]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/kern/kern_tc.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12
13 #include "opt_ntp.h"
14
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP      200
31
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41         static u_int now;
42
43         return (++now);
44 }
45
46 static struct timecounter dummy_timecounter = {
47         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49
50 struct timehands {
51         /* These fields must be initialized by the driver. */
52         struct timecounter      *th_counter;
53         int64_t                 th_adjustment;
54         uint64_t                th_scale;
55         u_int                   th_offset_count;
56         struct bintime          th_offset;
57         struct timeval          th_microtime;
58         struct timespec         th_nanotime;
59         /* Fields not to be copied in tc_windup start with th_generation. */
60         volatile u_int          th_generation;
61         struct timehands        *th_next;
62 };
63
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75         &dummy_timecounter,
76         0,
77         (uint64_t)-1 / 1000000,
78         0,
79         {1, 0},
80         {0, 0},
81         {0, 0},
82         1,
83         &th1
84 };
85
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89
90 int tc_min_ticktock_freq = 1;
91
92 time_t time_second = 1;
93 time_t time_uptime = 1;
94
95 struct bintime boottimebin;
96 struct timeval boottime;
97 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
98 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
99     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
100
101 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
102 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
103
104 static int timestepwarnings;
105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106     &timestepwarnings, 0, "Log time steps");
107
108 static void tc_windup(void);
109 static void cpu_tick_calibrate(int);
110
111 static int
112 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
113 {
114 #ifdef SCTL_MASK32
115         int tv[2];
116
117         if (req->flags & SCTL_MASK32) {
118                 tv[0] = boottime.tv_sec;
119                 tv[1] = boottime.tv_usec;
120                 return SYSCTL_OUT(req, tv, sizeof(tv));
121         } else
122 #endif
123                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
124 }
125
126 static int
127 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
128 {
129         u_int ncount;
130         struct timecounter *tc = arg1;
131
132         ncount = tc->tc_get_timecount(tc);
133         return sysctl_handle_int(oidp, &ncount, 0, req);
134 }
135
136 static int
137 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
138 {
139         uint64_t freq;
140         struct timecounter *tc = arg1;
141
142         freq = tc->tc_frequency;
143         return sysctl_handle_64(oidp, &freq, 0, req);
144 }
145
146 /*
147  * Return the difference between the timehands' counter value now and what
148  * was when we copied it to the timehands' offset_count.
149  */
150 static __inline u_int
151 tc_delta(struct timehands *th)
152 {
153         struct timecounter *tc;
154
155         tc = th->th_counter;
156         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
157             tc->tc_counter_mask);
158 }
159
160 /*
161  * Functions for reading the time.  We have to loop until we are sure that
162  * the timehands that we operated on was not updated under our feet.  See
163  * the comment in <sys/time.h> for a description of these 12 functions.
164  */
165
166 void
167 binuptime(struct bintime *bt)
168 {
169         struct timehands *th;
170         u_int gen;
171
172         do {
173                 th = timehands;
174                 gen = th->th_generation;
175                 *bt = th->th_offset;
176                 bintime_addx(bt, th->th_scale * tc_delta(th));
177         } while (gen == 0 || gen != th->th_generation);
178 }
179
180 void
181 nanouptime(struct timespec *tsp)
182 {
183         struct bintime bt;
184
185         binuptime(&bt);
186         bintime2timespec(&bt, tsp);
187 }
188
189 void
190 microuptime(struct timeval *tvp)
191 {
192         struct bintime bt;
193
194         binuptime(&bt);
195         bintime2timeval(&bt, tvp);
196 }
197
198 void
199 bintime(struct bintime *bt)
200 {
201
202         binuptime(bt);
203         bintime_add(bt, &boottimebin);
204 }
205
206 void
207 nanotime(struct timespec *tsp)
208 {
209         struct bintime bt;
210
211         bintime(&bt);
212         bintime2timespec(&bt, tsp);
213 }
214
215 void
216 microtime(struct timeval *tvp)
217 {
218         struct bintime bt;
219
220         bintime(&bt);
221         bintime2timeval(&bt, tvp);
222 }
223
224 void
225 getbinuptime(struct bintime *bt)
226 {
227         struct timehands *th;
228         u_int gen;
229
230         do {
