]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/net/bpf_zerocopy.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / net / bpf_zerocopy.c
1 /*-
2  * Copyright (c) 2007 Seccuris Inc.
3  * All rights reserved.
4  *
5  * This sofware was developed by Robert N. M. Watson under contract to
6  * Seccuris Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_bpf.h"
34
35 #include <sys/param.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sf_buf.h>
42 #include <sys/socket.h>
43 #include <sys/uio.h>
44
45 #include <machine/atomic.h>
46
47 #include <net/if.h>
48 #include <net/bpf.h>
49 #include <net/bpf_zerocopy.h>
50 #include <net/bpfdesc.h>
51
52 #include <vm/vm.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_page.h>
57
58 /*
59  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
60  * are mapped into the kernel address space using sf_bufs and used directly
61  * by BPF.  Memory is wired since page faults cannot be tolerated in the
62  * contexts where the buffers are copied to (locks held, interrupt context,
63  * etc).  Access to shared memory buffers is synchronized using a header on
64  * each buffer, allowing the number of system calls to go to zero as BPF
65  * reaches saturation (buffers filled as fast as they can be drained by the
66  * user process).  Full details of the protocol for communicating between the
67  * user process and BPF may be found in bpf(4).
68  */
69
70 /*
71  * Maximum number of pages per buffer.  Since all BPF devices use two, the
72  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
73  * sf_bufs may be an issue, so do not set this too high.  On older systems,
74  * kernel address space limits may also be an issue.
75  */
76 #define BPF_MAX_PAGES   512
77
78 /*
79  * struct zbuf describes a memory buffer loaned by a user process to the
80  * kernel.  We represent this as a series of pages managed using an array of
81  * sf_bufs.  Even though the memory is contiguous in user space, it may not
82  * be mapped contiguously in the kernel (i.e., a set of physically
83  * non-contiguous pages in the direct map region) so we must implement
84  * scatter-gather copying.  One significant mitigating factor is that on
85  * systems with a direct memory map, we can avoid TLB misses.
86  *
87  * At the front of the shared memory region is a bpf_zbuf_header, which
88  * contains shared control data to allow user space and the kernel to
89  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
90  * knows that the space is not available.
91  */
92 struct zbuf {
93         vm_offset_t      zb_uaddr;      /* User address at time of setup. */
94         size_t           zb_size;       /* Size of buffer, incl. header. */
95         u_int            zb_numpages;   /* Number of pages. */
96         int              zb_flags;      /* Flags on zbuf. */
97         struct sf_buf   **zb_pages;     /* Pages themselves. */
98         struct bpf_zbuf_header  *zb_header;     /* Shared header. */
99 };
100
101 /*
102  * When a buffer has been assigned to userspace, flag it as such, as the
103  * buffer may remain in the store position as a result of the user process
104  * not yet having acknowledged the buffer in the hold position yet.
105  */
106 #define ZBUF_FLAG_ASSIGNED      0x00000001      /* Set when owned by user. */
107
108 /*
109  * Release a page we've previously wired.
110  */
111 static void
112 zbuf_page_free(vm_page_t pp)
113 {
114
115         vm_page_lock(pp);
116         vm_page_unwire(pp, 0);
117         if (pp->wire_count == 0 && pp->object == NULL)
118                 vm_page_free(pp);
119         vm_page_unlock(pp);
120 }
121
122 /*
123  * Free an sf_buf with attached page.
124  */
125 static void
126 zbuf_sfbuf_free(struct sf_buf *sf)
127 {
128         vm_page_t pp;
129
130         pp = sf_buf_page(sf);
131         sf_buf_free(sf);
132         zbuf_page_free(pp);
133 }
134
135 /*
136  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
137  * allocated zbufs to be freed so that it may be used even during a zbuf
138  * setup.
139  */
140 static void
141 zbuf_free(struct zbuf *zb)
142 {
143         int i;
144
145         for (i = 0; i < zb->zb_numpages; i++) {
146                 if (zb->zb_pages[i] != NULL)
147                         zbuf_sfbuf_free(zb->zb_pages[i]);
148         }
149         free(zb->zb_pages, M_BPF);
150         free(zb, M_BPF);
151 }
152
153 /*
154  * Given a user pointer to a page of user memory, return an sf_buf for the
155  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
156  * deadlock and use SFB_NOWAIT.
