vol->v_writes--;
1073                 vol->v_last_write = time_uptime;
1074         }
1075
1076         bioq_remove(&vol->v_inflight, bp);
1077         if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1078                 g_raid_finish_with_locked_ranges(vol, bp);
1079         getmicrouptime(&vol->v_last_done);
1080         g_io_deliver(bp, error);
1081 }
1082
1083 int
1084 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1085     struct bio *ignore, void *argp)
1086 {
1087         struct g_raid_softc *sc;
1088         struct g_raid_lock *lp;
1089         struct bio *bp;
1090
1091         sc = vol->v_softc;
1092         lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1093         LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1094         lp->l_offset = off;
1095         lp->l_length = len;
1096         lp->l_callback_arg = argp;
1097
1098         lp->l_pending = 0;
1099         TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1100                 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1101                         lp->l_pending++;
1102         }       
1103
1104         /*
1105          * If there are any writes that are pending, we return EBUSY.  All
1106          * callers will have to wait until all pending writes clear.
1107          */
1108         if (lp->l_pending > 0) {
1109                 vol->v_pending_lock = 1;
1110                 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1111                     (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1112                 return (EBUSY);
1113         }
1114         G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1115             (intmax_t)off, (intmax_t)(off+len));
1116         G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1117         return (0);
1118 }
1119
1120 int
1121 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1122 {
1123         struct g_raid_lock *lp;
1124         struct g_raid_softc *sc;
1125         struct bio *bp;
1126
1127         sc = vol->v_softc;
1128         LIST_FOREACH(lp, &vol->v_locks, l_next) {
1129                 if (lp->l_offset == off && lp->l_length == len) {
1130                         LIST_REMOVE(lp, l_next);
1131                         /* XXX
1132                          * Right now we just put them all back on the queue
1133                          * and hope for the best.  We hope this because any
1134                          * locked ranges will go right back on this list
1135                          * when the worker thread runs.
1136                          * XXX
1137                          */
1138                         G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1139                             (intmax_t)lp->l_offset,
1140                             (intmax_t)(lp->l_offset+lp->l_length));
1141                         mtx_lock(&sc->sc_queue_mtx);
1142                         while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1143                                 bioq_disksort(&sc->sc_queue, bp);
1144                         mtx_unlock(&sc->sc_queue_mtx);
1145                         free(lp, M_RAID);
1146                         return (0);
1147                 }
1148         }
1149         return (EINVAL);
1150 }
1151
1152 void
1153 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1154 {
1155         struct g_consumer *cp;
1156         struct g_raid_disk *disk, *tdisk;
1157
1158         bp->bio_caller1 = sd;
1159
1160         /*
1161          * Make sure that the disk is present. Generally it is a task of
1162          * transformation layers to not send requests to absent disks, but
1163          * it is better to be safe and report situation then sorry.
1164          */
1165         if (sd->sd_disk == NULL) {
1166                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1167 nodisk:
1168                 bp->bio_from = NULL;
1169                 bp->bio_to = NULL;
1170                 bp->bio_error = ENXIO;
1171                 g_raid_disk_done(bp);
1172                 return;
1173         }
1174         disk = sd->sd_disk;
1175         if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1176             disk->d_state != G_RAID_DISK_S_FAILED) {
1177                 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1178                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1179                 goto nodisk;
1180         }
1181
1182         cp = disk->d_consumer;
1183         bp->bio_from = cp;
1184         bp->bio_to = cp->provider;
1185         cp->index++;
1186
1187         /* Update average disks load. */
1188         TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1189                 if (tdisk->d_consumer == NULL)
1190                         tdisk->d_load = 0;
1191                 else
1192                         tdisk->d_load = (tdisk->d_consumer->index *
1193                             G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1194         }
1195
1196         disk->d_last_offset = bp->bio_offset + bp->bio_length;
1197         if (dumping) {
1198                 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1199                 if (bp->bio_cmd == BIO_WRITE) {
1200                         bp->bio_error = g_raid_subdisk_kerneldump(sd,
1201                             bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1202                 } else
1203                         bp->bio_error = EOPNOTSUPP;
1204                 g_raid_disk_done(bp);
1205         } else {
1206                 bp->bio_done = g_raid_disk_done;
1207                 bp->bio_offset += sd->sd_offset;
1208                 G_RAID_LOGREQ(3, bp, "Sending request.");
1209                 g_io_request(bp, cp);
1210         }
1211 }
1212
1213 int
1214 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1215     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1216 {
1217
1218         if (sd->sd_disk == NULL)
1219                 return (ENXIO);
1220         if (sd->sd_disk->d_kd.di.dumper == NULL)
1221                 return (EOPNOTSUPP);
1222         return (dump_write(&sd->sd_disk->d_kd.di,
1223             virtual, physical,
1224             sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1225             length));
1226 }
1227
1228 static void
1229 g_raid_disk_done(struct bio *bp)
1230 {
1231         struct g_raid_softc *sc;
1232         struct g_raid_subdisk *sd;
1233
1234         sd = bp->bio_caller1;
1235         sc = sd->sd_softc;
1236         mtx_lock(&sc->sc_queue_mtx);
1237         bioq_disksort(&sc->sc_queue, bp);
1238         mtx_unlock(&sc->sc_queue_mtx);
1239         if (!dumping)
1240                 wakeup(sc);
1241 }
1242
1243 static void
1244 g_raid_disk_done_request(struct bio *bp)
1245 {
1246         struct g_raid_softc *sc;
