]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/kern/subr_witness.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / kern / subr_witness.c
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40
41 /*
42  *      Main Entry: witness
43  *      Pronunciation: 'wit-n&s
44  *      Function: noun
45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *          testimony, witness, from 2wit
47  *      Date: before 12th century
48  *      1 : attestation of a fact or event : TESTIMONY
49  *      2 : one that gives evidence; specifically : one who testifies in
50  *          a cause or before a judicial tribunal
51  *      3 : one asked to be present at a transaction so as to be able to
52  *          testify to its having taken place
53  *      4 : one who has personal knowledge of something
54  *      5 a : something serving as evidence or proof : SIGN
55  *        b : public affirmation by word or example of usually
56  *            religious faith or conviction <the heroic witness to divine
57  *            life -- Pilot>
58  *      6 capitalized : a member of the Jehovah's Witnesses 
59  */
60
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114
115 #include <machine/stdarg.h>
116
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define KTR_WITNESS     KTR_SUBSYS
124 #else
125 #define KTR_WITNESS     0
126 #endif
127
128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
131
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134
135 #define WITNESS_COUNT           1024
136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
138 #define WITNESS_PENDLIST        768
139
140 /* Allocate 256 KB of stack data space */
141 #define WITNESS_LO_DATA_COUNT   2048
142
143 /* Prime, gives load factor of ~2 at full load */
144 #define WITNESS_LO_HASH_SIZE    1021
145
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define LOCK_NCHILDREN  5
152 #define LOCK_CHILDCOUNT 2048
153
154 #define MAX_W_NAME      64
155
156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
157 #define FULLGRAPH_SBUF_SIZE     512
158
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define WITNESS_RELATED_MASK                                            \
171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173                                           * observed. */
174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178 /* Descendant to ancestor flags */
179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
180
181 /* Ancestor to descendant flags */
182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
183
184 #define WITNESS_INDEX_ASSERT(i)                                         \
185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196         struct lock_object      *li_lock;
197         const char              *li_file;
198         int                     li_line;
199         u_int                   li_flags;
200 };
201
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213         struct lock_list_entry  *ll_next;
214         struct lock_instance    ll_children[LOCK_NCHILDREN];
215         u_int                   ll_count;
216 };
217
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223         char                    w_name[MAX_W_NAME];
224         uint32_t                w_index;  /* Index in the relationship matrix */
225         struct lock_class       *w_class;
226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
229         const char              *w_file; /* File where last acquired */
230         uint32_t                w_line; /* Line where last acquired */
231         uint32_t                w_refcount;
232         uint16_t                w_num_ancestors; /* direct/indirect
233                                                   * ancestor count */
234         uint16_t                w_num_descendants; /* direct/indirect
235                                                     * descendant count */
236         int16_t                 w_ddb_level;
237         unsigned                w_displayed:1;
238         unsigned                w_reversed:1;
239 };
240
241 STAILQ_HEAD(witness_list, witness);
242
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248         struct witness  *wh_array[WITNESS_HASH_SIZE];
249         uint32_t        wh_size;
250         uint32_t        wh_count;
251 };
252
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257         uint16_t        from;
258         uint16_t        to;
259 };
260
261 struct witness_lock_order_data {
262         struct stack                    wlod_stack;
263         struct witness_lock_order_key   wlod_key;
264         struct witness_lock_order_data  *wlod_next;
265 };
266
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data). 
271  */
272 struct witness_lock_order_hash {
273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
274         u_int   wloh_size;
275         u_int   wloh_count;
276 };
277
278 #ifdef BLESSING
279 struct witness_blessed {
280         const char      *b_lock1;
281         const char      *b_lock2;
282 };
283 #endif
284
285 struct witness_pendhelp {
286         const char              *wh_type;
287         struct lock_object      *wh_lock;
288 };
289
290 struct witness_order_list_entry {
291         const char              *w_name;
292         struct lock_class       *w_class;
293 };
294
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302
303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306
307 static __inline int
308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309 {
310
311         return (key->from == 0 && key->to == 0);
312 }
313
314 static __inline int
315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316     const struct witness_lock_order_key *b)
317 {
318
319         return (a->from == b->from && a->to == b->to);
320 }
321
322 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
323                     const char *fname);
324 #ifdef KDB
325 static void     _witness_debugger(int cond, const char *msg);
326 #endif
327 static void     adopt(struct witness *parent, struct witness *child);
328 #ifdef BLESSING
329 static int      blessed(struct witness *, struct witness *);
330 #endif
331 static void     depart(struct witness *w);
332 static struct witness   *enroll(const char *description,
333                             struct lock_class *lock_class);
334 static struct lock_instance     *find_instance(struct lock_list_entry *list,
335                                     struct lock_object *lock);
336 static int      isitmychild(struct witness *parent, struct witness *child);
337 static int      isitmydescendant(struct witness *parent, struct witness *child);
338 static void     itismychild(struct witness *parent, struct witness *child);
339 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343 #ifdef DDB
344 static void     witness_ddb_compute_levels(void);
345 static void     witness_ddb_display(int(*)(const char *fmt, ...));
346 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347                     struct witness *, int indent);
348 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349                     struct witness_list *list);
350 static void     witness_ddb_level_descendants(struct witness *parent, int l);
351 static void     witness_ddb_list(struct thread *td);
352 #endif
353 static void     witness_free(struct witness *m);
354 static struct witness   *witness_get(void);
355 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
356 static struct witness   *witness_hash_get(const char *key);
357 static void     witness_hash_put(struct witness *w);
358 static void     witness_init_hash_tables(void);
359 static void     witness_increment_graph_generation(void);
360 static void     witness_lock_list_free(struct lock_list_entry *lle);
361 static struct lock_list_entry   *witness_lock_list_get(void);
362 static int      witness_lock_order_add(struct witness *parent,
363                     struct witness *child);
364 static int      witness_lock_order_check(struct witness *parent,
365                     struct witness *child);
366 static struct witness_lock_order_data   *witness_lock_order_get(
367                                             struct witness *parent,
368                                             struct witness *child);
369 static void     witness_list_lock(struct lock_instance *instance,
370                     int (*prnt)(const char *fmt, ...));
371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
372
373 #ifdef KDB
374 #define witness_debugger(c)     _witness_debugger(c, __func__)
375 #else
376 #define witness_debugger(c)
377 #endif
378
379 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
380
381 /*
382  * If set to 0, lock order checking is disabled.  If set to -1,
383  * witness is completely disabled.  Otherwise witness performs full
384  * lock order checking for all locks.  At runtime, lock order checking
385  * may be toggled.  However, witness cannot be reenabled once it is
386  * completely disabled.
387  */
388 static int witness_watch = 1;
389 TUNABLE_INT("debug.witness.watch", &witness_watch);
390 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
391     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
392
393 #ifdef KDB
394 /*
395  * When KDB is enabled and witness_kdb is 1, it will cause the system
396  * to drop into kdebug() when:
397  *      - a lock hierarchy violation occurs
398  *      - locks are held when going to sleep.
399  */
400 #ifdef WITNESS_KDB
401 int     witness_kdb = 1;
402 #else
403 int     witness_kdb = 0;
404 #endif
405 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
406 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
407
408 /*
409  * When KDB is enabled and witness_trace is 1, it will cause the system
410  * to print a stack trace:
411  *      - a lock hierarchy violation occurs
412  *      - locks are held when going to sleep.
413  */
414 int     witness_trace = 1;
415 TUNABLE_INT("debug.witness.trace", &witness_trace);
416 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
417 #endif /* KDB */
418
419 #ifdef WITNESS_SKIPSPIN
420 int     witness_skipspin = 1;
421 #else
422 int     witness_skipspin = 0;
423 #endif
424 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
425 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
426     0, "");
427
428 /*
429  * Call this to print out the relations between locks.
430  */
431 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
432     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
433
434 /*
435  * Call this to print out the witness faulty stacks.
436  */
437 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
438     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
439
440 static struct mtx w_mtx;
441
442 /* w_list */
443 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
444 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
445
446 /* w_typelist */
447 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
448 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
449
450 /* lock list */
451 static struct lock_list_entry *w_lock_list_free = NULL;
452 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
453 static u_int pending_cnt;
454
455 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
456 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
457 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
459     "");
460
461 static struct witness *w_data;
462 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
463 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
464 static struct witness_hash w_hash;      /* The witness hash table. */
465
466 /* The lock order data hash */
467 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
468 static struct witness_lock_order_data *w_lofree = NULL;
469 static struct witness_lock_order_hash w_lohash;
470 static int w_max_used_index = 0;
471 static unsigned int w_generation = 0;
472 static const char w_notrunning[] = "Witness not running\n";
473 static const char w_stillcold[] = "Witness is still cold\n";
474
475
476 static struct witness_order_list_entry order_lists[] = {
477         /*
478          * sx locks
479          */
480         { "proctree", &lock_class_sx },
481         { "allproc", &lock_class_sx },
482         { "allprison", &lock_class_sx },
483         { NULL, NULL },
484         /*
485          * Various mutexes
486          */
487         { "Giant", &lock_class_mtx_sleep },
488         { "pipe mutex", &lock_class_mtx_sleep },
489         { "sigio lock", &lock_class_mtx_sleep },
490         { "process group", &lock_class_mtx_sleep },
491         { "process lock", &lock_class_mtx_sleep },
492         { "session", &lock_class_mtx_sleep },
493         { "uidinfo hash", &lock_class_rw },
494 #ifdef  HWPMC_HOOKS
495         { "pmc-sleep", &lock_class_mtx_sleep },
496 #endif
497         { "time lock", &lock_class_mtx_sleep },
498         { NULL, NULL },
499         /*
500          * Sockets
501          */
502         { "accept", &lock_class_mtx_sleep },
503         { "so_snd", &lock_class_mtx_sleep },
504         { "so_rcv", &lock_class_mtx_sleep },
505         { "sellck", &lock_class_mtx_sleep },
506         { NULL, NULL },
507         /*
508          * Routing
509          */
510         { "so_rcv", &lock_class_mtx_sleep },
511         { "radix node head", &lock_class_rw },
512         { "rtentry", &lock_class_mtx_sleep },
513         { "ifaddr", &lock_class_mtx_sleep },
514         { NULL, NULL },
515         /*
516          * IPv4 multicast:
517          * protocol locks before interface locks, after UDP locks.