231                 th = timehands;
232                 gen = th->th_generation;
233                 *bt = th->th_offset;
234         } while (gen == 0 || gen != th->th_generation);
235 }
236
237 void
238 getnanouptime(struct timespec *tsp)
239 {
240         struct timehands *th;
241         u_int gen;
242
243         do {
244                 th = timehands;
245                 gen = th->th_generation;
246                 bintime2timespec(&th->th_offset, tsp);
247         } while (gen == 0 || gen != th->th_generation);
248 }
249
250 void
251 getmicrouptime(struct timeval *tvp)
252 {
253         struct timehands *th;
254         u_int gen;
255
256         do {
257                 th = timehands;
258                 gen = th->th_generation;
259                 bintime2timeval(&th->th_offset, tvp);
260         } while (gen == 0 || gen != th->th_generation);
261 }
262
263 void
264 getbintime(struct bintime *bt)
265 {
266         struct timehands *th;
267         u_int gen;
268
269         do {
270                 th = timehands;
271                 gen = th->th_generation;
272                 *bt = th->th_offset;
273         } while (gen == 0 || gen != th->th_generation);
274         bintime_add(bt, &boottimebin);
275 }
276
277 void
278 getnanotime(struct timespec *tsp)
279 {
280         struct timehands *th;
281         u_int gen;
282
283         do {
284                 th = timehands;
285                 gen = th->th_generation;
286                 *tsp = th->th_nanotime;
287         } while (gen == 0 || gen != th->th_generation);
288 }
289
290 void
291 getmicrotime(struct timeval *tvp)
292 {
293         struct timehands *th;
294         u_int gen;
295
296         do {
297                 th = timehands;
298                 gen = th->th_generation;
299                 *tvp = th->th_microtime;
300         } while (gen == 0 || gen != th->th_generation);
301 }
302
303 /*
304  * Initialize a new timecounter and possibly use it.
305  */
306 void
307 tc_init(struct timecounter *tc)
308 {
309         u_int u;
310         struct sysctl_oid *tc_root;
311
312         u = tc->tc_frequency / tc->tc_counter_mask;
313         /* XXX: We need some margin here, 10% is a guess */
314         u *= 11;
315         u /= 10;
316         if (u > hz && tc->tc_quality >= 0) {
317                 tc->tc_quality = -2000;
318                 if (bootverbose) {
319                         printf("Timecounter \"%s\" frequency %ju Hz",
320                             tc->tc_name, (uintmax_t)tc->tc_frequency);
321                         printf(" -- Insufficient hz, needs at least %u\n", u);
322                 }
323         } else if (tc->tc_quality >= 0 || bootverbose) {
324                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
325                     tc->tc_name, (uintmax_t)tc->tc_frequency,
326                     tc->tc_quality);
327         }
328
329         tc->tc_next = timecounters;
330         timecounters = tc;
331         /*
332          * Set up sysctl tree for this counter.
333          */
334         tc_root = SYSCTL_ADD_NODE(NULL,
335             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
336             CTLFLAG_RW, 0, "timecounter description");
337         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
338             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
339             "mask for implemented bits");
340         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
341             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
342             sysctl_kern_timecounter_get, "IU", "current timecounter value");
343         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
344             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
345              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
346         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
347             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
348             "goodness of time counter");
349         /*
350          * Never automatically use a timecounter with negative quality.
351          * Even though we run on the dummy counter, switching here may be
352          * worse since this timecounter may not be monotonous.
353          */
354         if (tc->tc_quality < 0)
355                 return;
356         if (tc->tc_quality < timecounter->tc_quality)
357                 return;
358         if (tc->tc_quality == timecounter->tc_quality &&
359             tc->tc_frequency < timecounter->tc_frequency)
360                 return;
361         (void)tc->tc_get_timecount(tc);
362         (void)tc->tc_get_timecount(tc);
363         timecounter = tc;
364 }
365
366 /* Report the frequency of the current timecounter. */
367 uint64_t
368 tc_getfrequency(void)
369 {
370
371         return (timehands->th_counter->tc_frequency);
372 }
373
374 /*
375  * Step our concept of UTC.  This is done by modifying our estimate of
376  * when we booted.
377  * XXX: not locked.