1247         struct g_raid_disk *disk;
1248         struct g_raid_subdisk *sd;
1249         struct g_raid_volume *vol;
1250
1251         g_topology_assert_not();
1252
1253         G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1254         sd = bp->bio_caller1;
1255         sc = sd->sd_softc;
1256         vol = sd->sd_volume;
1257         if (bp->bio_from != NULL) {
1258                 bp->bio_from->index--;
1259                 disk = bp->bio_from->private;
1260                 if (disk == NULL)
1261                         g_raid_kill_consumer(sc, bp->bio_from);
1262         }
1263         bp->bio_offset -= sd->sd_offset;
1264
1265         G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1266 }
1267
1268 static void
1269 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1270 {
1271
1272         if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1273                 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1274         else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1275                 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1276         else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1277                 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1278         else
1279                 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1280         if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1281                 KASSERT(ep->e_error == 0,
1282                     ("Error cannot be handled."));
1283                 g_raid_event_free(ep);
1284         } else {
1285                 ep->e_flags |= G_RAID_EVENT_DONE;
1286                 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1287                 mtx_lock(&sc->sc_queue_mtx);
1288                 wakeup(ep);
1289                 mtx_unlock(&sc->sc_queue_mtx);
1290         }
1291 }
1292
1293 /*
1294  * Worker thread.
1295  */
1296 static void
1297 g_raid_worker(void *arg)
1298 {
1299         struct g_raid_softc *sc;
1300         struct g_raid_event *ep;
1301         struct g_raid_volume *vol;
1302         struct bio *bp;
1303         struct timeval now, t;
1304         int timeout, rv;
1305
1306         sc = arg;
1307         thread_lock(curthread);
1308         sched_prio(curthread, PRIBIO);
1309         thread_unlock(curthread);
1310
1311         sx_xlock(&sc->sc_lock);
1312         for (;;) {
1313                 mtx_lock(&sc->sc_queue_mtx);
1314                 /*
1315                  * First take a look at events.
1316                  * This is important to handle events before any I/O requests.
1317                  */
1318                 bp = NULL;
1319                 vol = NULL;
1320                 rv = 0;
1321                 ep = TAILQ_FIRST(&sc->sc_events);
1322                 if (ep != NULL)
1323                         TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1324                 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1325                         ;
1326                 else {
1327                         getmicrouptime(&now);
1328                         t = now;
1329                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1330                                 if (bioq_first(&vol->v_inflight) == NULL &&
1331                                     vol->v_tr &&
1332                                     timevalcmp(&vol->v_last_done, &t, < ))
1333                                         t = vol->v_last_done;
1334                         }
1335                         timevalsub(&t, &now);
1336                         timeout = g_raid_idle_threshold +
1337                             t.tv_sec * 1000000 + t.tv_usec;
1338                         if (timeout > 0) {
1339                                 /*
1340                                  * Two steps to avoid overflows at HZ=1000
1341                                  * and idle timeouts > 2.1s.  Some rounding
1342                                  * errors can occur, but they are < 1tick,
1343                                  * which is deemed to be close enough for
1344                                  * this purpose.
1345                                  */
1346                                 int micpertic = 1000000 / hz;
1347                                 timeout = (timeout + micpertic - 1) / micpertic;
1348                                 sx_xunlock(&sc->sc_lock);
1349                                 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1350                                     PRIBIO | PDROP, "-", timeout);
1351                                 sx_xlock(&sc->sc_lock);
1352                                 goto process;
1353                         } else
1354                                 rv = EWOULDBLOCK;
1355                 }
1356                 mtx_unlock(&sc->sc_queue_mtx);
1357 process:
1358                 if (ep != NULL) {
1359                         g_raid_handle_event(sc, ep);
1360                 } else if (bp != NULL) {
1361                         if (bp->bio_to != NULL &&
1362                             bp->bio_to->geom == sc->sc_geom)
1363                                 g_raid_start_request(bp);
1364                         else
1365                                 g_raid_disk_done_request(bp);
1366                 } else if (rv == EWOULDBLOCK) {
1367                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1368                                 if (vol->v_writes == 0 && vol->v_dirty)
1369                                         g_raid_clean(vol, -1);
1370                                 if (bioq_first(&vol->v_inflight) == NULL &&
1371                                     vol->v_tr) {
1372                                         t.tv_sec = g_raid_idle_threshold / 1000000;
1373                                         t.tv_usec = g_raid_idle_threshold % 1000000;
1374                                         timevaladd(&t, &vol->v_last_done);
1375                                         getmicrouptime(&now);
1376                                         if (timevalcmp(&t, &now, <= )) {
1377                                                 G_RAID_TR_IDLE(vol->v_tr);
1378                                                 vol->v_last_done = now;
1379                                         }
1380                                 }
1381                         }
1382                 }
1383                 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1384                         g_raid_destroy_node(sc, 1);     /* May not return. */
1385         }
1386 }
1387
1388 static void
1389 g_raid_poll(struct g_raid_softc *sc)
1390 {
1391         struct g_raid_event *ep;
1392         struct bio *bp;
1393
1394         sx_xlock(&sc->sc_lock);
1395         mtx_lock(&sc->sc_queue_mtx);
1396         /*
1397          * First take a look at events.