518          */
519         { "udpinp", &lock_class_rw },
520         { "in_multi_mtx", &lock_class_mtx_sleep },
521         { "igmp_mtx", &lock_class_mtx_sleep },
522         { "if_addr_mtx", &lock_class_mtx_sleep },
523         { NULL, NULL },
524         /*
525          * IPv6 multicast:
526          * protocol locks before interface locks, after UDP locks.
527          */
528         { "udpinp", &lock_class_rw },
529         { "in6_multi_mtx", &lock_class_mtx_sleep },
530         { "mld_mtx", &lock_class_mtx_sleep },
531         { "if_addr_mtx", &lock_class_mtx_sleep },
532         { NULL, NULL },
533         /*
534          * UNIX Domain Sockets
535          */
536         { "unp_global_rwlock", &lock_class_rw },
537         { "unp_list_lock", &lock_class_mtx_sleep },
538         { "unp", &lock_class_mtx_sleep },
539         { "so_snd", &lock_class_mtx_sleep },
540         { NULL, NULL },
541         /*
542          * UDP/IP
543          */
544         { "udp", &lock_class_rw },
545         { "udpinp", &lock_class_rw },
546         { "so_snd", &lock_class_mtx_sleep },
547         { NULL, NULL },
548         /*
549          * TCP/IP
550          */
551         { "tcp", &lock_class_rw },
552         { "tcpinp", &lock_class_rw },
553         { "so_snd", &lock_class_mtx_sleep },
554         { NULL, NULL },
555         /*
556          * netatalk
557          */
558         { "ddp_list_mtx", &lock_class_mtx_sleep },
559         { "ddp_mtx", &lock_class_mtx_sleep },
560         { NULL, NULL },
561         /*
562          * BPF
563          */
564         { "bpf global lock", &lock_class_mtx_sleep },
565         { "bpf interface lock", &lock_class_mtx_sleep },
566         { "bpf cdev lock", &lock_class_mtx_sleep },
567         { NULL, NULL },
568         /*
569          * NFS server
570          */
571         { "nfsd_mtx", &lock_class_mtx_sleep },
572         { "so_snd", &lock_class_mtx_sleep },
573         { NULL, NULL },
574
575         /*
576          * IEEE 802.11
577          */
578         { "802.11 com lock", &lock_class_mtx_sleep},
579         { NULL, NULL },
580         /*
581          * Network drivers
582          */
583         { "network driver", &lock_class_mtx_sleep},
584         { NULL, NULL },
585
586         /*
587          * Netgraph
588          */
589         { "ng_node", &lock_class_mtx_sleep },
590         { "ng_worklist", &lock_class_mtx_sleep },
591         { NULL, NULL },
592         /*
593          * CDEV
594          */
595         { "system map", &lock_class_mtx_sleep },
596         { "vm page queue mutex", &lock_class_mtx_sleep },
597         { "vnode interlock", &lock_class_mtx_sleep },
598         { "cdev", &lock_class_mtx_sleep },
599         { NULL, NULL },
600         /*
601          * VM
602          * 
603          */
604         { "vm object", &lock_class_mtx_sleep },
605         { "page lock", &lock_class_mtx_sleep },
606         { "vm page queue mutex", &lock_class_mtx_sleep },
607         { "pmap", &lock_class_mtx_sleep },
608         { NULL, NULL },
609         /*
610          * kqueue/VFS interaction
611          */
612         { "kqueue", &lock_class_mtx_sleep },
613         { "struct mount mtx", &lock_class_mtx_sleep },
614         { "vnode interlock", &lock_class_mtx_sleep },
615         { NULL, NULL },
616         /*
617          * ZFS locking
618          */
619         { "dn->dn_mtx", &lock_class_sx },
620         { "dr->dt.di.dr_mtx", &lock_class_sx },
621         { "db->db_mtx", &lock_class_sx },
622         { NULL, NULL },
623         /*
624          * spin locks
625          */
626 #ifdef SMP
627         { "ap boot", &lock_class_mtx_spin },
628 #endif
629         { "rm.mutex_mtx", &lock_class_mtx_spin },
630         { "sio", &lock_class_mtx_spin },
631         { "scrlock", &lock_class_mtx_spin },
632 #ifdef __i386__
633         { "cy", &lock_class_mtx_spin },
634 #endif
635 #ifdef __sparc64__
636         { "pcib_mtx", &lock_class_mtx_spin },
637         { "rtc_mtx", &lock_class_mtx_spin },
638 #endif
639         { "scc_hwmtx", &lock_class_mtx_spin },
640         { "uart_hwmtx", &lock_class_mtx_spin },
641         { "fast_taskqueue", &lock_class_mtx_spin },
642         { "intr table", &lock_class_mtx_spin },
643 #ifdef  HWPMC_HOOKS
644         { "pmc-per-proc", &lock_class_mtx_spin },
645 #endif
646         { "process slock", &lock_class_mtx_spin },
647         { "sleepq chain", &lock_class_mtx_spin },
648         { "umtx lock", &lock_class_mtx_spin },
649         { "rm_spinlock", &lock_class_mtx_spin },
650         { "turnstile chain", &lock_class_mtx_spin },
651         { "turnstile lock", &lock_class_mtx_spin },
652         { "sched lock", &lock_class_mtx_spin },
653         { "td_contested", &lock_class_mtx_spin },
654         { "callout", &lock_class_mtx_spin },
655         { "entropy harvest mutex", &lock_class_mtx_spin },
656         { "syscons video lock", &lock_class_mtx_spin },
657 #ifdef SMP
658         { "smp rendezvous", &lock_class_mtx_spin },
659 #endif
660 #ifdef __powerpc__
661         { "tlb0", &lock_class_mtx_spin },
662 #endif
663         /*
664          * leaf locks
665          */
666         { "intrcnt", &lock_class_mtx_spin },
667         { "icu", &lock_class_mtx_spin },
668 #if defined(SMP) && defined(__sparc64__)
669         { "ipi", &lock_class_mtx_spin },
670 #endif
671 #ifdef __i386__
672         { "allpmaps", &lock_class_mtx_spin },
673         { "descriptor tables", &lock_class_mtx_spin },
674 #endif
675         { "clk", &lock_class_mtx_spin },
676         { "cpuset", &lock_class_mtx_spin },
677         { "mprof lock", &lock_class_mtx_spin },
678         { "zombie lock", &lock_class_mtx_spin },
679         { "ALD Queue", &lock_class_mtx_spin },
680 #ifdef __ia64__
681         { "MCA spin lock", &lock_class_mtx_spin },
682 #endif
683 #if defined(__i386__) || defined(__amd64__)
684         { "pcicfg", &lock_class_mtx_spin },
685         { "NDIS thread lock", &lock_class_mtx_spin },
686 #endif
687         { "tw_osl_io_lock", &lock_class_mtx_spin },
688         { "tw_osl_q_lock", &lock_class_mtx_spin },
689         { "tw_cl_io_lock", &lock_class_mtx_spin },
690         { "tw_cl_intr_lock", &lock_class_mtx_spin },
691         { "tw_cl_gen_lock", &lock_class_mtx_spin },
692 #ifdef  HWPMC_HOOKS
693         { "pmc-leaf", &lock_class_mtx_spin },
694 #endif
695         { "blocked lock", &lock_class_mtx_spin },
696         { NULL, NULL },
697         { NULL, NULL }
698 };
699
700 #ifdef BLESSING
701 /*
702  * Pairs of locks which have been blessed
703  * Don't complain about order problems with blessed locks
704  */
705 static struct witness_blessed blessed_list[] = {
706 };
707 static int blessed_count =
708         sizeof(blessed_list) / sizeof(struct witness_blessed);
709 #endif
710
711 /*
712  * This global is set to 0 once it becomes safe to use the witness code.
713  */
714 static int witness_cold = 1;
715
716 /*
717  * This global is set to 1 once the static lock orders have been enrolled
718  * so that a warning can be issued for any spin locks enrolled later.
719  */
720 static int witness_spin_warn = 0;
721
722 /*
723  * The WITNESS-enabled diagnostic code.  Note that the witness code does
724  * assume that the early boot is single-threaded at least until after this
725  * routine is completed.
726  */
727 static void
728 witness_initialize(void *dummy __unused)
729 {
730         struct lock_object *lock;
731         struct witness_order_list_entry *order;
732         struct witness *w, *w1;
733         int i;
734
735         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
736             M_NOWAIT | M_ZERO);
737
738         /*
739          * We have to release Giant before initializing its witness
740          * structure so that WITNESS doesn't get confused.
741          */
742         mtx_unlock(&Giant);
743         mtx_assert(&Giant, MA_NOTOWNED);
744
745         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
746         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
747             MTX_NOWITNESS | MTX_NOPROFILE);
748         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
749                 w = &w_data[i];
750                 memset(w, 0, sizeof(*w));
751                 w_data[i].w_index = i;  /* Witness index never changes. */
752                 witness_free(w);
753         }
754         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
755             ("%s: Invalid list of free witness objects", __func__));
756
757         /* Witness with index 0 is not used to aid in debugging. */
758         STAILQ_REMOVE_HEAD(&w_free, w_list);
759         w_free_cnt--;
760
761         memset(w_rmatrix, 0,
762             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
763
764         for (i = 0; i < LOCK_CHILDCOUNT; i++)
765                 witness_lock_list_free(&w_locklistdata[i]);
766         witness_init_hash_tables();
767
768         /* First add in all the specified order lists. */
769         for (order = order_lists; order->w_name != NULL; order++) {
770                 w = enroll(order->w_name, order->w_class);
771                 if (w == NULL)
772                         continue;
773                 w->w_file = "order list";
774                 for (order++; order->w_name != NULL; order++) {
775                         w1 = enroll(order->w_name, order->w_class);
776                         if (w1 == NULL)
777                                 continue;
778                         w1->w_file = "order list";
779                         itismychild(w, w1);
780                         w = w1;
781                 }
782         }
783         witness_spin_warn = 1;
784
785         /* Iterate through all locks and add them to witness. */
786         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
787                 lock = pending_locks[i].wh_lock;
788                 KASSERT(lock->lo_flags & LO_WITNESS,
789                     ("%s: lock %s is on pending list but not LO_WITNESS",
790                     __func__, lock->lo_name));
791                 lock->lo_witness = enroll(pending_locks[i].wh_type,
792                     LOCK_CLASS(lock));
793         }
794
795         /* Mark the witness code as being ready for use. */
796         witness_cold = 0;
797
798         mtx_lock(&Giant);
799 }
800 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
801     NULL);
802
803 void
804 witness_init(struct lock_object *lock, const char *type)
805 {
806         struct lock_class *class;
807
808         /* Various sanity checks. */
809         class = LOCK_CLASS(lock);
810         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
811             (class->lc_flags & LC_RECURSABLE) == 0)
812                 panic("%s: lock (%s) %s can not be recursable", __func__,
813                     class->lc_name, lock->lo_name);
814         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
815             (class->lc_flags & LC_SLEEPABLE) == 0)
816                 panic("%s: lock (%s) %s can not be sleepable", __func__,
817                     class->lc_name, lock->lo_name);
818         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
819             (class->lc_flags & LC_UPGRADABLE) == 0)
820                 panic("%s: lock (%s) %s can not be upgradable", __func__,
821                     class->lc_name, lock->lo_name);
822
823         /*
824          * If we shouldn't watch this lock, then just clear lo_witness.
