]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/i386/xen/xen_machdep.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / i386 / xen / xen_machdep.c
1 /*
2  *
3  * Copyright (c) 2004 Christian Limpach.
4  * Copyright (c) 2004-2006,2008 Kip Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Christian Limpach.
18  * 4. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/mount.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/reboot.h>
47 #include <sys/sysproto.h>
48
49 #include <machine/xen/xen-os.h>
50
51 #include <vm/vm.h>
52 #include <vm/pmap.h>
53 #include <machine/segments.h>
54 #include <machine/pcb.h>
55 #include <machine/stdarg.h>
56 #include <machine/vmparam.h>
57 #include <machine/cpu.h>
58 #include <machine/intr_machdep.h>
59 #include <machine/md_var.h>
60 #include <machine/asmacros.h>
61
62
63
64 #include <xen/hypervisor.h>
65 #include <machine/xen/xenvar.h>
66 #include <machine/xen/xenfunc.h>
67 #include <machine/xen/xenpmap.h>
68 #include <machine/xen/xenfunc.h>
69 #include <xen/interface/memory.h>
70 #include <machine/xen/features.h>
71 #ifdef SMP
72 #include <machine/privatespace.h>
73 #endif
74
75
76 #include <vm/vm_page.h>
77
78
79 #define IDTVEC(name)    __CONCAT(X,name)
80
81 extern inthand_t
82 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
83         IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
84         IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
85         IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
86         IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
87
88
89 int xendebug_flags; 
90 start_info_t *xen_start_info;
91 shared_info_t *HYPERVISOR_shared_info;
92 xen_pfn_t *xen_machine_phys = machine_to_phys_mapping;
93 xen_pfn_t *xen_phys_machine;
94 xen_pfn_t *xen_pfn_to_mfn_frame_list[16];
95 xen_pfn_t *xen_pfn_to_mfn_frame_list_list;
96 int preemptable, init_first;
97 extern unsigned int avail_space;
98
99 void ni_cli(void);
100 void ni_sti(void);
101
102
103 void
104 ni_cli(void)
105 {
106         CTR0(KTR_SPARE2, "ni_cli disabling interrupts");
107         __asm__("pushl %edx;"
108                 "pushl %eax;"
109                 );
110         __cli();
111         __asm__("popl %eax;"
112                 "popl %edx;"
113                 );
114 }
115
116
117 void
118 ni_sti(void)
119 {
120         __asm__("pushl %edx;"
121                 "pushl %esi;"
122                 "pushl %eax;"
123                 );
124         __sti();
125         __asm__("popl %eax;"
126                 "popl %esi;"
127                 "popl %edx;"
128                 );
129 }
130
131 /*
132  * Modify the cmd_line by converting ',' to NULLs so that it is in a  format 
133  * suitable for the static env vars.
134  */
135 char *
136 xen_setbootenv(char *cmd_line)
137 {
138         char *cmd_line_next;
139     
140         /* Skip leading spaces */
141         for (; *cmd_line == ' '; cmd_line++);
142
143         printk("xen_setbootenv(): cmd_line='%s'\n", cmd_line);
144
145         for (cmd_line_next = cmd_line; strsep(&cmd_line_next, ",") != NULL;);
146         return cmd_line;
147 }
148
149 static struct 
150 {
151         const char      *ev;
152         int             mask;
153 } howto_names[] = {
154         {"boot_askname",        RB_ASKNAME},
155         {"boot_single", RB_SINGLE},
156         {"boot_nosync", RB_NOSYNC},
157         {"boot_halt",   RB_ASKNAME},
158         {"boot_serial", RB_SERIAL},
159         {"boot_cdrom",  RB_CDROM},
160         {"boot_gdb",    RB_GDB},
161         {"boot_gdb_pause",      RB_RESERVED1},
162         {"boot_verbose",        RB_VERBOSE},
163         {"boot_multicons",      RB_MULTIPLE},
164         {NULL,  0}
165 };
166
167 int 
168 xen_boothowto(char *envp)
169 {
170         int i, howto = 0;
171
172         /* get equivalents from the environment */
173         for (i = 0; howto_names[i].ev != NULL; i++)
174                 if (getenv(howto_names[i].ev) != NULL)
175                         howto |= howto_names[i].mask;
176         return howto;
177 }
178
179 #define PRINTK_BUFSIZE 1024
180 void
181 printk(const char *fmt, ...)