378  */
379 void
380 tc_setclock(struct timespec *ts)
381 {
382         struct timespec tbef, taft;
383         struct bintime bt, bt2;
384
385         cpu_tick_calibrate(1);
386         nanotime(&tbef);
387         timespec2bintime(ts, &bt);
388         binuptime(&bt2);
389         bintime_sub(&bt, &bt2);
390         bintime_add(&bt2, &boottimebin);
391         boottimebin = bt;
392         bintime2timeval(&bt, &boottime);
393
394         /* XXX fiddle all the little crinkly bits around the fiords... */
395         tc_windup();
396         nanotime(&taft);
397         if (timestepwarnings) {
398                 log(LOG_INFO,
399                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
400                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
401                     (intmax_t)taft.tv_sec, taft.tv_nsec,
402                     (intmax_t)ts->tv_sec, ts->tv_nsec);
403         }
404         cpu_tick_calibrate(1);
405 }
406
407 /*
408  * Initialize the next struct timehands in the ring and make
409  * it the active timehands.  Along the way we might switch to a different
410  * timecounter and/or do seconds processing in NTP.  Slightly magic.
411  */
412 static void
413 tc_windup(void)
414 {
415         struct bintime bt;
416         struct timehands *th, *tho;
417         uint64_t scale;
418         u_int delta, ncount, ogen;
419         int i;
420         time_t t;
421
422         /*
423          * Make the next timehands a copy of the current one, but do not
424          * overwrite the generation or next pointer.  While we update
425          * the contents, the generation must be zero.
426          */
427         tho = timehands;
428         th = tho->th_next;
429         ogen = th->th_generation;
430         th->th_generation = 0;
431         bcopy(tho, th, offsetof(struct timehands, th_generation));
432
433         /*
434          * Capture a timecounter delta on the current timecounter and if
435          * changing timecounters, a counter value from the new timecounter.
436          * Update the offset fields accordingly.
437          */
438         delta = tc_delta(th);
439         if (th->th_counter != timecounter)
440                 ncount = timecounter->tc_get_timecount(timecounter);
441         else
442                 ncount = 0;
443         th->th_offset_count += delta;
444         th->th_offset_count &= th->th_counter->tc_counter_mask;
445         while (delta > th->th_counter->tc_frequency) {
446                 /* Eat complete unadjusted seconds. */
447                 delta -= th->th_counter->tc_frequency;
448                 th->th_offset.sec++;
449         }
450         if ((delta > th->th_counter->tc_frequency / 2) &&
451             (th->th_scale * delta < ((uint64_t)1 << 63))) {
452                 /* The product th_scale * delta just barely overflows. */
453                 th->th_offset.sec++;
454         }
455         bintime_addx(&th->th_offset, th->th_scale * delta);
456
457         /*
458          * Hardware latching timecounters may not generate interrupts on
459          * PPS events, so instead we poll them.  There is a finite risk that
460          * the hardware might capture a count which is later than the one we
461          * got above, and therefore possibly in the next NTP second which might
462          * have a different rate than the current NTP second.  It doesn't
463          * matter in practice.
464          */
465         if (tho->th_counter->tc_poll_pps)
466                 tho->th_counter->tc_poll_pps(tho->th_counter);
467
468         /*
469          * Deal with NTP second processing.  The for loop normally
470          * iterates at most once, but in extreme situations it might
471          * keep NTP sane if timeouts are not run for several seconds.
472          * At boot, the time step can be large when the TOD hardware
473          * has been read, so on really large steps, we call
474          * ntp_update_second only twice.  We need to call it twice in
475          * case we missed a leap second.
476          */
477         bt = th->th_offset;
478         bintime_add(&bt, &boottimebin);
479         i = bt.sec - tho->th_microtime.tv_sec;
480         if (i > LARGE_STEP)
481                 i = 2;
482         for (; i > 0; i--) {
483                 t = bt.sec;
484                 ntp_update_second(&th->th_adjustment, &bt.sec);
485                 if (bt.sec != t)
486                         boottimebin.sec += bt.sec - t;
487         }
488         /* Update the UTC timestamps used by the get*() functions. */
489         /* XXX shouldn't do this here.  Should force non-`get' versions. */
490         bintime2timeval(&bt, &th->th_microtime);
491         bintime2timespec(&bt, &th->th_nanotime);
492
493         /* Now is a good time to change timecounters. */
494         if (th->th_counter != timecounter) {
495 #ifndef __arm__
496                 if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
497                         cpu_disable_deep_sleep++;
498                 if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
499                         cpu_disable_deep_sleep--;
500 #endif
501                 th->th_counter = timecounter;
502                 th->th_offset_count = ncount;
503                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
504                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
505         }
506
507         /*-
508          * Recalculate the scaling factor.  We want the number of 1/2^64
509          * fractions of a second per period of the hardware counter, taking
510          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
511          * processing provides us with.