825          * Otherwise, if witness_cold is set, then it is too early to
826          * enroll this lock, so defer it to witness_initialize() by adding
827          * it to the pending_locks list.  If it is not too early, then enroll
828          * the lock now.
829          */
830         if (witness_watch < 1 || panicstr != NULL ||
831             (lock->lo_flags & LO_WITNESS) == 0)
832                 lock->lo_witness = NULL;
833         else if (witness_cold) {
834                 pending_locks[pending_cnt].wh_lock = lock;
835                 pending_locks[pending_cnt++].wh_type = type;
836                 if (pending_cnt > WITNESS_PENDLIST)
837                         panic("%s: pending locks list is too small, bump it\n",
838                             __func__);
839         } else
840                 lock->lo_witness = enroll(type, class);
841 }
842
843 void
844 witness_destroy(struct lock_object *lock)
845 {
846         struct lock_class *class;
847         struct witness *w;
848
849         class = LOCK_CLASS(lock);
850
851         if (witness_cold)
852                 panic("lock (%s) %s destroyed while witness_cold",
853                     class->lc_name, lock->lo_name);
854
855         /* XXX: need to verify that no one holds the lock */
856         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
857                 return;
858         w = lock->lo_witness;
859
860         mtx_lock_spin(&w_mtx);
861         MPASS(w->w_refcount > 0);
862         w->w_refcount--;
863
864         if (w->w_refcount == 0)
865                 depart(w);
866         mtx_unlock_spin(&w_mtx);
867 }
868
869 #ifdef DDB
870 static void
871 witness_ddb_compute_levels(void)
872 {
873         struct witness *w;
874
875         /*
876          * First clear all levels.
877          */
878         STAILQ_FOREACH(w, &w_all, w_list)
879                 w->w_ddb_level = -1;
880
881         /*
882          * Look for locks with no parents and level all their descendants.
883          */
884         STAILQ_FOREACH(w, &w_all, w_list) {
885
886                 /* If the witness has ancestors (is not a root), skip it. */
887                 if (w->w_num_ancestors > 0)
888                         continue;
889                 witness_ddb_level_descendants(w, 0);
890         }
891 }
892
893 static void
894 witness_ddb_level_descendants(struct witness *w, int l)
895 {
896         int i;
897
898         if (w->w_ddb_level >= l)
899                 return;
900
901         w->w_ddb_level = l;
902         l++;
903
904         for (i = 1; i <= w_max_used_index; i++) {
905                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
906                         witness_ddb_level_descendants(&w_data[i], l);
907         }
908 }
909
910 static void
911 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
912     struct witness *w, int indent)
913 {
914         int i;
915
916         for (i = 0; i < indent; i++)
917                 prnt(" ");
918         prnt("%s (type: %s, depth: %d, active refs: %d)",
919              w->w_name, w->w_class->lc_name,
920              w->w_ddb_level, w->w_refcount);
921         if (w->w_displayed) {
922                 prnt(" -- (already displayed)\n");
923                 return;
924         }
925         w->w_displayed = 1;
926         if (w->w_file != NULL && w->w_line != 0)
927                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
928                     w->w_line);
929         else
930                 prnt(" -- never acquired\n");
931         indent++;
932         WITNESS_INDEX_ASSERT(w->w_index);
933         for (i = 1; i <= w_max_used_index; i++) {
934                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
935                         witness_ddb_display_descendants(prnt, &w_data[i],
936                             indent);
937         }
938 }
939
940 static void
941 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
942     struct witness_list *list)
943 {
944         struct witness *w;
945
946         STAILQ_FOREACH(w, list, w_typelist) {
947                 if (w->w_file == NULL || w->w_ddb_level > 0)
948                         continue;
949
950                 /* This lock has no anscestors - display its descendants. */
951                 witness_ddb_display_descendants(prnt, w, 0);
952         }
953 }
954         
955 static void
956 witness_ddb_display(int(*prnt)(const char *fmt, ...))
957 {
958         struct witness *w;
959
960         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
961         witness_ddb_compute_levels();
962
963         /* Clear all the displayed flags. */
964         STAILQ_FOREACH(w, &w_all, w_list)
965                 w->w_displayed = 0;
966
967         /*
968          * First, handle sleep locks which have been acquired at least
969          * once.
970          */
971         prnt("Sleep locks:\n");
972         witness_ddb_display_list(prnt, &w_sleep);
973         
974         /*
975          * Now do spin locks which have been acquired at least once.
976          */
977         prnt("\nSpin locks:\n");
978         witness_ddb_display_list(prnt, &w_spin);
979         
980         /*
981          * Finally, any locks which have not been acquired yet.
982          */
983         prnt("\nLocks which were never acquired:\n");
984         STAILQ_FOREACH(w, &w_all, w_list) {
985                 if (w->w_file != NULL || w->w_refcount == 0)
986                         continue;
987                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
988                     w->w_class->lc_name, w->w_ddb_level);
989         }
990 }
991 #endif /* DDB */
992
993 /* Trim useless garbage from filenames. */
994 static const char *
995 fixup_filename(const char *file)
996 {
997
998         if (file == NULL)
999                 return (NULL);
1000         while (strncmp(file, "../", 3) == 0)
1001                 file += 3;
1002         return (file);
1003 }
1004
1005 int
1006 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1007 {
1008
1009         if (witness_watch == -1 || panicstr != NULL)
1010                 return (0);
1011
1012         /* Require locks that witness knows about. */
1013         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1014             lock2->lo_witness == NULL)
1015                 return (EINVAL);
1016
1017         mtx_assert(&w_mtx, MA_NOTOWNED);
1018         mtx_lock_spin(&w_mtx);
1019
1020         /*
1021          * If we already have either an explicit or implied lock order that
1022          * is the other way around, then return an error.
1023          */
1024         if (witness_watch &&
1025             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1026                 mtx_unlock_spin(&w_mtx);
1027                 return (EDOOFUS);
1028         }
1029         
1030         /* Try to add the new order. */
1031         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1032             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1033         itismychild(lock1->lo_witness, lock2->lo_witness);
1034         mtx_unlock_spin(&w_mtx);
1035         return (0);
1036 }
1037
1038 void
1039 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1040     int line, struct lock_object *interlock)
1041 {
1042         struct lock_list_entry *lock_list, *lle;
1043         struct lock_instance *lock1, *lock2, *plock;
1044         struct lock_class *class;
1045         struct witness *w, *w1;
1046         struct thread *td;
1047         int i, j;
1048
1049         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1050             panicstr != NULL)
1051                 return;
1052
1053         w = lock->lo_witness;
1054         class = LOCK_CLASS(lock);
1055         td = curthread;
1056         file = fixup_filename(file);
1057
1058         if (class->lc_flags & LC_SLEEPLOCK) {
1059
1060                 /*
1061                  * Since spin locks include a critical section, this check
1062                  * implicitly enforces a lock order of all sleep locks before
1063                  * all spin locks.
1064                  */
1065                 if (td->td_critnest != 0 && !kdb_active)
1066                         panic("blockable sleep lock (%s) %s @ %s:%d",
1067                             class->lc_name, lock->lo_name, file, line);
1068
1069                 /*
1070                  * If this is the first lock acquired then just return as
1071                  * no order checking is needed.
1072                  */
1073                 lock_list = td->td_sleeplocks;
1074                 if (lock_list == NULL || lock_list->ll_count == 0)
1075                         return;
1076         } else {
1077
1078                 /*
1079                  * If this is the first lock, just return as no order
1080                  * checking is needed.  Avoid problems with thread
1081                  * migration pinning the thread while checking if
1082                  * spinlocks are held.  If at least one spinlock is held
1083                  * the thread is in a safe path and it is allowed to
1084                  * unpin it.
1085                  */
1086                 sched_pin();
1087                 lock_list = PCPU_GET(spinlocks);
1088                 if (lock_list == NULL || lock_list->ll_count == 0) {
1089                         sched_unpin();
1090                         return;
1091                 }
1092                 sched_unpin();
1093         }
1094
1095         /*
1096          * Check to see if we are recursing on a lock we already own.  If
1097          * so, make sure that we don't mismatch exclusive and shared lock
1098          * acquires.
1099          */
1100         lock1 = find_instance(lock_list, lock);
1101         if (lock1 != NULL) {
1102                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1103                     (flags & LOP_EXCLUSIVE) == 0) {
1104                         printf("shared lock of (%s) %s @ %s:%d\n",
1105                             class->lc_name, lock->lo_name, file, line);
1106                         printf("while exclusively locked from %s:%d\n",
1107                             lock1->li_file, lock1->li_line);
1108                         panic("share->excl");
1109                 }
1110                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1111                     (flags & LOP_EXCLUSIVE) != 0) {
1112                         printf("exclusive lock of (%s) %s @ %s:%d\n",
1113                             class->lc_name, lock->lo_name, file, line);
1114                         printf("while share locked from %s:%d\n",
1115                             lock1->li_file, lock1->li_line);
1116                         panic("excl->share");
1117                 }
1118                 return;
1119         }
1120
1121         /*
1122          * Find the previously acquired lock, but ignore interlocks.
1123          */
1124         plock = &lock_list->ll_children[lock_list->ll_count - 1];
1125         if (interlock != NULL && plock->li_lock == interlock) {
1126                 if (lock_list->ll_count > 1)
1127                         plock =
1128                             &lock_list->ll_children[lock_list->ll_count - 2];
1129                 else {
1130                         lle = lock_list->ll_next;
1131
1132                         /*
1133                          * The interlock is the only lock we hold, so
1134                          * simply return.
