]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/kern/kern_thread.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/resourcevar.h>
42 #include <sys/smp.h>
43 #include <sys/sched.h>
44 #include <sys/sleepqueue.h>
45 #include <sys/selinfo.h>
46 #include <sys/turnstile.h>
47 #include <sys/ktr.h>
48 #include <sys/rwlock.h>
49 #include <sys/umtx.h>
50 #include <sys/cpuset.h>
51 #ifdef  HWPMC_HOOKS
52 #include <sys/pmckern.h>
53 #endif
54
55 #include <security/audit/audit.h>
56
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
59 #include <vm/uma.h>
60 #include <sys/eventhandler.h>
61
62 /*
63  * thread related storage.
64  */
65 static uma_zone_t thread_zone;
66
67 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
68 static struct mtx zombie_lock;
69 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
70
71 static void thread_zombie(struct thread *);
72
73 #define TID_BUFFER_SIZE 1024
74
75 struct mtx tid_lock;
76 static struct unrhdr *tid_unrhdr;
77 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
78 static int tid_head, tid_tail;
79 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
80
81 struct  tidhashhead *tidhashtbl;
82 u_long  tidhash;
83 struct  rwlock tidhash_lock;
84
85 static lwpid_t
86 tid_alloc(void)
87 {
88         lwpid_t tid;
89
90         tid = alloc_unr(tid_unrhdr);
91         if (tid != -1)
92                 return (tid);
93         mtx_lock(&tid_lock);
94         if (tid_head == tid_tail) {
95                 mtx_unlock(&tid_lock);
96                 return (-1);
97         }
98         tid = tid_buffer[tid_head++];
99         tid_head %= TID_BUFFER_SIZE;
100         mtx_unlock(&tid_lock);
101         return (tid);
102 }
103
104 static void
105 tid_free(lwpid_t tid)
106 {
107         lwpid_t tmp_tid = -1;
108
109         mtx_lock(&tid_lock);
110         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
111                 tmp_tid = tid_buffer[tid_head++];
112                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
113         }
114         tid_buffer[tid_tail++] = tid;
115         tid_tail %= TID_BUFFER_SIZE;
116         mtx_unlock(&tid_lock);
117         if (tmp_tid != -1)
118                 free_unr(tid_unrhdr, tmp_tid);
119 }
120
121 /*
122  * Prepare a thread for use.
123  */
124 static int
125 thread_ctor(void *mem, int size, void *arg, int flags)
126 {
127         struct thread   *td;
128
129         td = (struct thread *)mem;
130         td->td_state = TDS_INACTIVE;
131         td->td_oncpu = NOCPU;
132
133         td->td_tid = tid_alloc();
134
135         /*
136          * Note that td_critnest begins life as 1 because the thread is not
137          * running and is thereby implicitly waiting to be on the receiving
138          * end of a context switch.
139          */
140         td->td_critnest = 1;
141         td->td_lend_user_pri = PRI_MAX;
142         EVENTHANDLER_INVOKE(thread_ctor, td);
143 #ifdef AUDIT
144         audit_thread_alloc(td);
145 #endif
146         umtx_thread_alloc(td);
147         return (0);
148 }
149
150 /*
151  * Reclaim a thread after use.
152  */
153 static void
154 thread_dtor(void *mem, int size, void *arg)
155 {
156         struct thread *td;
157
158         td = (struct thread *)mem;
159
160 #ifdef INVARIANTS
161         /* Verify that this thread is in a safe state to free. */
162         switch (td->td_state) {
163         case TDS_INHIBITED:
164         case TDS_RUNNING:
165         case TDS_CAN_RUN:
166         case TDS_RUNQ:
167                 /*
168                  * We must never unlink a thread that is in one of
169                  * these states, because it is currently active.
170                  */
171                 panic("bad state for thread unlinking");
172                 /* NOTREACHED */
173         case TDS_INACTIVE:
174                 break;
175         default:
176                 panic("bad thread state");
177                 /* NOTREACHED */
178         }
179 #endif
180 #ifdef AUDIT
181         audit_thread_free(td);
182 #endif
183         /* Free all OSD associated to this thread. */
184         osd_thread_exit(td);
185
186         EVENTHANDLER_INVOKE(thread_dtor, td);
187         tid_free(td->td_tid);
188 }
189
190 /*
191  * Initialize type-stable parts of a thread (when newly created).