1398          * This is important to handle events before any I/O requests.
1399          */
1400         ep = TAILQ_FIRST(&sc->sc_events);
1401         if (ep != NULL) {
1402                 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1403                 mtx_unlock(&sc->sc_queue_mtx);
1404                 g_raid_handle_event(sc, ep);
1405                 goto out;
1406         }
1407         bp = bioq_takefirst(&sc->sc_queue);
1408         if (bp != NULL) {
1409                 mtx_unlock(&sc->sc_queue_mtx);
1410                 if (bp->bio_from == NULL ||
1411                     bp->bio_from->geom != sc->sc_geom)
1412                         g_raid_start_request(bp);
1413                 else
1414                         g_raid_disk_done_request(bp);
1415         }
1416 out:
1417         sx_xunlock(&sc->sc_lock);
1418 }
1419
1420 static void
1421 g_raid_launch_provider(struct g_raid_volume *vol)
1422 {
1423         struct g_raid_disk *disk;
1424         struct g_raid_softc *sc;
1425         struct g_provider *pp;
1426         char name[G_RAID_MAX_VOLUMENAME];
1427         off_t off;
1428
1429         sc = vol->v_softc;
1430         sx_assert(&sc->sc_lock, SX_LOCKED);
1431
1432         g_topology_lock();
1433         /* Try to name provider with volume name. */
1434         snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1435         if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1436             g_provider_by_name(name) != NULL) {
1437                 /* Otherwise use sequential volume number. */
1438                 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1439         }
1440         pp = g_new_providerf(sc->sc_geom, "%s", name);
1441         pp->private = vol;
1442         pp->mediasize = vol->v_mediasize;
1443         pp->sectorsize = vol->v_sectorsize;
1444         pp->stripesize = 0;
1445         pp->stripeoffset = 0;
1446         if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1447             vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1448             vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1449             vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1450                 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1451                     disk->d_consumer != NULL &&
1452                     disk->d_consumer->provider != NULL) {
1453                         pp->stripesize = disk->d_consumer->provider->stripesize;
1454                         off = disk->d_consumer->provider->stripeoffset;
1455                         pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1456                         if (off > 0)
1457                                 pp->stripeoffset %= off;
1458                 }
1459                 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1460                         pp->stripesize *= (vol->v_disks_count - 1);
1461                         pp->stripeoffset *= (vol->v_disks_count - 1);
1462                 }
1463         } else
1464                 pp->stripesize = vol->v_strip_size;
1465         vol->v_provider = pp;
1466         g_error_provider(pp, 0);
1467         g_topology_unlock();
1468         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1469             pp->name, vol->v_name);
1470 }
1471
1472 static void
1473 g_raid_destroy_provider(struct g_raid_volume *vol)
1474 {
1475         struct g_raid_softc *sc;
1476         struct g_provider *pp;
1477         struct bio *bp, *tmp;
1478
1479         g_topology_assert_not();
1480         sc = vol->v_softc;
1481         pp = vol->v_provider;
1482         KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1483
1484         g_topology_lock();
1485         g_error_provider(pp, ENXIO);
1486         mtx_lock(&sc->sc_queue_mtx);
1487         TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1488                 if (bp->bio_to != pp)
1489                         continue;
1490                 bioq_remove(&sc->sc_queue, bp);
1491                 g_io_deliver(bp, ENXIO);
1492         }
1493         mtx_unlock(&sc->sc_queue_mtx);
1494         G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1495             pp->name, vol->v_name);
1496         g_wither_provider(pp, ENXIO);
1497         g_topology_unlock();
1498         vol->v_provider = NULL;
1499 }
1500
1501 /*
1502  * Update device state.
1503  */
1504 static int
1505 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1506 {
1507         struct g_raid_softc *sc;
1508
1509         sc = vol->v_softc;
1510         sx_assert(&sc->sc_lock, SX_XLOCKED);
1511
1512         G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1513             g_raid_volume_event2str(event),
1514             vol->v_name);
1515         switch (event) {
1516         case G_RAID_VOLUME_E_DOWN:
1517                 if (vol->v_provider != NULL)
1518                         g_raid_destroy_provider(vol);
1519                 break;
1520         case G_RAID_VOLUME_E_UP:
1521                 if (vol->v_provider == NULL)
1522                         g_raid_launch_provider(vol);
1523                 break;
1524         case G_RAID_VOLUME_E_START:
1525                 if (vol->v_tr)
1526                         G_RAID_TR_START(vol->v_tr);
1527                 return (0);
1528         default:
1529                 if (sc->sc_md)
1530                         G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1531                 return (0);
1532         }
1533
1534         /* Manage root mount release. */
1535         if (vol->v_starting) {
1536                 vol->v_starting = 0;
1537                 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1538                 root_mount_rel(vol->v_rootmount);
1539                 vol->v_rootmount = NULL;
1540         }
1541         if (vol->v_stopping && vol->v_provider_open == 0)
1542                 g_raid_destroy_volume(vol);
1543         return (0);
1544 }
1545
1546 /*
1547  * Update subdisk state.
