]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/kern/kern_clocksource.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / kern / kern_clocksource.c
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56
57 #ifdef KDTRACE_HOOKS
58 #include <sys/dtrace_bsd.h>
59 cyclic_clock_func_t     cyclic_clock_func = NULL;
60 #endif
61
62 int                     cpu_can_deep_sleep = 0; /* C3 state is available. */
63 int                     cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64
65 static void             setuptimer(void);
66 static void             loadtimer(struct bintime *now, int first);
67 static int              doconfigtimer(void);
68 static void             configtimer(int start);
69 static int              round_freq(struct eventtimer *et, int freq);
70
71 static void             getnextcpuevent(struct bintime *event, int idle);
72 static void             getnextevent(struct bintime *event);
73 static int              handleevents(struct bintime *now, int fake);
74 #ifdef SMP
75 static void             cpu_new_callout(int cpu, int ticks);
76 #endif
77
78 static struct mtx       et_hw_mtx;
79
80 #define ET_HW_LOCK(state)                                               \
81         {                                                               \
82                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
83                         mtx_lock_spin(&(state)->et_hw_mtx);             \
84                 else                                                    \
85                         mtx_lock_spin(&et_hw_mtx);                      \
86         }
87
88 #define ET_HW_UNLOCK(state)                                             \
89         {                                                               \
90                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
91                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
92                 else                                                    \
93                         mtx_unlock_spin(&et_hw_mtx);                    \
94         }
95
96 static struct eventtimer *timer = NULL;
97 static struct bintime   timerperiod;    /* Timer period for periodic mode. */
98 static struct bintime   hardperiod;     /* hardclock() events period. */
99 static struct bintime   statperiod;     /* statclock() events period. */
100 static struct bintime   profperiod;     /* profclock() events period. */
101 static struct bintime   nexttick;       /* Next global timer tick time. */
102 static u_int            busy = 0;       /* Reconfiguration is in progress. */
103 static int              profiling = 0;  /* Profiling events enabled. */
104
105 static char             timername[32];  /* Wanted timer. */
106 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
107
108 static int              singlemul = 0;  /* Multiplier for periodic mode. */
109 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
110 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
111     0, "Multiplier for periodic mode");
112
113 static u_int            idletick = 0;   /* Idle mode allowed. */
114 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
115 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
116     0, "Run periodic events when idle");
117
118 static int              periodic = 0;   /* Periodic or one-shot mode. */
119 static int              want_periodic = 0; /* What mode to prefer. */
120 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
121
122 struct pcpu_state {
123         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
124         u_int           action;         /* Reconfiguration requests. */
125         u_int           handle;         /* Immediate handle resuests. */
126         struct bintime  now;            /* Last tick time. */
127         struct bintime  nextevent;      /* Next scheduled event on this CPU. */
128         struct bintime  nexttick;       /* Next timer tick time. */
129         struct bintime  nexthard;       /* Next hardlock() event. */
130         struct bintime  nextstat;       /* Next statclock() event. */
131         struct bintime  nextprof;       /* Next profclock() event. */
132 #ifdef KDTRACE_HOOKS
133         struct bintime  nextcyc;        /* Next OpenSolaris cyclics event. */
134 #endif
135         int             ipi;            /* This CPU needs IPI. */
136         int             idle;           /* This CPU is in idle mode. */
137 };
138
139 static DPCPU_DEFINE(struct pcpu_state, timerstate);
140
141 #define FREQ2BT(freq, bt)                                               \
142 {                                                                       \
143         (bt)->sec = 0;                                                  \
144         (bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
145 }
146 #define BT2FREQ(bt)                                                     \
147         (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
148             ((bt)->frac >> 1))
149
150 /*
151  * Timer broadcast IPI handler.
