]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/vm/vm_object.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102
103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104                     int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106                     int *clearobjflags);
107 static void     vm_object_qcollapse(vm_object_t object);
108 static void     vm_object_vndeallocate(vm_object_t object);
109
110 /*
111  *      Virtual memory objects maintain the actual data
112  *      associated with allocated virtual memory.  A given
113  *      page of memory exists within exactly one object.
114  *
115  *      An object is only deallocated when all "references"
116  *      are given up.  Only one "reference" to a given
117  *      region of an object should be writeable.
118  *
119  *      Associated with each object is a list of all resident
120  *      memory pages belonging to that object; this list is
121  *      maintained by the "vm_page" module, and locked by the object's
122  *      lock.
123  *
124  *      Each object also records a "pager" routine which is
125  *      used to retrieve (and store) pages to the proper backing
126  *      storage.  In addition, objects may be backed by other
127  *      objects from which they were virtual-copied.
128  *
129  *      The only items within the object structure which are
130  *      modified after time of creation are:
131  *              reference count         locked by object's lock
132  *              pager routine           locked by object's lock
133  *
134  */
135
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;  /* lock for object list and count */
138
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141
142 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
143
144 static long object_collapses;
145 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
146     &object_collapses, 0, "VM object collapses");
147
148 static long object_bypasses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
150     &object_bypasses, 0, "VM object bypasses");
151
152 static uma_zone_t obj_zone;
153
154 static int vm_object_zinit(void *mem, int size, int flags);
155
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162         vm_object_t object;
163
164         object = (vm_object_t)mem;
165         KASSERT(TAILQ_EMPTY(&object->memq),
166             ("object %p has resident pages",
167             object));
168 #if VM_NRESERVLEVEL > 0
169         KASSERT(LIST_EMPTY(&object->rvq),
170             ("object %p has reservations",
171             object));
172 #endif
173         KASSERT(object->cache == NULL,
174             ("object %p has cached pages",
175             object));
176         KASSERT(object->paging_in_progress == 0,
177             ("object %p paging_in_progress = %d",
178             object, object->paging_in_progress));
179         KASSERT(object->resident_page_count == 0,
180             ("object %p resident_page_count = %d",
181             object, object->resident_page_count));
182         KASSERT(object->shadow_count == 0,
183             ("object %p shadow_count = %d",
184             object, object->shadow_count));
185 }
186 #endif
187
188 static int
189 vm_object_zinit(void *mem, int size, int flags)
190 {
191         vm_object_t object;
192
193         object = (vm_object_t)mem;
194         bzero(&object->mtx, sizeof(object->mtx));
195         VM_OBJECT_LOCK_INIT(object, "standard object");
196
197         /* These are true for any object that has been freed */
198         object->paging_in_progress = 0;
199         object->resident_page_count = 0;
200         object->shadow_count = 0;
201         return (0);
202 }
203
204 void
205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
206 {
207
208         TAILQ_INIT(&object->memq);
209         LIST_INIT(&object->shadow_head);
210
211         object->root = NULL;
212         object->type = type;
213         object->size = size;
214         object->generation = 1;
215         object->ref_count = 1;
216         object->memattr = VM_MEMATTR_DEFAULT;
217         object->flags = 0;
218         object->cred = NULL;
219         object->charge = 0;
220         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
221                 object->flags = OBJ_ONEMAPPING;
222         object->pg_color = 0;
223         object->handle = NULL;
224         object->backing_object = NULL;
225         object->backing_object_offset = (vm_ooffset_t) 0;
226 #if VM_NRESERVLEVEL > 0
227         LIST_INIT(&object->rvq);
228 #endif
229         object->cache = NULL;
230
231         mtx_lock(&vm_object_list_mtx);
232         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233         mtx_unlock(&vm_object_list_mtx);
234 }
235
236 /*
237  *      vm_object_init:
238  *
239  *      Initialize the VM objects module.
240  */
241 void
242 vm_object_init(void)
243 {
244         TAILQ_INIT(&vm_object_list);
245         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
246         
247         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
248         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
249             kernel_object);
250 #if VM_NRESERVLEVEL > 0
251         kernel_object->flags |= OBJ_COLORED;
252         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
253 #endif
254
255         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
256         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
257             kmem_object);
258 #if VM_NRESERVLEVEL > 0
259         kmem_object->flags |= OBJ_COLORED;
260         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
261 #endif
262
263         /*
264          * The lock portion of struct vm_object must be type stable due
265          * to vm_pageout_fallback_object_lock locking a vm object
266          * without holding any references to it.
267          */
268         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
269 #ifdef INVARIANTS
270             vm_object_zdtor,
271 #else
272             NULL,
273 #endif
274             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
275 }
276
277 void
278 vm_object_clear_flag(vm_object_t object, u_short bits)
279 {
280
281         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
282         object->flags &= ~bits;
283 }
284
285 /*
286  *      Sets the default memory attribute for the specified object.  Pages
287  *      that are allocated to this object are by default assigned this memory
288  *      attribute.
289  *
290  *      Presently, this function must be called before any pages are allocated
291  *      to the object.  In the future, this requirement may be relaxed for
292  *      "default" and "swap" objects.
293  */
294 int
295 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
296 {
297
298         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
299         switch (object->type) {
300         case OBJT_DEFAULT:
301         case OBJT_DEVICE:
302         case OBJT_PHYS:
303         case OBJT_SG:
304         case OBJT_SWAP:
305         case OBJT_VNODE:
306                 if (!TAILQ_EMPTY(&object->memq))
307                         return (KERN_FAILURE);
308                 break;
309         case OBJT_DEAD:
310                 return (KERN_INVALID_ARGUMENT);
311         }
312         object->memattr = memattr;
313         return (KERN_SUCCESS);
314 }
315
316 void
317 vm_object_pip_add(vm_object_t object, short i)
318 {
319
320         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
321         object->paging_in_progress += i;
322 }
323
324 void
325 vm_object_pip_subtract(vm_object_t object, short i)
326 {
327
328         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
329         object->paging_in_progress -= i;
330 }
331
332 void
333 vm_object_pip_wakeup(vm_object_t object)
334 {
335
336         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
337         object->paging_in_progress--;
338         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
339                 vm_object_clear_flag(object, OBJ_PIPWNT);
340                 wakeup(object);
341         }
342 }
343
344 void
345 vm_object_pip_wakeupn(vm_object_t object, short i)
346 {
347
348         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
349         if (i)
350                 object->paging_in_progress -= i;
351         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
352                 vm_object_clear_flag(object, OBJ_PIPWNT);
353                 wakeup(object);
354         }
355 }
356
357 void
358 vm_object_pip_wait(vm_object_t object, char *waitid)
359 {
360
361         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
362         while (object->paging_in_progress) {
363                 object->flags |= OBJ_PIPWNT;
364                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
365         }
366 }
367
368 /*
369  *      vm_object_allocate:
370  *
371  *      Returns a new object with the given size.
372  */
373 vm_object_t
374 vm_object_allocate(objtype_t type, vm_pindex_t size)
375 {
376         vm_object_t object;
377
378         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
379         _vm_object_allocate(type, size, object);
380         return (object);
381 }
382
383
384 /*
385  *      vm_object_reference:
386  *
387  *      Gets another reference to the given object.  Note: OBJ_DEAD
388  *      objects can be referenced during final cleaning.
389  */
390 void
391 vm_object_reference(vm_object_t object)
392 {
393         if (object == NULL)
394                 return;
395         VM_OBJECT_LOCK(object);
396         vm_object_reference_locked(object);
397         VM_OBJECT_UNLOCK(object);
398 }
399
400 /*
401  *      vm_object_reference_locked:
402  *
403  *      Gets another reference to the given object.
404  *
405  *      The object must be locked.
406  */
407 void
408 vm_object_reference_locked(vm_object_t object)
409 {
410         struct vnode *vp;
411
412         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
413         object->ref_count++;
414         if (object->type == OBJT_VNODE) {
415                 vp = object->handle;
416                 vref(vp);
417         }
418 }
419
420 /*
421  * Handle deallocating an object of type OBJT_VNODE.