1548  */
1549 static int
1550 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1551 {
1552         struct g_raid_softc *sc;
1553         struct g_raid_volume *vol;
1554
1555         sc = sd->sd_softc;
1556         vol = sd->sd_volume;
1557         sx_assert(&sc->sc_lock, SX_XLOCKED);
1558
1559         G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1560             g_raid_subdisk_event2str(event),
1561             vol->v_name, sd->sd_pos,
1562             sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1563         if (vol->v_tr)
1564                 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1565
1566         return (0);
1567 }
1568
1569 /*
1570  * Update disk state.
1571  */
1572 static int
1573 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1574 {
1575         struct g_raid_softc *sc;
1576
1577         sc = disk->d_softc;
1578         sx_assert(&sc->sc_lock, SX_XLOCKED);
1579
1580         G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1581             g_raid_disk_event2str(event),
1582             g_raid_get_diskname(disk));
1583
1584         if (sc->sc_md)
1585                 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1586         return (0);
1587 }
1588
1589 /*
1590  * Node event.
1591  */
1592 static int
1593 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1594 {
1595         sx_assert(&sc->sc_lock, SX_XLOCKED);
1596
1597         G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1598             g_raid_node_event2str(event));
1599
1600         if (event == G_RAID_NODE_E_WAKE)
1601                 return (0);
1602         if (sc->sc_md)
1603                 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1604         return (0);
1605 }
1606
1607 static int
1608 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1609 {
1610         struct g_raid_volume *vol;
1611         struct g_raid_softc *sc;
1612         int dcw, opens, error = 0;
1613
1614         g_topology_assert();
1615         sc = pp->geom->softc;
1616         vol = pp->private;
1617         KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1618         KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1619
1620         G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1621             acr, acw, ace);
1622         dcw = pp->acw + acw;
1623
1624         g_topology_unlock();
1625         sx_xlock(&sc->sc_lock);
1626         /* Deny new opens while dying. */
1627         if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1628                 error = ENXIO;
1629                 goto out;
1630         }
1631         if (dcw == 0 && vol->v_dirty)
1632                 g_raid_clean(vol, dcw);
1633         vol->v_provider_open += acr + acw + ace;
1634         /* Handle delayed node destruction. */
1635         if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1636             vol->v_provider_open == 0) {
1637                 /* Count open volumes. */
1638                 opens = g_raid_nopens(sc);
1639                 if (opens == 0) {
1640                         sc->sc_stopping = G_RAID_DESTROY_HARD;
1641                         /* Wake up worker to make it selfdestruct. */
1642                         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1643                 }
1644         }
1645         /* Handle open volume destruction. */
1646         if (vol->v_stopping && vol->v_provider_open == 0)
1647                 g_raid_destroy_volume(vol);
1648 out:
1649         sx_xunlock(&sc->sc_lock);
1650         g_topology_lock();
1651         return (error);
1652 }
1653
1654 struct g_raid_softc *
1655 g_raid_create_node(struct g_class *mp,
1656     const char *name, struct g_raid_md_object *md)
1657 {
1658         struct g_raid_softc *sc;
1659         struct g_geom *gp;
1660         int error;
1661
1662         g_topology_assert();
1663         G_RAID_DEBUG(1, "Creating array %s.", name);
1664
1665         gp = g_new_geomf(mp, "%s", name);
1666         sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1667         gp->start = g_raid_start;
1668         gp->orphan = g_raid_orphan;
1669         gp->access = g_raid_access;
1670         gp->dumpconf = g_raid_dumpconf;
1671
1672         sc->sc_md = md;
1673         sc->sc_geom = gp;
1674         sc->sc_flags = 0;
1675         TAILQ_INIT(&sc->sc_volumes);
1676         TAILQ_INIT(&sc->sc_disks);
1677         sx_init(&sc->sc_lock, "gmirror:lock");
1678         mtx_init(&sc->sc_queue_mtx, "gmirror:queue", NULL, MTX_DEF);
1679         TAILQ_INIT(&sc->sc_events);
1680         bioq_init(&sc->sc_queue);
1681         gp->softc = sc;
1682         error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1683             "g_raid %s", name);
1684         if (error != 0) {
1685                 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1686                 mtx_destroy(&sc->sc_queue_mtx);
1687                 sx_destroy(&sc->sc_lock);
1688                 g_destroy_geom(sc->sc_geom);
1689                 free(sc, M_RAID);
1690                 return (NULL);
1691         }
1692
1693         G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1694         return (sc);
1695 }
1696
1697 struct g_raid_volume *
1698 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1699 {
1700         struct g_raid_volume    *vol, *vol1;
1701         int i;
1702
1703         G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1704         vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1705         vol->v_softc = sc;
1706         strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1707         vol->v_state = G_RAID_VOLUME_S_STARTING;
1708         vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1709         vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1710         bioq_init(&vol->v_inflight);