152  */
153 int
154 hardclockintr(void)
155 {
156         struct bintime now;
157         struct pcpu_state *state;
158         int done;
159
160         if (doconfigtimer() || busy)
161                 return (FILTER_HANDLED);
162         state = DPCPU_PTR(timerstate);
163         now = state->now;
164         CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
165             curcpu, now.sec, (unsigned int)(now.frac >> 32),
166                              (unsigned int)(now.frac & 0xffffffff));
167         done = handleevents(&now, 0);
168         return (done ? FILTER_HANDLED : FILTER_STRAY);
169 }
170
171 /*
172  * Handle all events for specified time on this CPU
173  */
174 static int
175 handleevents(struct bintime *now, int fake)
176 {
177         struct bintime t;
178         struct trapframe *frame;
179         struct pcpu_state *state;
180         uintfptr_t pc;
181         int usermode;
182         int done, runs;
183
184         CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
185             curcpu, now->sec, (unsigned int)(now->frac >> 32),
186                      (unsigned int)(now->frac & 0xffffffff));
187         done = 0;
188         if (fake) {
189                 frame = NULL;
190                 usermode = 0;
191                 pc = 0;
192         } else {
193                 frame = curthread->td_intr_frame;
194                 usermode = TRAPF_USERMODE(frame);
195                 pc = TRAPF_PC(frame);
196         }
197
198         runs = 0;
199         state = DPCPU_PTR(timerstate);
200
201         while (bintime_cmp(now, &state->nexthard, >=)) {
202                 bintime_add(&state->nexthard, &hardperiod);
203                 runs++;
204         }
205         if (runs && fake < 2) {
206                 hardclock_anycpu(runs, usermode);
207                 done = 1;
208         }
209         while (bintime_cmp(now, &state->nextstat, >=)) {
210                 if (fake < 2)
211                         statclock(usermode);
212                 bintime_add(&state->nextstat, &statperiod);
213                 done = 1;
214         }
215         if (profiling) {
216                 while (bintime_cmp(now, &state->nextprof, >=)) {
217                         if (!fake)
218                                 profclock(usermode, pc);
219                         bintime_add(&state->nextprof, &profperiod);
220                         done = 1;
221                 }
222         } else
223                 state->nextprof = state->nextstat;
224
225 #ifdef KDTRACE_HOOKS
226         if (fake == 0 && cyclic_clock_func != NULL &&
227             state->nextcyc.sec != -1 &&
228             bintime_cmp(now, &state->nextcyc, >=)) {
229                 state->nextcyc.sec = -1;
230                 (*cyclic_clock_func)(frame);
231         }
232 #endif
233
234         getnextcpuevent(&t, 0);
235         if (fake == 2) {
236                 state->nextevent = t;
237                 return (done);
238         }
239         ET_HW_LOCK(state);
240         if (!busy) {
241                 state->idle = 0;
242                 state->nextevent = t;
243                 loadtimer(now, 0);
244         }
245         ET_HW_UNLOCK(state);
246         return (done);
247 }
248
249 /*
250  * Schedule binuptime of the next event on current CPU.
251  */
252 static void
253 getnextcpuevent(struct bintime *event, int idle)
254 {
255         struct bintime tmp;
256         struct pcpu_state *state;
257         int skip;
258
259         state = DPCPU_PTR(timerstate);
260         *event = state->nexthard;
261         if (idle) { /* If CPU is idle - ask callouts for how long. */
262                 skip = 4;
263                 if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
264                         skip = tc_min_ticktock_freq;
265                 skip = callout_tickstofirst(hz / skip) - 1;
266                 CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
267                 tmp = hardperiod;
268                 bintime_mul(&tmp, skip);
269                 bintime_add(event, &tmp);
270         } else { /* If CPU is active - handle all types of events. */
271                 if (bintime_cmp(event, &state->nextstat, >))
272                         *event = state->nextstat;
273                 if (profiling && bintime_cmp(event, &state->nextprof, >))
274                         *event = state->nextprof;
275         }
276 #ifdef KDTRACE_HOOKS
277         if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
278                 *event = state->nextcyc;
279 #endif
280 }
281
282 /*
283  * Schedule binuptime of the next event on all CPUs.