157  */
158 static struct sf_buf *
159 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
160 {
161         struct sf_buf *sf;
162         vm_page_t pp;
163
164         if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
165             VM_PROT_WRITE, &pp, 1) < 0)
166                 return (NULL);
167         vm_page_lock(pp);
168         vm_page_wire(pp);
169         vm_page_unhold(pp);
170         vm_page_unlock(pp);
171         sf = sf_buf_alloc(pp, SFB_NOWAIT);
172         if (sf == NULL) {
173                 zbuf_page_free(pp);
174                 return (NULL);
175         }
176         return (sf);
177 }
178
179 /*
180  * Create a zbuf describing a range of user address space memory.  Validate
181  * page alignment, size requirements, etc.
182  */
183 static int
184 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
185     struct zbuf **zbp)
186 {
187         struct zbuf *zb;
188         struct vm_map *map;
189         int error, i;
190
191         *zbp = NULL;
192
193         /*
194          * User address must be page-aligned.
195          */
196         if (uaddr & PAGE_MASK)
197                 return (EINVAL);
198
199         /*
200          * Length must be an integer number of full pages.
201          */
202         if (len & PAGE_MASK)
203                 return (EINVAL);
204
205         /*
206          * Length must not exceed per-buffer resource limit.
207          */
208         if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
209                 return (EINVAL);
210
211         /*
212          * Allocate the buffer and set up each page with is own sf_buf.
213          */
214         error = 0;
215         zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
216         zb->zb_uaddr = uaddr;
217         zb->zb_size = len;
218         zb->zb_numpages = len / PAGE_SIZE;
219         zb->zb_pages = malloc(sizeof(struct sf_buf *) *
220             zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
221         map = &td->td_proc->p_vmspace->vm_map;
222         for (i = 0; i < zb->zb_numpages; i++) {
223                 zb->zb_pages[i] = zbuf_sfbuf_get(map,
224                     uaddr + (i * PAGE_SIZE));
225                 if (zb->zb_pages[i] == NULL) {
226                         error = EFAULT;
227                         goto error;
228                 }
229         }
230         zb->zb_header =
231             (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
232         bzero(zb->zb_header, sizeof(*zb->zb_header));
233         *zbp = zb;
234         return (0);
235
236 error:
237         zbuf_free(zb);
238         return (error);
239 }
240
241 /*
242  * Copy bytes from a source into the specified zbuf.  The caller is
243  * responsible for performing bounds checking, etc.
244  */
245 void
246 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
247     void *src, u_int len)
248 {
249         u_int count, page, poffset;
250         u_char *src_bytes;
251         struct zbuf *zb;
252
253         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
254             ("bpf_zerocopy_append_bytes: not in zbuf mode"));
255         KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
256
257         src_bytes = (u_char *)src;
258         zb = (struct zbuf *)buf;
259
260         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
261             ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
262
263         /*
264          * Scatter-gather copy to user pages mapped into kernel address space
265          * using sf_bufs: copy up to a page at a time.
266          */
267         offset += sizeof(struct bpf_zbuf_header);
268         page = offset / PAGE_SIZE;
269         poffset = offset % PAGE_SIZE;
270         while (len > 0) {
271                 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
272                    " page overflow (%d p %d np)\n", page, zb->zb_numpages));
273
274                 count = min(len, PAGE_SIZE - poffset);
275                 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
276                     poffset, count);
277                 poffset += count;
278                 if (poffset == PAGE_SIZE) {
279                         poffset = 0;
280                         page++;
281                 }
282                 KASSERT(poffset < PAGE_SIZE,
283                     ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
284                     poffset));
285                 len -= count;
286                 src_bytes += count;
287         }
288 }
289
290 /*
291  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
292  * scatter-gather both from mbufs, which may be fragmented over memory, and
293  * to pages, which may not be contiguously mapped in kernel address space.