422  */
423 static void
424 vm_object_vndeallocate(vm_object_t object)
425 {
426         struct vnode *vp = (struct vnode *) object->handle;
427
428         VFS_ASSERT_GIANT(vp->v_mount);
429         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
430         KASSERT(object->type == OBJT_VNODE,
431             ("vm_object_vndeallocate: not a vnode object"));
432         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
433 #ifdef INVARIANTS
434         if (object->ref_count == 0) {
435                 vprint("vm_object_vndeallocate", vp);
436                 panic("vm_object_vndeallocate: bad object reference count");
437         }
438 #endif
439
440         if (object->ref_count > 1) {
441                 object->ref_count--;
442                 VM_OBJECT_UNLOCK(object);
443                 /* vrele may need the vnode lock. */
444                 vrele(vp);
445         } else {
446                 vhold(vp);
447                 VM_OBJECT_UNLOCK(object);
448                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
449                 vdrop(vp);
450                 VM_OBJECT_LOCK(object);
451                 object->ref_count--;
452                 if (object->type == OBJT_DEAD) {
453                         VM_OBJECT_UNLOCK(object);
454                         VOP_UNLOCK(vp, 0);
455                 } else {
456                         if (object->ref_count == 0)
457                                 vp->v_vflag &= ~VV_TEXT;
458                         VM_OBJECT_UNLOCK(object);
459                         vput(vp);
460                 }
461         }
462 }
463
464 /*
465  *      vm_object_deallocate:
466  *
467  *      Release a reference to the specified object,
468  *      gained either through a vm_object_allocate
469  *      or a vm_object_reference call.  When all references
470  *      are gone, storage associated with this object
471  *      may be relinquished.
472  *
473  *      No object may be locked.
474  */
475 void
476 vm_object_deallocate(vm_object_t object)
477 {
478         vm_object_t temp;
479
480         while (object != NULL) {
481                 int vfslocked;
482
483                 vfslocked = 0;
484         restart:
485                 VM_OBJECT_LOCK(object);
486                 if (object->type == OBJT_VNODE) {
487                         struct vnode *vp = (struct vnode *) object->handle;
488
489                         /*
490                          * Conditionally acquire Giant for a vnode-backed
491                          * object.  We have to be careful since the type of
492                          * a vnode object can change while the object is
493                          * unlocked.
494                          */
495                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
496                                 vfslocked = 1;
497                                 if (!mtx_trylock(&Giant)) {
498                                         VM_OBJECT_UNLOCK(object);
499                                         mtx_lock(&Giant);
500                                         goto restart;
501                                 }
502                         }
503                         vm_object_vndeallocate(object);
504                         VFS_UNLOCK_GIANT(vfslocked);
505                         return;
506                 } else
507                         /*
508                          * This is to handle the case that the object
509                          * changed type while we dropped its lock to
510                          * obtain Giant.
511                          */
512                         VFS_UNLOCK_GIANT(vfslocked);
513
514                 KASSERT(object->ref_count != 0,
515                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
516
517                 /*
518                  * If the reference count goes to 0 we start calling
519                  * vm_object_terminate() on the object chain.
520                  * A ref count of 1 may be a special case depending on the
521                  * shadow count being 0 or 1.
522                  */
523                 object->ref_count--;
524                 if (object->ref_count > 1) {
525                         VM_OBJECT_UNLOCK(object);
526                         return;
527                 } else if (object->ref_count == 1) {
528                         if (object->shadow_count == 0 &&
529                             object->handle == NULL &&
530                             (object->type == OBJT_DEFAULT ||
531                              object->type == OBJT_SWAP)) {
532                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
533                         } else if ((object->shadow_count == 1) &&
534                             (object->handle == NULL) &&
535                             (object->type == OBJT_DEFAULT ||
536                              object->type == OBJT_SWAP)) {
537                                 vm_object_t robject;
538
539                                 robject = LIST_FIRST(&object->shadow_head);
540                                 KASSERT(robject != NULL,
541                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
542                                          object->ref_count,
543                                          object->shadow_count));
544                                 if (!VM_OBJECT_TRYLOCK(robject)) {
545                                         /*
546                                          * Avoid a potential deadlock.
547                                          */
548                                         object->ref_count++;
549                                         VM_OBJECT_UNLOCK(object);
550                                         /*
551                                          * More likely than not the thread
552                                          * holding robject's lock has lower
553                                          * priority than the current thread.
554                                          * Let the lower priority thread run.
555                                          */
556                                         pause("vmo_de", 1);
557                                         continue;
558                                 }
559                                 /*
560                                  * Collapse object into its shadow unless its
561                                  * shadow is dead.  In that case, object will
562                                  * be deallocated by the thread that is
563                                  * deallocating its shadow.
564                                  */
565                                 if ((robject->flags & OBJ_DEAD) == 0 &&
566                                     (robject->handle == NULL) &&
567                                     (robject->type == OBJT_DEFAULT ||
568                                      robject->type == OBJT_SWAP)) {
569
570                                         robject->ref_count++;
571 retry:
572                                         if (robject->paging_in_progress) {
573                                                 VM_OBJECT_UNLOCK(object);
574                                                 vm_object_pip_wait(robject,
575                                                     "objde1");
576                                                 temp = robject->backing_object;
577                                                 if (object == temp) {
578                                                         VM_OBJECT_LOCK(object);
579                                                         goto retry;
580                                                 }
581                                         } else if (object->paging_in_progress) {
582                                                 VM_OBJECT_UNLOCK(robject);
583                                                 object->flags |= OBJ_PIPWNT;
584                                                 msleep(object,
585                                                     VM_OBJECT_MTX(object),
586                                                     PDROP | PVM, "objde2", 0);
587                                                 VM_OBJECT_LOCK(robject);
588                                                 temp = robject->backing_object;
589                                                 if (object == temp) {
590                                                         VM_OBJECT_LOCK(object);
591                                                         goto retry;
592                                                 }
593                                         } else
594                                                 VM_OBJECT_UNLOCK(object);
595
596                                         if (robject->ref_count == 1) {
597                                                 robject->ref_count--;
598                                                 object = robject;
599                                                 goto doterm;
600                                         }
601                                         object = robject;
602                                         vm_object_collapse(object);
603                                         VM_OBJECT_UNLOCK(object);
604                                         continue;
605                                 }
606                                 VM_OBJECT_UNLOCK(robject);
607                         }
608                         VM_OBJECT_UNLOCK(object);
609                         return;
610                 }
611 doterm:
612                 temp = object->backing_object;
613                 if (temp != NULL) {
614                         VM_OBJECT_LOCK(temp);
615                         LIST_REMOVE(object, shadow_list);
616                         temp->shadow_count--;
617                         VM_OBJECT_UNLOCK(temp);
618                         object->backing_object = NULL;
619                 }
620                 /*
621                  * Don't double-terminate, we could be in a termination
622                  * recursion due to the terminate having to sync data
623                  * to disk.
624                  */
625                 if ((object->flags & OBJ_DEAD) == 0)
626                         vm_object_terminate(object);
627                 else
628                         VM_OBJECT_UNLOCK(object);
629                 object = temp;
630         }
631 }
632
633 /*
634  *      vm_object_destroy removes the object from the global object list
635  *      and frees the space for the object.
636  */
637 void
638 vm_object_destroy(vm_object_t object)
639 {
640
641         /*
642          * Remove the object from the global object list.
643          */
644         mtx_lock(&vm_object_list_mtx);
645         TAILQ_REMOVE(&vm_object_list, object, object_list);
646         mtx_unlock(&vm_object_list_mtx);
647
648         /*
649          * Release the allocation charge.
650          */
651         if (object->cred != NULL) {
652                 KASSERT(object->type == OBJT_DEFAULT ||
653                     object->type == OBJT_SWAP,
654                     ("vm_object_terminate: non-swap obj %p has cred",
655                      object));
656                 swap_release_by_cred(object->charge, object->cred);
657                 object->charge = 0;
658                 crfree(object->cred);
659                 object->cred = NULL;
660         }
661
662         /*
663          * Free the space for the object.
664          */
665         uma_zfree(obj_zone, object);
666 }
667
668 /*
669  *      vm_object_terminate actually destroys the specified object, freeing
670  *      up all previously used resources.
671  *
672  *      The object must be locked.
673  *      This routine may block.
674  */
675 void
676 vm_object_terminate(vm_object_t object)
677 {
678         vm_page_t p, p_next;
679
680         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
681
682         /*
683          * Make sure no one uses us.
684          */
685         vm_object_set_flag(object, OBJ_DEAD);
686
687         /*
688          * wait for the pageout daemon to be done with the object
689          */
690         vm_object_pip_wait(object, "objtrm");
691
692         KASSERT(!object->paging_in_progress,
693                 ("vm_object_terminate: pageout in progress"));
694
695         /*
696          * Clean and free the pages, as appropriate. All references to the
697          * object are gone, so we don't need to lock it.