182 {
183         __va_list ap;
184         int retval;
185         static char buf[PRINTK_BUFSIZE];
186
187         va_start(ap, fmt);
188         retval = vsnprintf(buf, PRINTK_BUFSIZE - 1, fmt, ap);
189         va_end(ap);
190         buf[retval] = 0;
191         (void)HYPERVISOR_console_write(buf, retval);
192 }
193
194
195 #define XPQUEUE_SIZE 128
196
197 struct mmu_log {
198         char *file;
199         int line;
200 };
201
202 #ifdef SMP
203 /* per-cpu queues and indices */
204 #ifdef INVARIANTS
205 static struct mmu_log xpq_queue_log[MAX_VIRT_CPUS][XPQUEUE_SIZE];
206 #endif
207
208 static int xpq_idx[MAX_VIRT_CPUS];  
209 static mmu_update_t xpq_queue[MAX_VIRT_CPUS][XPQUEUE_SIZE];
210
211 #define XPQ_QUEUE_LOG xpq_queue_log[vcpu]
212 #define XPQ_QUEUE xpq_queue[vcpu]
213 #define XPQ_IDX xpq_idx[vcpu]
214 #define SET_VCPU() int vcpu = smp_processor_id()
215 #else
216         
217 static mmu_update_t xpq_queue[XPQUEUE_SIZE];
218 static struct mmu_log xpq_queue_log[XPQUEUE_SIZE];
219 static int xpq_idx = 0;
220
221 #define XPQ_QUEUE_LOG xpq_queue_log
222 #define XPQ_QUEUE xpq_queue
223 #define XPQ_IDX xpq_idx
224 #define SET_VCPU()
225 #endif /* !SMP */
226
227 #define XPQ_IDX_INC atomic_add_int(&XPQ_IDX, 1);
228
229 #if 0
230 static void
231 xen_dump_queue(void)
232 {
233         int _xpq_idx = XPQ_IDX;
234         int i;
235
236         if (_xpq_idx <= 1)
237                 return;
238
239         printk("xen_dump_queue(): %u entries\n", _xpq_idx);
240         for (i = 0; i < _xpq_idx; i++) {
241                 printk(" val: %llx ptr: %llx\n", XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
242         }
243 }
244 #endif
245
246
247 static __inline void
248 _xen_flush_queue(void)
249 {
250         SET_VCPU();
251         int _xpq_idx = XPQ_IDX;
252         int error, i;
253
254 #ifdef INVARIANTS
255         if (__predict_true(gdtset))
256                 CRITICAL_ASSERT(curthread);
257 #endif
258
259         XPQ_IDX = 0;
260         /* Make sure index is cleared first to avoid double updates. */
261         error = HYPERVISOR_mmu_update((mmu_update_t *)&XPQ_QUEUE,
262                                       _xpq_idx, NULL, DOMID_SELF);
263     
264 #if 0
265         if (__predict_true(gdtset))
266         for (i = _xpq_idx; i > 0;) {
267                 if (i >= 3) {
268                         CTR6(KTR_PMAP, "mmu:val: %lx ptr: %lx val: %lx "
269                             "ptr: %lx val: %lx ptr: %lx",
270                             (XPQ_QUEUE[i-1].val & 0xffffffff),
271                             (XPQ_QUEUE[i-1].ptr & 0xffffffff),
272                             (XPQ_QUEUE[i-2].val & 0xffffffff),
273                             (XPQ_QUEUE[i-2].ptr & 0xffffffff),
274                             (XPQ_QUEUE[i-3].val & 0xffffffff),
275                             (XPQ_QUEUE[i-3].ptr & 0xffffffff));
276                             i -= 3;
277                 } else if (i == 2) {
278                         CTR4(KTR_PMAP, "mmu: val: %lx ptr: %lx val: %lx ptr: %lx",
279                             (XPQ_QUEUE[i-1].val & 0xffffffff),
280                             (XPQ_QUEUE[i-1].ptr & 0xffffffff),
281                             (XPQ_QUEUE[i-2].val & 0xffffffff),
282                             (XPQ_QUEUE[i-2].ptr & 0xffffffff));
283                         i = 0;
284                 } else {
285                         CTR2(KTR_PMAP, "mmu: val: %lx ptr: %lx", 
286                             (XPQ_QUEUE[i-1].val & 0xffffffff),
287                             (XPQ_QUEUE[i-1].ptr & 0xffffffff));
288                         i = 0;
289                 }
290         }
291 #endif  
292         if (__predict_false(error < 0)) {
293                 for (i = 0; i < _xpq_idx; i++)
294                         printf("val: %llx ptr: %llx\n",
295                             XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
296                 panic("Failed to execute MMU updates: %d", error);
297         }
298
299 }
300
301 void
302 xen_flush_queue(void)
303 {
304         SET_VCPU();
305
306         if (__predict_true(gdtset))
307                 critical_enter();
308         if (XPQ_IDX != 0) _xen_flush_queue();
309         if (__predict_true(gdtset))
310                 critical_exit();
311 }
312
313 static __inline void
314 xen_increment_idx(void)
315 {
316         SET_VCPU();
317
318         XPQ_IDX++;
319         if (__predict_false(XPQ_IDX == XPQUEUE_SIZE))
320                 xen_flush_queue();
321 }
322
323 void
324 xen_check_queue(void)
325 {
326 #ifdef INVARIANTS
327         SET_VCPU();
328         
329         KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
330 #endif
331 }
332
333 void
334 xen_invlpg(vm_offset_t va)
335 {
336         struct mmuext_op op;
337         op.cmd = MMUEXT_INVLPG_ALL;
338         op.arg1.linear_addr = va & ~PAGE_MASK;
339         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
340 }
341
342 void
343 xen_load_cr3(u_int val)
344 {
345         struct mmuext_op op;
346 #ifdef INVARIANTS
347         SET_VCPU();
348         
349         KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
350 #endif
351         op.cmd = MMUEXT_NEW_BASEPTR;
352         op.arg1.mfn = xpmap_ptom(val) >> PAGE_SHIFT;
