]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/vm/vm_pageout.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212 #if !defined(NO_SWAPPING)
213 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
214 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
215 static void vm_req_vmdaemon(int req);
216 #endif
217 static void vm_pageout_page_stats(void);
218
219 /*
220  * Initialize a dummy page for marking the caller's place in the specified
221  * paging queue.  In principle, this function only needs to set the flag
222  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
223  * count to one as safety precautions.
224  */ 
225 static void
226 vm_pageout_init_marker(vm_page_t marker, u_short queue)
227 {
228
229         bzero(marker, sizeof(*marker));
230         marker->flags = PG_MARKER;
231         marker->oflags = VPO_BUSY;
232         marker->queue = queue;
233         marker->hold_count = 1;
234 }
235
236 /*
237  * vm_pageout_fallback_object_lock:
238  * 
239  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
240  * known to have failed and page queue must be either PQ_ACTIVE or
241  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
242  * while locking the vm object.  Use marker page to detect page queue
243  * changes and maintain notion of next page on page queue.  Return
244  * TRUE if no changes were detected, FALSE otherwise.  vm object is
245  * locked on return.
246  * 
247  * This function depends on both the lock portion of struct vm_object
248  * and normal struct vm_page being type stable.
249  */
250 boolean_t
251 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
252 {
253         struct vm_page marker;
254         boolean_t unchanged;
255         u_short queue;
256         vm_object_t object;
257
258         queue = m->queue;
259         vm_pageout_init_marker(&marker, queue);
260         object = m->object;
261         
262         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
263                            m, &marker, pageq);
264         vm_page_unlock_queues();
265         vm_page_unlock(m);
266         VM_OBJECT_LOCK(object);
267         vm_page_lock(m);
268         vm_page_lock_queues();
269
270         /* Page queue might have changed. */
271         *next = TAILQ_NEXT(&marker, pageq);
272         unchanged = (m->queue == queue &&
273                      m->object == object &&
274                      &marker == TAILQ_NEXT(m, pageq));
275         TAILQ_REMOVE(&vm_page_queues[queue].pl,
276                      &marker, pageq);
277         return (unchanged);
278 }
279
280 /*
281  * Lock the page while holding the page queue lock.  Use marker page
282  * to detect page queue changes and maintain notion of next page on
283  * page queue.  Return TRUE if no changes were detected, FALSE
284  * otherwise.  The page is locked on return. The page queue lock might
285  * be dropped and reacquired.
286  *
287  * This function depends on normal struct vm_page being type stable.
288  */
289 boolean_t
290 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
291 {
292         struct vm_page marker;
293         boolean_t unchanged;
294         u_short queue;
295
296         vm_page_lock_assert(m, MA_NOTOWNED);
297         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
298
299         if (vm_page_trylock(m))
300                 return (TRUE);
301
302         queue = m->queue;
303         vm_pageout_init_marker(&marker, queue);
304
305         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
306         vm_page_unlock_queues();
307         vm_page_lock(m);
308         vm_page_lock_queues();
309
310         /* Page queue might have changed. */
311         *next = TAILQ_NEXT(&marker, pageq);
312         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
313         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
314         return (unchanged);
315 }
316
317 /*
318  * vm_pageout_clean:
319  *
320  * Clean the page and remove it from the laundry.
321  * 
322  * We set the busy bit to cause potential page faults on this page to
323  * block.  Note the careful timing, however, the busy bit isn't set till
324  * late and we cannot do anything that will mess with the page.
325  */
326 static int
327 vm_pageout_clean(vm_page_t m)
328 {
329         vm_object_t object;
330         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
331         int pageout_count;
332         int ib, is, page_base;
333         vm_pindex_t pindex = m->pindex;
334
335         vm_page_lock_assert(m, MA_OWNED);
336         object = m->object;
337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338
339         /*
340          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
341          * with the new swapper, but we could have serious problems paging
342          * out other object types if there is insufficient memory.  
343          *
344          * Unfortunately, checking free memory here is far too late, so the
345          * check has been moved up a procedural level.
346          */
347
348         /*
349          * Can't clean the page if it's busy or held.