698          */
699         if (object->type == OBJT_VNODE) {
700                 struct vnode *vp = (struct vnode *)object->handle;
701
702                 /*
703                  * Clean pages and flush buffers.
704                  */
705                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
706                 VM_OBJECT_UNLOCK(object);
707
708                 vinvalbuf(vp, V_SAVE, 0, 0);
709
710                 VM_OBJECT_LOCK(object);
711         }
712
713         KASSERT(object->ref_count == 0, 
714                 ("vm_object_terminate: object with references, ref_count=%d",
715                 object->ref_count));
716
717         /*
718          * Free any remaining pageable pages.  This also removes them from the
719          * paging queues.  However, don't free wired pages, just remove them
720          * from the object.  Rather than incrementally removing each page from
721          * the object, the page and object are reset to any empty state. 
722          */
723         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
724                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
725                     ("vm_object_terminate: freeing busy page %p", p));
726                 vm_page_lock(p);
727                 /*
728                  * Optimize the page's removal from the object by resetting
729                  * its "object" field.  Specifically, if the page is not
730                  * wired, then the effect of this assignment is that
731                  * vm_page_free()'s call to vm_page_remove() will return
732                  * immediately without modifying the page or the object.
733                  */ 
734                 p->object = NULL;
735                 if (p->wire_count == 0) {
736                         vm_page_free(p);
737                         PCPU_INC(cnt.v_pfree);
738                 }
739                 vm_page_unlock(p);
740         }
741         /*
742          * If the object contained any pages, then reset it to an empty state.
743          * None of the object's fields, including "resident_page_count", were
744          * modified by the preceding loop.
745          */
746         if (object->resident_page_count != 0) {
747                 object->root = NULL;
748                 TAILQ_INIT(&object->memq);
749                 object->resident_page_count = 0;
750                 if (object->type == OBJT_VNODE)
751                         vdrop(object->handle);
752         }
753
754 #if VM_NRESERVLEVEL > 0
755         if (__predict_false(!LIST_EMPTY(&object->rvq)))
756                 vm_reserv_break_all(object);
757 #endif
758         if (__predict_false(object->cache != NULL))
759                 vm_page_cache_free(object, 0, 0);
760
761         /*
762          * Let the pager know object is dead.
763          */
764         vm_pager_deallocate(object);
765         VM_OBJECT_UNLOCK(object);
766
767         vm_object_destroy(object);
768 }
769
770 /*
771  * Make the page read-only so that we can clear the object flags.  However, if
772  * this is a nosync mmap then the object is likely to stay dirty so do not
773  * mess with the page and do not clear the object flags.  Returns TRUE if the
774  * page should be flushed, and FALSE otherwise.
775  */
776 static boolean_t
777 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
778 {
779
780         /*
781          * If we have been asked to skip nosync pages and this is a
782          * nosync page, skip it.  Note that the object flags were not
783          * cleared in this case so we do not have to set them.
784          */
785         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
786                 *clearobjflags = 0;
787                 return (FALSE);
788         } else {
789                 pmap_remove_write(p);
790                 return (p->dirty != 0);
791         }
792 }
793
794 /*
795  *      vm_object_page_clean
796  *
797  *      Clean all dirty pages in the specified range of object.  Leaves page 
798  *      on whatever queue it is currently on.   If NOSYNC is set then do not
799  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
800  *      leaving the object dirty.
801  *
802  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
803  *      synchronous clustering mode implementation.
804  *
805  *      Odd semantics: if start == end, we clean everything.
806  *
807  *      The object must be locked.
808  */
809 void
810 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
811     int flags)
812 {
813         vm_page_t np, p;
814         vm_pindex_t pi, tend, tstart;
815         int clearobjflags, curgeneration, n, pagerflags;
816
817         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
818         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
819         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
820         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
821             object->resident_page_count == 0)
822                 return;
823
824         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
825             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
826         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
827
828         tstart = OFF_TO_IDX(start);
829         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
830         clearobjflags = tstart == 0 && tend >= object->size;
831
832 rescan:
833         curgeneration = object->generation;
834
835         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
836                 pi = p->pindex;
837                 if (pi >= tend)
838                         break;
839                 np = TAILQ_NEXT(p, listq);
840                 if (p->valid == 0)
841                         continue;
842                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
843                         if (object->generation != curgeneration)
844                                 goto rescan;
845                         np = vm_page_find_least(object, pi);
846                         continue;
847                 }
848                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
849                         continue;
850
851                 n = vm_object_page_collect_flush(object, p, pagerflags,
852                     flags, &clearobjflags);
853                 if (object->generation != curgeneration)
854                         goto rescan;
855
856                 /*
857                  * If the VOP_PUTPAGES() did a truncated write, so
858                  * that even the first page of the run is not fully
859                  * written, vm_pageout_flush() returns 0 as the run
860                  * length.  Since the condition that caused truncated
861                  * write may be permanent, e.g. exhausted free space,
862                  * accepting n == 0 would cause an infinite loop.
863                  *
864                  * Forwarding the iterator leaves the unwritten page
865                  * behind, but there is not much we can do there if
866                  * filesystem refuses to write it.
867                  */
868                 if (n == 0)
869                         n = 1;
870                 np = vm_page_find_least(object, pi + n);
871         }
872 #if 0
873         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
874 #endif
875
876         if (clearobjflags)
877                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
878 }
879
880 static int
881 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
882     int flags, int *clearobjflags)
883 {
884         vm_page_t ma[vm_pageout_page_count], p_first, tp;
885         int count, i, mreq, runlen;
886
887         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
888         vm_page_lock_assert(p, MA_NOTOWNED);
889         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
890
891         count = 1;
892         mreq = 0;
893
894         for (tp = p; count < vm_pageout_page_count; count++) {
895                 tp = vm_page_next(tp);
896                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
897                         break;
898                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
899                         break;
900         }
901
902         for (p_first = p; count < vm_pageout_page_count; count++) {
903                 tp = vm_page_prev(p_first);
904                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
905                         break;
906                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
907                         break;
908                 p_first = tp;
909                 mreq++;
910         }
911
912         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
913                 ma[i] = tp;
914
915         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
916         return (runlen);
917 }
918
919 /*
920  * Note that there is absolutely no sense in writing out
921  * anonymous objects, so we track down the vnode object
922  * to write out.
923  * We invalidate (remove) all pages from the address space
924  * for semantic correctness.
925  *
926  * If the backing object is a device object with unmanaged pages, then any
927  * mappings to the specified range of pages must be removed before this
928  * function is called.
929  *
930  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
931  * may start out with a NULL object.
932  */
933 void
934 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
935     boolean_t syncio, boolean_t invalidate)
936 {
937         vm_object_t backing_object;
938         struct vnode *vp;
939         struct mount *mp;
940         int flags;
941
942         if (object == NULL)
943                 return;
944         VM_OBJECT_LOCK(object);
945         while ((backing_object = object->backing_object) != NULL) {
946                 VM_OBJECT_LOCK(backing_object);
947                 offset += object->backing_object_offset;
948                 VM_OBJECT_UNLOCK(object);
949                 object = backing_object;
950                 if (object->size < OFF_TO_IDX(offset + size))
951                         size = IDX_TO_OFF(object->size) - offset;
952         }
953         /*
954          * Flush pages if writing is allowed, invalidate them
955          * if invalidation requested.  Pages undergoing I/O
956          * will be ignored by vm_object_page_remove().
957          *
958          * We cannot lock the vnode and then wait for paging
959          * to complete without deadlocking against vm_fault.
960          * Instead we simply call vm_object_page_remove() and
961          * allow it to block internally on a page-by-page
962          * basis when it encounters pages undergoing async
963          * I/O.
964          */
965         if (object->type == OBJT_VNODE &&
966             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
967                 int vfslocked;
968                 vp = object->handle;
969                 VM_OBJECT_UNLOCK(object);
970                 (void) vn_start_write(vp, &mp, V_WAIT);
971                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
972                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
973                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
974                 flags |= invalidate ? OBJPC_INVAL : 0;
975                 VM_OBJECT_LOCK(object);
976                 vm_object_page_clean(object, offset, offset + size, flags);
977                 VM_OBJECT_UNLOCK(object);
978                 VOP_UNLOCK(vp, 0);
979                 VFS_UNLOCK_GIANT(vfslocked);
980                 vn_finished_write(mp);
981                 VM_OBJECT_LOCK(object);
982         }
983         if ((object->type == OBJT_VNODE ||
984              object->type == OBJT_DEVICE) && invalidate) {
985                 if (object->type == OBJT_DEVICE)
986                         /*
987                          * The option OBJPR_NOTMAPPED must be passed here
988                          * because vm_object_page_remove() cannot remove
989                          * unmanaged mappings.