353         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
354 }
355
356 #ifdef KTR
357 static __inline u_int
358 rebp(void)
359 {
360         u_int   data;
361
362         __asm __volatile("movl 4(%%ebp),%0" : "=r" (data));     
363         return (data);
364 }
365 #endif
366
367 u_int
368 read_eflags(void)
369 {
370         vcpu_info_t *_vcpu;
371         u_int eflags;
372
373         eflags = _read_eflags();
374         _vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()]; 
375         if (_vcpu->evtchn_upcall_mask)
376                 eflags &= ~PSL_I;
377
378         return (eflags);
379 }
380
381 void
382 write_eflags(u_int eflags)
383 {
384         u_int intr;
385
386         CTR2(KTR_SPARE2, "%x xen_restore_flags eflags %x", rebp(), eflags);
387         intr = ((eflags & PSL_I) == 0);
388         __restore_flags(intr);
389         _write_eflags(eflags);
390 }
391
392 void
393 xen_cli(void)
394 {
395         CTR1(KTR_SPARE2, "%x xen_cli disabling interrupts", rebp());
396         __cli();
397 }
398
399 void
400 xen_sti(void)
401 {
402         CTR1(KTR_SPARE2, "%x xen_sti enabling interrupts", rebp());
403         __sti();
404 }
405
406 u_int
407 xen_rcr2(void)
408 {
409
410         return (HYPERVISOR_shared_info->vcpu_info[curcpu].arch.cr2);
411 }
412
413 void
414 _xen_machphys_update(vm_paddr_t mfn, vm_paddr_t pfn, char *file, int line)
415 {
416         SET_VCPU();
417         
418         if (__predict_true(gdtset))
419                 critical_enter();
420         XPQ_QUEUE[XPQ_IDX].ptr = (mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE;
421         XPQ_QUEUE[XPQ_IDX].val = pfn;
422 #ifdef INVARIANTS
423         XPQ_QUEUE_LOG[XPQ_IDX].file = file;
424         XPQ_QUEUE_LOG[XPQ_IDX].line = line;     
425 #endif          
426         xen_increment_idx();
427         if (__predict_true(gdtset))
428                 critical_exit();
429 }
430
431 void
432 _xen_queue_pt_update(vm_paddr_t ptr, vm_paddr_t val, char *file, int line)
433 {
434         SET_VCPU();
435
436         if (__predict_true(gdtset))     
437                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
438
439         KASSERT((ptr & 7) == 0, ("misaligned update"));
440         
441         if (__predict_true(gdtset))
442                 critical_enter();
443         
444         XPQ_QUEUE[XPQ_IDX].ptr = ((uint64_t)ptr) | MMU_NORMAL_PT_UPDATE;
445         XPQ_QUEUE[XPQ_IDX].val = (uint64_t)val;
446 #ifdef INVARIANTS
447         XPQ_QUEUE_LOG[XPQ_IDX].file = file;
448         XPQ_QUEUE_LOG[XPQ_IDX].line = line;     
449 #endif  
450         xen_increment_idx();
451         if (__predict_true(gdtset))
452                 critical_exit();
453 }
454
455 void 
456 xen_pgdpt_pin(vm_paddr_t ma)
457 {
458         struct mmuext_op op;
459         op.cmd = MMUEXT_PIN_L3_TABLE;
460         op.arg1.mfn = ma >> PAGE_SHIFT;
461         xen_flush_queue();
462         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
463 }
464
465 void 
466 xen_pgd_pin(vm_paddr_t ma)
467 {
468         struct mmuext_op op;
469         op.cmd = MMUEXT_PIN_L2_TABLE;
470         op.arg1.mfn = ma >> PAGE_SHIFT;
471         xen_flush_queue();
472         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
473 }
474
475 void 
476 xen_pgd_unpin(vm_paddr_t ma)
477 {
478         struct mmuext_op op;
479         op.cmd = MMUEXT_UNPIN_TABLE;
480         op.arg1.mfn = ma >> PAGE_SHIFT;
481         xen_flush_queue();
482         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
483 }
484
485 void 
486 xen_pt_pin(vm_paddr_t ma)
487 {
488         struct mmuext_op op;
489         op.cmd = MMUEXT_PIN_L1_TABLE;
490         op.arg1.mfn = ma >> PAGE_SHIFT;
491         xen_flush_queue();
492         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
493 }
494
495 void 
496 xen_pt_unpin(vm_paddr_t ma)
497 {
498         struct mmuext_op op;
499         op.cmd = MMUEXT_UNPIN_TABLE;
500         op.arg1.mfn = ma >> PAGE_SHIFT;
501         xen_flush_queue();
502         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
503 }
504
505 void 
506 xen_set_ldt(vm_paddr_t ptr, unsigned long len)
507 {
508         struct mmuext_op op;
509         op.cmd = MMUEXT_SET_LDT;
510         op.arg1.linear_addr = ptr;
511         op.arg2.nr_ents = len;
512         xen_flush_queue();
513         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
514 }
515
516 void xen_tlb_flush(void)
517 {
518         struct mmuext_op op;
519         op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
520         xen_flush_queue();
521         PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
522 }
523
524 void
525 xen_update_descriptor(union descriptor *table, union descriptor *entry)
526 {
527         vm_paddr_t pa;
528         pt_entry_t *ptp;
529
530         ptp = vtopte((vm_offset_t)table);
531         pa = (*ptp & PG_FRAME) | ((vm_offset_t)table & PAGE_MASK);
532         if (HYPERVISOR_update_descriptor(pa, *(uint64_t *)entry))
533                 panic("HYPERVISOR_update_descriptor failed\n");
534 }
535
536
537 #if 0
538 /*
539  * Bitmap is indexed by page number. If bit is set, the page is part of a
540  * xen_create_contiguous_region() area of memory.