1135                          */
1136                         if (lle == NULL)
1137                                 return;
1138                         plock = &lle->ll_children[lle->ll_count - 1];
1139                 }
1140         }
1141         
1142         /*
1143          * Try to perform most checks without a lock.  If this succeeds we
1144          * can skip acquiring the lock and return success.
1145          */
1146         w1 = plock->li_lock->lo_witness;
1147         if (witness_lock_order_check(w1, w))
1148                 return;
1149
1150         /*
1151          * Check for duplicate locks of the same type.  Note that we only
1152          * have to check for this on the last lock we just acquired.  Any
1153          * other cases will be caught as lock order violations.
1154          */
1155         mtx_lock_spin(&w_mtx);
1156         witness_lock_order_add(w1, w);
1157         if (w1 == w) {
1158                 i = w->w_index;
1159                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1160                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1161                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
1162                         w->w_reversed = 1;
1163                         mtx_unlock_spin(&w_mtx);
1164                         printf(
1165                             "acquiring duplicate lock of same type: \"%s\"\n", 
1166                             w->w_name);
1167                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1168                                plock->li_file, plock->li_line);
1169                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1170                         witness_debugger(1);
1171                     } else
1172                             mtx_unlock_spin(&w_mtx);
1173                 return;
1174         }
1175         mtx_assert(&w_mtx, MA_OWNED);
1176
1177         /*
1178          * If we know that the lock we are acquiring comes after
1179          * the lock we most recently acquired in the lock order tree,
1180          * then there is no need for any further checks.
1181          */
1182         if (isitmychild(w1, w))
1183                 goto out;
1184
1185         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1186                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1187
1188                         MPASS(j < WITNESS_COUNT);
1189                         lock1 = &lle->ll_children[i];
1190
1191                         /*
1192                          * Ignore the interlock the first time we see it.
1193                          */
1194                         if (interlock != NULL && interlock == lock1->li_lock) {
1195                                 interlock = NULL;
1196                                 continue;
1197                         }
1198
1199                         /*
1200                          * If this lock doesn't undergo witness checking,
1201                          * then skip it.
1202                          */
1203                         w1 = lock1->li_lock->lo_witness;
1204                         if (w1 == NULL) {
1205                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1206                                     ("lock missing witness structure"));
1207                                 continue;
1208                         }
1209
1210                         /*
1211                          * If we are locking Giant and this is a sleepable
1212                          * lock, then skip it.
1213                          */
1214                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1215                             lock == &Giant.lock_object)
1216                                 continue;
1217
1218                         /*
1219                          * If we are locking a sleepable lock and this lock
1220                          * is Giant, then skip it.
1221                          */
1222                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1223                             lock1->li_lock == &Giant.lock_object)
1224                                 continue;
1225
1226                         /*
1227                          * If we are locking a sleepable lock and this lock
1228                          * isn't sleepable, we want to treat it as a lock
1229                          * order violation to enfore a general lock order of
1230                          * sleepable locks before non-sleepable locks.
1231                          */
1232                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1233                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1234                                 goto reversal;
1235
1236                         /*
1237                          * If we are locking Giant and this is a non-sleepable
1238                          * lock, then treat it as a reversal.
1239                          */
1240                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1241                             lock == &Giant.lock_object)
1242                                 goto reversal;
1243
1244                         /*
1245                          * Check the lock order hierarchy for a reveresal.
1246                          */
1247                         if (!isitmydescendant(w, w1))
1248                                 continue;
1249                 reversal:
1250
1251                         /*
1252                          * We have a lock order violation, check to see if it
1253                          * is allowed or has already been yelled about.
1254                          */
1255 #ifdef BLESSING
1256
1257                         /*
1258                          * If the lock order is blessed, just bail.  We don't
1259                          * look for other lock order violations though, which
1260                          * may be a bug.
1261                          */
1262                         if (blessed(w, w1))
1263                                 goto out;
1264 #endif
1265
1266                         /* Bail if this violation is known */
1267                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1268                                 goto out;
1269
1270                         /* Record this as a violation */
1271                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1272                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1273                         w->w_reversed = w1->w_reversed = 1;
1274                         witness_increment_graph_generation();
1275                         mtx_unlock_spin(&w_mtx);
1276                         
1277                         /*
1278                          * Ok, yell about it.
1279                          */
1280                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1281                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1282                                 printf(
1283                 "lock order reversal: (sleepable after non-sleepable)\n");
1284                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1285                             && lock == &Giant.lock_object)
1286                                 printf(
1287                 "lock order reversal: (Giant after non-sleepable)\n");
1288                         else
1289                                 printf("lock order reversal:\n");
1290
1291                         /*
1292                          * Try to locate an earlier lock with
1293                          * witness w in our list.
1294                          */
1295                         do {
1296                                 lock2 = &lle->ll_children[i];
1297                                 MPASS(lock2->li_lock != NULL);
1298                                 if (lock2->li_lock->lo_witness == w)
1299                                         break;
1300                                 if (i == 0 && lle->ll_next != NULL) {
1301                                         lle = lle->ll_next;
1302                                         i = lle->ll_count - 1;
1303                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
1304                                 } else
1305                                         i--;
1306                         } while (i >= 0);
1307                         if (i < 0) {
1308                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1309                                     lock1->li_lock, lock1->li_lock->lo_name,
1310                                     w1->w_name, lock1->li_file, lock1->li_line);
1311                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1312                                     lock->lo_name, w->w_name, file, line);
1313                         } else {
1314                                 printf(" 1st %p %s (%s) @ %s:%d\n",
1315                                     lock2->li_lock, lock2->li_lock->lo_name,
1316                                     lock2->li_lock->lo_witness->w_name,
1317                                     lock2->li_file, lock2->li_line);
1318                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
1319                                     lock1->li_lock, lock1->li_lock->lo_name,
1320                                     w1->w_name, lock1->li_file, lock1->li_line);
1321                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1322                                     lock->lo_name, w->w_name, file, line);
1323                         }
1324                         witness_debugger(1);
1325                         return;
1326                 }
1327         }
1328
1329         /*
1330          * If requested, build a new lock order.  However, don't build a new
1331          * relationship between a sleepable lock and Giant if it is in the
1332          * wrong direction.  The correct lock order is that sleepable locks
1333          * always come before Giant.
1334          */
1335         if (flags & LOP_NEWORDER &&
1336             !(plock->li_lock == &Giant.lock_object &&
1337             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1338                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1339                     w->w_name, plock->li_lock->lo_witness->w_name);
1340                 itismychild(plock->li_lock->lo_witness, w);
1341         }
1342 out:
1343         mtx_unlock_spin(&w_mtx);
1344 }
1345
1346 void
1347 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1348 {
1349         struct lock_list_entry **lock_list, *lle;
1350         struct lock_instance *instance;
1351         struct witness *w;
1352         struct thread *td;
1353
1354         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1355             panicstr != NULL)
1356                 return;
1357         w = lock->lo_witness;
1358         td = curthread;
1359         file = fixup_filename(file);
1360
1361         /* Determine lock list for this lock. */
1362         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1363                 lock_list = &td->td_sleeplocks;
1364         else
1365                 lock_list = PCPU_PTR(spinlocks);
1366
1367         /* Check to see if we are recursing on a lock we already own. */
1368         instance = find_instance(*lock_list, lock);
1369         if (instance != NULL) {
1370                 instance->li_flags++;
1371                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1372                     td->td_proc->p_pid, lock->lo_name,
1373                     instance->li_flags & LI_RECURSEMASK);
1374                 instance->li_file = file;
1375                 instance->li_line = line;
1376                 return;
1377         }
1378
1379         /* Update per-witness last file and line acquire. */
1380         w->w_file = file;
1381         w->w_line = line;
1382
1383         /* Find the next open lock instance in the list and fill it. */
1384         lle = *lock_list;
1385         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1386                 lle = witness_lock_list_get();
1387                 if (lle == NULL)
1388                         return;
1389                 lle->ll_next = *lock_list;
1390                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1391                     td->td_proc->p_pid, lle);
1392                 *lock_list = lle;
1393         }
1394         instance = &lle->ll_children[lle->ll_count++];
1395         instance->li_lock = lock;
1396         instance->li_line = line;
1397         instance->li_file = file;
1398         if ((flags & LOP_EXCLUSIVE) != 0)
1399                 instance->li_flags = LI_EXCLUSIVE;
1400         else
1401                 instance->li_flags = 0;
1402         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1403             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1404 }
1405
1406 void
1407 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1408 {
1409         struct lock_instance *instance;
1410         struct lock_class *class;
1411
1412         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1413         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1414                 return;
1415         class = LOCK_CLASS(lock);
1416         file = fixup_filename(file);
1417         if (witness_watch) {
1418                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1419                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1420                             class->lc_name, lock->lo_name, file, line);
1421                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1422                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1423                             class->lc_name, lock->lo_name, file, line);
1424         }
1425         instance = find_instance(curthread->td_sleeplocks, lock);
1426         if (instance == NULL)
1427                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1428                     class->lc_name, lock->lo_name, file, line);
1429         if (witness_watch) {
1430                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1431                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1432                             class->lc_name, lock->lo_name, file, line);
1433                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1434                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1435                             class->lc_name, lock->lo_name,
1436                             instance->li_flags & LI_RECURSEMASK, file, line);
1437         }
1438         instance->li_flags |= LI_EXCLUSIVE;
1439 }
1440
1441 void
1442 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1443     int line)
1444 {
1445         struct lock_instance *instance;
1446         struct lock_class *class;
1447
1448         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1449         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1450                 return;
1451         class = LOCK_CLASS(lock);
1452         file = fixup_filename(file);
1453         if (witness_watch) {
1454                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1455                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1456                             class->lc_name, lock->lo_name, file, line);
1457                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1458                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1459                             class->lc_name, lock->lo_name, file, line);
1460         }
1461         instance = find_instance(curthread->td_sleeplocks, lock);
1462         if (instance == NULL)
1463                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1464                     class->lc_name, lock->lo_name, file, line);
1465         if (witness_watch) {
1466                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1467                         panic("downgrade of shared lock (%s) %s @ %s:%d",
1468                             class->lc_name, lock->lo_name, file, line);
1469                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1470                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1471                             class->lc_name, lock->lo_name,
1472                             instance->li_flags & LI_RECURSEMASK, file, line);
1473         }
1474         instance->li_flags &= ~LI_EXCLUSIVE;
1475 }
1476
1477 void
1478 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1479 {
1480         struct lock_list_entry **lock_list, *lle;
1481         struct lock_instance *instance;
1482         struct lock_class *class;
1483         struct thread *td;
1484         register_t s;
1485         int i, j;
1486
1487         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1488                 return;
1489         td = curthread;
1490         class = LOCK_CLASS(lock);
1491         file = fixup_filename(file);
1492
1493         /* Find lock instance associated with this lock. */
1494         if (class->lc_flags & LC_SLEEPLOCK)
1495                 lock_list = &td->td_sleeplocks;
1496         else
1497                 lock_list = PCPU_PTR(spinlocks);
1498         lle = *lock_list;
1499         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1500                 for (i = 0; i < (*lock_list)->ll_count; i++) {
1501                         instance = &(*lock_list)->ll_children[i];
1502                         if (instance->li_lock == lock)
1503                                 goto found;
1504                 }
1505
1506         /*
1507          * When disabling WITNESS through witness_watch we could end up in
1508          * having registered locks in the td_sleeplocks queue.