990                          */
991                         flags = OBJPR_NOTMAPPED;
992                 else if (old_msync)
993                         flags = 0;
994                 else
995                         flags = OBJPR_CLEANONLY;
996                 vm_object_page_remove(object, OFF_TO_IDX(offset),
997                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
998         }
999         VM_OBJECT_UNLOCK(object);
1000 }
1001
1002 /*
1003  *      vm_object_madvise:
1004  *
1005  *      Implements the madvise function at the object/page level.
1006  *
1007  *      MADV_WILLNEED   (any object)
1008  *
1009  *          Activate the specified pages if they are resident.
1010  *
1011  *      MADV_DONTNEED   (any object)
1012  *
1013  *          Deactivate the specified pages if they are resident.
1014  *
1015  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1016  *                       OBJ_ONEMAPPING only)
1017  *
1018  *          Deactivate and clean the specified pages if they are
1019  *          resident.  This permits the process to reuse the pages
1020  *          without faulting or the kernel to reclaim the pages
1021  *          without I/O.
1022  */
1023 void
1024 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1025 {
1026         vm_pindex_t end, tpindex;
1027         vm_object_t backing_object, tobject;
1028         vm_page_t m;
1029
1030         if (object == NULL)
1031                 return;
1032         VM_OBJECT_LOCK(object);
1033         end = pindex + count;
1034         /*
1035          * Locate and adjust resident pages
1036          */
1037         for (; pindex < end; pindex += 1) {
1038 relookup:
1039                 tobject = object;
1040                 tpindex = pindex;
1041 shadowlookup:
1042                 /*
1043                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1044                  * and those pages must be OBJ_ONEMAPPING.
1045                  */
1046                 if (advise == MADV_FREE) {
1047                         if ((tobject->type != OBJT_DEFAULT &&
1048                              tobject->type != OBJT_SWAP) ||
1049                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1050                                 goto unlock_tobject;
1051                         }
1052                 } else if (tobject->type == OBJT_PHYS)
1053                         goto unlock_tobject;
1054                 m = vm_page_lookup(tobject, tpindex);
1055                 if (m == NULL && advise == MADV_WILLNEED) {
1056                         /*
1057                          * If the page is cached, reactivate it.
1058                          */
1059                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1060                             VM_ALLOC_NOBUSY);
1061                 }
1062                 if (m == NULL) {
1063                         /*
1064                          * There may be swap even if there is no backing page
1065                          */
1066                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1067                                 swap_pager_freespace(tobject, tpindex, 1);
1068                         /*
1069                          * next object
1070                          */
1071                         backing_object = tobject->backing_object;
1072                         if (backing_object == NULL)
1073                                 goto unlock_tobject;
1074                         VM_OBJECT_LOCK(backing_object);
1075                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1076                         if (tobject != object)
1077                                 VM_OBJECT_UNLOCK(tobject);
1078                         tobject = backing_object;
1079                         goto shadowlookup;
1080                 } else if (m->valid != VM_PAGE_BITS_ALL)
1081                         goto unlock_tobject;
1082                 /*
1083                  * If the page is not in a normal state, skip it.
1084                  */
1085                 vm_page_lock(m);
1086                 if (m->hold_count != 0 || m->wire_count != 0) {
1087                         vm_page_unlock(m);
1088                         goto unlock_tobject;
1089                 }
1090                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1091                     ("vm_object_madvise: page %p is fictitious", m));
1092                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1093                     ("vm_object_madvise: page %p is not managed", m));
1094                 if ((m->oflags & VPO_BUSY) || m->busy) {
1095                         if (advise == MADV_WILLNEED) {
1096                                 /*
1097                                  * Reference the page before unlocking and
1098                                  * sleeping so that the page daemon is less
1099                                  * likely to reclaim it. 
1100                                  */
1101                                 vm_page_aflag_set(m, PGA_REFERENCED);
1102                         }
1103                         vm_page_unlock(m);
1104                         if (object != tobject)
1105                                 VM_OBJECT_UNLOCK(object);
1106                         m->oflags |= VPO_WANTED;
1107                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1108                             0);
1109                         VM_OBJECT_LOCK(object);
1110                         goto relookup;
1111                 }
1112                 if (advise == MADV_WILLNEED) {
1113                         vm_page_activate(m);
1114                 } else if (advise == MADV_DONTNEED) {
1115                         vm_page_dontneed(m);
1116                 } else if (advise == MADV_FREE) {
1117                         /*
1118                          * Mark the page clean.  This will allow the page
1119                          * to be freed up by the system.  However, such pages
1120                          * are often reused quickly by malloc()/free()
1121                          * so we do not do anything that would cause
1122                          * a page fault if we can help it.
1123                          *
1124                          * Specifically, we do not try to actually free
1125                          * the page now nor do we try to put it in the
1126                          * cache (which would cause a page fault on reuse).
1127                          *
1128                          * But we do make the page is freeable as we
1129                          * can without actually taking the step of unmapping
1130                          * it.
1131                          */
1132                         pmap_clear_modify(m);
1133                         m->dirty = 0;
1134                         m->act_count = 0;
1135                         vm_page_dontneed(m);
1136                 }
1137                 vm_page_unlock(m);
1138                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1139                         swap_pager_freespace(tobject, tpindex, 1);
1140 unlock_tobject:
1141                 if (tobject != object)
1142                         VM_OBJECT_UNLOCK(tobject);
1143         }       
1144         VM_OBJECT_UNLOCK(object);
1145 }
1146
1147 /*
1148  *      vm_object_shadow:
1149  *
1150  *      Create a new object which is backed by the
1151  *      specified existing object range.  The source
1152  *      object reference is deallocated.
1153  *
1154  *      The new object and offset into that object
1155  *      are returned in the source parameters.
1156  */
1157 void
1158 vm_object_shadow(
1159         vm_object_t *object,    /* IN/OUT */
1160         vm_ooffset_t *offset,   /* IN/OUT */
1161         vm_size_t length)
1162 {
1163         vm_object_t source;
1164         vm_object_t result;
1165
1166         source = *object;
1167
1168         /*
1169          * Don't create the new object if the old object isn't shared.
1170          */
1171         if (source != NULL) {
1172                 VM_OBJECT_LOCK(source);
1173                 if (source->ref_count == 1 &&
1174                     source->handle == NULL &&
1175                     (source->type == OBJT_DEFAULT ||
1176                      source->type == OBJT_SWAP)) {
1177                         VM_OBJECT_UNLOCK(source);
1178                         return;
1179                 }
1180                 VM_OBJECT_UNLOCK(source);
1181         }
1182
1183         /*
1184          * Allocate a new object with the given length.
1185          */
1186         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1187
1188         /*
1189          * The new object shadows the source object, adding a reference to it.
1190          * Our caller changes his reference to point to the new object,
1191          * removing a reference to the source object.  Net result: no change
1192          * of reference count.
1193          *
1194          * Try to optimize the result object's page color when shadowing
1195          * in order to maintain page coloring consistency in the combined 
1196          * shadowed object.
1197          */
1198         result->backing_object = source;
1199         /*
1200          * Store the offset into the source object, and fix up the offset into
1201          * the new object.
1202          */
1203         result->backing_object_offset = *offset;
1204         if (source != NULL) {
1205                 VM_OBJECT_LOCK(source);
1206                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1207                 source->shadow_count++;
1208 #if VM_NRESERVLEVEL > 0
1209                 result->flags |= source->flags & OBJ_COLORED;
1210                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1211                     ((1 << (VM_NFREEORDER - 1)) - 1);
1212 #endif
1213                 VM_OBJECT_UNLOCK(source);
1214         }
1215
1216
1217         /*
1218          * Return the new things
1219          */
1220         *offset = 0;
1221         *object = result;
1222 }
1223
1224 /*
1225  *      vm_object_split:
1226  *
1227  * Split the pages in a map entry into a new object.  This affords
1228  * easier removal of unused pages, and keeps object inheritance from
1229  * being a negative impact on memory usage.