350          */
351         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
352             ("vm_pageout_clean: page %p is busy", m));
353         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
354         vm_page_unlock(m);
355
356         mc[vm_pageout_page_count] = pb = ps = m;
357         pageout_count = 1;
358         page_base = vm_pageout_page_count;
359         ib = 1;
360         is = 1;
361
362         /*
363          * Scan object for clusterable pages.
364          *
365          * We can cluster ONLY if: ->> the page is NOT
366          * clean, wired, busy, held, or mapped into a
367          * buffer, and one of the following:
368          * 1) The page is inactive, or a seldom used
369          *    active page.
370          * -or-
371          * 2) we force the issue.
372          *
373          * During heavy mmap/modification loads the pageout
374          * daemon can really fragment the underlying file
375          * due to flushing pages out of order and not trying
376          * align the clusters (which leave sporatic out-of-order
377          * holes).  To solve this problem we do the reverse scan
378          * first and attempt to align our cluster, then do a 
379          * forward scan if room remains.
380          */
381 more:
382         while (ib && pageout_count < vm_pageout_page_count) {
383                 vm_page_t p;
384
385                 if (ib > pindex) {
386                         ib = 0;
387                         break;
388                 }
389
390                 if ((p = vm_page_prev(pb)) == NULL ||
391                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
392                         ib = 0;
393                         break;
394                 }
395                 vm_page_lock(p);
396                 vm_page_test_dirty(p);
397                 if (p->dirty == 0 ||
398                     p->queue != PQ_INACTIVE ||
399                     p->hold_count != 0) {       /* may be undergoing I/O */
400                         vm_page_unlock(p);
401                         ib = 0;
402                         break;
403                 }
404                 vm_page_unlock(p);
405                 mc[--page_base] = pb = p;
406                 ++pageout_count;
407                 ++ib;
408                 /*
409                  * alignment boundry, stop here and switch directions.  Do
410                  * not clear ib.
411                  */
412                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
413                         break;
414         }
415
416         while (pageout_count < vm_pageout_page_count && 
417             pindex + is < object->size) {
418                 vm_page_t p;
419
420                 if ((p = vm_page_next(ps)) == NULL ||
421                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
422                         break;
423                 vm_page_lock(p);
424                 vm_page_test_dirty(p);
425                 if (p->dirty == 0 ||
426                     p->queue != PQ_INACTIVE ||
427                     p->hold_count != 0) {       /* may be undergoing I/O */
428                         vm_page_unlock(p);
429                         break;
430                 }
431                 vm_page_unlock(p);
432                 mc[page_base + pageout_count] = ps = p;
433                 ++pageout_count;
434                 ++is;
435         }
436
437         /*
438          * If we exhausted our forward scan, continue with the reverse scan
439          * when possible, even past a page boundry.  This catches boundry
440          * conditions.
441          */
442         if (ib && pageout_count < vm_pageout_page_count)
443                 goto more;
444
445         /*
446          * we allow reads during pageouts...
447          */
448         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL));
449 }
450
451 /*
452  * vm_pageout_flush() - launder the given pages
453  *
454  *      The given pages are laundered.  Note that we setup for the start of
455  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
456  *      reference count all in here rather then in the parent.  If we want
457  *      the parent to do more sophisticated things we may have to change
458  *      the ordering.
459  *
460  *      Returned runlen is the count of pages between mreq and first
461  *      page after mreq with status VM_PAGER_AGAIN.
462  */
463 int
464 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen)
465 {
466         vm_object_t object = mc[0]->object;
467         int pageout_status[count];
468         int numpagedout = 0;
469         int i, runlen;
470
471         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
472         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
473
474         /*
475          * Initiate I/O.  Bump the vm_page_t->busy counter and
476          * mark the pages read-only.
477          *
478          * We do not have to fixup the clean/dirty bits here... we can
479          * allow the pager to do it after the I/O completes.
480          *
481          * NOTE! mc[i]->dirty may be partial or fragmented due to an
482          * edge case with file fragments.