284  */
285 static void
286 getnextevent(struct bintime *event)
287 {
288         struct pcpu_state *state;
289 #ifdef SMP
290         int     cpu;
291 #endif
292         int     c;
293
294         state = DPCPU_PTR(timerstate);
295         *event = state->nextevent;
296         c = curcpu;
297 #ifdef SMP
298         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
299                 CPU_FOREACH(cpu) {
300                         if (curcpu == cpu)
301                                 continue;
302                         state = DPCPU_ID_PTR(cpu, timerstate);
303                         if (bintime_cmp(event, &state->nextevent, >)) {
304                                 *event = state->nextevent;
305                                 c = cpu;
306                         }
307                 }
308         }
309 #endif
310         CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
311             curcpu, event->sec, (unsigned int)(event->frac >> 32),
312                              (unsigned int)(event->frac & 0xffffffff), c);
313 }
314
315 /* Hardware timer callback function. */
316 static void
317 timercb(struct eventtimer *et, void *arg)
318 {
319         struct bintime now;
320         struct bintime *next;
321         struct pcpu_state *state;
322 #ifdef SMP
323         int cpu, bcast;
324 #endif
325
326         /* Do not touch anything if somebody reconfiguring timers. */
327         if (busy)
328                 return;
329         /* Update present and next tick times. */
330         state = DPCPU_PTR(timerstate);
331         if (et->et_flags & ET_FLAGS_PERCPU) {
332                 next = &state->nexttick;
333         } else
334                 next = &nexttick;
335         if (periodic) {
336                 now = *next;    /* Ex-next tick time becomes present time. */
337                 bintime_add(next, &timerperiod); /* Next tick in 1 period. */
338         } else {
339                 binuptime(&now);        /* Get present time from hardware. */
340                 next->sec = -1;         /* Next tick is not scheduled yet. */
341         }
342         state->now = now;
343         CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
344             curcpu, now.sec, (unsigned int)(now.frac >> 32),
345                              (unsigned int)(now.frac & 0xffffffff));
346
347 #ifdef SMP
348         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
349         bcast = 0;
350         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
351                 CPU_FOREACH(cpu) {
352                         state = DPCPU_ID_PTR(cpu, timerstate);
353                         ET_HW_LOCK(state);
354                         state->now = now;
355                         if (bintime_cmp(&now, &state->nextevent, >=)) {
356                                 state->nextevent.sec++;
357                                 if (curcpu != cpu) {
358                                         state->ipi = 1;
359                                         bcast = 1;
360                                 }
361                         }
362                         ET_HW_UNLOCK(state);
363                 }
364         }
365 #endif
366
367         /* Handle events for this time on this CPU. */
368         handleevents(&now, 0);
369
370 #ifdef SMP
371         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
372         if (bcast) {
373                 CPU_FOREACH(cpu) {
374                         if (curcpu == cpu)
375                                 continue;
376                         state = DPCPU_ID_PTR(cpu, timerstate);
377                         if (state->ipi) {
378                                 state->ipi = 0;
379                                 ipi_cpu(cpu, IPI_HARDCLOCK);
380                         }
381                 }
382         }
383 #endif
384 }
385
386 /*
387  * Load new value into hardware timer.
388  */
389 static void
390 loadtimer(struct bintime *now, int start)
391 {
392         struct pcpu_state *state;
393         struct bintime new;
394         struct bintime *next;
395         uint64_t tmp;
396         int eq;
397
398         if (timer->et_flags & ET_FLAGS_PERCPU) {
399                 state = DPCPU_PTR(timerstate);
400                 next = &state->nexttick;
401         } else
402                 next = &nexttick;
403         if (periodic) {
404                 if (start) {
405                         /*
406                          * Try to start all periodic timers aligned
407                          * to period to make events synchronous.