192  */
193 static int
194 thread_init(void *mem, int size, int flags)
195 {
196         struct thread *td;
197
198         td = (struct thread *)mem;
199
200         td->td_sleepqueue = sleepq_alloc();
201         td->td_turnstile = turnstile_alloc();
202         EVENTHANDLER_INVOKE(thread_init, td);
203         td->td_sched = (struct td_sched *)&td[1];
204         umtx_thread_init(td);
205         td->td_kstack = 0;
206         return (0);
207 }
208
209 /*
210  * Tear down type-stable parts of a thread (just before being discarded).
211  */
212 static void
213 thread_fini(void *mem, int size)
214 {
215         struct thread *td;
216
217         td = (struct thread *)mem;
218         EVENTHANDLER_INVOKE(thread_fini, td);
219         turnstile_free(td->td_turnstile);
220         sleepq_free(td->td_sleepqueue);
221         umtx_thread_fini(td);
222         seltdfini(td);
223 }
224
225 /*
226  * For a newly created process,
227  * link up all the structures and its initial threads etc.
228  * called from:
229  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
230  * proc_dtor() (should go away)
231  * proc_init()
232  */
233 void
234 proc_linkup0(struct proc *p, struct thread *td)
235 {
236         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
237         proc_linkup(p, td);
238 }
239
240 void
241 proc_linkup(struct proc *p, struct thread *td)
242 {
243
244         sigqueue_init(&p->p_sigqueue, p);
245         p->p_ksi = ksiginfo_alloc(1);
246         if (p->p_ksi != NULL) {
247                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
248                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
249         }
250         LIST_INIT(&p->p_mqnotifier);
251         p->p_numthreads = 0;
252         thread_link(td, p);
253 }
254
255 /*
256  * Initialize global thread allocation resources.
257  */
258 void
259 threadinit(void)
260 {
261
262         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
263         /* leave one number for thread0 */
264         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
265
266         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
267             thread_ctor, thread_dtor, thread_init, thread_fini,
268             16 - 1, 0);
269         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
270         rw_init(&tidhash_lock, "tidhash");
271 }
272
273 /*
274  * Place an unused thread on the zombie list.
275  * Use the slpq as that must be unused by now.
276  */
277 void
278 thread_zombie(struct thread *td)
279 {
280         mtx_lock_spin(&zombie_lock);
281         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
282         mtx_unlock_spin(&zombie_lock);
283 }
284
285 /*
286  * Release a thread that has exited after cpu_throw().
287  */
288 void
289 thread_stash(struct thread *td)
290 {
291         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
292         thread_zombie(td);
293 }
294
295 /*
296  * Reap zombie resources.
297  */
298 void
299 thread_reap(void)
300 {
301         struct thread *td_first, *td_next;
302
303         /*
304          * Don't even bother to lock if none at this instant,
305          * we really don't care about the next instant..
306          */
307         if (!TAILQ_EMPTY(&zombie_threads)) {
308                 mtx_lock_spin(&zombie_lock);
309                 td_first = TAILQ_FIRST(&zombie_threads);
310                 if (td_first)
311                         TAILQ_INIT(&zombie_threads);
312                 mtx_unlock_spin(&zombie_lock);
313                 while (td_first) {
314                         td_next = TAILQ_NEXT(td_first, td_slpq);
315                         if (td_first->td_ucred)
316                                 crfree(td_first->td_ucred);
317                         thread_free(td_first);
318                         td_first = td_next;
319                 }
320         }
321 }
322
323 /*
324  * Allocate a thread.
325  */
326 struct thread *
327 thread_alloc(int pages)
328 {
329         struct thread *td;
330
331         thread_reap(); /* check if any zombies to get */
332
333         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
334         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
335         if (!vm_thread_new(td, pages)) {
336                 uma_zfree(thread_zone, td);
337                 return (NULL);
338         }
339         cpu_thread_alloc(td);
340         return (td);
341 }
342
343 int
344 thread_alloc_stack(struct thread *td, int pages)
345 {
346
347         KASSERT(td->td_kstack == 0,
348             ("thread_alloc_stack called on a thread with kstack"));
349         if (!vm_thread_new(td, pages))
350                 return (0);
351         cpu_thread_alloc(td);
352         return (1);
353 }
354
355 /*
356  * Deallocate a thread.