294  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
295  * checking that this will not exceed the buffer limit.
296  */
297 void
298 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
299     void *src, u_int len)
300 {
301         u_int count, moffset, page, poffset;
302         const struct mbuf *m;
303         struct zbuf *zb;
304
305         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
306             ("bpf_zerocopy_append_mbuf not in zbuf mode"));
307         KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
308
309         m = (struct mbuf *)src;
310         zb = (struct zbuf *)buf;
311
312         KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
313             ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
314
315         /*
316          * Scatter gather both from an mbuf chain and to a user page set
317          * mapped into kernel address space using sf_bufs.  If we're lucky,
318          * each mbuf requires one copy operation, but if page alignment and
319          * mbuf alignment work out less well, we'll be doing two copies per
320          * mbuf.
321          */
322         offset += sizeof(struct bpf_zbuf_header);
323         page = offset / PAGE_SIZE;
324         poffset = offset % PAGE_SIZE;
325         moffset = 0;
326         while (len > 0) {
327                 KASSERT(page < zb->zb_numpages,
328                     ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
329                     "np)\n", page, zb->zb_numpages));
330                 KASSERT(m != NULL,
331                     ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
332
333                 count = min(m->m_len - moffset, len);
334                 count = min(count, PAGE_SIZE - poffset);
335                 bcopy(mtod(m, u_char *) + moffset,
336                     ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
337                     count);
338                 poffset += count;
339                 if (poffset == PAGE_SIZE) {
340                         poffset = 0;
341                         page++;
342                 }
343                 KASSERT(poffset < PAGE_SIZE,
344                     ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
345                     poffset));
346                 moffset += count;
347                 if (moffset == m->m_len) {
348                         m = m->m_next;
349                         moffset = 0;
350                 }
351                 len -= count;
352         }
353 }
354
355 /*
356  * Notification from the BPF framework that a buffer in the store position is
357  * rejecting packets and may be considered full.  We mark the buffer as
358  * immutable and assign to userspace so that it is immediately available for
359  * the user process to access.
360  */
361 void
362 bpf_zerocopy_buffull(struct bpf_d *d)
363 {
364         struct zbuf *zb;
365
366         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
367             ("bpf_zerocopy_buffull: not in zbuf mode"));
368
369         zb = (struct zbuf *)d->bd_sbuf;
370         KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
371
372         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
373                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
374                 zb->zb_header->bzh_kernel_len = d->bd_slen;
375                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
376         }
377 }
378
379 /*
380  * Notification from the BPF framework that a buffer has moved into the held
381  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
382  * the user process know and flag the buffer as assigned if it hasn't already
383  * been marked assigned due to filling while it was in the store position.
384  *
385  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
386  * on bd_hbuf and bd_hlen.
387  */
388 void
389 bpf_zerocopy_bufheld(struct bpf_d *d)
390 {
391         struct zbuf *zb;
392
393         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
394             ("bpf_zerocopy_bufheld: not in zbuf mode"));
395
396         zb = (struct zbuf *)d->bd_hbuf;
397         KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
398
399         if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
400                 zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
401                 zb->zb_header->bzh_kernel_len = d->bd_hlen;
402                 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
403         }
404 }
405
406 /*
407  * Notification from the BPF framework that the free buffer has been been
408  * rotated out of the held position to the free position.  This happens when
409  * the user acknowledges the held buffer.
410  */
411 void
412 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
413 {
414         struct zbuf *zb;
415
416         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
417             ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
418
419         KASSERT(d->bd_fbuf != NULL,
420             ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
421         zb = (struct zbuf *)d->bd_fbuf;
422         zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
423 }
424
425 /*
426  * Query from the BPF framework regarding whether the buffer currently in the
427  * held position can be moved to the free position, which can be indicated by
428  * the user process making their generation number equal to the kernel
429  * generation number.
430  */
431 int
432 bpf_zerocopy_canfreebuf(struct bpf_d *d)
433 {
434         struct zbuf *zb;
435
436         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
437             ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
438
439         zb = (struct zbuf *)d->bd_hbuf;
440         if (zb == NULL)
441                 return (0);
442         if (zb->zb_header->bzh_kernel_gen ==
443             atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
444                 return (1);
445         return (0);
446 }
447
448 /*
449  * Query from the BPF framework as to whether or not the buffer current in
450  * the store position can actually be written to.  This may return false if
451  * the store buffer is assigned to userspace before the hold buffer is
452  * acknowledged.