1509          * We have to make sure we flush these queues, so just search for
1510          * eventual register locks and remove them.
1511          */
1512         if (witness_watch > 0)
1513                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1514                     lock->lo_name, file, line);
1515         else
1516                 return;
1517 found:
1518
1519         /* First, check for shared/exclusive mismatches. */
1520         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1521             (flags & LOP_EXCLUSIVE) == 0) {
1522                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1523                     lock->lo_name, file, line);
1524                 printf("while exclusively locked from %s:%d\n",
1525                     instance->li_file, instance->li_line);
1526                 panic("excl->ushare");
1527         }
1528         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1529             (flags & LOP_EXCLUSIVE) != 0) {
1530                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1531                     lock->lo_name, file, line);
1532                 printf("while share locked from %s:%d\n", instance->li_file,
1533                     instance->li_line);
1534                 panic("share->uexcl");
1535         }
1536         /* If we are recursed, unrecurse. */
1537         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1538                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1539                     td->td_proc->p_pid, instance->li_lock->lo_name,
1540                     instance->li_flags);
1541                 instance->li_flags--;
1542                 return;
1543         }
1544         /* The lock is now being dropped, check for NORELEASE flag */
1545         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1546                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1547                     lock->lo_name, file, line);
1548                 panic("lock marked norelease");
1549         }
1550
1551         /* Otherwise, remove this item from the list. */
1552         s = intr_disable();
1553         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1554             td->td_proc->p_pid, instance->li_lock->lo_name,
1555             (*lock_list)->ll_count - 1);
1556         for (j = i; j < (*lock_list)->ll_count - 1; j++)
1557                 (*lock_list)->ll_children[j] =
1558                     (*lock_list)->ll_children[j + 1];
1559         (*lock_list)->ll_count--;
1560         intr_restore(s);
1561
1562         /*
1563          * In order to reduce contention on w_mtx, we want to keep always an
1564          * head object into lists so that frequent allocation from the 
1565          * free witness pool (and subsequent locking) is avoided.
1566          * In order to maintain the current code simple, when the head
1567          * object is totally unloaded it means also that we do not have
1568          * further objects in the list, so the list ownership needs to be
1569          * hand over to another object if the current head needs to be freed.
1570          */
1571         if ((*lock_list)->ll_count == 0) {
1572                 if (*lock_list == lle) {
1573                         if (lle->ll_next == NULL)
1574                                 return;
1575                 } else
1576                         lle = *lock_list;
1577                 *lock_list = lle->ll_next;
1578                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1579                     td->td_proc->p_pid, lle);
1580                 witness_lock_list_free(lle);
1581         }
1582 }
1583
1584 void
1585 witness_thread_exit(struct thread *td)
1586 {
1587         struct lock_list_entry *lle;
1588         int i, n;
1589
1590         lle = td->td_sleeplocks;
1591         if (lle == NULL || panicstr != NULL)
1592                 return;
1593         if (lle->ll_count != 0) {
1594                 for (n = 0; lle != NULL; lle = lle->ll_next)
1595                         for (i = lle->ll_count - 1; i >= 0; i--) {
1596                                 if (n == 0)
1597                 printf("Thread %p exiting with the following locks held:\n",
1598                                             td);
1599                                 n++;
1600                                 witness_list_lock(&lle->ll_children[i], printf);
1601                                 
1602                         }
1603                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
1604         }
1605         witness_lock_list_free(lle);
1606 }
1607
1608 /*
1609  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1610  * exempt Giant and sleepable locks from the checks as well.  If any
1611  * non-exempt locks are held, then a supplied message is printed to the
1612  * console along with a list of the offending locks.  If indicated in the
1613  * flags then a failure results in a panic as well.
1614  */
1615 int
1616 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1617 {
1618         struct lock_list_entry *lock_list, *lle;
1619         struct lock_instance *lock1;
1620         struct thread *td;
1621         va_list ap;
1622         int i, n;
1623
1624         if (witness_cold || witness_watch < 1 || panicstr != NULL)
1625                 return (0);
1626         n = 0;
1627         td = curthread;
1628         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1629                 for (i = lle->ll_count - 1; i >= 0; i--) {
1630                         lock1 = &lle->ll_children[i];
1631                         if (lock1->li_lock == lock)
1632                                 continue;
1633                         if (flags & WARN_GIANTOK &&
1634                             lock1->li_lock == &Giant.lock_object)
1635                                 continue;
1636                         if (flags & WARN_SLEEPOK &&
1637                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1638                                 continue;
1639                         if (n == 0) {
1640                                 va_start(ap, fmt);
1641                                 vprintf(fmt, ap);
1642                                 va_end(ap);
1643                                 printf(" with the following");
1644                                 if (flags & WARN_SLEEPOK)
1645                                         printf(" non-sleepable");
1646                                 printf(" locks held:\n");
1647                         }
1648                         n++;
1649                         witness_list_lock(lock1, printf);
1650                 }
1651
1652         /*
1653          * Pin the thread in order to avoid problems with thread migration.
1654          * Once that all verifies are passed about spinlocks ownership,
1655          * the thread is in a safe path and it can be unpinned.
1656          */
1657         sched_pin();
1658         lock_list = PCPU_GET(spinlocks);
1659         if (lock_list != NULL && lock_list->ll_count != 0) {
1660                 sched_unpin();
1661
1662                 /*
1663                  * We should only have one spinlock and as long as
1664                  * the flags cannot match for this locks class,
1665                  * check if the first spinlock is the one curthread
1666                  * should hold.
1667                  */
1668                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1669                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1670                     lock1->li_lock == lock && n == 0)
1671                         return (0);
1672
1673                 va_start(ap, fmt);
1674                 vprintf(fmt, ap);
1675                 va_end(ap);
1676                 printf(" with the following");
1677                 if (flags & WARN_SLEEPOK)
1678                         printf(" non-sleepable");
1679                 printf(" locks held:\n");
1680                 n += witness_list_locks(&lock_list, printf);
1681         } else
1682                 sched_unpin();
1683         if (flags & WARN_PANIC && n)
1684                 panic("%s", __func__);
1685         else
1686                 witness_debugger(n);
1687         return (n);
1688 }
1689
1690 const char *
1691 witness_file(struct lock_object *lock)
1692 {
1693         struct witness *w;
1694
1695         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1696                 return ("?");
1697         w = lock->lo_witness;
1698         return (w->w_file);
1699 }
1700
1701 int
1702 witness_line(struct lock_object *lock)
1703 {
1704         struct witness *w;
1705
1706         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1707                 return (0);
1708         w = lock->lo_witness;
1709         return (w->w_line);
1710 }
1711
1712 static struct witness *
1713 enroll(const char *description, struct lock_class *lock_class)
1714 {
1715         struct witness *w;
1716         struct witness_list *typelist;
1717
1718         MPASS(description != NULL);
1719
1720         if (witness_watch == -1 || panicstr != NULL)
1721                 return (NULL);
1722         if ((lock_class->lc_flags & LC_SPINLOCK)) {
1723                 if (witness_skipspin)
1724                         return (NULL);
1725                 else
1726                         typelist = &w_spin;
1727         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1728                 typelist = &w_sleep;
1729         else
1730                 panic("lock class %s is not sleep or spin",
1731                     lock_class->lc_name);
1732
1733         mtx_lock_spin(&w_mtx);
1734         w = witness_hash_get(description);
1735         if (w)
1736                 goto found;
1737         if ((w = witness_get()) == NULL)
1738                 return (NULL);
1739         MPASS(strlen(description) < MAX_W_NAME);
1740         strcpy(w->w_name, description);
1741         w->w_class = lock_class;
1742         w->w_refcount = 1;
1743         STAILQ_INSERT_HEAD(&w_all, w, w_list);
1744         if (lock_class->lc_flags & LC_SPINLOCK) {
1745                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1746                 w_spin_cnt++;
1747         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1748                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1749                 w_sleep_cnt++;
1750         }
1751
1752         /* Insert new witness into the hash */
1753         witness_hash_put(w);
1754         witness_increment_graph_generation();
1755         mtx_unlock_spin(&w_mtx);
1756         return (w);
1757 found:
1758         w->w_refcount++;
1759         mtx_unlock_spin(&w_mtx);
1760         if (lock_class != w->w_class)
1761                 panic(
1762                         "lock (%s) %s does not match earlier (%s) lock",
1763                         description, lock_class->lc_name,
1764                         w->w_class->lc_name);
1765         return (w);
1766 }
1767
1768 static void
1769 depart(struct witness *w)
1770 {
1771         struct witness_list *list;
1772
1773         MPASS(w->w_refcount == 0);
1774         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1775                 list = &w_sleep;
1776                 w_sleep_cnt--;
1777         } else {
1778                 list = &w_spin;
1779                 w_spin_cnt--;
1780         }
1781         /*
1782          * Set file to NULL as it may point into a loadable module.
1783          */
1784         w->w_file = NULL;
1785         w->w_line = 0;
1786         witness_increment_graph_generation();
1787 }
1788
1789
1790 static void
1791 adopt(struct witness *parent, struct witness *child)
1792 {
1793         int pi, ci, i, j;
1794
1795         if (witness_cold == 0)
1796                 mtx_assert(&w_mtx, MA_OWNED);
1797
1798         /* If the relationship is already known, there's no work to be done. */
1799         if (isitmychild(parent, child))
1800                 return;
1801
1802         /* When the structure of the graph changes, bump up the generation. */
1803         witness_increment_graph_generation();
1804
1805         /*
1806          * The hard part ... create the direct relationship, then propagate all
1807          * indirect relationships.