357  */
358 void
359 thread_free(struct thread *td)
360 {
361
362         lock_profile_thread_exit(td);
363         if (td->td_cpuset)
364                 cpuset_rel(td->td_cpuset);
365         td->td_cpuset = NULL;
366         cpu_thread_free(td);
367         if (td->td_kstack != 0)
368                 vm_thread_dispose(td);
369         uma_zfree(thread_zone, td);
370 }
371
372 /*
373  * Discard the current thread and exit from its context.
374  * Always called with scheduler locked.
375  *
376  * Because we can't free a thread while we're operating under its context,
377  * push the current thread into our CPU's deadthread holder. This means
378  * we needn't worry about someone else grabbing our context before we
379  * do a cpu_throw().
380  */
381 void
382 thread_exit(void)
383 {
384         uint64_t new_switchtime;
385         struct thread *td;
386         struct thread *td2;
387         struct proc *p;
388         int wakeup_swapper;
389
390         td = curthread;
391         p = td->td_proc;
392
393         PROC_SLOCK_ASSERT(p, MA_OWNED);
394         mtx_assert(&Giant, MA_NOTOWNED);
395
396         PROC_LOCK_ASSERT(p, MA_OWNED);
397         KASSERT(p != NULL, ("thread exiting without a process"));
398         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
399             (long)p->p_pid, td->td_name);
400         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
401
402 #ifdef AUDIT
403         AUDIT_SYSCALL_EXIT(0, td);
404 #endif
405         umtx_thread_exit(td);
406         /*
407          * drop FPU & debug register state storage, or any other
408          * architecture specific resources that
409          * would not be on a new untouched process.
410          */
411         cpu_thread_exit(td);    /* XXXSMP */
412
413         /* Do the same timestamp bookkeeping that mi_switch() would do. */
414         new_switchtime = cpu_ticks();
415         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
416         PCPU_SET(switchtime, new_switchtime);
417         PCPU_SET(switchticks, ticks);
418         PCPU_INC(cnt.v_swtch);
419         /* Save our resource usage in our process. */
420         td->td_ru.ru_nvcsw++;
421         rucollect(&p->p_ru, &td->td_ru);
422         /*
423          * The last thread is left attached to the process
424          * So that the whole bundle gets recycled. Skip
425          * all this stuff if we never had threads.
426          * EXIT clears all sign of other threads when
427          * it goes to single threading, so the last thread always
428          * takes the short path.
429          */
430         if (p->p_flag & P_HADTHREADS) {
431                 if (p->p_numthreads > 1) {
432                         thread_unlink(td);
433                         td2 = FIRST_THREAD_IN_PROC(p);
434                         sched_exit_thread(td2, td);
435
436                         /*
437                          * The test below is NOT true if we are the
438                          * sole exiting thread. P_STOPPED_SINGLE is unset
439                          * in exit1() after it is the only survivor.
440                          */
441                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
442                                 if (p->p_numthreads == p->p_suspcount) {
443                                         thread_lock(p->p_singlethread);
444                                         wakeup_swapper = thread_unsuspend_one(
445                                                 p->p_singlethread);
446                                         thread_unlock(p->p_singlethread);
447                                         if (wakeup_swapper)
448                                                 kick_proc0();
449                                 }
450                         }
451
452                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
453                         PCPU_SET(deadthread, td);
454                 } else {
455                         /*
456                          * The last thread is exiting.. but not through exit()
457                          */
458                         panic ("thread_exit: Last thread exiting on its own");
459                 }
460         } 
461 #ifdef  HWPMC_HOOKS
462         /*
463          * If this thread is part of a process that is being tracked by hwpmc(4),
464          * inform the module of the thread's impending exit.
465          */
466         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
467                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
468 #endif
469         PROC_UNLOCK(p);
470         ruxagg(p, td);
471         thread_lock(td);
472         PROC_SUNLOCK(p);
473         td->td_state = TDS_INACTIVE;
474 #ifdef WITNESS
475         witness_thread_exit(td);
476 #endif
477         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
478         sched_throw(td);
479         panic("I'm a teapot!");
480         /* NOTREACHED */
481 }
482
483 /*
484  * Do any thread specific cleanups that may be needed in wait()
485  * called with Giant, proc and schedlock not held.