483          */
484         for (i = 0; i < count; i++) {
485                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
486                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
487                         mc[i], i, count));
488                 vm_page_io_start(mc[i]);
489                 pmap_remove_write(mc[i]);
490         }
491         vm_object_pip_add(object, count);
492
493         vm_pager_put_pages(object, mc, count, flags, pageout_status);
494
495         runlen = count - mreq;
496         for (i = 0; i < count; i++) {
497                 vm_page_t mt = mc[i];
498
499                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
500                     (mt->aflags & PGA_WRITEABLE) == 0,
501                     ("vm_pageout_flush: page %p is not write protected", mt));
502                 switch (pageout_status[i]) {
503                 case VM_PAGER_OK:
504                 case VM_PAGER_PEND:
505                         numpagedout++;
506                         break;
507                 case VM_PAGER_BAD:
508                         /*
509                          * Page outside of range of object. Right now we
510                          * essentially lose the changes by pretending it
511                          * worked.
512                          */
513                         vm_page_undirty(mt);
514                         break;
515                 case VM_PAGER_ERROR:
516                 case VM_PAGER_FAIL:
517                         /*
518                          * If page couldn't be paged out, then reactivate the
519                          * page so it doesn't clog the inactive list.  (We
520                          * will try paging out it again later).
521                          */
522                         vm_page_lock(mt);
523                         vm_page_activate(mt);
524                         vm_page_unlock(mt);
525                         break;
526                 case VM_PAGER_AGAIN:
527                         if (i >= mreq && i - mreq < runlen)
528                                 runlen = i - mreq;
529                         break;
530                 }
531
532                 /*
533                  * If the operation is still going, leave the page busy to
534                  * block all other accesses. Also, leave the paging in
535                  * progress indicator set so that we don't attempt an object
536                  * collapse.
537                  */
538                 if (pageout_status[i] != VM_PAGER_PEND) {
539                         vm_object_pip_wakeup(object);
540                         vm_page_io_finish(mt);
541                         if (vm_page_count_severe()) {
542                                 vm_page_lock(mt);
543                                 vm_page_try_to_cache(mt);
544                                 vm_page_unlock(mt);
545                         }
546                 }
547         }
548         if (prunlen != NULL)
549                 *prunlen = runlen;
550         return (numpagedout);
551 }
552
553 #if !defined(NO_SWAPPING)
554 /*
555  *      vm_pageout_object_deactivate_pages
556  *
557  *      Deactivate enough pages to satisfy the inactive target
558  *      requirements.
559  *
560  *      The object and map must be locked.
561  */
562 static void
563 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
564     long desired)
565 {
566         vm_object_t backing_object, object;
567         vm_page_t p;
568         int actcount, remove_mode;
569
570         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
571         if (first_object->type == OBJT_DEVICE ||
572             first_object->type == OBJT_SG)
573                 return;
574         for (object = first_object;; object = backing_object) {
575                 if (pmap_resident_count(pmap) <= desired)
576                         goto unlock_return;
577                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
578                 if (object->type == OBJT_PHYS || object->paging_in_progress)
579                         goto unlock_return;
580
581                 remove_mode = 0;
582                 if (object->shadow_count > 1)
583                         remove_mode = 1;
584                 /*
585                  * Scan the object's entire memory queue.