1711         bioq_init(&vol->v_locked);
1712         LIST_INIT(&vol->v_locks);
1713         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1714                 vol->v_subdisks[i].sd_softc = sc;
1715                 vol->v_subdisks[i].sd_volume = vol;
1716                 vol->v_subdisks[i].sd_pos = i;
1717                 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1718         }
1719
1720         /* Find free ID for this volume. */
1721         g_topology_lock();
1722         vol1 = vol;
1723         if (id >= 0) {
1724                 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1725                         if (vol1->v_global_id == id)
1726                                 break;
1727                 }
1728         }
1729         if (vol1 != NULL) {
1730                 for (id = 0; ; id++) {
1731                         LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1732                                 if (vol1->v_global_id == id)
1733                                         break;
1734                         }
1735                         if (vol1 == NULL)
1736                                 break;
1737                 }
1738         }
1739         vol->v_global_id = id;
1740         LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1741         g_topology_unlock();
1742
1743         /* Delay root mounting. */
1744         vol->v_rootmount = root_mount_hold("GRAID");
1745         G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1746         vol->v_starting = 1;
1747         TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1748         return (vol);
1749 }
1750
1751 struct g_raid_disk *
1752 g_raid_create_disk(struct g_raid_softc *sc)
1753 {
1754         struct g_raid_disk      *disk;
1755
1756         G_RAID_DEBUG1(1, sc, "Creating disk.");
1757         disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1758         disk->d_softc = sc;
1759         disk->d_state = G_RAID_DISK_S_NONE;
1760         TAILQ_INIT(&disk->d_subdisks);
1761         TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1762         return (disk);
1763 }
1764
1765 int g_raid_start_volume(struct g_raid_volume *vol)
1766 {
1767         struct g_raid_tr_class *class;
1768         struct g_raid_tr_object *obj;
1769         int status;
1770
1771         G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
1772         LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
1773                 G_RAID_DEBUG1(2, vol->v_softc,
1774                     "Tasting volume %s for %s transformation.",
1775                     vol->v_name, class->name);
1776                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
1777                     M_WAITOK);
1778                 obj->tro_class = class;
1779                 obj->tro_volume = vol;
1780                 status = G_RAID_TR_TASTE(obj, vol);
1781                 if (status != G_RAID_TR_TASTE_FAIL)
1782                         break;
1783                 kobj_delete((kobj_t)obj, M_RAID);
1784         }
1785         if (class == NULL) {
1786                 G_RAID_DEBUG1(0, vol->v_softc,
1787                     "No transformation module found for %s.",
1788                     vol->v_name);
1789                 vol->v_tr = NULL;
1790                 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
1791                 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
1792                     G_RAID_EVENT_VOLUME);
1793                 return (-1);
1794         }
1795         G_RAID_DEBUG1(2, vol->v_softc,
1796             "Transformation module %s chosen for %s.",
1797             class->name, vol->v_name);
1798         vol->v_tr = obj;
1799         return (0);
1800 }
1801
1802 int
1803 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
1804 {
1805         struct g_raid_volume *vol, *tmpv;
1806         struct g_raid_disk *disk, *tmpd;
1807         int error = 0;
1808
1809         sc->sc_stopping = G_RAID_DESTROY_HARD;
1810         TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
1811                 if (g_raid_destroy_volume(vol))
1812                         error = EBUSY;
1813         }
1814         if (error)
1815                 return (error);
1816         TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
1817                 if (g_raid_destroy_disk(disk))
1818                         error = EBUSY;
1819         }
1820         if (error)
1821                 return (error);
1822         if (sc->sc_md) {
1823                 G_RAID_MD_FREE(sc->sc_md);
1824                 kobj_delete((kobj_t)sc->sc_md, M_RAID);
1825                 sc->sc_md = NULL;
1826         }
1827         if (sc->sc_geom != NULL) {
1828                 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
1829                 g_topology_lock();
1830                 sc->sc_geom->softc = NULL;
1831                 g_wither_geom(sc->sc_geom, ENXIO);
1832                 g_topology_unlock();
1833                 sc->sc_geom = NULL;
1834         } else
1835                 G_RAID_DEBUG(1, "Array destroyed.");
1836         if (worker) {
1837                 g_raid_event_cancel(sc, sc);
1838                 mtx_destroy(&sc->sc_queue_mtx);
1839                 sx_xunlock(&sc->sc_lock);
1840                 sx_destroy(&sc->sc_lock);
1841                 wakeup(&sc->sc_stopping);
1842                 free(sc, M_RAID);
1843                 curthread->td_pflags &= ~TDP_GEOM;
1844                 G_RAID_DEBUG(1, "Thread exiting.");
1845                 kproc_exit(0);
1846         } else {
1847                 /* Wake up worker to make it selfdestruct. */
1848                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1849         }
1850         return (0);