486  */
487 void
488 thread_wait(struct proc *p)
489 {
490         struct thread *td;
491
492         mtx_assert(&Giant, MA_NOTOWNED);
493         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
494         td = FIRST_THREAD_IN_PROC(p);
495         /* Lock the last thread so we spin until it exits cpu_throw(). */
496         thread_lock(td);
497         thread_unlock(td);
498         /* Wait for any remaining threads to exit cpu_throw(). */
499         while (p->p_exitthreads)
500                 sched_relinquish(curthread);
501         lock_profile_thread_exit(td);
502         cpuset_rel(td->td_cpuset);
503         td->td_cpuset = NULL;
504         cpu_thread_clean(td);
505         crfree(td->td_ucred);
506         thread_reap();  /* check for zombie threads etc. */
507 }
508
509 /*
510  * Link a thread to a process.
511  * set up anything that needs to be initialized for it to
512  * be used by the process.
513  */
514 void
515 thread_link(struct thread *td, struct proc *p)
516 {
517
518         /*
519          * XXX This can't be enabled because it's called for proc0 before
520          * its lock has been created.
521          * PROC_LOCK_ASSERT(p, MA_OWNED);
522          */
523         td->td_state    = TDS_INACTIVE;
524         td->td_proc     = p;
525         td->td_flags    = TDF_INMEM;
526
527         LIST_INIT(&td->td_contested);
528         LIST_INIT(&td->td_lprof[0]);
529         LIST_INIT(&td->td_lprof[1]);
530         sigqueue_init(&td->td_sigqueue, p);
531         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
532         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
533         p->p_numthreads++;
534 }
535
536 /*
537  * Convert a process with one thread to an unthreaded process.
538  */
539 void
540 thread_unthread(struct thread *td)
541 {
542         struct proc *p = td->td_proc;
543
544         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
545         p->p_flag &= ~P_HADTHREADS;
546 }
547
548 /*
549  * Called from:
550  *  thread_exit()
551  */
552 void
553 thread_unlink(struct thread *td)
554 {
555         struct proc *p = td->td_proc;
556
557         PROC_LOCK_ASSERT(p, MA_OWNED);
558         TAILQ_REMOVE(&p->p_threads, td, td_plist);
559         p->p_numthreads--;
560         /* could clear a few other things here */
561         /* Must  NOT clear links to proc! */
562 }
563
564 static int
565 calc_remaining(struct proc *p, int mode)
566 {
567         int remaining;
568
569         if (mode == SINGLE_EXIT)
570                 remaining = p->p_numthreads;
571         else if (mode == SINGLE_BOUNDARY)
572                 remaining = p->p_numthreads - p->p_boundary_count;
573         else if (mode == SINGLE_NO_EXIT)
574                 remaining = p->p_numthreads - p->p_suspcount;
575         else
576                 panic("calc_remaining: wrong mode %d", mode);
577         return (remaining);
578 }
579
580 /*
581  * Enforce single-threading.
582  *
583  * Returns 1 if the caller must abort (another thread is waiting to
584  * exit the process or similar). Process is locked!
585  * Returns 0 when you are successfully the only thread running.
586  * A process has successfully single threaded in the suspend mode when
587  * There are no threads in user mode. Threads in the kernel must be
588  * allowed to continue until they get to the user boundary. They may even
589  * copy out their return values and data before suspending. They may however be
590  * accelerated in reaching the user boundary as we will wake up
591  * any sleeping threads that are interruptable. (PCATCH).