1230  */
1231 void
1232 vm_object_split(vm_map_entry_t entry)
1233 {
1234         vm_page_t m, m_next;
1235         vm_object_t orig_object, new_object, source;
1236         vm_pindex_t idx, offidxstart;
1237         vm_size_t size;
1238
1239         orig_object = entry->object.vm_object;
1240         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1241                 return;
1242         if (orig_object->ref_count <= 1)
1243                 return;
1244         VM_OBJECT_UNLOCK(orig_object);
1245
1246         offidxstart = OFF_TO_IDX(entry->offset);
1247         size = atop(entry->end - entry->start);
1248
1249         /*
1250          * If swap_pager_copy() is later called, it will convert new_object
1251          * into a swap object.
1252          */
1253         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1254
1255         /*
1256          * At this point, the new object is still private, so the order in
1257          * which the original and new objects are locked does not matter.
1258          */
1259         VM_OBJECT_LOCK(new_object);
1260         VM_OBJECT_LOCK(orig_object);
1261         source = orig_object->backing_object;
1262         if (source != NULL) {
1263                 VM_OBJECT_LOCK(source);
1264                 if ((source->flags & OBJ_DEAD) != 0) {
1265                         VM_OBJECT_UNLOCK(source);
1266                         VM_OBJECT_UNLOCK(orig_object);
1267                         VM_OBJECT_UNLOCK(new_object);
1268                         vm_object_deallocate(new_object);
1269                         VM_OBJECT_LOCK(orig_object);
1270                         return;
1271                 }
1272                 LIST_INSERT_HEAD(&source->shadow_head,
1273                                   new_object, shadow_list);
1274                 source->shadow_count++;
1275                 vm_object_reference_locked(source);     /* for new_object */
1276                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1277                 VM_OBJECT_UNLOCK(source);
1278                 new_object->backing_object_offset = 
1279                         orig_object->backing_object_offset + entry->offset;
1280                 new_object->backing_object = source;
1281         }
1282         if (orig_object->cred != NULL) {
1283                 new_object->cred = orig_object->cred;
1284                 crhold(orig_object->cred);
1285                 new_object->charge = ptoa(size);
1286                 KASSERT(orig_object->charge >= ptoa(size),
1287                     ("orig_object->charge < 0"));
1288                 orig_object->charge -= ptoa(size);
1289         }
1290 retry:
1291         m = vm_page_find_least(orig_object, offidxstart);
1292         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1293             m = m_next) {
1294                 m_next = TAILQ_NEXT(m, listq);
1295
1296                 /*
1297                  * We must wait for pending I/O to complete before we can
1298                  * rename the page.
1299                  *
1300                  * We do not have to VM_PROT_NONE the page as mappings should
1301                  * not be changed by this operation.
1302                  */
1303                 if ((m->oflags & VPO_BUSY) || m->busy) {
1304                         VM_OBJECT_UNLOCK(new_object);
1305                         m->oflags |= VPO_WANTED;
1306                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1307                         VM_OBJECT_LOCK(new_object);
1308                         goto retry;
1309                 }
1310                 vm_page_lock(m);
1311                 vm_page_rename(m, new_object, idx);
1312                 vm_page_unlock(m);
1313                 /* page automatically made dirty by rename and cache handled */
1314                 vm_page_busy(m);
1315         }
1316         if (orig_object->type == OBJT_SWAP) {
1317                 /*
1318                  * swap_pager_copy() can sleep, in which case the orig_object's
1319                  * and new_object's locks are released and reacquired. 
1320                  */
1321                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1322
1323                 /*
1324                  * Transfer any cached pages from orig_object to new_object.
1325                  */
1326                 if (__predict_false(orig_object->cache != NULL))
1327                         vm_page_cache_transfer(orig_object, offidxstart,
1328                             new_object);
1329         }
1330         VM_OBJECT_UNLOCK(orig_object);
1331         TAILQ_FOREACH(m, &new_object->memq, listq)
1332                 vm_page_wakeup(m);
1333         VM_OBJECT_UNLOCK(new_object);
1334         entry->object.vm_object = new_object;
1335         entry->offset = 0LL;
1336         vm_object_deallocate(orig_object);
1337         VM_OBJECT_LOCK(new_object);
1338 }
1339
1340 #define OBSC_TEST_ALL_SHADOWED  0x0001
1341 #define OBSC_COLLAPSE_NOWAIT    0x0002
1342 #define OBSC_COLLAPSE_WAIT      0x0004
1343
1344 static int
1345 vm_object_backing_scan(vm_object_t object, int op)
1346 {
1347         int r = 1;
1348         vm_page_t p;
1349         vm_object_t backing_object;
1350         vm_pindex_t backing_offset_index;
1351
1352         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1353         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1354
1355         backing_object = object->backing_object;
1356         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1357
1358         /*
1359          * Initial conditions
1360          */
1361         if (op & OBSC_TEST_ALL_SHADOWED) {
1362                 /*
1363                  * We do not want to have to test for the existence of cache
1364                  * or swap pages in the backing object.  XXX but with the
1365                  * new swapper this would be pretty easy to do.
1366                  *
1367                  * XXX what about anonymous MAP_SHARED memory that hasn't
1368                  * been ZFOD faulted yet?  If we do not test for this, the
1369                  * shadow test may succeed! XXX
1370                  */
1371                 if (backing_object->type != OBJT_DEFAULT) {
1372                         return (0);
1373                 }
1374         }
1375         if (op & OBSC_COLLAPSE_WAIT) {
1376                 vm_object_set_flag(backing_object, OBJ_DEAD);
1377         }
1378
1379         /*
1380          * Our scan
1381          */
1382         p = TAILQ_FIRST(&backing_object->memq);
1383         while (p) {
1384                 vm_page_t next = TAILQ_NEXT(p, listq);
1385                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1386
1387                 if (op & OBSC_TEST_ALL_SHADOWED) {
1388                         vm_page_t pp;
1389
1390                         /*
1391                          * Ignore pages outside the parent object's range
1392                          * and outside the parent object's mapping of the 
1393                          * backing object.
1394                          *
1395                          * note that we do not busy the backing object's
1396                          * page.
1397                          */
1398                         if (
1399                             p->pindex < backing_offset_index ||
1400                             new_pindex >= object->size
1401                         ) {
1402                                 p = next;
1403                                 continue;
1404                         }
1405
1406                         /*
1407                          * See if the parent has the page or if the parent's
1408                          * object pager has the page.  If the parent has the
1409                          * page but the page is not valid, the parent's
1410                          * object pager must have the page.
1411                          *
1412                          * If this fails, the parent does not completely shadow
1413                          * the object and we might as well give up now.
1414                          */
1415
1416                         pp = vm_page_lookup(object, new_pindex);
1417                         if (
1418                             (pp == NULL || pp->valid == 0) &&
1419                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1420                         ) {
1421                                 r = 0;
1422                                 break;
1423                         }
1424                 }
1425
1426                 /*
1427                  * Check for busy page
1428                  */
1429                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1430                         vm_page_t pp;
1431
1432                         if (op & OBSC_COLLAPSE_NOWAIT) {
1433                                 if ((p->oflags & VPO_BUSY) ||
1434                                     !p->valid || 
1435                                     p->busy) {
1436                                         p = next;
1437                                         continue;
1438                                 }
1439                         } else if (op & OBSC_COLLAPSE_WAIT) {
1440                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1441                                         VM_OBJECT_UNLOCK(object);
1442                                         p->oflags |= VPO_WANTED;
1443                                         msleep(p, VM_OBJECT_MTX(backing_object),
1444                                             PDROP | PVM, "vmocol", 0);
1445                                         VM_OBJECT_LOCK(object);
1446                                         VM_OBJECT_LOCK(backing_object);
1447                                         /*
1448                                          * If we slept, anything could have
1449                                          * happened.  Since the object is
1450                                          * marked dead, the backing offset
1451                                          * should not have changed so we
1452                                          * just restart our scan.
1453                                          */
1454                                         p = TAILQ_FIRST(&backing_object->memq);
1455                                         continue;
1456                                 }
1457                         }
1458
1459                         KASSERT(
1460                             p->object == backing_object,
1461                             ("vm_object_backing_scan: object mismatch")
1462                         );
1463
1464                         /*
1465                          * Destroy any associated swap
1466                          */
1467                         if (backing_object->type == OBJT_SWAP) {
1468                                 swap_pager_freespace(
1469                                     backing_object, 
1470                                     p->pindex,
1471                                     1
1472                                 );
1473                         }
1474
1475                         if (
1476                             p->pindex < backing_offset_index ||
1477                             new_pindex >= object->size
1478                         ) {
1479                                 /*
1480                                  * Page is out of the parent object's range, we 
1481                                  * can simply destroy it. 