512          *
513          * The th_adjustment is nanoseconds per second with 32 bit binary
514          * fraction and we want 64 bit binary fraction of second:
515          *
516          *       x = a * 2^32 / 10^9 = a * 4.294967296
517          *
518          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
519          * we can only multiply by about 850 without overflowing, that
520          * leaves no suitably precise fractions for multiply before divide.
521          *
522          * Divide before multiply with a fraction of 2199/512 results in a
523          * systematic undercompensation of 10PPM of th_adjustment.  On a
524          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
525          *
526          * We happily sacrifice the lowest of the 64 bits of our result
527          * to the goddess of code clarity.
528          *
529          */
530         scale = (uint64_t)1 << 63;
531         scale += (th->th_adjustment / 1024) * 2199;
532         scale /= th->th_counter->tc_frequency;
533         th->th_scale = scale * 2;
534
535         /*
536          * Now that the struct timehands is again consistent, set the new
537          * generation number, making sure to not make it zero.
538          */
539         if (++ogen == 0)
540                 ogen = 1;
541         th->th_generation = ogen;
542
543         /* Go live with the new struct timehands. */
544         time_second = th->th_microtime.tv_sec;
545         time_uptime = th->th_offset.sec;
546         timehands = th;
547 }
548
549 /* Report or change the active timecounter hardware. */
550 static int
551 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
552 {
553         char newname[32];
554         struct timecounter *newtc, *tc;
555         int error;
556
557         tc = timecounter;
558         strlcpy(newname, tc->tc_name, sizeof(newname));
559
560         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
561         if (error != 0 || req->newptr == NULL ||
562             strcmp(newname, tc->tc_name) == 0)
563                 return (error);
564         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
565                 if (strcmp(newname, newtc->tc_name) != 0)
566                         continue;
567
568                 /* Warm up new timecounter. */
569                 (void)newtc->tc_get_timecount(newtc);
570                 (void)newtc->tc_get_timecount(newtc);
571
572                 timecounter = newtc;
573                 return (0);
574         }
575         return (EINVAL);
576 }
577
578 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
579     0, 0, sysctl_kern_timecounter_hardware, "A",
580     "Timecounter hardware selected");
581
582
583 /* Report or change the active timecounter hardware. */
584 static int
585 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
586 {
587         char buf[32], *spc;
588         struct timecounter *tc;
589         int error;
590
591         spc = "";
592         error = 0;
593         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
594                 sprintf(buf, "%s%s(%d)",
595                     spc, tc->tc_name, tc->tc_quality);
596                 error = SYSCTL_OUT(req, buf, strlen(buf));
597                 spc = " ";
598         }
599         return (error);
600 }
601
602 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
603     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
604
605 /*
606  * RFC 2783 PPS-API implementation.
607  */
608
609 int
610 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
611 {
612         pps_params_t *app;
613         struct pps_fetch_args *fapi;
614 #ifdef PPS_SYNC
615         struct pps_kcbind_args *kapi;
616 #endif
617
618         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
619         switch (cmd) {
620         case PPS_IOC_CREATE:
621                 return (0);
622         case PPS_IOC_DESTROY:
623                 return (0);
624         case PPS_IOC_SETPARAMS:
625                 app = (pps_params_t *)data;
626                 if (app->mode & ~pps->ppscap)
627                         return (EINVAL);
628                 pps->ppsparam = *app;
629                 return (0);
630         case PPS_IOC_GETPARAMS:
631                 app = (pps_params_t *)data;
632                 *app = pps->ppsparam;
633                 app->api_version = PPS_API_VERS_1;
634                 return (0);
635         case PPS_IOC_GETCAP:
636                 *(int*)data = pps->ppscap;
637                 return (0);
638         case PPS_IOC_FETCH:
639                 fapi = (struct pps_fetch_args *)data;
640                 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
641                         return (EINVAL);
642                 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
643                         return (EOPNOTSUPP);
644                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
645                 fapi->pps_info_buf = pps->ppsinfo;
646                 return (0);
647         case PPS_IOC_KCBIND:
648 #ifdef PPS_SYNC
649                 kapi = (struct pps_kcbind_args *)data;
650                 /* XXX Only root should be able to do this */
651                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
652                         return (EINVAL);
653                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
654                         return (EINVAL);
655                 if (kapi->edge & ~pps->ppscap)