592  */
593 int
594 thread_single(int mode)
595 {
596         struct thread *td;
597         struct thread *td2;
598         struct proc *p;
599         int remaining, wakeup_swapper;
600
601         td = curthread;
602         p = td->td_proc;
603         mtx_assert(&Giant, MA_NOTOWNED);
604         PROC_LOCK_ASSERT(p, MA_OWNED);
605         KASSERT((td != NULL), ("curthread is NULL"));
606
607         if ((p->p_flag & P_HADTHREADS) == 0)
608                 return (0);
609
610         /* Is someone already single threading? */
611         if (p->p_singlethread != NULL && p->p_singlethread != td)
612                 return (1);
613
614         if (mode == SINGLE_EXIT) {
615                 p->p_flag |= P_SINGLE_EXIT;
616                 p->p_flag &= ~P_SINGLE_BOUNDARY;
617         } else {
618                 p->p_flag &= ~P_SINGLE_EXIT;
619                 if (mode == SINGLE_BOUNDARY)
620                         p->p_flag |= P_SINGLE_BOUNDARY;
621                 else
622                         p->p_flag &= ~P_SINGLE_BOUNDARY;
623         }
624         p->p_flag |= P_STOPPED_SINGLE;
625         PROC_SLOCK(p);
626         p->p_singlethread = td;
627         remaining = calc_remaining(p, mode);
628         while (remaining != 1) {
629                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
630                         goto stopme;
631                 wakeup_swapper = 0;
632                 FOREACH_THREAD_IN_PROC(p, td2) {
633                         if (td2 == td)
634                                 continue;
635                         thread_lock(td2);
636                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
637                         if (TD_IS_INHIBITED(td2)) {
638                                 switch (mode) {
639                                 case SINGLE_EXIT:
640                                         if (TD_IS_SUSPENDED(td2))
641                                                 wakeup_swapper |=
642                                                     thread_unsuspend_one(td2);
643                                         if (TD_ON_SLEEPQ(td2) &&
644                                             (td2->td_flags & TDF_SINTR))
645                                                 wakeup_swapper |=
646                                                     sleepq_abort(td2, EINTR);
647                                         break;
648                                 case SINGLE_BOUNDARY:
649                                         if (TD_IS_SUSPENDED(td2) &&
650                                             !(td2->td_flags & TDF_BOUNDARY))
651                                                 wakeup_swapper |=
652                                                     thread_unsuspend_one(td2);
653                                         if (TD_ON_SLEEPQ(td2) &&
654                                             (td2->td_flags & TDF_SINTR))
655                                                 wakeup_swapper |=
656                                                     sleepq_abort(td2, ERESTART);
657                                         break;
658                                 case SINGLE_NO_EXIT:
659                                         if (TD_IS_SUSPENDED(td2) &&
660                                             !(td2->td_flags & TDF_BOUNDARY))
661                                                 wakeup_swapper |=
662                                                     thread_unsuspend_one(td2);
663                                         if (TD_ON_SLEEPQ(td2) &&
664                                             (td2->td_flags & TDF_SINTR))
665                                                 wakeup_swapper |=
666                                                     sleepq_abort(td2, ERESTART);
667                                         break;
668                                 default:
669                                         break;
670                                 }
671                         }
672 #ifdef SMP
673                         else if (TD_IS_RUNNING(td2) && td != td2) {
674                                 forward_signal(td2);
675                         }
676 #endif
677                         thread_unlock(td2);
678                 }
679                 if (wakeup_swapper)
680                         kick_proc0();
681                 remaining = calc_remaining(p, mode);
682
683                 /*
684                  * Maybe we suspended some threads.. was it enough?
685                  */
686                 if (remaining == 1)
687                         break;
688
689 stopme:
690                 /*
691                  * Wake us up when everyone else has suspended.
692                  * In the mean time we suspend as well.
693                  */
694                 thread_suspend_switch(td);
695                 remaining = calc_remaining(p, mode);
696         }
697         if (mode == SINGLE_EXIT) {
698                 /*
699                  * We have gotten rid of all the other threads and we
700                  * are about to either exit or exec. In either case,
701                  * we try our utmost  to revert to being a non-threaded
702                  * process.
703                  */
704                 p->p_singlethread = NULL;
705                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
706                 thread_unthread(td);
707         }
708         PROC_SUNLOCK(p);
709         return (0);
710 }
711
712 /*
713  * Called in from locations that can safely check to see
714  * whether we have to suspend or at least throttle for a
715  * single-thread event (e.g. fork).
716  *
717  * Such locations include userret().
718  * If the "return_instead" argument is non zero, the thread must be able to
719  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
720  *
721  * The 'return_instead' argument tells the function if it may do a
722  * thread_exit() or suspend, or whether the caller must abort and back
723  * out instead.
724  *
725  * If the thread that set the single_threading request has set the
726  * P_SINGLE_EXIT bit in the process flags then this call will never return
727  * if 'return_instead' is false, but will exit.
728  *
729  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
730  *---------------+--------------------+---------------------
731  *       0       | returns 0          |   returns 0 or 1
732  *               | when ST ends       |   immediatly
733  *---------------+--------------------+---------------------
734  *       1       | thread exits       |   returns 1
735  *               |                    |  immediatly
736  * 0 = thread_exit() or suspension ok,
737  * other = return error instead of stopping the thread.
738  *
739  * While a full suspension is under effect, even a single threading
740  * thread would be suspended if it made this call (but it shouldn't).