586                  */
587                 TAILQ_FOREACH(p, &object->memq, listq) {
588                         if (pmap_resident_count(pmap) <= desired)
589                                 goto unlock_return;
590                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
591                                 continue;
592                         PCPU_INC(cnt.v_pdpages);
593                         vm_page_lock(p);
594                         if (p->wire_count != 0 || p->hold_count != 0 ||
595                             !pmap_page_exists_quick(pmap, p)) {
596                                 vm_page_unlock(p);
597                                 continue;
598                         }
599                         actcount = pmap_ts_referenced(p);
600                         if ((p->aflags & PGA_REFERENCED) != 0) {
601                                 if (actcount == 0)
602                                         actcount = 1;
603                                 vm_page_aflag_clear(p, PGA_REFERENCED);
604                         }
605                         if (p->queue != PQ_ACTIVE && actcount != 0) {
606                                 vm_page_activate(p);
607                                 p->act_count += actcount;
608                         } else if (p->queue == PQ_ACTIVE) {
609                                 if (actcount == 0) {
610                                         p->act_count -= min(p->act_count,
611                                             ACT_DECLINE);
612                                         if (!remove_mode &&
613                                             (vm_pageout_algorithm ||
614                                             p->act_count == 0)) {
615                                                 pmap_remove_all(p);
616                                                 vm_page_deactivate(p);
617                                         } else {
618                                                 vm_page_lock_queues();
619                                                 vm_page_requeue(p);
620                                                 vm_page_unlock_queues();
621                                         }
622                                 } else {
623                                         vm_page_activate(p);
624                                         if (p->act_count < ACT_MAX -
625                                             ACT_ADVANCE)
626                                                 p->act_count += ACT_ADVANCE;
627                                         vm_page_lock_queues();
628                                         vm_page_requeue(p);
629                                         vm_page_unlock_queues();
630                                 }
631                         } else if (p->queue == PQ_INACTIVE)
632                                 pmap_remove_all(p);
633                         vm_page_unlock(p);
634                 }
635                 if ((backing_object = object->backing_object) == NULL)
636                         goto unlock_return;
637                 VM_OBJECT_LOCK(backing_object);
638                 if (object != first_object)
639                         VM_OBJECT_UNLOCK(object);
640         }
641 unlock_return:
642         if (object != first_object)
643                 VM_OBJECT_UNLOCK(object);
644 }
645
646 /*
647  * deactivate some number of pages in a map, try to do it fairly, but
648  * that is really hard to do.
649  */
650 static void
651 vm_pageout_map_deactivate_pages(map, desired)
652         vm_map_t map;
653         long desired;
654 {
655         vm_map_entry_t tmpe;
656         vm_object_t obj, bigobj;
657         int nothingwired;
658
659         if (!vm_map_trylock(map))
660                 return;
661
662         bigobj = NULL;
663         nothingwired = TRUE;
664
665         /*
666          * first, search out the biggest object, and try to free pages from
667          * that.
668          */
669         tmpe = map->header.next;
670         while (tmpe != &map->header) {
671                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
672                         obj = tmpe->object.vm_object;
673                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
674                                 if (obj->shadow_count <= 1 &&
675                                     (bigobj == NULL ||
676                                      bigobj->resident_page_count < obj->resident_page_count)) {
677                                         if (bigobj != NULL)
678                                                 VM_OBJECT_UNLOCK(bigobj);
679                                         bigobj = obj;
680                                 } else
681                                         VM_OBJECT_UNLOCK(obj);
682                         }
683                 }
684                 if (tmpe->wired_count > 0)
685                         nothingwired = FALSE;
686                 tmpe = tmpe->next;
687         }
688
689         if (bigobj != NULL) {
690                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
691                 VM_OBJECT_UNLOCK(bigobj);
692         }
693         /*
694          * Next, hunt around for other pages to deactivate.  We actually
695          * do this search sort of wrong -- .text first is not the best idea.
696          */
697         tmpe = map->header.next;
698         while (tmpe != &map->header) {
699                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
700                         break;
701                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
702                         obj = tmpe->object.vm_object;
703                         if (obj != NULL) {
704                                 VM_OBJECT_LOCK(obj);
705                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
706                                 VM_OBJECT_UNLOCK(obj);
707                         }
708                 }
709                 tmpe = tmpe->next;
710         }
711
712         /*
713          * Remove all mappings if a process is swapped out, this will free page
714          * table pages.
715          */
716         if (desired == 0 && nothingwired) {
717                 tmpe = map->header.next;
718                 while (tmpe != &map->header) {
719                         pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
720                         tmpe = tmpe->next;
721                 }
722         }
723         vm_map_unlock(map);
724 }
725 #endif          /* !defined(NO_SWAPPING) */
726
727 /*
728  *      vm_pageout_scan does the dirty work for the pageout daemon.