656                         return (EINVAL);
657                 pps->kcmode = kapi->edge;
658                 return (0);
659 #else
660                 return (EOPNOTSUPP);
661 #endif
662         default:
663                 return (ENOIOCTL);
664         }
665 }
666
667 void
668 pps_init(struct pps_state *pps)
669 {
670         pps->ppscap |= PPS_TSFMT_TSPEC;
671         if (pps->ppscap & PPS_CAPTUREASSERT)
672                 pps->ppscap |= PPS_OFFSETASSERT;
673         if (pps->ppscap & PPS_CAPTURECLEAR)
674                 pps->ppscap |= PPS_OFFSETCLEAR;
675 }
676
677 void
678 pps_capture(struct pps_state *pps)
679 {
680         struct timehands *th;
681
682         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
683         th = timehands;
684         pps->capgen = th->th_generation;
685         pps->capth = th;
686         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
687         if (pps->capgen != th->th_generation)
688                 pps->capgen = 0;
689 }
690
691 void
692 pps_event(struct pps_state *pps, int event)
693 {
694         struct bintime bt;
695         struct timespec ts, *tsp, *osp;
696         u_int tcount, *pcount;
697         int foff, fhard;
698         pps_seq_t *pseq;
699
700         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
701         /* If the timecounter was wound up underneath us, bail out. */
702         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
703                 return;
704
705         /* Things would be easier with arrays. */
706         if (event == PPS_CAPTUREASSERT) {
707                 tsp = &pps->ppsinfo.assert_timestamp;
708                 osp = &pps->ppsparam.assert_offset;
709                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
710                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
711                 pcount = &pps->ppscount[0];
712                 pseq = &pps->ppsinfo.assert_sequence;
713         } else {
714                 tsp = &pps->ppsinfo.clear_timestamp;
715                 osp = &pps->ppsparam.clear_offset;
716                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
717                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
718                 pcount = &pps->ppscount[1];
719                 pseq = &pps->ppsinfo.clear_sequence;
720         }
721
722         /*
723          * If the timecounter changed, we cannot compare the count values, so
724          * we have to drop the rest of the PPS-stuff until the next event.
725          */
726         if (pps->ppstc != pps->capth->th_counter) {
727                 pps->ppstc = pps->capth->th_counter;
728                 *pcount = pps->capcount;
729                 pps->ppscount[2] = pps->capcount;
730                 return;
731         }
732
733         /* Convert the count to a timespec. */
734         tcount = pps->capcount - pps->capth->th_offset_count;
735         tcount &= pps->capth->th_counter->tc_counter_mask;
736         bt = pps->capth->th_offset;
737         bintime_addx(&bt, pps->capth->th_scale * tcount);
738         bintime_add(&bt, &boottimebin);
739         bintime2timespec(&bt, &ts);
740
741         /* If the timecounter was wound up underneath us, bail out. */
742         if (pps->capgen != pps->capth->th_generation)
743                 return;
744
745         *pcount = pps->capcount;
746         (*pseq)++;
747         *tsp = ts;
748
749         if (foff) {
750                 timespecadd(tsp, osp);
751                 if (tsp->tv_nsec < 0) {
752                         tsp->tv_nsec += 1000000000;
753                         tsp->tv_sec -= 1;
754                 }
755         }
756 #ifdef PPS_SYNC
757         if (fhard) {
758                 uint64_t scale;
759
760                 /*
761                  * Feed the NTP PLL/FLL.
762                  * The FLL wants to know how many (hardware) nanoseconds
763                  * elapsed since the previous event.
764                  */
765                 tcount = pps->capcount - pps->ppscount[2];
766                 pps->ppscount[2] = pps->capcount;
767                 tcount &= pps->capth->th_counter->tc_counter_mask;
768                 scale = (uint64_t)1 << 63;
769                 scale /= pps->capth->th_counter->tc_frequency;
770                 scale *= 2;
771                 bt.sec = 0;
772                 bt.frac = 0;
773                 bintime_addx(&bt, scale * tcount);
774                 bintime2timespec(&bt, &ts);
775                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
776         }
777 #endif
778 }
779
780 /*
781  * Timecounters need to be updated every so often to prevent the hardware
782  * counter from overflowing.  Updating also recalculates the cached values
783  * used by the get*() family of functions, so their precision depends on
784  * the update frequency.
785  */
786
787 static int tc_tick;
788 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
789     "Approximate number of hardclock ticks in a millisecond");
790
791 void
792 tc_ticktock(int cnt)
793 {
794         static int count;
795
796         count += cnt;
797         if (count < tc_tick)
798                 return;
799         count = 0;
800         tc_windup();
801 }
802
803 static void
804 inittimecounter(void *dummy)
805 {
806         u_int p;
807
808         /*
809          * Set the initial timeout to
810          * max(1, <approx. number of hardclock ticks in a millisecond>).