541  */
542 unsigned long *contiguous_bitmap;
543
544 static void 
545 contiguous_bitmap_set(unsigned long first_page, unsigned long nr_pages)
546 {
547         unsigned long start_off, end_off, curr_idx, end_idx;
548
549         curr_idx  = first_page / BITS_PER_LONG;
550         start_off = first_page & (BITS_PER_LONG-1);
551         end_idx   = (first_page + nr_pages) / BITS_PER_LONG;
552         end_off   = (first_page + nr_pages) & (BITS_PER_LONG-1);
553
554         if (curr_idx == end_idx) {
555                 contiguous_bitmap[curr_idx] |=
556                         ((1UL<<end_off)-1) & -(1UL<<start_off);
557         } else {
558                 contiguous_bitmap[curr_idx] |= -(1UL<<start_off);
559                 while ( ++curr_idx < end_idx )
560                         contiguous_bitmap[curr_idx] = ~0UL;
561                 contiguous_bitmap[curr_idx] |= (1UL<<end_off)-1;
562         }
563 }
564
565 static void 
566 contiguous_bitmap_clear(unsigned long first_page, unsigned long nr_pages)
567 {
568         unsigned long start_off, end_off, curr_idx, end_idx;
569
570         curr_idx  = first_page / BITS_PER_LONG;
571         start_off = first_page & (BITS_PER_LONG-1);
572         end_idx   = (first_page + nr_pages) / BITS_PER_LONG;
573         end_off   = (first_page + nr_pages) & (BITS_PER_LONG-1);
574
575         if (curr_idx == end_idx) {
576                 contiguous_bitmap[curr_idx] &=
577                         -(1UL<<end_off) | ((1UL<<start_off)-1);
578         } else {
579                 contiguous_bitmap[curr_idx] &= (1UL<<start_off)-1;
580                 while ( ++curr_idx != end_idx )
581                         contiguous_bitmap[curr_idx] = 0;
582                 contiguous_bitmap[curr_idx] &= -(1UL<<end_off);
583         }
584 }
585 #endif
586
587 /* Ensure multi-page extents are contiguous in machine memory. */
588 int 
589 xen_create_contiguous_region(vm_page_t pages, int npages)
590 {
591         unsigned long  mfn, i, flags;
592         int order;
593         struct xen_memory_reservation reservation = {
594                 .nr_extents   = 1,
595                 .extent_order = 0,
596                 .domid        = DOMID_SELF
597         };
598         set_xen_guest_handle(reservation.extent_start, &mfn);
599         
600         balloon_lock(flags);
601
602         /* can currently only handle power of two allocation */
603         PANIC_IF(ffs(npages) != fls(npages));
604
605         /* 0. determine order */
606         order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
607         
608         /* 1. give away machine pages. */
609         for (i = 0; i < (1 << order); i++) {
610                 int pfn;
611                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
612                 mfn = PFNTOMFN(pfn);
613                 PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
614                 PANIC_IF(HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation) != 1);
615         }
616
617
618         /* 2. Get a new contiguous memory extent. */
619         reservation.extent_order = order;
620         /* xenlinux hardcodes this because of aacraid - maybe set to 0 if we're not 
621          * running with a broxen driver XXXEN
622          */
623         reservation.address_bits = 31; 
624         if (HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1)
625                 goto fail;
626
627         /* 3. Map the new extent in place of old pages. */
628         for (i = 0; i < (1 << order); i++) {
629                 int pfn;
630                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
631                 xen_machphys_update(mfn+i, pfn);
632                 PFNTOMFN(pfn) = mfn+i;
633         }
634
635         xen_tlb_flush();
636
637 #if 0
638         contiguous_bitmap_set(VM_PAGE_TO_PHYS(&pages[0]) >> PAGE_SHIFT, 1UL << order);
639 #endif
640
641         balloon_unlock(flags);
642
643         return 0;
644
645  fail:
646         reservation.extent_order = 0;
647         reservation.address_bits = 0;
648
649         for (i = 0; i < (1 << order); i++) {
650                 int pfn;
651                 pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
652                 PANIC_IF(HYPERVISOR_memory_op(
653                         XENMEM_increase_reservation, &reservation) != 1);
654                 xen_machphys_update(mfn, pfn);
655                 PFNTOMFN(pfn) = mfn;
656         }
657
658         xen_tlb_flush();
659
660         balloon_unlock(flags);
661
662         return ENOMEM;
663 }
664
665 void 
666 xen_destroy_contiguous_region(void *addr, int npages)
667 {
668         unsigned long  mfn, i, flags, order, pfn0;
669         struct xen_memory_reservation reservation = {
670                 .nr_extents   = 1,
671                 .extent_order = 0,
672                 .domid        = DOMID_SELF
673         };
674         set_xen_guest_handle(reservation.extent_start, &mfn);
675         
676         pfn0 = vtophys(addr) >> PAGE_SHIFT;
677 #if 0
678         scrub_pages(vstart, 1 << order);
679 #endif
680         /* can currently only handle power of two allocation */
681         PANIC_IF(ffs(npages) != fls(npages));