741  * This call should only be made from places where
742  * thread_exit() would be safe as that may be the outcome unless
743  * return_instead is set.
744  */
745 int
746 thread_suspend_check(int return_instead)
747 {
748         struct thread *td;
749         struct proc *p;
750         int wakeup_swapper;
751
752         td = curthread;
753         p = td->td_proc;
754         mtx_assert(&Giant, MA_NOTOWNED);
755         PROC_LOCK_ASSERT(p, MA_OWNED);
756         while (P_SHOULDSTOP(p) ||
757               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
758                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
759                         KASSERT(p->p_singlethread != NULL,
760                             ("singlethread not set"));
761                         /*
762                          * The only suspension in action is a
763                          * single-threading. Single threader need not stop.
764                          * XXX Should be safe to access unlocked
765                          * as it can only be set to be true by us.
766                          */
767                         if (p->p_singlethread == td)
768                                 return (0);     /* Exempt from stopping. */
769                 }
770                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
771                         return (EINTR);
772
773                 /* Should we goto user boundary if we didn't come from there? */
774                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
775                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
776                         return (ERESTART);
777
778                 /*
779                  * If the process is waiting for us to exit,
780                  * this thread should just suicide.
781                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
782                  */
783                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
784                         PROC_UNLOCK(p);
785                         tidhash_remove(td);
786                         PROC_LOCK(p);
787                         tdsigcleanup(td);
788                         PROC_SLOCK(p);
789                         thread_stopped(p);
790                         thread_exit();
791                 }
792
793                 PROC_SLOCK(p);
794                 thread_stopped(p);
795                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
796                         if (p->p_numthreads == p->p_suspcount + 1) {
797                                 thread_lock(p->p_singlethread);
798                                 wakeup_swapper =
799                                     thread_unsuspend_one(p->p_singlethread);
800                                 thread_unlock(p->p_singlethread);
801                                 if (wakeup_swapper)
802                                         kick_proc0();
803                         }
804                 }
805                 PROC_UNLOCK(p);
806                 thread_lock(td);
807                 /*
808                  * When a thread suspends, it just
809                  * gets taken off all queues.
810                  */
811                 thread_suspend_one(td);
812                 if (return_instead == 0) {
813                         p->p_boundary_count++;
814                         td->td_flags |= TDF_BOUNDARY;
815                 }
816                 PROC_SUNLOCK(p);
817                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
818                 if (return_instead == 0)
819                         td->td_flags &= ~TDF_BOUNDARY;
820                 thread_unlock(td);
821                 PROC_LOCK(p);
822                 if (return_instead == 0)
823                         p->p_boundary_count--;
824         }
825         return (0);
826 }
827
828 void
829 thread_suspend_switch(struct thread *td)
830 {
831         struct proc *p;
832
833         p = td->td_proc;
834         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
835         PROC_LOCK_ASSERT(p, MA_OWNED);
836         PROC_SLOCK_ASSERT(p, MA_OWNED);
837         /*
838          * We implement thread_suspend_one in stages here to avoid
839          * dropping the proc lock while the thread lock is owned.
840          */
841         thread_stopped(p);
842         p->p_suspcount++;
843         PROC_UNLOCK(p);
844         thread_lock(td);
845         td->td_flags &= ~TDF_NEEDSUSPCHK;
846         TD_SET_SUSPENDED(td);
847         sched_sleep(td, 0);
848         PROC_SUNLOCK(p);
849         DROP_GIANT();
850         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
851         thread_unlock(td);
852         PICKUP_GIANT();
853         PROC_LOCK(p);
854         PROC_SLOCK(p);
855 }
856
857 void
858 thread_suspend_one(struct thread *td)
859 {
860         struct proc *p = td->td_proc;
861
862         PROC_SLOCK_ASSERT(p, MA_OWNED);
863         THREAD_LOCK_ASSERT(td, MA_OWNED);
864         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
865         p->p_suspcount++;
866         td->td_flags &= ~TDF_NEEDSUSPCHK;
867         TD_SET_SUSPENDED(td);
868         sched_sleep(td, 0);
869 }
870
871 int
872 thread_unsuspend_one(struct thread *td)
873 {
874         struct proc *p = td->td_proc;
875
876         PROC_SLOCK_ASSERT(p, MA_OWNED);
877         THREAD_LOCK_ASSERT(td, MA_OWNED);
878         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
879         TD_CLR_SUSPENDED(td);
880         p->p_suspcount--;
881         return (setrunnable(td));
882 }
883
884 /*
885  * Allow all threads blocked by single threading to continue running.