729  */
730 static void
731 vm_pageout_scan(int pass)
732 {
733         vm_page_t m, next;
734         struct vm_page marker;
735         int page_shortage, maxscan, pcount;
736         int addl_page_shortage, addl_page_shortage_init;
737         vm_object_t object;
738         int actcount;
739         int vnodes_skipped = 0;
740         int maxlaunder;
741
742         /*
743          * Decrease registered cache sizes.
744          */
745         EVENTHANDLER_INVOKE(vm_lowmem, 0);
746         /*
747          * We do this explicitly after the caches have been drained above.
748          */
749         uma_reclaim();
750
751         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
752
753         /*
754          * Calculate the number of pages we want to either free or move
755          * to the cache.
756          */
757         page_shortage = vm_paging_target() + addl_page_shortage_init;
758
759         vm_pageout_init_marker(&marker, PQ_INACTIVE);
760
761         /*
762          * Start scanning the inactive queue for pages we can move to the
763          * cache or free.  The scan will stop when the target is reached or
764          * we have scanned the entire inactive queue.  Note that m->act_count
765          * is not used to form decisions for the inactive queue, only for the
766          * active queue.
767          *
768          * maxlaunder limits the number of dirty pages we flush per scan.
769          * For most systems a smaller value (16 or 32) is more robust under
770          * extreme memory and disk pressure because any unnecessary writes
771          * to disk can result in extreme performance degredation.  However,
772          * systems with excessive dirty pages (especially when MAP_NOSYNC is
773          * used) will die horribly with limited laundering.  If the pageout
774          * daemon cannot clean enough pages in the first pass, we let it go
775          * all out in succeeding passes.
776          */
777         if ((maxlaunder = vm_max_launder) <= 1)
778                 maxlaunder = 1;
779         if (pass)
780                 maxlaunder = 10000;
781         vm_page_lock_queues();
782 rescan0:
783         addl_page_shortage = addl_page_shortage_init;
784         maxscan = cnt.v_inactive_count;
785
786         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
787              m != NULL && maxscan-- > 0 && page_shortage > 0;
788              m = next) {
789
790                 cnt.v_pdpages++;
791
792                 if (m->queue != PQ_INACTIVE)
793                         goto rescan0;
794
795                 next = TAILQ_NEXT(m, pageq);
796
797                 /*
798                  * skip marker pages
799                  */
800                 if (m->flags & PG_MARKER)
801                         continue;
802
803                 /*
804                  * Lock the page.
805                  */
806                 if (!vm_pageout_page_lock(m, &next)) {
807                         vm_page_unlock(m);
808                         addl_page_shortage++;
809                         continue;
810                 }
811
812                 /*
813                  * A held page may be undergoing I/O, so skip it.
814                  */
815                 if (m->hold_count) {
816                         vm_page_unlock(m);
817                         vm_page_requeue(m);
818                         addl_page_shortage++;
819                         continue;
820                 }
821
822                 /*
823                  * Don't mess with busy pages, keep in the front of the
824                  * queue, most likely are being paged out.
825                  */
826                 object = m->object;
827                 if (!VM_OBJECT_TRYLOCK(object) &&
828                     (!vm_pageout_fallback_object_lock(m, &next) ||
829                         m->hold_count != 0)) {
830                         VM_OBJECT_UNLOCK(object);
831                         vm_page_unlock(m);
832                         addl_page_shortage++;
833                         continue;
834                 }
835                 if (m->busy || (m->oflags & VPO_BUSY)) {
836                         vm_page_unlock(m);
837                         VM_OBJECT_UNLOCK(object);
838                         addl_page_shortage++;
839                         continue;
840                 }
841
842                 /*
843                  * If the object is not being used, we ignore previous 
844                  * references.
845                  */
846                 if (object->ref_count == 0) {
847                         vm_page_aflag_clear(m, PGA_REFERENCED);
848                         KASSERT(!pmap_page_is_mapped(m),
849                             ("vm_pageout_scan: page %p is mapped", m));
850
851                 /*
852                  * Otherwise, if the page has been referenced while in the 
853                  * inactive queue, we bump the "activation count" upwards, 
854                  * making it less likely that the page will be added back to 
855                  * the inactive queue prematurely again.  Here we check the 
856                  * page tables (or emulated bits, if any), given the upper 
857                  * level VM system not knowing anything about existing 
858                  * references.