682
683         /* 0. determine order */
684         order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
685
686         balloon_lock(flags);
687
688 #if 0
689         contiguous_bitmap_clear(vtophys(addr) >> PAGE_SHIFT, 1UL << order);
690 #endif
691
692         /* 1. Zap current PTEs, giving away the underlying pages. */
693         for (i = 0; i < (1 << order); i++) {
694                 int pfn;
695                 uint64_t new_val = 0;
696                 pfn = vtomach((char *)addr + i*PAGE_SIZE) >> PAGE_SHIFT;
697
698                 PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)((char *)addr + (i * PAGE_SIZE)), new_val, 0));
699                 PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
700                 PANIC_IF(HYPERVISOR_memory_op(
701                         XENMEM_decrease_reservation, &reservation) != 1);
702         }
703
704         /* 2. Map new pages in place of old pages. */
705         for (i = 0; i < (1 << order); i++) {
706                 int pfn;
707                 uint64_t new_val;
708                 pfn = pfn0 + i;
709                 PANIC_IF(HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1);
710                 
711                 new_val = mfn << PAGE_SHIFT;
712                 PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)addr + (i * PAGE_SIZE), 
713                                                       new_val, PG_KERNEL));
714                 xen_machphys_update(mfn, pfn);
715                 PFNTOMFN(pfn) = mfn;
716         }
717
718         xen_tlb_flush();
719
720         balloon_unlock(flags);
721 }
722
723 extern  vm_offset_t     proc0kstack;
724 extern int vm86paddr, vm86phystk;
725 char *bootmem_start, *bootmem_current, *bootmem_end;
726
727 pteinfo_t *pteinfo_list;
728 void initvalues(start_info_t *startinfo);
729
730 struct xenstore_domain_interface;
731 extern struct xenstore_domain_interface *xen_store;
732
733 char *console_page;
734
735 void *
736 bootmem_alloc(unsigned int size) 
737 {
738         char *retptr;
739         
740         retptr = bootmem_current;
741         PANIC_IF(retptr + size > bootmem_end);
742         bootmem_current += size;
743
744         return retptr;
745 }
746
747 void 
748 bootmem_free(void *ptr, unsigned int size) 
749 {
750         char *tptr;
751         
752         tptr = ptr;
753         PANIC_IF(tptr != bootmem_current - size ||
754                 bootmem_current - size < bootmem_start);        
755
756         bootmem_current -= size;
757 }
758
759 #if 0
760 static vm_paddr_t
761 xpmap_mtop2(vm_paddr_t mpa)
762 {
763         return ((machine_to_phys_mapping[mpa >> PAGE_SHIFT] << PAGE_SHIFT)
764             ) | (mpa & ~PG_FRAME);
765 }
766
767 static pd_entry_t 
768 xpmap_get_bootpde(vm_paddr_t va)
769 {
770
771         return ((pd_entry_t *)xen_start_info->pt_base)[va >> 22];
772 }
773
774 static pd_entry_t
775 xpmap_get_vbootpde(vm_paddr_t va)
776 {
777         pd_entry_t pde;
778
779         pde = xpmap_get_bootpde(va);
780         if ((pde & PG_V) == 0)
781                 return (pde & ~PG_FRAME);
782         return (pde & ~PG_FRAME) |
783                 (xpmap_mtop2(pde & PG_FRAME) + KERNBASE);
784 }
785
786 static pt_entry_t 8*
787 xpmap_get_bootptep(vm_paddr_t va)
788 {
789         pd_entry_t pde;
790
791         pde = xpmap_get_vbootpde(va);
792         if ((pde & PG_V) == 0)
793                 return (void *)-1;
794 #define PT_MASK         0x003ff000      /* page table address bits */
795         return &(((pt_entry_t *)(pde & PG_FRAME))[(va & PT_MASK) >> PAGE_SHIFT]);
796 }
797
798 static pt_entry_t
799 xpmap_get_bootpte(vm_paddr_t va)
800 {
801
802         return xpmap_get_bootptep(va)[0];
803 }
804 #endif
805
806
807 #ifdef ADD_ISA_HOLE
808 static void
809 shift_phys_machine(unsigned long *phys_machine, int nr_pages)
810 {
811
812         unsigned long *tmp_page, *current_page, *next_page;
813         int i;
814
815         tmp_page = bootmem_alloc(PAGE_SIZE);
816         current_page = phys_machine + nr_pages - (PAGE_SIZE/sizeof(unsigned long));  
817         next_page = current_page - (PAGE_SIZE/sizeof(unsigned long));  
818         bcopy(phys_machine, tmp_page, PAGE_SIZE);
819
820         while (current_page > phys_machine) { 
821                 /*  save next page */
822                 bcopy(next_page, tmp_page, PAGE_SIZE);
823                 /* shift down page */
824                 bcopy(current_page, next_page, PAGE_SIZE);
825                 /*  finish swap */
826                 bcopy(tmp_page, current_page, PAGE_SIZE);
827           
828                 current_page -= (PAGE_SIZE/sizeof(unsigned long));
829                 next_page -= (PAGE_SIZE/sizeof(unsigned long));
830         }
831         bootmem_free(tmp_page, PAGE_SIZE);      
832         
833         for (i = 0; i < nr_pages; i++) {
834                 xen_machphys_update(phys_machine[i], i);
835         }
836         memset(phys_machine, INVALID_P2M_ENTRY, PAGE_SIZE);
837
838 }
839 #endif /* ADD_ISA_HOLE */
840
841 /*
842  * Build a directory of the pages that make up our Physical to Machine
843  * mapping table. The Xen suspend/restore code uses this to find our
844  * mapping table.