1851 }
1852
1853 int
1854 g_raid_destroy_volume(struct g_raid_volume *vol)
1855 {
1856         struct g_raid_softc *sc;
1857         struct g_raid_disk *disk;
1858         int i;
1859
1860         sc = vol->v_softc;
1861         G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
1862         vol->v_stopping = 1;
1863         if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
1864                 if (vol->v_tr) {
1865                         G_RAID_TR_STOP(vol->v_tr);
1866                         return (EBUSY);
1867                 } else
1868                         vol->v_state = G_RAID_VOLUME_S_STOPPED;
1869         }
1870         if (g_raid_event_check(sc, vol) != 0)
1871                 return (EBUSY);
1872         if (vol->v_provider != NULL)
1873                 return (EBUSY);
1874         if (vol->v_provider_open != 0)
1875                 return (EBUSY);
1876         if (vol->v_tr) {
1877                 G_RAID_TR_FREE(vol->v_tr);
1878                 kobj_delete((kobj_t)vol->v_tr, M_RAID);
1879                 vol->v_tr = NULL;
1880         }
1881         if (vol->v_rootmount)
1882                 root_mount_rel(vol->v_rootmount);
1883         g_topology_lock();
1884         LIST_REMOVE(vol, v_global_next);
1885         g_topology_unlock();
1886         TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
1887         for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1888                 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
1889                 disk = vol->v_subdisks[i].sd_disk;
1890                 if (disk == NULL)
1891                         continue;
1892                 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
1893         }
1894         G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
1895         if (sc->sc_md)
1896                 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
1897         g_raid_event_cancel(sc, vol);
1898         free(vol, M_RAID);
1899         if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
1900                 /* Wake up worker to let it selfdestruct. */
1901                 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1902         }
1903         return (0);
1904 }
1905
1906 int
1907 g_raid_destroy_disk(struct g_raid_disk *disk)
1908 {
1909         struct g_raid_softc *sc;
1910         struct g_raid_subdisk *sd, *tmp;
1911
1912         sc = disk->d_softc;
1913         G_RAID_DEBUG1(2, sc, "Destroying disk.");
1914         if (disk->d_consumer) {
1915                 g_raid_kill_consumer(sc, disk->d_consumer);
1916                 disk->d_consumer = NULL;
1917         }
1918         TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
1919                 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
1920                 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
1921                     G_RAID_EVENT_SUBDISK);
1922                 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
1923                 sd->sd_disk = NULL;
1924         }
1925         TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
1926         if (sc->sc_md)
1927                 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
1928         g_raid_event_cancel(sc, disk);
1929         free(disk, M_RAID);
1930         return (0);
1931 }
1932
1933 int
1934 g_raid_destroy(struct g_raid_softc *sc, int how)
1935 {
1936         int opens;
1937
1938         g_topology_assert_not();
1939         if (sc == NULL)
1940                 return (ENXIO);
1941         sx_assert(&sc->sc_lock, SX_XLOCKED);
1942
1943         /* Count open volumes. */
1944         opens = g_raid_nopens(sc);
1945
1946         /* React on some opened volumes. */
1947         if (opens > 0) {
1948                 switch (how) {
1949                 case G_RAID_DESTROY_SOFT:
1950                         G_RAID_DEBUG1(1, sc,
1951                             "%d volumes are still open.",
1952                             opens);
1953                         return (EBUSY);
1954                 case G_RAID_DESTROY_DELAYED:
1955                         G_RAID_DEBUG1(1, sc,
1956                             "Array will be destroyed on last close.");
1957                         sc->sc_stopping = G_RAID_DESTROY_DELAYED;
1958                         return (EBUSY);
1959                 case G_RAID_DESTROY_HARD:
1960                         G_RAID_DEBUG1(1, sc,
1961                             "%d volumes are still open.",
1962                             opens);
1963                 }
1964         }
1965
1966         /* Mark node for destruction. */
1967         sc->sc_stopping = G_RAID_DESTROY_HARD;
1968         /* Wake up worker to let it selfdestruct. */
1969         g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1970         /* Sleep until node destroyed. */
1971         sx_sleep(&sc->sc_stopping, &sc->sc_lock,
1972             PRIBIO | PDROP, "r:destroy", 0);
1973         return (0);
1974 }
1975
1976 static void
1977 g_raid_taste_orphan(struct g_consumer *cp)
1978 {
1979
1980         KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
1981             cp->provider->name));
1982 }
1983
1984 static struct g_geom *
1985 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
1986 {
1987         struct g_consumer *cp;
1988         struct g_geom *gp, *geom;
1989         struct g_raid_md_class *class;
1990         struct g_raid_md_object *obj;
1991         int status;
1992
1993         g_topology_assert();
1994         g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
1995         G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
1996
1997         gp = g_new_geomf(mp, "mirror:taste");
1998         /*
1999          * This orphan function should be never called.