859                  */
860                 } else if (((m->aflags & PGA_REFERENCED) == 0) &&
861                         (actcount = pmap_ts_referenced(m))) {
862                         vm_page_activate(m);
863                         vm_page_unlock(m);
864                         m->act_count += actcount + ACT_ADVANCE;
865                         VM_OBJECT_UNLOCK(object);
866                         continue;
867                 }
868
869                 /*
870                  * If the upper level VM system knows about any page 
871                  * references, we activate the page.  We also set the 
872                  * "activation count" higher than normal so that we will less 
873                  * likely place pages back onto the inactive queue again.
874                  */
875                 if ((m->aflags & PGA_REFERENCED) != 0) {
876                         vm_page_aflag_clear(m, PGA_REFERENCED);
877                         actcount = pmap_ts_referenced(m);
878                         vm_page_activate(m);
879                         vm_page_unlock(m);
880                         m->act_count += actcount + ACT_ADVANCE + 1;
881                         VM_OBJECT_UNLOCK(object);
882                         continue;
883                 }
884
885                 /*
886                  * If the upper level VM system does not believe that the page
887                  * is fully dirty, but it is mapped for write access, then we
888                  * consult the pmap to see if the page's dirty status should
889                  * be updated.
890                  */
891                 if (m->dirty != VM_PAGE_BITS_ALL &&
892                     (m->aflags & PGA_WRITEABLE) != 0) {
893                         /*
894                          * Avoid a race condition: Unless write access is
895                          * removed from the page, another processor could
896                          * modify it before all access is removed by the call
897                          * to vm_page_cache() below.  If vm_page_cache() finds
898                          * that the page has been modified when it removes all
899                          * access, it panics because it cannot cache dirty
900                          * pages.  In principle, we could eliminate just write
901                          * access here rather than all access.  In the expected
902                          * case, when there are no last instant modifications
903                          * to the page, removing all access will be cheaper
904                          * overall.
905                          */
906                         if (pmap_is_modified(m))
907                                 vm_page_dirty(m);
908                         else if (m->dirty == 0)
909                                 pmap_remove_all(m);
910                 }
911
912                 if (m->valid == 0) {
913                         /*
914                          * Invalid pages can be easily freed
915                          */
916                         vm_page_free(m);
917                         cnt.v_dfree++;
918                         --page_shortage;
919                 } else if (m->dirty == 0) {
920                         /*
921                          * Clean pages can be placed onto the cache queue.
922                          * This effectively frees them.
923                          */
924                         vm_page_cache(m);
925                         --page_shortage;
926                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
927                         /*
928                          * Dirty pages need to be paged out, but flushing
929                          * a page is extremely expensive verses freeing
930                          * a clean page.  Rather then artificially limiting
931                          * the number of pages we can flush, we instead give
932                          * dirty pages extra priority on the inactive queue
933                          * by forcing them to be cycled through the queue
934                          * twice before being flushed, after which the
935                          * (now clean) page will cycle through once more
936                          * before being freed.  This significantly extends
937                          * the thrash point for a heavily loaded machine.
938                          */
939                         m->flags |= PG_WINATCFLS;
940                         vm_page_requeue(m);
941                 } else if (maxlaunder > 0) {
942                         /*
943                          * We always want to try to flush some dirty pages if
944                          * we encounter them, to keep the system stable.
945                          * Normally this number is small, but under extreme
946                          * pressure where there are insufficient clean pages
947                          * on the inactive queue, we may have to go all out.
948                          */
949                         int swap_pageouts_ok, vfslocked = 0;
950                         struct vnode *vp = NULL;
951                         struct mount *mp = NULL;
952
953                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
954                                 swap_pageouts_ok = 1;
955                         } else {
956                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
957                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
958                                 vm_page_count_min());
959                                                                                 
960                         }
961
962                         /*
963                          * We don't bother paging objects that are "dead".  
964                          * Those objects are in a "rundown" state.