1808          */
1809         pi = parent->w_index;
1810         ci = child->w_index;
1811         WITNESS_INDEX_ASSERT(pi);
1812         WITNESS_INDEX_ASSERT(ci);
1813         MPASS(pi != ci);
1814         w_rmatrix[pi][ci] |= WITNESS_PARENT;
1815         w_rmatrix[ci][pi] |= WITNESS_CHILD;
1816
1817         /*
1818          * If parent was not already an ancestor of child,
1819          * then we increment the descendant and ancestor counters.
1820          */
1821         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1822                 parent->w_num_descendants++;
1823                 child->w_num_ancestors++;
1824         }
1825
1826         /* 
1827          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
1828          * an ancestor of 'pi' during this loop.
1829          */
1830         for (i = 1; i <= w_max_used_index; i++) {
1831                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
1832                     (i != pi))
1833                         continue;
1834
1835                 /* Find each descendant of 'i' and mark it as a descendant. */
1836                 for (j = 1; j <= w_max_used_index; j++) {
1837
1838                         /* 
1839                          * Skip children that are already marked as
1840                          * descendants of 'i'.
1841                          */
1842                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1843                                 continue;
1844
1845                         /*
1846                          * We are only interested in descendants of 'ci'. Note
1847                          * that 'ci' itself is counted as a descendant of 'ci'.
1848                          */
1849                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
1850                             (j != ci))
1851                                 continue;
1852                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1853                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1854                         w_data[i].w_num_descendants++;
1855                         w_data[j].w_num_ancestors++;
1856
1857                         /* 
1858                          * Make sure we aren't marking a node as both an
1859                          * ancestor and descendant. We should have caught 
1860                          * this as a lock order reversal earlier.
1861                          */
1862                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1863                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1864                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1865                                     "both ancestor and descendant\n",
1866                                     i, j, w_rmatrix[i][j]); 
1867                                 kdb_backtrace();
1868                                 printf("Witness disabled.\n");
1869                                 witness_watch = -1;
1870                         }
1871                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1872                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1873                                 printf("witness rmatrix paradox! [%d][%d]=%d "
1874                                     "both ancestor and descendant\n",
1875                                     j, i, w_rmatrix[j][i]); 
1876                                 kdb_backtrace();
1877                                 printf("Witness disabled.\n");
1878                                 witness_watch = -1;
1879                         }
1880                 }
1881         }
1882 }
1883
1884 static void
1885 itismychild(struct witness *parent, struct witness *child)
1886 {
1887
1888         MPASS(child != NULL && parent != NULL);
1889         if (witness_cold == 0)
1890                 mtx_assert(&w_mtx, MA_OWNED);
1891
1892         if (!witness_lock_type_equal(parent, child)) {
1893                 if (witness_cold == 0)
1894                         mtx_unlock_spin(&w_mtx);
1895                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1896                     "the same lock type", __func__, parent->w_name,
1897                     parent->w_class->lc_name, child->w_name,
1898                     child->w_class->lc_name);
1899         }
1900         adopt(parent, child);
1901 }
1902
1903 /*
1904  * Generic code for the isitmy*() functions. The rmask parameter is the
1905  * expected relationship of w1 to w2.
1906  */
1907 static int
1908 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1909 {
1910         unsigned char r1, r2;
1911         int i1, i2;
1912
1913         i1 = w1->w_index;
1914         i2 = w2->w_index;
1915         WITNESS_INDEX_ASSERT(i1);
1916         WITNESS_INDEX_ASSERT(i2);
1917         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1918         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1919
1920         /* The flags on one better be the inverse of the flags on the other */
1921         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1922                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1923                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
1924                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
1925                     "w_rmatrix[%d][%d] == %hhx\n",
1926                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1927                     i2, i1, r2);
1928                 kdb_backtrace();
1929                 printf("Witness disabled.\n");
1930                 witness_watch = -1;
1931         }
1932         return (r1 & rmask);
1933 }
1934
1935 /*
1936  * Checks if @child is a direct child of @parent.
1937  */
1938 static int
1939 isitmychild(struct witness *parent, struct witness *child)
1940 {
1941
1942         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1943 }
1944
1945 /*
1946  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1947  */
1948 static int
1949 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1950 {
1951
1952         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1953             __func__));
1954 }
1955
1956 #ifdef BLESSING
1957 static int
1958 blessed(struct witness *w1, struct witness *w2)
1959 {
1960         int i;
1961         struct witness_blessed *b;
1962
1963         for (i = 0; i < blessed_count; i++) {
1964                 b = &blessed_list[i];
1965                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
1966                         if (strcmp(w2->w_name, b->b_lock2) == 0)
1967                                 return (1);
1968                         continue;
1969                 }
1970                 if (strcmp(w1->w_name, b->b_lock2) == 0)
1971                         if (strcmp(w2->w_name, b->b_lock1) == 0)
1972                                 return (1);
1973         }
1974         return (0);
1975 }
1976 #endif
1977
1978 static struct witness *
1979 witness_get(void)
1980 {
1981         struct witness *w;
1982         int index;
1983
1984         if (witness_cold == 0)
1985                 mtx_assert(&w_mtx, MA_OWNED);
1986
1987         if (witness_watch == -1) {
1988                 mtx_unlock_spin(&w_mtx);
1989                 return (NULL);
1990         }
1991         if (STAILQ_EMPTY(&w_free)) {
1992                 witness_watch = -1;
1993                 mtx_unlock_spin(&w_mtx);
1994                 printf("WITNESS: unable to allocate a new witness object\n");
1995                 return (NULL);
1996         }
1997         w = STAILQ_FIRST(&w_free);
1998         STAILQ_REMOVE_HEAD(&w_free, w_list);
1999         w_free_cnt--;
2000         index = w->w_index;
2001         MPASS(index > 0 && index == w_max_used_index+1 &&
2002             index < WITNESS_COUNT);
2003         bzero(w, sizeof(*w));
2004         w->w_index = index;
2005         if (index > w_max_used_index)
2006                 w_max_used_index = index;
2007         return (w);
2008 }
2009
2010 static void
2011 witness_free(struct witness *w)
2012 {
2013
2014         STAILQ_INSERT_HEAD(&w_free, w, w_list);
2015         w_free_cnt++;
2016 }
2017
2018 static struct lock_list_entry *
2019 witness_lock_list_get(void)
2020 {
2021         struct lock_list_entry *lle;
2022
2023         if (witness_watch == -1)
2024                 return (NULL);
2025         mtx_lock_spin(&w_mtx);
2026         lle = w_lock_list_free;
2027         if (lle == NULL) {
2028                 witness_watch = -1;
2029                 mtx_unlock_spin(&w_mtx);
2030                 printf("%s: witness exhausted\n", __func__);
2031                 return (NULL);
2032         }
2033         w_lock_list_free = lle->ll_next;
2034         mtx_unlock_spin(&w_mtx);
2035         bzero(lle, sizeof(*lle));
2036         return (lle);
2037 }
2038                 
2039 static void
2040 witness_lock_list_free(struct lock_list_entry *lle)
2041 {
2042
2043         mtx_lock_spin(&w_mtx);
2044         lle->ll_next = w_lock_list_free;
2045         w_lock_list_free = lle;
2046         mtx_unlock_spin(&w_mtx);
2047 }
2048
2049 static struct lock_instance *
2050 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2051 {
2052         struct lock_list_entry *lle;
2053         struct lock_instance *instance;
2054         int i;
2055
2056         for (lle = list; lle != NULL; lle = lle->ll_next)
2057                 for (i = lle->ll_count - 1; i >= 0; i--) {
2058                         instance = &lle->ll_children[i];
2059                         if (instance->li_lock == lock)
2060                                 return (instance);
2061                 }
2062         return (NULL);
2063 }
2064
2065 static void
2066 witness_list_lock(struct lock_instance *instance,
2067     int (*prnt)(const char *fmt, ...))
2068 {
2069         struct lock_object *lock;
2070
2071         lock = instance->li_lock;
2072         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2073             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2074         if (lock->lo_witness->w_name != lock->lo_name)
2075                 prnt(" (%s)", lock->lo_witness->w_name);
2076         prnt(" r = %d (%p) locked @ %s:%d\n",
2077             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2078             instance->li_line);
2079 }
2080
2081 #ifdef DDB
2082 static int
2083 witness_thread_has_locks(struct thread *td)
2084 {
2085
2086         if (td->td_sleeplocks == NULL)
2087                 return (0);
2088         return (td->td_sleeplocks->ll_count != 0);
2089 }
2090
2091 static int
2092 witness_proc_has_locks(struct proc *p)
2093 {
2094         struct thread *td;
2095
2096         FOREACH_THREAD_IN_PROC(p, td) {
2097                 if (witness_thread_has_locks(td))
2098                         return (1);
2099         }
2100         return (0);
2101 }
2102 #endif
2103
2104 int
2105 witness_list_locks(struct lock_list_entry **lock_list,
2106     int (*prnt)(const char *fmt, ...))
2107 {
2108         struct lock_list_entry *lle;
2109         int i, nheld;
2110
2111         nheld = 0;
2112         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2113                 for (i = lle->ll_count - 1; i >= 0; i--) {
2114                         witness_list_lock(&lle->ll_children[i], prnt);
2115                         nheld++;
2116                 }
2117         return (nheld);
2118 }
2119
2120 /*
2121  * This is a bit risky at best.  We call this function when we have timed
2122  * out acquiring a spin lock, and we assume that the other CPU is stuck
2123  * with this lock held.  So, we go groveling around in the other CPU's
2124  * per-cpu data to try to find the lock instance for this spin lock to
2125  * see when it was last acquired.
2126  */
2127 void
2128 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2129     int (*prnt)(const char *fmt, ...))