2000          */
2001         gp->orphan = g_raid_taste_orphan;
2002         cp = g_new_consumer(gp);
2003         g_attach(cp, pp);
2004
2005         geom = NULL;
2006         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2007                 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2008                     pp->name, class->name);
2009                 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2010                     M_WAITOK);
2011                 obj->mdo_class = class;
2012                 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2013                 if (status != G_RAID_MD_TASTE_NEW)
2014                         kobj_delete((kobj_t)obj, M_RAID);
2015                 if (status != G_RAID_MD_TASTE_FAIL)
2016                         break;
2017         }
2018
2019         g_detach(cp);
2020         g_destroy_consumer(cp);
2021         g_destroy_geom(gp);
2022         G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2023         return (geom);
2024 }
2025
2026 int
2027 g_raid_create_node_format(const char *format, struct g_geom **gp)
2028 {
2029         struct g_raid_md_class *class;
2030         struct g_raid_md_object *obj;
2031         int status;
2032
2033         G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2034         LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2035                 if (strcasecmp(class->name, format) == 0)
2036                         break;
2037         }
2038         if (class == NULL) {
2039                 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2040                 return (G_RAID_MD_TASTE_FAIL);
2041         }
2042         obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2043             M_WAITOK);
2044         obj->mdo_class = class;
2045         status = G_RAID_MD_CREATE(obj, &g_raid_class, gp);
2046         if (status != G_RAID_MD_TASTE_NEW)
2047                 kobj_delete((kobj_t)obj, M_RAID);
2048         return (status);
2049 }
2050
2051 static int
2052 g_raid_destroy_geom(struct gctl_req *req __unused,
2053     struct g_class *mp __unused, struct g_geom *gp)
2054 {
2055         struct g_raid_softc *sc;
2056         int error;
2057
2058         g_topology_unlock();
2059         sc = gp->softc;
2060         sx_xlock(&sc->sc_lock);
2061         g_cancel_event(sc);
2062         error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2063         if (error != 0)
2064                 sx_xunlock(&sc->sc_lock);
2065         g_topology_lock();
2066         return (error);
2067 }
2068
2069 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2070     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2071 {
2072
2073         if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2074                 return;
2075         if (sc->sc_md)
2076                 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2077 }
2078
2079 void g_raid_fail_disk(struct g_raid_softc *sc,
2080     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2081 {
2082
2083         if (disk == NULL)
2084                 disk = sd->sd_disk;
2085         if (disk == NULL) {
2086                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2087                 return;
2088         }
2089         if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2090                 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2091                     "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2092                 return;
2093         }
2094         if (sc->sc_md)
2095                 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2096 }
2097
2098 static void
2099 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2100     struct g_consumer *cp, struct g_provider *pp)
2101 {
2102         struct g_raid_softc *sc;
2103         struct g_raid_volume *vol;
2104         struct g_raid_subdisk *sd;
2105         struct g_raid_disk *disk;
2106         int i, s;
2107
2108         g_topology_assert();
2109
2110         sc = gp->softc;
2111         if (sc == NULL)
2112                 return;
2113         if (pp != NULL) {
2114                 vol = pp->private;
2115                 g_topology_unlock();
2116                 sx_xlock(&sc->sc_lock);
2117                 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2118                     vol->v_name);
2119                 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2120                     g_raid_volume_level2str(vol->v_raid_level,
2121                     vol->v_raid_level_qualifier));
2122                 sbuf_printf(sb,
2123                     "%s<Transformation>%s</Transformation>\n", indent,
2124                     vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2125                 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2126                     vol->v_disks_count);
2127                 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2128                     vol->v_strip_size);
2129                 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2130                     g_raid_volume_state2str(vol->v_state));
2131                 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2132                     vol->v_dirty ? "Yes" : "No");
2133                 sbuf_printf(sb, "%s<Subdisks>", indent);
2134                 for (i = 0; i < vol->v_disks_count; i++) {
2135                         sd = &vol->v_subdisks[i];
2136                         if (sd->sd_disk != NULL &&
2137                             sd->sd_disk->d_consumer != NULL) {
2138                                 sbuf_printf(sb, "%s ",
2139                                     g_raid_get_diskname(sd->sd_disk));
2140                         } else {
2141                                 sbuf_printf(sb, "NONE ");
2142                         }
2143                         sbuf_printf(sb, "(%s",
2144                             g_raid_subdisk_state2str(sd->sd_state));
2145                         if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2146                             sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2147                                 sbuf_printf(sb, " %d%%",
2148                                     (int)(sd->sd_rebuild_pos * 100 /
2149                                      sd->sd_size));
2150                         }
2151                         sbuf_printf(sb, ")");
2152                         if (i + 1 < vol->v_disks_count)
2153                                 sbuf_printf(sb, ", ");
2154                 }
2155                 sbuf_printf(sb, "</Subdisks>\n");
2156                 sx_xunlock(&sc->sc_lock);
2157                 g_topology_lock();
2158         } else if (cp != NULL) {
2159                 disk = cp->private;
2160                 if (disk == NULL)
2161                         return;
2162                 g_topology_unlock();
2163                 sx_xlock(&sc->sc_lock);
2164                 sbuf_printf(sb, "%s<State>%s", indent,
2165                     g_raid_disk_state2str(disk->d_state));