408                          */
409                         tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
410                         tmp = (tmp % (timerperiod.frac >> 28)) << 28;
411                         new.sec = 0;
412                         new.frac = timerperiod.frac - tmp;
413                         if (new.frac < tmp)     /* Left less then passed. */
414                                 bintime_add(&new, &timerperiod);
415                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
416                             curcpu, now->sec, (unsigned int)(now->frac >> 32),
417                             new.sec, (unsigned int)(new.frac >> 32));
418                         *next = new;
419                         bintime_add(next, now);
420                         et_start(timer, &new, &timerperiod);
421                 }
422         } else {
423                 getnextevent(&new);
424                 eq = bintime_cmp(&new, next, ==);
425                 CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
426                     curcpu, new.sec, (unsigned int)(new.frac >> 32),
427                              (unsigned int)(new.frac & 0xffffffff),
428                              eq);
429                 if (!eq) {
430                         *next = new;
431                         bintime_sub(&new, now);
432                         et_start(timer, &new, NULL);
433                 }
434         }
435 }
436
437 /*
438  * Prepare event timer parameters after configuration changes.
439  */
440 static void
441 setuptimer(void)
442 {
443         int freq;
444
445         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
446                 periodic = 0;
447         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
448                 periodic = 1;
449         singlemul = MIN(MAX(singlemul, 1), 20);
450         freq = hz * singlemul;
451         while (freq < (profiling ? profhz : stathz))
452                 freq += hz;
453         freq = round_freq(timer, freq);
454         FREQ2BT(freq, &timerperiod);
455 }
456
457 /*
458  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
459  */
460 static int
461 doconfigtimer(void)
462 {
463         struct bintime now;
464         struct pcpu_state *state;
465
466         state = DPCPU_PTR(timerstate);
467         switch (atomic_load_acq_int(&state->action)) {
468         case 1:
469                 binuptime(&now);
470                 ET_HW_LOCK(state);
471                 loadtimer(&now, 1);
472                 ET_HW_UNLOCK(state);
473                 state->handle = 0;
474                 atomic_store_rel_int(&state->action, 0);
475                 return (1);
476         case 2:
477                 ET_HW_LOCK(state);
478                 et_stop(timer);
479                 ET_HW_UNLOCK(state);
480                 state->handle = 0;
481                 atomic_store_rel_int(&state->action, 0);
482                 return (1);
483         }
484         if (atomic_readandclear_int(&state->handle) && !busy) {
485                 binuptime(&now);
486                 handleevents(&now, 0);
487                 return (1);
488         }
489         return (0);
490 }
491
492 /*
493  * Reconfigure specified timer.
494  * For per-CPU timers use IPI to make other CPUs to reconfigure.
495  */
496 static void
497 configtimer(int start)
498 {
499         struct bintime now, next;
500         struct pcpu_state *state;
501         int cpu;
502
503         if (start) {
504                 setuptimer();
505                 binuptime(&now);
506         }
507         critical_enter();
508         ET_HW_LOCK(DPCPU_PTR(timerstate));
509         if (start) {
510                 /* Initialize time machine parameters. */
511                 next = now;
512                 bintime_add(&next, &timerperiod);
513                 if (periodic)
514                         nexttick = next;
515                 else
516                         nexttick.sec = -1;
517                 CPU_FOREACH(cpu) {
518                         state = DPCPU_ID_PTR(cpu, timerstate);
519                         state->now = now;
520                         state->nextevent = next;
521                         if (periodic)
522                                 state->nexttick = next;
523                         else
524                                 state->nexttick.sec = -1;
525                         state->nexthard = next;
526                         state->nextstat = next;
527                         state->nextprof = next;
528                         hardclock_sync(cpu);
529                 }
530                 busy = 0;
531                 /* Start global timer or per-CPU timer of this CPU. */
532                 loadtimer(&now, 1);
533         } else {
534                 busy = 1;
535                 /* Stop global timer or per-CPU timer of this CPU. */
536                 et_stop(timer);
537         }
538         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
539 #ifdef SMP
540         /* If timer is global or there is no other CPUs yet - we are done. */
541         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
542                 critical_exit();
543                 return;
544         }
545         /* Set reconfigure flags for other CPUs. */
546         CPU_FOREACH(cpu) {
547                 state = DPCPU_ID_PTR(cpu, timerstate);
548                 atomic_store_rel_int(&state->action,
549                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
550         }
551         /* Broadcast reconfigure IPI. */
552         ipi_all_but_self(IPI_HARDCLOCK);
553         /* Wait for reconfiguration completed. */
554 restart:
555         cpu_spinwait();
556         CPU_FOREACH(cpu) {
557                 if (cpu == curcpu)
558                         continue;
559                 state = DPCPU_ID_PTR(cpu, timerstate);
560                 if (atomic_load_acq_int(&state->action))
561                         goto restart;
562         }
563 #endif
564         critical_exit();
565 }
566
567 /*
568  * Calculate nearest frequency supported by hardware timer.