811          * People should probably not use the sysctl to set the timeout
812          * to smaller than its inital value, since that value is the
813          * smallest reasonable one.  If they want better timestamps they
814          * should use the non-"get"* functions.
815          */
816         if (hz > 1000)
817                 tc_tick = (hz + 500) / 1000;
818         else
819                 tc_tick = 1;
820         p = (tc_tick * 1000000) / hz;
821         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
822
823         /* warm up new timecounter (again) and get rolling. */
824         (void)timecounter->tc_get_timecount(timecounter);
825         (void)timecounter->tc_get_timecount(timecounter);
826         tc_windup();
827 }
828
829 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
830
831 /* Cpu tick handling -------------------------------------------------*/
832
833 static int cpu_tick_variable;
834 static uint64_t cpu_tick_frequency;
835
836 static uint64_t
837 tc_cpu_ticks(void)
838 {
839         static uint64_t base;
840         static unsigned last;
841         unsigned u;
842         struct timecounter *tc;
843
844         tc = timehands->th_counter;
845         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
846         if (u < last)
847                 base += (uint64_t)tc->tc_counter_mask + 1;
848         last = u;
849         return (u + base);
850 }
851
852 void
853 cpu_tick_calibration(void)
854 {
855         static time_t last_calib;
856
857         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
858                 cpu_tick_calibrate(0);
859                 last_calib = time_uptime;
860         }
861 }
862
863 /*
864  * This function gets called every 16 seconds on only one designated
865  * CPU in the system from hardclock() via cpu_tick_calibration()().
866  *
867  * Whenever the real time clock is stepped we get called with reset=1
868  * to make sure we handle suspend/resume and similar events correctly.
869  */
870
871 static void
872 cpu_tick_calibrate(int reset)
873 {
874         static uint64_t c_last;
875         uint64_t c_this, c_delta;
876         static struct bintime  t_last;
877         struct bintime t_this, t_delta;
878         uint32_t divi;
879
880         if (reset) {
881                 /* The clock was stepped, abort & reset */
882                 t_last.sec = 0;
883                 return;
884         }
885
886         /* we don't calibrate fixed rate cputicks */
887         if (!cpu_tick_variable)
888                 return;
889
890         getbinuptime(&t_this);
891         c_this = cpu_ticks();
892         if (t_last.sec != 0) {
893                 c_delta = c_this - c_last;
894                 t_delta = t_this;
895                 bintime_sub(&t_delta, &t_last);
896                 /*
897                  * Headroom:
898                  *      2^(64-20) / 16[s] =
899                  *      2^(44) / 16[s] =
900                  *      17.592.186.044.416 / 16 =
901                  *      1.099.511.627.776 [Hz]
902                  */
903                 divi = t_delta.sec << 20;
904                 divi |= t_delta.frac >> (64 - 20);
905                 c_delta <<= 20;
906                 c_delta /= divi;
907                 if (c_delta > cpu_tick_frequency) {
908                         if (0 && bootverbose)
909                                 printf("cpu_tick increased to %ju Hz\n",
910                                     c_delta);
911                         cpu_tick_frequency = c_delta;
912                 }
913         }
914         c_last = c_this;
915         t_last = t_this;
916 }
917
918 void
919 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
920 {
921
922         if (func == NULL) {
923                 cpu_ticks = tc_cpu_ticks;
924         } else {
925                 cpu_tick_frequency = freq;
926                 cpu_tick_variable = var;
927                 cpu_ticks = func;
928         }
929 }
930
931 uint64_t
932 cpu_tickrate(void)
933 {
934
935         if (cpu_ticks == tc_cpu_ticks) 
936                 return (tc_getfrequency());
937         return (cpu_tick_frequency);
938 }
939
940 /*
941  * We need to be slightly careful converting cputicks to microseconds.
942  * There is plenty of margin in 64 bits of microseconds (half a million
943  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
944  * before divide conversion (to retain precision) we find that the
945  * margin shrinks to 1.5 hours (one millionth of 146y).
946  * With a three prong approach we never lose significant bits, no
947  * matter what the cputick rate and length of timeinterval is.
948  */
949
950 uint64_t
951 cputick2usec(uint64_t tick)
952 {
953
954         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
955                 return (tick / (cpu_tickrate() / 1000000LL));
956         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
957                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
958         else
959                 return ((tick * 1000000LL) / cpu_tickrate());
960 }
961
962 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;