845  */
846 static void
847 init_frame_list_list(void *arg)
848 {
849         unsigned long nr_pages = xen_start_info->nr_pages;
850 #define FPP     (PAGE_SIZE/sizeof(xen_pfn_t))
851         int i, j, k;
852
853         xen_pfn_to_mfn_frame_list_list = malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
854         for (i = 0, j = 0, k = -1; i < nr_pages;
855              i += FPP, j++) {
856                 if ((j & (FPP - 1)) == 0) {
857                         k++;
858                         xen_pfn_to_mfn_frame_list[k] =
859                                 malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
860                         xen_pfn_to_mfn_frame_list_list[k] =
861                                 VTOMFN(xen_pfn_to_mfn_frame_list[k]);
862                         j = 0;
863                 }
864                 xen_pfn_to_mfn_frame_list[k][j] = 
865                         VTOMFN(&xen_phys_machine[i]);
866         }
867
868         HYPERVISOR_shared_info->arch.max_pfn = nr_pages;
869         HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list
870                 = VTOMFN(xen_pfn_to_mfn_frame_list_list);
871 }       
872 SYSINIT(init_fll, SI_SUB_DEVFS, SI_ORDER_ANY, init_frame_list_list, NULL);
873
874 extern unsigned long physfree;
875
876 int pdir, curoffset;
877 extern int nkpt;
878
879 extern uint32_t kernbase;
880
881 void
882 initvalues(start_info_t *startinfo)
883
884         vm_offset_t cur_space, cur_space_pt;
885         struct physdev_set_iopl set_iopl;
886         
887         int l3_pages, l2_pages, l1_pages, offset;
888         vm_paddr_t console_page_ma, xen_store_ma;
889         vm_offset_t tmpva;
890         vm_paddr_t shinfo;
891 #ifdef PAE
892         vm_paddr_t IdlePDPTma, IdlePDPTnewma;
893         vm_paddr_t IdlePTDnewma[4];
894         pd_entry_t *IdlePDPTnew, *IdlePTDnew;
895         vm_paddr_t IdlePTDma[4];
896 #else
897         vm_paddr_t IdlePTDma[1];
898 #endif
899         unsigned long i;
900         int ncpus = MAXCPU;
901
902         nkpt = min(
903                 min(
904                         max((startinfo->nr_pages >> NPGPTD_SHIFT), nkpt),
905                     NPGPTD*NPDEPG - KPTDI),
906                     (HYPERVISOR_VIRT_START - KERNBASE) >> PDRSHIFT);
907
908         HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);      
909 #ifdef notyet
910         /*
911          * need to install handler
912          */
913         HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments_notify);       
914 #endif  
915         xen_start_info = startinfo;
916         xen_phys_machine = (xen_pfn_t *)startinfo->mfn_list;
917
918         IdlePTD = (pd_entry_t *)((uint8_t *)startinfo->pt_base + PAGE_SIZE);
919         l1_pages = 0;
920         
921 #ifdef PAE
922         l3_pages = 1;
923         l2_pages = 0;
924         IdlePDPT = (pd_entry_t *)startinfo->pt_base;
925         IdlePDPTma = VTOM(startinfo->pt_base);
926         for (i = (KERNBASE >> 30);
927              (i < 4) && (IdlePDPT[i] != 0); i++)
928                         l2_pages++;
929         /*
930          * Note that only one page directory has been allocated at this point.
931          * Thus, if KERNBASE
932          */
933         for (i = 0; i < l2_pages; i++)
934                 IdlePTDma[i] = VTOM(IdlePTD + i*PAGE_SIZE);
935
936         l2_pages = (l2_pages == 0) ? 1 : l2_pages;
937 #else   
938         l3_pages = 0;
939         l2_pages = 1;
940 #endif
941         for (i = (((KERNBASE>>18) & PAGE_MASK)>>PAGE_SHIFT);
942              (i<l2_pages*NPDEPG) && (i<(VM_MAX_KERNEL_ADDRESS>>PDRSHIFT)); i++) {
943                 
944                 if (IdlePTD[i] == 0)
945                         break;
946                 l1_pages++;
947         }
948
949         /* number of pages allocated after the pts + 1*/;
950         cur_space = xen_start_info->pt_base +
951             (l3_pages + l2_pages + l1_pages + 1)*PAGE_SIZE;
952
953         printk("initvalues(): wooh - availmem=%x,%x\n", avail_space, cur_space);
954
955         printk("KERNBASE=%x,pt_base=%x, VTOPFN(base)=%x, nr_pt_frames=%x\n",
956             KERNBASE,xen_start_info->pt_base, VTOPFN(xen_start_info->pt_base),
957             xen_start_info->nr_pt_frames);
958         xendebug_flags = 0; /* 0xffffffff; */
959
960 #ifdef ADD_ISA_HOLE
961         shift_phys_machine(xen_phys_machine, xen_start_info->nr_pages);
962 #endif
963         XENPRINTF("IdlePTD %p\n", IdlePTD);
964         XENPRINTF("nr_pages: %ld shared_info: 0x%lx flags: 0x%lx pt_base: 0x%lx "
965                   "mod_start: 0x%lx mod_len: 0x%lx\n",
966                   xen_start_info->nr_pages, xen_start_info->shared_info, 
967                   xen_start_info->flags, xen_start_info->pt_base, 
968                   xen_start_info->mod_start, xen_start_info->mod_len);
969
970 #ifdef PAE
971         IdlePDPTnew = (pd_entry_t *)cur_space; cur_space += PAGE_SIZE;
972         bzero(IdlePDPTnew, PAGE_SIZE);
973
974         IdlePDPTnewma =  VTOM(IdlePDPTnew);
975         IdlePTDnew = (pd_entry_t *)cur_space; cur_space += 4*PAGE_SIZE;
976         bzero(IdlePTDnew, 4*PAGE_SIZE);
977
978         for (i = 0; i < 4; i++) 
979                 IdlePTDnewma[i] = VTOM((uint8_t *)IdlePTDnew + i*PAGE_SIZE);
980         /*
981          * L3
982          *
983          * Copy the 4 machine addresses of the new PTDs in to the PDPT
984          * 
985          */
986         for (i = 0; i < 4; i++)