2166                 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2167                         sbuf_printf(sb, " (");
2168                         TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2169                                 sbuf_printf(sb, "%s",
2170                                     g_raid_subdisk_state2str(sd->sd_state));
2171                                 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2172                                     sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2173                                         sbuf_printf(sb, " %d%%",
2174                                             (int)(sd->sd_rebuild_pos * 100 /
2175                                              sd->sd_size));
2176                                 }
2177                                 if (TAILQ_NEXT(sd, sd_next))
2178                                         sbuf_printf(sb, ", ");
2179                         }
2180                         sbuf_printf(sb, ")");
2181                 }
2182                 sbuf_printf(sb, "</State>\n");
2183                 sbuf_printf(sb, "%s<Subdisks>", indent);
2184                 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2185                         sbuf_printf(sb, "r%d(%s):%d@%ju",
2186                             sd->sd_volume->v_global_id,
2187                             sd->sd_volume->v_name,
2188                             sd->sd_pos, sd->sd_offset);
2189                         if (TAILQ_NEXT(sd, sd_next))
2190                                 sbuf_printf(sb, ", ");
2191                 }
2192                 sbuf_printf(sb, "</Subdisks>\n");
2193                 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2194                     disk->d_read_errs);
2195                 sx_xunlock(&sc->sc_lock);
2196                 g_topology_lock();
2197         } else {
2198                 g_topology_unlock();
2199                 sx_xlock(&sc->sc_lock);
2200                 if (sc->sc_md) {
2201                         sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2202                             sc->sc_md->mdo_class->name);
2203                 }
2204                 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2205                         s = 0xff;
2206                         TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2207                                 if (vol->v_state < s)
2208                                         s = vol->v_state;
2209                         }
2210                         sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2211                             g_raid_volume_state2str(s));
2212                 }
2213                 sx_xunlock(&sc->sc_lock);
2214                 g_topology_lock();
2215         }
2216 }
2217
2218 static void
2219 g_raid_shutdown_pre_sync(void *arg, int howto)
2220 {
2221         struct g_class *mp;
2222         struct g_geom *gp, *gp2;
2223         struct g_raid_softc *sc;
2224         int error;
2225
2226         mp = arg;
2227         DROP_GIANT();
2228         g_topology_lock();
2229         LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2230                 if ((sc = gp->softc) == NULL)
2231                         continue;
2232                 g_topology_unlock();
2233                 sx_xlock(&sc->sc_lock);
2234                 g_cancel_event(sc);
2235                 error = g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2236                 if (error != 0)
2237                         sx_xunlock(&sc->sc_lock);
2238                 g_topology_lock();
2239         }
2240         g_topology_unlock();
2241         PICKUP_GIANT();
2242 }
2243
2244 static void
2245 g_raid_init(struct g_class *mp)
2246 {
2247
2248         g_raid_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
2249             g_raid_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
2250         if (g_raid_pre_sync == NULL)
2251                 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2252         g_raid_started = 1;
2253 }
2254
2255 static void
2256 g_raid_fini(struct g_class *mp)
2257 {
2258
2259         if (g_raid_pre_sync != NULL)
2260                 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid_pre_sync);
2261         g_raid_started = 0;
2262 }
2263
2264 int
2265 g_raid_md_modevent(module_t mod, int type, void *arg)
2266 {
2267         struct g_raid_md_class *class, *c, *nc;
2268         int error;
2269
2270         error = 0;
2271         class = arg;
2272         switch (type) {
2273         case MOD_LOAD:
2274                 c = LIST_FIRST(&g_raid_md_classes);
2275                 if (c == NULL || c->mdc_priority > class->mdc_priority)
2276                         LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2277                 else {
2278                         while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2279                             nc->mdc_priority < class->mdc_priority)
2280                                 c = nc;
2281                         LIST_INSERT_AFTER(c, class, mdc_list);
2282                 }
2283                 if (g_raid_started)
2284                         g_retaste(&g_raid_class);
2285                 break;
2286         case MOD_UNLOAD:
2287                 LIST_REMOVE(class, mdc_list);
2288                 break;
2289         default:
2290                 error = EOPNOTSUPP;
2291                 break;
2292         }
2293
2294         return (error);
2295 }
2296
2297 int
2298 g_raid_tr_modevent(module_t mod, int type, void *arg)
2299 {
2300         struct g_raid_tr_class *class, *c, *nc;
2301         int error;
2302
2303         error = 0;
2304         class = arg;
2305         switch (type) {
2306         case MOD_LOAD:
2307                 c = LIST_FIRST(&g_raid_tr_classes);
2308                 if (c == NULL || c->trc_priority > class->trc_priority)
2309                         LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2310                 else {
2311                         while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2312                             nc->trc_priority < class->trc_priority)
2313                                 c = nc;
2314                         LIST_INSERT_AFTER(c, class, trc_list);
2315                 }
2316                 break;
2317         case MOD_UNLOAD:
2318                 LIST_REMOVE(class, trc_list);
2319                 break;
2320         default:
2321                 error = EOPNOTSUPP;
2322                 break;
2323         }
2324
2325         return (error);
2326 }
2327
2328 /*
2329  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2330  * to reduce module priority, allowing submodules to register them first.
2331  */
2332 static moduledata_t g_raid_mod = {
2333         "g_raid",
2334         g_modevent,
2335         &g_raid_class
2336 };
2337 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2338 MODULE_VERSION(geom_raid, 0);