453  */
454 int
455 bpf_zerocopy_canwritebuf(struct bpf_d *d)
456 {
457         struct zbuf *zb;
458
459         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
460             ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
461
462         zb = (struct zbuf *)d->bd_sbuf;
463         KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
464
465         if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
466                 return (0);
467         return (1);
468 }
469
470 /*
471  * Free zero copy buffers at request of descriptor.
472  */
473 void
474 bpf_zerocopy_free(struct bpf_d *d)
475 {
476         struct zbuf *zb;
477
478         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
479             ("bpf_zerocopy_free: not in zbuf mode"));
480
481         zb = (struct zbuf *)d->bd_sbuf;
482         if (zb != NULL)
483                 zbuf_free(zb);
484         zb = (struct zbuf *)d->bd_hbuf;
485         if (zb != NULL)
486                 zbuf_free(zb);
487         zb = (struct zbuf *)d->bd_fbuf;
488         if (zb != NULL)
489                 zbuf_free(zb);
490 }
491
492 /*
493  * Ioctl to return the maximum buffer size.
494  */
495 int
496 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
497 {
498
499         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
500             ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
501
502         *i = BPF_MAX_PAGES * PAGE_SIZE;
503         return (0);
504 }
505
506 /*
507  * Ioctl to force rotation of the two buffers, if there's any data available.
508  * This can be used by user space to implement timeouts when waiting for a
509  * buffer to fill.
510  */
511 int
512 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
513     struct bpf_zbuf *bz)
514 {
515         struct zbuf *bzh;
516
517         bzero(bz, sizeof(*bz));
518         BPFD_LOCK(d);
519         if (d->bd_hbuf == NULL && d->bd_slen != 0) {
520                 ROTATE_BUFFERS(d);
521                 bzh = (struct zbuf *)d->bd_hbuf;
522                 bz->bz_bufa = (void *)bzh->zb_uaddr;
523                 bz->bz_buflen = d->bd_hlen;
524         }
525         BPFD_UNLOCK(d);
526         return (0);
527 }
528
529 /*
530  * Ioctl to configure zero-copy buffers -- may be done only once.
531  */
532 int
533 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
534     struct bpf_zbuf *bz)
535 {
536         struct zbuf *zba, *zbb;
537         int error;
538
539         KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
540             ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
541
542         /*
543          * Must set both buffers.  Cannot clear them.
544          */
545         if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
546                 return (EINVAL);
547
548         /*
549          * Buffers must have a size greater than 0.  Alignment and other size
550          * validity checking is done in zbuf_setup().
551          */
552         if (bz->bz_buflen == 0)
553                 return (EINVAL);
554
555         /*
556          * Allocate new buffers.
557          */
558         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
559             &zba);
560         if (error)
561                 return (error);
562         error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
563             &zbb);
564         if (error) {
565                 zbuf_free(zba);
566                 return (error);
567         }
568
569         /*
570          * We only allow buffers to be installed once, so atomically check
571          * that no buffers are currently installed and install new buffers.
572          */
573         BPFD_LOCK(d);
574         if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
575             d->bd_bif != NULL) {
576                 BPFD_UNLOCK(d);
577                 zbuf_free(zba);
578                 zbuf_free(zbb);
579                 return (EINVAL);
580         }
581
582         /*
583          * Point BPF descriptor at buffers; initialize sbuf as zba so that
584          * it is always filled first in the sequence, per bpf(4).
585          */
586         d->bd_fbuf = (caddr_t)zbb;
587         d->bd_sbuf = (caddr_t)zba;
588         d->bd_slen = 0;
589         d->bd_hlen = 0;
590
591         /*
592          * We expose only the space left in the buffer after the size of the
593          * shared management region.
594          */
595         d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
596         BPFD_UNLOCK(d);
597         return (0);
598 }