987                 IdlePDPTnew[i] = IdlePTDnewma[i] | PG_V;
988
989         __asm__("nop;");
990         /*
991          *
992          * re-map the new PDPT read-only
993          */
994         PT_SET_MA(IdlePDPTnew, IdlePDPTnewma | PG_V);
995         /*
996          * 
997          * Unpin the current PDPT
998          */
999         xen_pt_unpin(IdlePDPTma);
1000
1001 #endif  /* PAE */
1002
1003         /* Map proc0's KSTACK */
1004         proc0kstack = cur_space; cur_space += (KSTACK_PAGES * PAGE_SIZE);
1005         printk("proc0kstack=%u\n", proc0kstack);
1006
1007         /* vm86/bios stack */
1008         cur_space += PAGE_SIZE;
1009
1010         /* Map space for the vm86 region */
1011         vm86paddr = (vm_offset_t)cur_space;
1012         cur_space += (PAGE_SIZE * 3);
1013
1014         /* allocate 4 pages for bootmem allocator */
1015         bootmem_start = bootmem_current = (char *)cur_space;
1016         cur_space += (4 * PAGE_SIZE);
1017         bootmem_end = (char *)cur_space;
1018         
1019         /* allocate pages for gdt */
1020         gdt = (union descriptor *)cur_space;
1021         cur_space += PAGE_SIZE*ncpus;
1022
1023         /* allocate page for ldt */
1024         ldt = (union descriptor *)cur_space; cur_space += PAGE_SIZE;
1025         cur_space += PAGE_SIZE;
1026         
1027         /* unmap remaining pages from initial chunk
1028          *
1029          */
1030         for (tmpva = cur_space; tmpva < (((uint32_t)&kernbase) + (l1_pages<<PDRSHIFT));
1031              tmpva += PAGE_SIZE) {
1032                 bzero((char *)tmpva, PAGE_SIZE);
1033                 PT_SET_MA(tmpva, (vm_paddr_t)0);
1034         }
1035
1036         PT_UPDATES_FLUSH();
1037
1038         memcpy(((uint8_t *)IdlePTDnew) + ((unsigned int)(KERNBASE >> 18)),
1039             ((uint8_t *)IdlePTD) + ((KERNBASE >> 18) & PAGE_MASK),
1040             l1_pages*sizeof(pt_entry_t));
1041
1042         for (i = 0; i < 4; i++) {
1043                 PT_SET_MA((uint8_t *)IdlePTDnew + i*PAGE_SIZE,
1044                     IdlePTDnewma[i] | PG_V);
1045         }
1046         xen_load_cr3(VTOP(IdlePDPTnew));
1047         xen_pgdpt_pin(VTOM(IdlePDPTnew));
1048
1049         /* allocate remainder of nkpt pages */
1050         cur_space_pt = cur_space;
1051         for (offset = (KERNBASE >> PDRSHIFT), i = l1_pages; i < nkpt;
1052              i++, cur_space += PAGE_SIZE) {
1053                 pdir = (offset + i) / NPDEPG;
1054                 curoffset = ((offset + i) % NPDEPG);
1055                 if (((offset + i) << PDRSHIFT) == VM_MAX_KERNEL_ADDRESS)
1056                         break;
1057
1058                 /*
1059                  * make sure that all the initial page table pages
1060                  * have been zeroed
1061                  */
1062                 PT_SET_MA(cur_space, VTOM(cur_space) | PG_V | PG_RW);
1063                 bzero((char *)cur_space, PAGE_SIZE);
1064                 PT_SET_MA(cur_space, (vm_paddr_t)0);
1065                 xen_pt_pin(VTOM(cur_space));
1066                 xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
1067                         curoffset*sizeof(vm_paddr_t)), 
1068                     VTOM(cur_space) | PG_KERNEL);
1069                 PT_UPDATES_FLUSH();
1070         }
1071         
1072         for (i = 0; i < 4; i++) {
1073                 pdir = (PTDPTDI + i) / NPDEPG;
1074                 curoffset = (PTDPTDI + i) % NPDEPG;
1075
1076                 xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
1077                         curoffset*sizeof(vm_paddr_t)), 
1078                     IdlePTDnewma[i] | PG_V);
1079         }
1080
1081         PT_UPDATES_FLUSH();
1082         
1083         IdlePTD = IdlePTDnew;
1084         IdlePDPT = IdlePDPTnew;
1085         IdlePDPTma = IdlePDPTnewma;
1086         
1087         HYPERVISOR_shared_info = (shared_info_t *)cur_space;
1088         cur_space += PAGE_SIZE;
1089
1090         xen_store = (struct xenstore_domain_interface *)cur_space;
1091         cur_space += PAGE_SIZE;
1092
1093         console_page = (char *)cur_space;
1094         cur_space += PAGE_SIZE;
1095         
1096         /*
1097          * shared_info is an unsigned long so this will randomly break if
1098          * it is allocated above 4GB - I guess people are used to that
1099          * sort of thing with Xen ... sigh
1100          */
1101         shinfo = xen_start_info->shared_info;
1102         PT_SET_MA(HYPERVISOR_shared_info, shinfo | PG_KERNEL);
1103         
1104         printk("#4\n");
1105
1106         xen_store_ma = (((vm_paddr_t)xen_start_info->store_mfn) << PAGE_SHIFT);
1107         PT_SET_MA(xen_store, xen_store_ma | PG_KERNEL);
1108         console_page_ma = (((vm_paddr_t)xen_start_info->console.domU.mfn) << PAGE_SHIFT);
1109         PT_SET_MA(console_page, console_page_ma | PG_KERNEL);
1110
1111         printk("#5\n");
1112
1113         set_iopl.iopl = 1;
1114         PANIC_IF(HYPERVISOR_physdev_op(PHYSDEVOP_SET_IOPL, &set_iopl));
1115         printk("#6\n");
1116 #if 0
1117         /* add page table for KERNBASE */
1118         xen_queue_pt_update(IdlePTDma + KPTDI*sizeof(vm_paddr_t), 
1119                             VTOM(cur_space) | PG_KERNEL);
1120         xen_flush_queue();
1121 #ifdef PAE      
1122         xen_queue_pt_update(pdir_shadow_ma[3] + KPTDI*sizeof(vm_paddr_t), 
1123                             VTOM(cur_space) | PG_V | PG_A);
1124 #else