1482                                  */
1483                                 vm_page_lock(p);
1484                                 KASSERT(!pmap_page_is_mapped(p),
1485                                     ("freeing mapped page %p", p));
1486                                 if (p->wire_count == 0)
1487                                         vm_page_free(p);
1488                                 else
1489                                         vm_page_remove(p);
1490                                 vm_page_unlock(p);
1491                                 p = next;
1492                                 continue;
1493                         }
1494
1495                         pp = vm_page_lookup(object, new_pindex);
1496                         if (
1497                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1498                             (pp != NULL && pp->valid == 0)
1499                         ) {
1500                                 /*
1501                                  * The page in the parent is not (yet) valid.
1502                                  * We don't know anything about the state of
1503                                  * the original page.  It might be mapped,
1504                                  * so we must avoid the next if here.
1505                                  *
1506                                  * This is due to a race in vm_fault() where
1507                                  * we must unbusy the original (backing_obj)
1508                                  * page before we can (re)lock the parent.
1509                                  * Hence we can get here.
1510                                  */
1511                                 p = next;
1512                                 continue;
1513                         }
1514                         if (
1515                             pp != NULL ||
1516                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1517                         ) {
1518                                 /*
1519                                  * page already exists in parent OR swap exists
1520                                  * for this location in the parent.  Destroy 
1521                                  * the original page from the backing object.
1522                                  *
1523                                  * Leave the parent's page alone
1524                                  */
1525                                 vm_page_lock(p);
1526                                 KASSERT(!pmap_page_is_mapped(p),
1527                                     ("freeing mapped page %p", p));
1528                                 if (p->wire_count == 0)
1529                                         vm_page_free(p);
1530                                 else
1531                                         vm_page_remove(p);
1532                                 vm_page_unlock(p);
1533                                 p = next;
1534                                 continue;
1535                         }
1536
1537 #if VM_NRESERVLEVEL > 0
1538                         /*
1539                          * Rename the reservation.
1540                          */
1541                         vm_reserv_rename(p, object, backing_object,
1542                             backing_offset_index);
1543 #endif
1544
1545                         /*
1546                          * Page does not exist in parent, rename the
1547                          * page from the backing object to the main object. 
1548                          *
1549                          * If the page was mapped to a process, it can remain 
1550                          * mapped through the rename.
1551                          */
1552                         vm_page_lock(p);
1553                         vm_page_rename(p, object, new_pindex);
1554                         vm_page_unlock(p);
1555                         /* page automatically made dirty by rename */
1556                 }
1557                 p = next;
1558         }
1559         return (r);
1560 }
1561
1562
1563 /*
1564  * this version of collapse allows the operation to occur earlier and
1565  * when paging_in_progress is true for an object...  This is not a complete
1566  * operation, but should plug 99.9% of the rest of the leaks.
1567  */
1568 static void
1569 vm_object_qcollapse(vm_object_t object)
1570 {
1571         vm_object_t backing_object = object->backing_object;
1572
1573         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1574         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1575
1576         if (backing_object->ref_count != 1)
1577                 return;
1578
1579         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1580 }
1581
1582 /*
1583  *      vm_object_collapse:
1584  *
1585  *      Collapse an object with the object backing it.
1586  *      Pages in the backing object are moved into the
1587  *      parent, and the backing object is deallocated.
1588  */
1589 void
1590 vm_object_collapse(vm_object_t object)
1591 {
1592         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1593         
1594         while (TRUE) {
1595                 vm_object_t backing_object;
1596
1597                 /*
1598                  * Verify that the conditions are right for collapse:
1599                  *
1600                  * The object exists and the backing object exists.
1601                  */
1602                 if ((backing_object = object->backing_object) == NULL)
1603                         break;
1604
1605                 /*
1606                  * we check the backing object first, because it is most likely
1607                  * not collapsable.
1608                  */
1609                 VM_OBJECT_LOCK(backing_object);
1610                 if (backing_object->handle != NULL ||
1611                     (backing_object->type != OBJT_DEFAULT &&
1612                      backing_object->type != OBJT_SWAP) ||
1613                     (backing_object->flags & OBJ_DEAD) ||
1614                     object->handle != NULL ||
1615                     (object->type != OBJT_DEFAULT &&
1616                      object->type != OBJT_SWAP) ||
1617                     (object->flags & OBJ_DEAD)) {
1618                         VM_OBJECT_UNLOCK(backing_object);
1619                         break;
1620                 }
1621
1622                 if (
1623                     object->paging_in_progress != 0 ||
1624                     backing_object->paging_in_progress != 0
1625                 ) {
1626                         vm_object_qcollapse(object);
1627                         VM_OBJECT_UNLOCK(backing_object);
1628                         break;
1629                 }
1630                 /*
1631                  * We know that we can either collapse the backing object (if
1632                  * the parent is the only reference to it) or (perhaps) have
1633                  * the parent bypass the object if the parent happens to shadow
1634                  * all the resident pages in the entire backing object.
1635                  *
1636                  * This is ignoring pager-backed pages such as swap pages.
1637                  * vm_object_backing_scan fails the shadowing test in this
1638                  * case.
1639                  */
1640                 if (backing_object->ref_count == 1) {
1641                         /*
1642                          * If there is exactly one reference to the backing
1643                          * object, we can collapse it into the parent.  
1644                          */
1645                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1646
1647 #if VM_NRESERVLEVEL > 0
1648                         /*
1649                          * Break any reservations from backing_object.
1650                          */
1651                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1652                                 vm_reserv_break_all(backing_object);
1653 #endif
1654
1655                         /*
1656                          * Move the pager from backing_object to object.
1657                          */
1658                         if (backing_object->type == OBJT_SWAP) {
1659                                 /*
1660                                  * swap_pager_copy() can sleep, in which case
1661                                  * the backing_object's and object's locks are
1662                                  * released and reacquired.
1663                                  */
1664                                 swap_pager_copy(
1665                                     backing_object,
1666                                     object,
1667                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1668
1669                                 /*
1670                                  * Free any cached pages from backing_object.
1671                                  */
1672                                 if (__predict_false(backing_object->cache != NULL))
1673                                         vm_page_cache_free(backing_object, 0, 0);
1674                         }
1675                         /*
1676                          * Object now shadows whatever backing_object did.
1677                          * Note that the reference to 
1678                          * backing_object->backing_object moves from within 
1679                          * backing_object to within object.
1680                          */
1681                         LIST_REMOVE(object, shadow_list);
1682                         backing_object->shadow_count--;
1683                         if (backing_object->backing_object) {
1684                                 VM_OBJECT_LOCK(backing_object->backing_object);
1685                                 LIST_REMOVE(backing_object, shadow_list);
1686                                 LIST_INSERT_HEAD(
1687                                     &backing_object->backing_object->shadow_head,
1688                                     object, shadow_list);
1689                                 /*
1690                                  * The shadow_count has not changed.
1691                                  */
1692                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1693                         }
1694                         object->backing_object = backing_object->backing_object;
1695                         object->backing_object_offset +=
1696                             backing_object->backing_object_offset;
1697
1698                         /*
1699                          * Discard backing_object.
1700                          *
1701                          * Since the backing object has no pages, no pager left,
1702                          * and no object references within it, all that is
1703                          * necessary is to dispose of it.
1704                          */
1705                         KASSERT(backing_object->ref_count == 1, (
1706 "backing_object %p was somehow re-referenced during collapse!",
1707                             backing_object));
1708                         VM_OBJECT_UNLOCK(backing_object);
1709                         vm_object_destroy(backing_object);
1710
1711                         object_collapses++;
1712                 } else {
1713                         vm_object_t new_backing_object;
1714
1715                         /*
1716                          * If we do not entirely shadow the backing object,
1717                          * there is nothing we can do so we give up.
1718                          */
1719                         if (object->resident_page_count != object->size &&
1720                             vm_object_backing_scan(object,
1721                             OBSC_TEST_ALL_SHADOWED) == 0) {
1722                                 VM_OBJECT_UNLOCK(backing_object);
1723                                 break;
1724                         }
1725
1726                         /*
1727                          * Make the parent shadow the next object in the
1728                          * chain.  Deallocating backing_object will not remove
1729                          * it, since its reference count is at least 2.