569  */
570 static int
571 round_freq(struct eventtimer *et, int freq)
572 {
573         uint64_t div;
574
575         if (et->et_frequency != 0) {
576                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
577                 if (et->et_flags & ET_FLAGS_POW2DIV)
578                         div = 1 << (flsl(div + div / 2) - 1);
579                 freq = (et->et_frequency + div / 2) / div;
580         }
581         if (et->et_min_period.sec > 0)
582                 freq = 0;
583         else if (et->et_min_period.frac != 0)
584                 freq = min(freq, BT2FREQ(&et->et_min_period));
585         if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
586                 freq = max(freq, BT2FREQ(&et->et_max_period));
587         return (freq);
588 }
589
590 /*
591  * Configure and start event timers (BSP part).
592  */
593 void
594 cpu_initclocks_bsp(void)
595 {
596         struct pcpu_state *state;
597         int base, div, cpu;
598
599         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
600         CPU_FOREACH(cpu) {
601                 state = DPCPU_ID_PTR(cpu, timerstate);
602                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
603 #ifdef KDTRACE_HOOKS
604                 state->nextcyc.sec = -1;
605 #endif
606         }
607 #ifdef SMP
608         callout_new_inserted = cpu_new_callout;
609 #endif
610         periodic = want_periodic;
611         /* Grab requested timer or the best of present. */
612         if (timername[0])
613                 timer = et_find(timername, 0, 0);
614         if (timer == NULL && periodic) {
615                 timer = et_find(NULL,
616                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
617         }
618         if (timer == NULL) {
619                 timer = et_find(NULL,
620                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
621         }
622         if (timer == NULL && !periodic) {
623                 timer = et_find(NULL,
624                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
625         }
626         if (timer == NULL)
627                 panic("No usable event timer found!");
628         et_init(timer, timercb, NULL, NULL);
629
630         /* Adapt to timer capabilities. */
631         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
632                 periodic = 0;
633         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
634                 periodic = 1;
635         if (timer->et_flags & ET_FLAGS_C3STOP)
636                 cpu_disable_deep_sleep++;
637
638         /*
639          * We honor the requested 'hz' value.
640          * We want to run stathz in the neighborhood of 128hz.
641          * We would like profhz to run as often as possible.
642          */
643         if (singlemul <= 0 || singlemul > 20) {
644                 if (hz >= 1500 || (hz % 128) == 0)
645                         singlemul = 1;
646                 else if (hz >= 750)
647                         singlemul = 2;
648                 else
649                         singlemul = 4;
650         }
651         if (periodic) {
652                 base = round_freq(timer, hz * singlemul);
653                 singlemul = max((base + hz / 2) / hz, 1);
654                 hz = (base + singlemul / 2) / singlemul;
655                 if (base <= 128)
656                         stathz = base;
657                 else {
658                         div = base / 128;
659                         if (div >= singlemul && (div % singlemul) == 0)
660                                 div++;
661                         stathz = base / div;
662                 }
663                 profhz = stathz;
664                 while ((profhz + stathz) <= 128 * 64)
665                         profhz += stathz;
666                 profhz = round_freq(timer, profhz);
667         } else {
668                 hz = round_freq(timer, hz);
669                 stathz = round_freq(timer, 127);
670                 profhz = round_freq(timer, stathz * 64);
671         }
672         tick = 1000000 / hz;
673         FREQ2BT(hz, &hardperiod);
674         FREQ2BT(stathz, &statperiod);
675         FREQ2BT(profhz, &profperiod);
676         ET_LOCK();
677         configtimer(1);
678         ET_UNLOCK();
679 }
680
681 /*
682  * Start per-CPU event timers on APs.