2130 {
2131         struct lock_instance *instance;
2132         struct pcpu *pc;
2133
2134         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2135                 return;
2136         pc = pcpu_find(owner->td_oncpu);
2137         instance = find_instance(pc->pc_spinlocks, lock);
2138         if (instance != NULL)
2139                 witness_list_lock(instance, prnt);
2140 }
2141
2142 void
2143 witness_save(struct lock_object *lock, const char **filep, int *linep)
2144 {
2145         struct lock_list_entry *lock_list;
2146         struct lock_instance *instance;
2147         struct lock_class *class;
2148
2149         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2150         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2151                 return;
2152         class = LOCK_CLASS(lock);
2153         if (class->lc_flags & LC_SLEEPLOCK)
2154                 lock_list = curthread->td_sleeplocks;
2155         else {
2156                 if (witness_skipspin)
2157                         return;
2158                 lock_list = PCPU_GET(spinlocks);
2159         }
2160         instance = find_instance(lock_list, lock);
2161         if (instance == NULL)
2162                 panic("%s: lock (%s) %s not locked", __func__,
2163                     class->lc_name, lock->lo_name);
2164         *filep = instance->li_file;
2165         *linep = instance->li_line;
2166 }
2167
2168 void
2169 witness_restore(struct lock_object *lock, const char *file, int line)
2170 {
2171         struct lock_list_entry *lock_list;
2172         struct lock_instance *instance;
2173         struct lock_class *class;
2174
2175         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2176         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2177                 return;
2178         class = LOCK_CLASS(lock);
2179         if (class->lc_flags & LC_SLEEPLOCK)
2180                 lock_list = curthread->td_sleeplocks;
2181         else {
2182                 if (witness_skipspin)
2183                         return;
2184                 lock_list = PCPU_GET(spinlocks);
2185         }
2186         instance = find_instance(lock_list, lock);
2187         if (instance == NULL)
2188                 panic("%s: lock (%s) %s not locked", __func__,
2189                     class->lc_name, lock->lo_name);
2190         lock->lo_witness->w_file = file;
2191         lock->lo_witness->w_line = line;
2192         instance->li_file = file;
2193         instance->li_line = line;
2194 }
2195
2196 void
2197 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2198 {
2199 #ifdef INVARIANT_SUPPORT
2200         struct lock_instance *instance;
2201         struct lock_class *class;
2202
2203         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2204                 return;
2205         class = LOCK_CLASS(lock);
2206         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2207                 instance = find_instance(curthread->td_sleeplocks, lock);
2208         else if ((class->lc_flags & LC_SPINLOCK) != 0)
2209                 instance = find_instance(PCPU_GET(spinlocks), lock);
2210         else {
2211                 panic("Lock (%s) %s is not sleep or spin!",
2212                     class->lc_name, lock->lo_name);
2213         }
2214         file = fixup_filename(file);
2215         switch (flags) {
2216         case LA_UNLOCKED:
2217                 if (instance != NULL)
2218                         panic("Lock (%s) %s locked @ %s:%d.",
2219                             class->lc_name, lock->lo_name, file, line);
2220                 break;
2221         case LA_LOCKED:
2222         case LA_LOCKED | LA_RECURSED:
2223         case LA_LOCKED | LA_NOTRECURSED:
2224         case LA_SLOCKED:
2225         case LA_SLOCKED | LA_RECURSED:
2226         case LA_SLOCKED | LA_NOTRECURSED:
2227         case LA_XLOCKED:
2228         case LA_XLOCKED | LA_RECURSED:
2229         case LA_XLOCKED | LA_NOTRECURSED:
2230                 if (instance == NULL) {
2231                         panic("Lock (%s) %s not locked @ %s:%d.",
2232                             class->lc_name, lock->lo_name, file, line);
2233                         break;
2234                 }
2235                 if ((flags & LA_XLOCKED) != 0 &&
2236                     (instance->li_flags & LI_EXCLUSIVE) == 0)
2237                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2238                             class->lc_name, lock->lo_name, file, line);
2239                 if ((flags & LA_SLOCKED) != 0 &&
2240                     (instance->li_flags & LI_EXCLUSIVE) != 0)
2241                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
2242                             class->lc_name, lock->lo_name, file, line);
2243                 if ((flags & LA_RECURSED) != 0 &&
2244                     (instance->li_flags & LI_RECURSEMASK) == 0)
2245                         panic("Lock (%s) %s not recursed @ %s:%d.",
2246                             class->lc_name, lock->lo_name, file, line);
2247                 if ((flags & LA_NOTRECURSED) != 0 &&
2248                     (instance->li_flags & LI_RECURSEMASK) != 0)
2249                         panic("Lock (%s) %s recursed @ %s:%d.",
2250                             class->lc_name, lock->lo_name, file, line);
2251                 break;
2252         default:
2253                 panic("Invalid lock assertion at %s:%d.", file, line);
2254
2255         }
2256 #endif  /* INVARIANT_SUPPORT */
2257 }
2258
2259 static void
2260 witness_setflag(struct lock_object *lock, int flag, int set)
2261 {
2262         struct lock_list_entry *lock_list;
2263         struct lock_instance *instance;
2264         struct lock_class *class;
2265
2266         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2267                 return;
2268         class = LOCK_CLASS(lock);
2269         if (class->lc_flags & LC_SLEEPLOCK)
2270                 lock_list = curthread->td_sleeplocks;
2271         else {
2272                 if (witness_skipspin)
2273                         return;
2274                 lock_list = PCPU_GET(spinlocks);
2275         }
2276         instance = find_instance(lock_list, lock);
2277         if (instance == NULL)
2278                 panic("%s: lock (%s) %s not locked", __func__,
2279                     class->lc_name, lock->lo_name);
2280
2281         if (set)
2282                 instance->li_flags |= flag;
2283         else
2284                 instance->li_flags &= ~flag;
2285 }
2286
2287 void
2288 witness_norelease(struct lock_object *lock)
2289 {
2290
2291         witness_setflag(lock, LI_NORELEASE, 1);
2292 }
2293
2294 void
2295 witness_releaseok(struct lock_object *lock)
2296 {
2297
2298         witness_setflag(lock, LI_NORELEASE, 0);
2299 }
2300
2301 #ifdef DDB
2302 static void
2303 witness_ddb_list(struct thread *td)
2304 {
2305
2306         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2307         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2308
2309         if (witness_watch < 1)
2310                 return;
2311
2312         witness_list_locks(&td->td_sleeplocks, db_printf);
2313
2314         /*
2315          * We only handle spinlocks if td == curthread.  This is somewhat broken
2316          * if td is currently executing on some other CPU and holds spin locks
2317          * as we won't display those locks.  If we had a MI way of getting
2318          * the per-cpu data for a given cpu then we could use
2319          * td->td_oncpu to get the list of spinlocks for this thread
2320          * and "fix" this.
2321          *
2322          * That still wouldn't really fix this unless we locked the scheduler
2323          * lock or stopped the other CPU to make sure it wasn't changing the
2324          * list out from under us.  It is probably best to just not try to
2325          * handle threads on other CPU's for now.
2326          */
2327         if (td == curthread && PCPU_GET(spinlocks) != NULL)
2328                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2329 }
2330
2331 DB_SHOW_COMMAND(locks, db_witness_list)
2332 {
2333         struct thread *td;
2334
2335         if (have_addr)
2336                 td = db_lookup_thread(addr, TRUE);
2337         else
2338                 td = kdb_thread;
2339         witness_ddb_list(td);
2340 }
2341
2342 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2343 {
2344         struct thread *td;
2345         struct proc *p;
2346
2347         /*
2348          * It would be nice to list only threads and processes that actually
2349          * held sleep locks, but that information is currently not exported
2350          * by WITNESS.
2351          */
2352         FOREACH_PROC_IN_SYSTEM(p) {
2353                 if (!witness_proc_has_locks(p))
2354                         continue;
2355                 FOREACH_THREAD_IN_PROC(p, td) {
2356                         if (!witness_thread_has_locks(td))
2357                                 continue;
2358                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2359                             p->p_comm, td, td->td_tid);
2360                         witness_ddb_list(td);
2361                 }
2362         }
2363 }
2364 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2365
2366 DB_SHOW_COMMAND(witness, db_witness_display)
2367 {
2368
2369         witness_ddb_display(db_printf);
2370 }
2371 #endif
2372
2373 static int
2374 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2375 {
2376         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2377         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2378         struct sbuf *sb;
2379         u_int w_rmatrix1, w_rmatrix2;
2380         int error, generation, i, j;
2381
2382         tmp_data1 = NULL;
2383         tmp_data2 = NULL;
2384         tmp_w1 = NULL;
2385         tmp_w2 = NULL;
2386         if (witness_watch < 1) {
2387                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2388                 return (error);
2389         }
2390         if (witness_cold) {
2391                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2392                 return (error);
2393         }
2394         error = 0;
2395         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2396         if (sb == NULL)
2397                 return (ENOMEM);
2398
2399         /* Allocate and init temporary storage space. */
2400         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2401         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2402         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2403             M_WAITOK | M_ZERO);
2404         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
2405             M_WAITOK | M_ZERO);
2406         stack_zero(&tmp_data1->wlod_stack);
2407         stack_zero(&tmp_data2->wlod_stack);
2408
2409 restart:
2410         mtx_lock_spin(&w_mtx);
2411         generation = w_generation;
2412         mtx_unlock_spin(&w_mtx);
2413         sbuf_printf(sb, "Number of known direct relationships is %d\n",
2414             w_lohash.wloh_count);
2415         for (i = 1; i < w_max_used_index; i++) {
2416                 mtx_lock_spin(&w_mtx);
2417                 if (generation != w_generation) {
2418                         mtx_unlock_spin(&w_mtx);
2419
2420                         /* The graph has changed, try again. */
2421                         req->oldidx = 0;
2422                         sbuf_clear(sb);
2423                         goto restart;
2424                 }
2425
2426                 w1 = &w_data[i];
2427                 if (w1->w_reversed == 0) {
2428                         mtx_unlock_spin(&w_mtx);
2429                         continue;
2430                 }
2431
2432                 /* Copy w1 locally so we can release the spin lock. */
2433                 *tmp_w1 = *w1;
2434                 mtx_unlock_spin(&w_mtx);
2435
2436                 if (tmp_w1->w_reversed == 0)
2437                         continue;
2438                 for (j = 1; j < w_max_used_index; j++) {
2439                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2440                                 continue;
2441
2442                         mtx_lock_spin(&w_mtx);
2443                         if (generation != w_generation) {
2444                                 mtx_unlock_spin(&w_mtx);
2445
2446                                 /* The graph has changed, try again. */
2447                                 req->oldidx = 0;
2448                                 sbuf_clear(sb);
2449                                 goto restart;
2450                         }
2451
2452                         w2 = &w_data[j];
2453                         data1 = witness_lock_order_get(w1, w2);
2454                         data2 = witness_lock_order_get(w2, w1);
2455
2456                         /*
2457                          * Copy information locally so we can release the
2458                          * spin lock.