1730                          */
1731                         LIST_REMOVE(object, shadow_list);
1732                         backing_object->shadow_count--;
1733
1734                         new_backing_object = backing_object->backing_object;
1735                         if ((object->backing_object = new_backing_object) != NULL) {
1736                                 VM_OBJECT_LOCK(new_backing_object);
1737                                 LIST_INSERT_HEAD(
1738                                     &new_backing_object->shadow_head,
1739                                     object,
1740                                     shadow_list
1741                                 );
1742                                 new_backing_object->shadow_count++;
1743                                 vm_object_reference_locked(new_backing_object);
1744                                 VM_OBJECT_UNLOCK(new_backing_object);
1745                                 object->backing_object_offset +=
1746                                         backing_object->backing_object_offset;
1747                         }
1748
1749                         /*
1750                          * Drop the reference count on backing_object. Since
1751                          * its ref_count was at least 2, it will not vanish.
1752                          */
1753                         backing_object->ref_count--;
1754                         VM_OBJECT_UNLOCK(backing_object);
1755                         object_bypasses++;
1756                 }
1757
1758                 /*
1759                  * Try again with this object's new backing object.
1760                  */
1761         }
1762 }
1763
1764 /*
1765  *      vm_object_page_remove:
1766  *
1767  *      For the given object, either frees or invalidates each of the
1768  *      specified pages.  In general, a page is freed.  However, if a page is
1769  *      wired for any reason other than the existence of a managed, wired
1770  *      mapping, then it may be invalidated but not removed from the object.
1771  *      Pages are specified by the given range ["start", "end") and the option
1772  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1773  *      extends from "start" to the end of the object.  If the option
1774  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1775  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1776  *      specified, then the pages within the specified range must have no
1777  *      mappings.  Otherwise, if this option is not specified, any mappings to
1778  *      the specified pages are removed before the pages are freed or
1779  *      invalidated.
1780  *
1781  *      In general, this operation should only be performed on objects that
1782  *      contain managed pages.  There are, however, two exceptions.  First, it
1783  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1784  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1785  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1786  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1787  *
1788  *      The object must be locked.
1789  */
1790 void
1791 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1792     int options)
1793 {
1794         vm_page_t p, next;
1795         int wirings;
1796
1797         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1798         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
1799             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1800             ("vm_object_page_remove: illegal options for object %p", object));
1801         if (object->resident_page_count == 0)
1802                 goto skipmemq;
1803         vm_object_pip_add(object, 1);
1804 again:
1805         p = vm_page_find_least(object, start);
1806
1807         /*
1808          * Here, the variable "p" is either (1) the page with the least pindex
1809          * greater than or equal to the parameter "start" or (2) NULL. 
1810          */
1811         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1812                 next = TAILQ_NEXT(p, listq);
1813
1814                 /*
1815                  * If the page is wired for any reason besides the existence
1816                  * of managed, wired mappings, then it cannot be freed.  For
1817                  * example, fictitious pages, which represent device memory,
1818                  * are inherently wired and cannot be freed.  They can,
1819                  * however, be invalidated if the option OBJPR_CLEANONLY is
1820                  * not specified.
1821                  */
1822                 vm_page_lock(p);
1823                 if ((wirings = p->wire_count) != 0 &&
1824                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1825                         if ((options & OBJPR_NOTMAPPED) == 0) {
1826                                 pmap_remove_all(p);
1827                                 /* Account for removal of wired mappings. */
1828                                 if (wirings != 0)
1829                                         p->wire_count -= wirings;
1830                         }
1831                         if ((options & OBJPR_CLEANONLY) == 0) {
1832                                 p->valid = 0;
1833                                 vm_page_undirty(p);
1834                         }
1835                         vm_page_unlock(p);
1836                         continue;
1837                 }
1838                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1839                         goto again;
1840                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1841                     ("vm_object_page_remove: page %p is fictitious", p));
1842                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1843                         if ((options & OBJPR_NOTMAPPED) == 0)
1844                                 pmap_remove_write(p);
1845                         if (p->dirty) {
1846                                 vm_page_unlock(p);
1847                                 continue;
1848                         }
1849                 }
1850                 if ((options & OBJPR_NOTMAPPED) == 0) {
1851                         pmap_remove_all(p);
1852                         /* Account for removal of wired mappings. */
1853                         if (wirings != 0)
1854                                 p->wire_count -= wirings;
1855                 }
1856                 vm_page_free(p);
1857                 vm_page_unlock(p);
1858         }
1859         vm_object_pip_wakeup(object);
1860 skipmemq:
1861         if (__predict_false(object->cache != NULL))
1862                 vm_page_cache_free(object, start, end);
1863 }
1864
1865 /*
1866  *      Populate the specified range of the object with valid pages.  Returns
1867  *      TRUE if the range is successfully populated and FALSE otherwise.
1868  *
1869  *      Note: This function should be optimized to pass a larger array of
1870  *      pages to vm_pager_get_pages() before it is applied to a non-
1871  *      OBJT_DEVICE object.
1872  *
1873  *      The object must be locked.
1874  */
1875 boolean_t
1876 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1877 {
1878         vm_page_t m, ma[1];
1879         vm_pindex_t pindex;
1880         int rv;
1881
1882         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1883         for (pindex = start; pindex < end; pindex++) {
1884                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1885                     VM_ALLOC_RETRY);
1886                 if (m->valid != VM_PAGE_BITS_ALL) {
1887                         ma[0] = m;
1888                         rv = vm_pager_get_pages(object, ma, 1, 0);
1889                         m = vm_page_lookup(object, pindex);
1890                         if (m == NULL)
1891                                 break;
1892                         if (rv != VM_PAGER_OK) {
1893                                 vm_page_lock(m);
1894                                 vm_page_free(m);
1895                                 vm_page_unlock(m);
1896                                 break;
1897                         }
1898                 }
1899                 /*
1900                  * Keep "m" busy because a subsequent iteration may unlock
1901                  * the object.
1902                  */
1903         }
1904         if (pindex > start) {
1905                 m = vm_page_lookup(object, start);
1906                 while (m != NULL && m->pindex < pindex) {
1907                         vm_page_wakeup(m);
1908                         m = TAILQ_NEXT(m, listq);
1909                 }
1910         }
1911         return (pindex == end);
1912 }
1913
1914 /*
1915  *      Routine:        vm_object_coalesce
1916  *      Function:       Coalesces two objects backing up adjoining
1917  *                      regions of memory into a single object.
1918  *
1919  *      returns TRUE if objects were combined.
1920  *
1921  *      NOTE:   Only works at the moment if the second object is NULL -
1922  *              if it's not, which object do we lock first?
1923  *
1924  *      Parameters:
1925  *              prev_object     First object to coalesce
1926  *              prev_offset     Offset into prev_object
1927  *              prev_size       Size of reference to prev_object
1928  *              next_size       Size of reference to the second object
1929  *              reserved        Indicator that extension region has
1930  *                              swap accounted for
1931  *
1932  *      Conditions:
1933  *      The object must *not* be locked.
1934  */
1935 boolean_t
1936 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1937     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1938 {
1939         vm_pindex_t next_pindex;
1940
1941         if (prev_object == NULL)
1942                 return (TRUE);
1943         VM_OBJECT_LOCK(prev_object);
1944         if (prev_object->type != OBJT_DEFAULT &&
1945             prev_object->type != OBJT_SWAP) {
1946                 VM_OBJECT_UNLOCK(prev_object);
1947                 return (FALSE);
1948         }
1949
1950         /*
1951          * Try to collapse the object first
1952          */
1953         vm_object_collapse(prev_object);
1954
1955         /*
1956          * Can't coalesce if: . more than one reference . paged out . shadows
1957          * another object . has a copy elsewhere (any of which mean that the
1958          * pages not mapped to prev_entry may be in use anyway)
1959          */
1960         if (prev_object->backing_object != NULL) {
1961                 VM_OBJECT_UNLOCK(prev_object);
1962                 return (FALSE);
1963         }
1964
1965         prev_size >>= PAGE_SHIFT;
1966         next_size >>= PAGE_SHIFT;
1967         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1968
1969         if ((prev_object->ref_count > 1) &&
1970             (prev_object->size != next_pindex)) {
1971                 VM_OBJECT_UNLOCK(prev_object);
1972                 return (FALSE);
1973         }
1974
1975         /*
1976          * Account for the charge.
1977          */
1978         if (prev_object->cred != NULL) {
1979
1980                 /*
1981                  * If prev_object was charged, then this mapping,
1982                  * althought not charged now, may become writable
1983                  * later. Non-NULL cred in the object would prevent
1984                  * swap reservation during enabling of the write
1985                  * access, so reserve swap now. Failed reservation
1986                  * cause allocation of the separate object for the map
1987                  * entry, and swap reservation for this entry is
1988                  * managed in appropriate time.