1125         xen_queue_pt_update(pdir_shadow_ma + KPTDI*sizeof(vm_paddr_t), 
1126                             VTOM(cur_space) | PG_V | PG_A);
1127 #endif  
1128         xen_flush_queue();
1129         cur_space += PAGE_SIZE;
1130         printk("#6\n");
1131 #endif /* 0 */  
1132 #ifdef notyet
1133         if (xen_start_info->flags & SIF_INITDOMAIN) {
1134                 /* Map first megabyte */
1135                 for (i = 0; i < (256 << PAGE_SHIFT); i += PAGE_SIZE) 
1136                         PT_SET_MA(KERNBASE + i, i | PG_KERNEL | PG_NC_PCD);
1137                 xen_flush_queue();
1138         }
1139 #endif
1140         /*
1141          * re-map kernel text read-only
1142          *
1143          */
1144         for (i = (((vm_offset_t)&btext) & ~PAGE_MASK);
1145              i < (((vm_offset_t)&etext) & ~PAGE_MASK); i += PAGE_SIZE)
1146                 PT_SET_MA(i, VTOM(i) | PG_V | PG_A);
1147         
1148         printk("#7\n");
1149         physfree = VTOP(cur_space);
1150         init_first = physfree >> PAGE_SHIFT;
1151         IdlePTD = (pd_entry_t *)VTOP(IdlePTD);
1152         IdlePDPT = (pd_entry_t *)VTOP(IdlePDPT);
1153         setup_xen_features();
1154         printk("#8, proc0kstack=%u\n", proc0kstack);
1155 }
1156
1157
1158 trap_info_t trap_table[] = {
1159         { 0,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(div)},
1160         { 1,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dbg)},
1161         { 3,   3|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bpt)},
1162         { 4,   3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ofl)},
1163         /* This is UPL on Linux and KPL on BSD */
1164         { 5,   3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bnd)},
1165         { 6,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ill)},
1166         { 7,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dna)},
1167         /*
1168          * { 8,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(XXX)},
1169          *   no handler for double fault
1170          */
1171         { 9,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpusegm)},
1172         {10,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(tss)},
1173         {11,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(missing)},
1174         {12,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(stk)},
1175         {13,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(prot)},
1176         {14,   0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(page)},
1177         {15,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(rsvd)},
1178         {16,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpu)},
1179         {17,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(align)},
1180         {18,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(mchk)},
1181         {19,   0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(xmm)},
1182         {0x80, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(int0x80_syscall)},
1183         {  0, 0,           0, 0 }
1184 };
1185
1186 /* Perform a multicall and check that individual calls succeeded. */
1187 int
1188 HYPERVISOR_multicall(struct multicall_entry * call_list, int nr_calls)
1189 {
1190         int ret = 0;
1191         int i;
1192
1193         /* Perform the multicall. */
1194         PANIC_IF(_HYPERVISOR_multicall(call_list, nr_calls));
1195
1196         /* Check the results of individual hypercalls. */
1197         for (i = 0; i < nr_calls; i++)
1198                 if (unlikely(call_list[i].result < 0))
1199                         ret++;
1200         if (unlikely(ret > 0))
1201                 panic("%d multicall(s) failed: cpu %d\n",
1202                     ret, smp_processor_id());
1203
1204         /* If we didn't panic already, everything succeeded. */
1205         return (0);
1206 }
1207
1208 /********** CODE WORTH KEEPING ABOVE HERE *****************/ 
1209
1210 void xen_failsafe_handler(void);
1211
1212 void
1213 xen_failsafe_handler(void)
1214 {
1215
1216         panic("xen_failsafe_handler called!\n");
1217 }
1218
1219 void xen_handle_thread_switch(struct pcb *pcb);
1220
1221 /* This is called by cpu_switch() when switching threads. */
1222 /* The pcb arg refers to the process control block of the */
1223 /* next thread which is to run */
1224 void
1225 xen_handle_thread_switch(struct pcb *pcb)
1226 {
1227     uint32_t *a = (uint32_t *)&PCPU_GET(fsgs_gdt)[0];
1228     uint32_t *b = (uint32_t *)&pcb->pcb_fsd;
1229     multicall_entry_t mcl[3];
1230     int i = 0;
1231
1232     /* Notify Xen of task switch */
1233     mcl[i].op = __HYPERVISOR_stack_switch;
1234     mcl[i].args[0] = GSEL(GDATA_SEL, SEL_KPL);
1235     mcl[i++].args[1] = (unsigned long)pcb;
1236
1237     /* Check for update of fsd */
1238     if (*a != *b || *(a+1) != *(b+1)) {
1239         mcl[i].op = __HYPERVISOR_update_descriptor;
1240         *(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
1241         *(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
1242     }    
1243
1244     a += 2;
1245     b += 2;
1246
1247     /* Check for update of gsd */
1248     if (*a != *b || *(a+1) != *(b+1)) {
1249         mcl[i].op = __HYPERVISOR_update_descriptor;
1250         *(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
1251         *(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
1252     }    
1253
1254     (void)HYPERVISOR_multicall(mcl, i);
1255 }