683  */
684 void
685 cpu_initclocks_ap(void)
686 {
687         struct bintime now;
688         struct pcpu_state *state;
689
690         state = DPCPU_PTR(timerstate);
691         binuptime(&now);
692         ET_HW_LOCK(state);
693         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 && periodic) {
694                 state->now = nexttick;
695                 bintime_sub(&state->now, &timerperiod);
696         } else
697                 state->now = now;
698         hardclock_sync(curcpu);
699         handleevents(&state->now, 2);
700         if (timer->et_flags & ET_FLAGS_PERCPU)
701                 loadtimer(&now, 1);
702         ET_HW_UNLOCK(state);
703 }
704
705 /*
706  * Switch to profiling clock rates.
707  */
708 void
709 cpu_startprofclock(void)
710 {
711
712         ET_LOCK();
713         if (periodic) {
714                 configtimer(0);
715                 profiling = 1;
716                 configtimer(1);
717         } else
718                 profiling = 1;
719         ET_UNLOCK();
720 }
721
722 /*
723  * Switch to regular clock rates.
724  */
725 void
726 cpu_stopprofclock(void)
727 {
728
729         ET_LOCK();
730         if (periodic) {
731                 configtimer(0);
732                 profiling = 0;
733                 configtimer(1);
734         } else
735                 profiling = 0;
736         ET_UNLOCK();
737 }
738
739 /*
740  * Switch to idle mode (all ticks handled).
741  */
742 void
743 cpu_idleclock(void)
744 {
745         struct bintime now, t;
746         struct pcpu_state *state;
747
748         if (idletick || busy ||
749             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
750 #ifdef DEVICE_POLLING
751             || curcpu == CPU_FIRST()
752 #endif
753             )
754                 return;
755         state = DPCPU_PTR(timerstate);
756         if (periodic)
757                 now = state->now;
758         else
759                 binuptime(&now);
760         CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
761             curcpu, now.sec, (unsigned int)(now.frac >> 32),
762                              (unsigned int)(now.frac & 0xffffffff));
763         getnextcpuevent(&t, 1);
764         ET_HW_LOCK(state);
765         state->idle = 1;
766         state->nextevent = t;
767         if (!periodic)
768                 loadtimer(&now, 0);
769         ET_HW_UNLOCK(state);
770 }
771
772 /*
773  * Switch to active mode (skip empty ticks).