1989                  */
1990                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
1991                     prev_object->cred)) {
1992                         return (FALSE);
1993                 }
1994                 prev_object->charge += ptoa(next_size);
1995         }
1996
1997         /*
1998          * Remove any pages that may still be in the object from a previous
1999          * deallocation.
2000          */
2001         if (next_pindex < prev_object->size) {
2002                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2003                     next_size, 0);
2004                 if (prev_object->type == OBJT_SWAP)
2005                         swap_pager_freespace(prev_object,
2006                                              next_pindex, next_size);
2007 #if 0
2008                 if (prev_object->cred != NULL) {
2009                         KASSERT(prev_object->charge >=
2010                             ptoa(prev_object->size - next_pindex),
2011                             ("object %p overcharged 1 %jx %jx", prev_object,
2012                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2013                         prev_object->charge -= ptoa(prev_object->size -
2014                             next_pindex);
2015                 }
2016 #endif
2017         }
2018
2019         /*
2020          * Extend the object if necessary.
2021          */
2022         if (next_pindex + next_size > prev_object->size)
2023                 prev_object->size = next_pindex + next_size;
2024
2025         VM_OBJECT_UNLOCK(prev_object);
2026         return (TRUE);
2027 }
2028
2029 void
2030 vm_object_set_writeable_dirty(vm_object_t object)
2031 {
2032
2033         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2034         if (object->type != OBJT_VNODE)
2035                 return;
2036         object->generation++;
2037         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2038                 return;
2039         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2040 }
2041
2042 #include "opt_ddb.h"
2043 #ifdef DDB
2044 #include <sys/kernel.h>
2045
2046 #include <sys/cons.h>
2047
2048 #include <ddb/ddb.h>
2049
2050 static int
2051 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2052 {
2053         vm_map_t tmpm;
2054         vm_map_entry_t tmpe;
2055         vm_object_t obj;
2056         int entcount;
2057
2058         if (map == 0)
2059                 return 0;
2060
2061         if (entry == 0) {
2062                 tmpe = map->header.next;
2063                 entcount = map->nentries;
2064                 while (entcount-- && (tmpe != &map->header)) {
2065                         if (_vm_object_in_map(map, object, tmpe)) {
2066                                 return 1;
2067                         }
2068                         tmpe = tmpe->next;
2069                 }
2070         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2071                 tmpm = entry->object.sub_map;
2072                 tmpe = tmpm->header.next;
2073                 entcount = tmpm->nentries;
2074                 while (entcount-- && tmpe != &tmpm->header) {
2075                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2076                                 return 1;
2077                         }
2078                         tmpe = tmpe->next;
2079                 }
2080         } else if ((obj = entry->object.vm_object) != NULL) {
2081                 for (; obj; obj = obj->backing_object)
2082                         if (obj == object) {
2083                                 return 1;
2084                         }
2085         }
2086         return 0;
2087 }
2088
2089 static int
2090 vm_object_in_map(vm_object_t object)
2091 {
2092         struct proc *p;
2093
2094         /* sx_slock(&allproc_lock); */
2095         FOREACH_PROC_IN_SYSTEM(p) {
2096                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2097                         continue;
2098                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2099                         /* sx_sunlock(&allproc_lock); */
2100                         return 1;
2101                 }
2102         }
2103         /* sx_sunlock(&allproc_lock); */
2104         if (_vm_object_in_map(kernel_map, object, 0))
2105                 return 1;
2106         if (_vm_object_in_map(kmem_map, object, 0))
2107                 return 1;
2108         if (_vm_object_in_map(pager_map, object, 0))
2109                 return 1;
2110         if (_vm_object_in_map(buffer_map, object, 0))
2111                 return 1;
2112         return 0;
2113 }
2114
2115 DB_SHOW_COMMAND(vmochk, vm_object_check)
2116 {
2117         vm_object_t object;
2118
2119         /*
2120          * make sure that internal objs are in a map somewhere
2121          * and none have zero ref counts.
2122          */
2123         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2124                 if (object->handle == NULL &&
2125                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2126                         if (object->ref_count == 0) {
2127                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2128                                         (long)object->size);
2129                         }
2130                         if (!vm_object_in_map(object)) {
2131                                 db_printf(
2132                         "vmochk: internal obj is not in a map: "
2133                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2134                                     object->ref_count, (u_long)object->size, 
2135                                     (u_long)object->size,
2136                                     (void *)object->backing_object);
2137                         }
2138                 }
2139         }
2140 }
2141
2142 /*
2143  *      vm_object_print:        [ debug ]
2144  */
2145 DB_SHOW_COMMAND(object, vm_object_print_static)
2146 {
2147         /* XXX convert args. */
2148         vm_object_t object = (vm_object_t)addr;
2149         boolean_t full = have_addr;
2150
2151         vm_page_t p;
2152
2153         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2154 #define count   was_count
2155
2156         int count;
2157
2158         if (object == NULL)
2159                 return;
2160
2161         db_iprintf(
2162             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2163             object, (int)object->type, (uintmax_t)object->size,
2164             object->resident_page_count, object->ref_count, object->flags,
2165             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2166         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2167             object->shadow_count, 
2168             object->backing_object ? object->backing_object->ref_count : 0,
2169             object->backing_object, (uintmax_t)object->backing_object_offset);
2170
2171         if (!full)
2172                 return;
2173
2174         db_indent += 2;
2175         count = 0;
2176         TAILQ_FOREACH(p, &object->memq, listq) {
2177                 if (count == 0)
2178                         db_iprintf("memory:=");
2179                 else if (count == 6) {
2180                         db_printf("\n");
2181                         db_iprintf(" ...");
2182                         count = 0;
2183                 } else
2184                         db_printf(",");
2185                 count++;
2186
2187                 db_printf("(off=0x%jx,page=0x%jx)",
2188                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2189         }
2190         if (count != 0)
2191                 db_printf("\n");
2192         db_indent -= 2;
2193 }
2194
2195 /* XXX. */
2196 #undef count
2197
2198 /* XXX need this non-static entry for calling from vm_map_print. */
2199 void
2200 vm_object_print(
2201         /* db_expr_t */ long addr,
2202         boolean_t have_addr,
2203         /* db_expr_t */ long count,
2204         char *modif)
2205 {
2206         vm_object_print_static(addr, have_addr, count, modif);
2207 }
2208
2209 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2210 {
2211         vm_object_t object;
2212         vm_pindex_t fidx;
2213         vm_paddr_t pa;
2214         vm_page_t m, prev_m;
2215         int rcount, nl, c;
2216
2217         nl = 0;
2218         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2219                 db_printf("new object: %p\n", (void *)object);
2220                 if (nl > 18) {
2221                         c = cngetc();
2222                         if (c != ' ')
2223                                 return;
2224                         nl = 0;
2225                 }
2226                 nl++;
2227                 rcount = 0;
2228                 fidx = 0;
2229                 pa = -1;
2230                 TAILQ_FOREACH(m, &object->memq, listq) {
2231                         if (m->pindex > 128)
2232                                 break;
2233                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2234                             prev_m->pindex + 1 != m->pindex) {
2235                                 if (rcount) {
2236                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2237                                                 (long)fidx, rcount, (long)pa);
2238                                         if (nl > 18) {
2239                                                 c = cngetc();
2240                                                 if (c != ' ')
2241                                                         return;
2242                                                 nl = 0;
2243                                         }
2244                                         nl++;
2245                                         rcount = 0;
2246                                 }
2247                         }                               
2248                         if (rcount &&
2249                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2250                                 ++rcount;
2251                                 continue;
2252                         }
2253                         if (rcount) {
2254                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2255                                         (long)fidx, rcount, (long)pa);
2256                                 if (nl > 18) {
2257                                         c = cngetc();
2258                                         if (c != ' ')
2259                                                 return;
2260                                         nl = 0;
2261                                 }
2262                                 nl++;
2263                         }
2264                         fidx = m->pindex;
2265                         pa = VM_PAGE_TO_PHYS(m);
2266                         rcount = 1;
2267                 }
2268                 if (rcount) {
2269                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2270                                 (long)fidx, rcount, (long)pa);
2271                         if (nl > 18) {
2272                                 c = cngetc();
2273                                 if (c != ' ')
2274                                         return;
2275                                 nl = 0;
2276                         }
2277                         nl++;
2278                 }
2279         }
2280 }
2281 #endif /* DDB */