886  */
887 void
888 thread_unsuspend(struct proc *p)
889 {
890         struct thread *td;
891         int wakeup_swapper;
892
893         PROC_LOCK_ASSERT(p, MA_OWNED);
894         PROC_SLOCK_ASSERT(p, MA_OWNED);
895         wakeup_swapper = 0;
896         if (!P_SHOULDSTOP(p)) {
897                 FOREACH_THREAD_IN_PROC(p, td) {
898                         thread_lock(td);
899                         if (TD_IS_SUSPENDED(td)) {
900                                 wakeup_swapper |= thread_unsuspend_one(td);
901                         }
902                         thread_unlock(td);
903                 }
904         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
905             (p->p_numthreads == p->p_suspcount)) {
906                 /*
907                  * Stopping everything also did the job for the single
908                  * threading request. Now we've downgraded to single-threaded,
909                  * let it continue.
910                  */
911                 thread_lock(p->p_singlethread);
912                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
913                 thread_unlock(p->p_singlethread);
914         }
915         if (wakeup_swapper)
916                 kick_proc0();
917 }
918
919 /*
920  * End the single threading mode..
921  */
922 void
923 thread_single_end(void)
924 {
925         struct thread *td;
926         struct proc *p;
927         int wakeup_swapper;
928
929         td = curthread;
930         p = td->td_proc;
931         PROC_LOCK_ASSERT(p, MA_OWNED);
932         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
933         PROC_SLOCK(p);
934         p->p_singlethread = NULL;
935         wakeup_swapper = 0;
936         /*
937          * If there are other threads they may now run,
938          * unless of course there is a blanket 'stop order'
939          * on the process. The single threader must be allowed
940          * to continue however as this is a bad place to stop.
941          */
942         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
943                 FOREACH_THREAD_IN_PROC(p, td) {
944                         thread_lock(td);
945                         if (TD_IS_SUSPENDED(td)) {
946                                 wakeup_swapper |= thread_unsuspend_one(td);
947                         }
948                         thread_unlock(td);
949                 }
950         }
951         PROC_SUNLOCK(p);
952         if (wakeup_swapper)
953                 kick_proc0();
954 }
955
956 struct thread *
957 thread_find(struct proc *p, lwpid_t tid)
958 {
959         struct thread *td;
960
961         PROC_LOCK_ASSERT(p, MA_OWNED);
962         FOREACH_THREAD_IN_PROC(p, td) {
963                 if (td->td_tid == tid)
964                         break;
965         }
966         return (td);
967 }
968
969 /* Locate a thread by number; return with proc lock held. */
970 struct thread *
971 tdfind(lwpid_t tid, pid_t pid)
972 {
973 #define RUN_THRESH      16
974         struct thread *td;
975         int run = 0;
976
977         rw_rlock(&tidhash_lock);
978         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
979                 if (td->td_tid == tid) {
980                         if (pid != -1 && td->td_proc->p_pid != pid) {
981                                 td = NULL;
982                                 break;
983                         }
984                         PROC_LOCK(td->td_proc);
985                         if (td->td_proc->p_state == PRS_NEW) {
986                                 PROC_UNLOCK(td->td_proc);
987                                 td = NULL;
988                                 break;
989                         }
990                         if (run > RUN_THRESH) {
991                                 if (rw_try_upgrade(&tidhash_lock)) {
992                                         LIST_REMOVE(td, td_hash);
993                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
994                                                 td, td_hash);
995                                         rw_wunlock(&tidhash_lock);
996                                         return (td);
997                                 }
998                         }
999                         break;
1000                 }
1001                 run++;
1002         }
1003         rw_runlock(&tidhash_lock);
1004         return (td);
1005 }
1006
1007 void
1008 tidhash_add(struct thread *td)
1009 {
1010         rw_wlock(&tidhash_lock);
1011         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1012         rw_wunlock(&tidhash_lock);
1013 }
1014
1015 void
1016 tidhash_remove(struct thread *td)
1017 {
1018         rw_wlock(&tidhash_lock);
1019         LIST_REMOVE(td, td_hash);
1020         rw_wunlock(&tidhash_lock);
1021 }