774  */
775 void
776 cpu_activeclock(void)
777 {
778         struct bintime now;
779         struct pcpu_state *state;
780         struct thread *td;
781
782         state = DPCPU_PTR(timerstate);
783         if (state->idle == 0 || busy)
784                 return;
785         if (periodic)
786                 now = state->now;
787         else
788                 binuptime(&now);
789         CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
790             curcpu, now.sec, (unsigned int)(now.frac >> 32),
791                              (unsigned int)(now.frac & 0xffffffff));
792         spinlock_enter();
793         td = curthread;
794         td->td_intr_nesting_level++;
795         handleevents(&now, 1);
796         td->td_intr_nesting_level--;
797         spinlock_exit();
798 }
799
800 #ifdef KDTRACE_HOOKS
801 void
802 clocksource_cyc_set(const struct bintime *t)
803 {
804         struct bintime now;
805         struct pcpu_state *state;
806
807         state = DPCPU_PTR(timerstate);
808         if (periodic)
809                 now = state->now;
810         else
811                 binuptime(&now);
812
813         CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
814             curcpu, now.sec, (unsigned int)(now.frac >> 32),
815                              (unsigned int)(now.frac & 0xffffffff));
816         CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
817             curcpu, t->sec, (unsigned int)(t->frac >> 32),
818                              (unsigned int)(t->frac & 0xffffffff));
819
820         ET_HW_LOCK(state);
821         if (bintime_cmp(t, &state->nextcyc, ==)) {
822                 ET_HW_UNLOCK(state);
823                 return;
824         }
825         state->nextcyc = *t;
826         if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
827                 ET_HW_UNLOCK(state);
828                 return;
829         }
830         state->nextevent = state->nextcyc;
831         if (!periodic)
832                 loadtimer(&now, 0);
833         ET_HW_UNLOCK(state);
834 }
835 #endif
836
837 #ifdef SMP
838 static void
839 cpu_new_callout(int cpu, int ticks)
840 {
841         struct bintime tmp;
842         struct pcpu_state *state;
843
844         CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
845             curcpu, cpu, ticks);
846         state = DPCPU_ID_PTR(cpu, timerstate);
847         ET_HW_LOCK(state);
848         if (state->idle == 0 || busy) {
849                 ET_HW_UNLOCK(state);
850                 return;
851         }
852         /*
853          * If timer is periodic - just update next event time for target CPU.
854          * If timer is global - there is chance it is already programmed.
855          */
856         if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
857                 state->nextevent = state->nexthard;
858                 tmp = hardperiod;
859                 bintime_mul(&tmp, ticks - 1);
860                 bintime_add(&state->nextevent, &tmp);
861                 if (periodic ||
862                     bintime_cmp(&state->nextevent, &nexttick, >=)) {
863                         ET_HW_UNLOCK(state);
864                         return;
865                 }
866         }
867         /*
868          * Otherwise we have to wake that CPU up, as we can't get present
869          * bintime to reprogram global timer from here. If timer is per-CPU,
870          * we by definition can't do it from here.
871          */
872         ET_HW_UNLOCK(state);
873         if (timer->et_flags & ET_FLAGS_PERCPU) {
874                 state->handle = 1;
875                 ipi_cpu(cpu, IPI_HARDCLOCK);
876         } else {
877                 if (!cpu_idle_wakeup(cpu))
878                         ipi_cpu(cpu, IPI_AST);
879         }
880 }
881 #endif
882
883 /*
884  * Report or change the active event timers hardware.
885  */
886 static int
887 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
888 {
889         char buf[32];
890         struct eventtimer *et;
891         int error;
892
893         ET_LOCK();
894         et = timer;
895         snprintf(buf, sizeof(buf), "%s", et->et_name);
896         ET_UNLOCK();
897         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
898         ET_LOCK();
899         et = timer;
900         if (error != 0 || req->newptr == NULL ||
901             strcasecmp(buf, et->et_name) == 0) {
902                 ET_UNLOCK();
903                 return (error);
904         }
905         et = et_find(buf, 0, 0);
906         if (et == NULL) {
907                 ET_UNLOCK();
908                 return (ENOENT);
909         }
910         configtimer(0);
911         et_free(timer);
912         if (et->et_flags & ET_FLAGS_C3STOP)
913                 cpu_disable_deep_sleep++;
914         if (timer->et_flags & ET_FLAGS_C3STOP)
915                 cpu_disable_deep_sleep--;
916         periodic = want_periodic;
917         timer = et;
918         et_init(timer, timercb, NULL, NULL);
919         configtimer(1);
920         ET_UNLOCK();
921         return (error);
922 }
923 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
924     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
925     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
926
927 /*
928  * Report or change the active event timer periodicity.
929  */
930 static int
931 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
932 {
933         int error, val;
934
935         val = periodic;
936         error = sysctl_handle_int(oidp, &val, 0, req);
937         if (error != 0 || req->newptr == NULL)
938                 return (error);
939         ET_LOCK();
940         configtimer(0);
941         periodic = want_periodic = val;
942         configtimer(1);
943         ET_UNLOCK();
944         return (error);
945 }
946 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
947     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
948     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");