2459                          */
2460                         *tmp_w2 = *w2;
2461                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2462                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2463
2464                         if (data1) {
2465                                 stack_zero(&tmp_data1->wlod_stack);
2466                                 stack_copy(&data1->wlod_stack,
2467                                     &tmp_data1->wlod_stack);
2468                         }
2469                         if (data2 && data2 != data1) {
2470                                 stack_zero(&tmp_data2->wlod_stack);
2471                                 stack_copy(&data2->wlod_stack,
2472                                     &tmp_data2->wlod_stack);
2473                         }
2474                         mtx_unlock_spin(&w_mtx);
2475
2476                         sbuf_printf(sb,
2477             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2478                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2479                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
2480 #if 0
2481                         sbuf_printf(sb,
2482                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2483                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2484                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2485 #endif
2486                         if (data1) {
2487                                 sbuf_printf(sb,
2488                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2489                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
2490                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
2491                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2492                                 sbuf_printf(sb, "\n");
2493                         }
2494                         if (data2 && data2 != data1) {
2495                                 sbuf_printf(sb,
2496                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2497                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
2498                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
2499                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2500                                 sbuf_printf(sb, "\n");
2501                         }
2502                 }
2503         }
2504         mtx_lock_spin(&w_mtx);
2505         if (generation != w_generation) {
2506                 mtx_unlock_spin(&w_mtx);
2507
2508                 /*
2509                  * The graph changed while we were printing stack data,
2510                  * try again.
2511                  */
2512                 req->oldidx = 0;
2513                 sbuf_clear(sb);
2514                 goto restart;
2515         }
2516         mtx_unlock_spin(&w_mtx);
2517
2518         /* Free temporary storage space. */
2519         free(tmp_data1, M_TEMP);
2520         free(tmp_data2, M_TEMP);
2521         free(tmp_w1, M_TEMP);
2522         free(tmp_w2, M_TEMP);
2523
2524         sbuf_finish(sb);
2525         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2526         sbuf_delete(sb);
2527
2528         return (error);
2529 }
2530
2531 static int
2532 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2533 {
2534         struct witness *w;
2535         struct sbuf *sb;
2536         int error;
2537
2538         if (witness_watch < 1) {
2539                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2540                 return (error);
2541         }
2542         if (witness_cold) {
2543                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2544                 return (error);
2545         }
2546         error = 0;
2547
2548         error = sysctl_wire_old_buffer(req, 0);
2549         if (error != 0)
2550                 return (error);
2551         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2552         if (sb == NULL)
2553                 return (ENOMEM);
2554         sbuf_printf(sb, "\n");
2555
2556         mtx_lock_spin(&w_mtx);
2557         STAILQ_FOREACH(w, &w_all, w_list)
2558                 w->w_displayed = 0;
2559         STAILQ_FOREACH(w, &w_all, w_list)
2560                 witness_add_fullgraph(sb, w);
2561         mtx_unlock_spin(&w_mtx);
2562
2563         /*
2564          * Close the sbuf and return to userland.
2565          */
2566         error = sbuf_finish(sb);
2567         sbuf_delete(sb);
2568
2569         return (error);
2570 }
2571
2572 static int
2573 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2574 {
2575         int error, value;
2576
2577         value = witness_watch;
2578         error = sysctl_handle_int(oidp, &value, 0, req);
2579         if (error != 0 || req->newptr == NULL)
2580                 return (error);
2581         if (value > 1 || value < -1 ||
2582             (witness_watch == -1 && value != witness_watch))
2583                 return (EINVAL);
2584         witness_watch = value;
2585         return (0);
2586 }
2587
2588 static void
2589 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2590 {
2591         int i;
2592
2593         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2594                 return;
2595         w->w_displayed = 1;
2596
2597         WITNESS_INDEX_ASSERT(w->w_index);
2598         for (i = 1; i <= w_max_used_index; i++) {
2599                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2600                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2601                             w_data[i].w_name);
2602                         witness_add_fullgraph(sb, &w_data[i]);
2603                 }
2604         }
2605 }
2606
2607 /*
2608  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2609  * interprets the key as a string and reads until the null
2610  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2611  * hash value computed from the key.
2612  */
2613 static uint32_t
2614 witness_hash_djb2(const uint8_t *key, uint32_t size)
2615 {
2616         unsigned int hash = 5381;
2617         int i;
2618
2619         /* hash = hash * 33 + key[i] */
2620         if (size)
2621                 for (i = 0; i < size; i++)
2622                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2623         else
2624                 for (i = 0; key[i] != 0; i++)
2625                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
2626
2627         return (hash);
2628 }
2629
2630
2631 /*
2632  * Initializes the two witness hash tables. Called exactly once from
2633  * witness_initialize().
2634  */
2635 static void
2636 witness_init_hash_tables(void)
2637 {
2638         int i;
2639
2640         MPASS(witness_cold);
2641
2642         /* Initialize the hash tables. */
2643         for (i = 0; i < WITNESS_HASH_SIZE; i++)
2644                 w_hash.wh_array[i] = NULL;
2645
2646         w_hash.wh_size = WITNESS_HASH_SIZE;
2647         w_hash.wh_count = 0;
2648
2649         /* Initialize the lock order data hash. */
2650         w_lofree = NULL;
2651         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2652                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2653                 w_lodata[i].wlod_next = w_lofree;
2654                 w_lofree = &w_lodata[i];
2655         }
2656         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2657         w_lohash.wloh_count = 0;
2658         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2659                 w_lohash.wloh_array[i] = NULL;
2660 }
2661
2662 static struct witness *
2663 witness_hash_get(const char *key)
2664 {
2665         struct witness *w;
2666         uint32_t hash;
2667         
2668         MPASS(key != NULL);
2669         if (witness_cold == 0)
2670                 mtx_assert(&w_mtx, MA_OWNED);
2671         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2672         w = w_hash.wh_array[hash];
2673         while (w != NULL) {
2674                 if (strcmp(w->w_name, key) == 0)
2675                         goto out;
2676                 w = w->w_hash_next;
2677         }
2678
2679 out:
2680         return (w);
2681 }
2682
2683 static void
2684 witness_hash_put(struct witness *w)
2685 {
2686         uint32_t hash;
2687
2688         MPASS(w != NULL);
2689         MPASS(w->w_name != NULL);
2690         if (witness_cold == 0)
2691                 mtx_assert(&w_mtx, MA_OWNED);
2692         KASSERT(witness_hash_get(w->w_name) == NULL,
2693             ("%s: trying to add a hash entry that already exists!", __func__));
2694         KASSERT(w->w_hash_next == NULL,
2695             ("%s: w->w_hash_next != NULL", __func__));
2696
2697         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2698         w->w_hash_next = w_hash.wh_array[hash];
2699         w_hash.wh_array[hash] = w;
2700         w_hash.wh_count++;
2701 }
2702
2703
2704 static struct witness_lock_order_data *
2705 witness_lock_order_get(struct witness *parent, struct witness *child)
2706 {
2707         struct witness_lock_order_data *data = NULL;
2708         struct witness_lock_order_key key;
2709         unsigned int hash;
2710
2711         MPASS(parent != NULL && child != NULL);
2712         key.from = parent->w_index;
2713         key.to = child->w_index;
2714         WITNESS_INDEX_ASSERT(key.from);
2715         WITNESS_INDEX_ASSERT(key.to);
2716         if ((w_rmatrix[parent->w_index][child->w_index]
2717             & WITNESS_LOCK_ORDER_KNOWN) == 0)
2718                 goto out;
2719
2720         hash = witness_hash_djb2((const char*)&key,
2721             sizeof(key)) % w_lohash.wloh_size;
2722         data = w_lohash.wloh_array[hash];
2723         while (data != NULL) {
2724                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2725                         break;
2726                 data = data->wlod_next;
2727         }
2728
2729 out:
2730         return (data);
2731 }
2732
2733 /*
2734  * Verify that parent and child have a known relationship, are not the same,
2735  * and child is actually a child of parent.  This is done without w_mtx
2736  * to avoid contention in the common case.
2737  */
2738 static int
2739 witness_lock_order_check(struct witness *parent, struct witness *child)
2740 {
2741
2742         if (parent != child &&
2743             w_rmatrix[parent->w_index][child->w_index]
2744             & WITNESS_LOCK_ORDER_KNOWN &&
2745             isitmychild(parent, child))
2746                 return (1);
2747
2748         return (0);
2749 }
2750
2751 static int
2752 witness_lock_order_add(struct witness *parent, struct witness *child)
2753 {
2754         struct witness_lock_order_data *data = NULL;
2755         struct witness_lock_order_key key;
2756         unsigned int hash;
2757         
2758         MPASS(parent != NULL && child != NULL);
2759         key.from = parent->w_index;
2760         key.to = child->w_index;
2761         WITNESS_INDEX_ASSERT(key.from);
2762         WITNESS_INDEX_ASSERT(key.to);
2763         if (w_rmatrix[parent->w_index][child->w_index]
2764             & WITNESS_LOCK_ORDER_KNOWN)
2765                 return (1);
2766
2767         hash = witness_hash_djb2((const char*)&key,
2768             sizeof(key)) % w_lohash.wloh_size;
2769         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2770         data = w_lofree;
2771         if (data == NULL)
2772                 return (0);
2773         w_lofree = data->wlod_next;
2774         data->wlod_next = w_lohash.wloh_array[hash];
2775         data->wlod_key = key;
2776         w_lohash.wloh_array[hash] = data;
2777         w_lohash.wloh_count++;
2778         stack_zero(&data->wlod_stack);
2779         stack_save(&data->wlod_stack);
2780         return (1);
2781 }
2782
2783 /* Call this whenver the structure of the witness graph changes. */
2784 static void
2785 witness_increment_graph_generation(void)
2786 {
2787
2788         if (witness_cold == 0)
2789                 mtx_assert(&w_mtx, MA_OWNED);
2790         w_generation++;
2791 }
2792
2793 #ifdef KDB
2794 static void
2795 _witness_debugger(int cond, const char *msg)
2796 {
2797
2798         if (witness_trace && cond)
2799                 kdb_backtrace();
2800         if (witness_kdb && cond)
2801                 kdb_enter(KDB_WHY_WITNESS, msg);
2802 }
2803 #endif