965                          */
966                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
967                                 vm_page_unlock(m);
968                                 VM_OBJECT_UNLOCK(object);
969                                 vm_page_requeue(m);
970                                 continue;
971                         }
972
973                         /*
974                          * Following operations may unlock
975                          * vm_page_queue_mtx, invalidating the 'next'
976                          * pointer.  To prevent an inordinate number
977                          * of restarts we use our marker to remember
978                          * our place.
979                          *
980                          */
981                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
982                                            m, &marker, pageq);
983                         /*
984                          * The object is already known NOT to be dead.   It
985                          * is possible for the vget() to block the whole
986                          * pageout daemon, but the new low-memory handling
987                          * code should prevent it.
988                          *
989                          * The previous code skipped locked vnodes and, worse,
990                          * reordered pages in the queue.  This results in
991                          * completely non-deterministic operation and, on a
992                          * busy system, can lead to extremely non-optimal
993                          * pageouts.  For example, it can cause clean pages
994                          * to be freed and dirty pages to be moved to the end
995                          * of the queue.  Since dirty pages are also moved to
996                          * the end of the queue once-cleaned, this gives
997                          * way too large a weighting to defering the freeing
998                          * of dirty pages.
999                          *
1000                          * We can't wait forever for the vnode lock, we might
1001                          * deadlock due to a vn_read() getting stuck in
1002                          * vm_wait while holding this vnode.  We skip the 
1003                          * vnode if we can't get it in a reasonable amount
1004                          * of time.
1005                          */
1006                         if (object->type == OBJT_VNODE) {
1007                                 vm_page_unlock_queues();
1008                                 vm_page_unlock(m);
1009                                 vp = object->handle;
1010                                 if (vp->v_type == VREG &&
1011                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1012                                         mp = NULL;
1013                                         ++pageout_lock_miss;
1014                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1015                                                 vnodes_skipped++;
1016                                         vm_page_lock_queues();
1017                                         goto unlock_and_continue;
1018                                 }
1019                                 KASSERT(mp != NULL,
1020                                     ("vp %p with NULL v_mount", vp));
1021                                 vm_object_reference_locked(object);
1022                                 VM_OBJECT_UNLOCK(object);
1023                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1024                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1025                                     curthread)) {
1026                                         VM_OBJECT_LOCK(object);
1027                                         vm_page_lock_queues();
1028                                         ++pageout_lock_miss;
1029                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1030                                                 vnodes_skipped++;
1031                                         vp = NULL;
1032                                         goto unlock_and_continue;
1033                                 }
1034                                 VM_OBJECT_LOCK(object);
1035                                 vm_page_lock(m);
1036                                 vm_page_lock_queues();
1037                                 /*
1038                                  * The page might have been moved to another
1039                                  * queue during potential blocking in vget()
1040                                  * above.  The page might have been freed and
1041                                  * reused for another vnode.
1042                                  */
1043                                 if (m->queue != PQ_INACTIVE ||
1044                                     m->object != object ||
1045                                     TAILQ_NEXT(m, pageq) != &marker) {
1046                                         vm_page_unlock(m);
1047                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1048                                                 vnodes_skipped++;
1049                                         goto unlock_and_continue;
1050                                 }
1051         
1052                                 /*
1053                                  * The page may have been busied during the
1054                                  * blocking in vget().  We don't move the
1055                                  * page back onto the end of the queue so that
1056                                  * statistics are more correct if we don't.
1057                                  */
1058                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1059                                         vm_page_unlock(m);
1060                                         goto unlock_and_continue;
1061                                 }
1062
1063                                 /*
1064                                  * If the page has become held it might
1065                                  * be undergoing I/O, so skip it
1066                                  */
1067                                 if (m->hold_count) {
1068                                         vm_page_unlock(m);
1069                                         vm_page_requeue(m);
1070                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1071                                                 vnodes_skipped++;
1072                                         goto unlock_and_continue;
1073                                 }
1074                         }
1075
1076                         /*
1077                          * If a page is dirty, then it is either being washed
1078                          * (but not yet cleaned) or it is still in the
1079                          * laundry.  If it is still in the laundry, then we
1080                          * start the cleaning operation. 
1081                          *
1082                          * decrement page_shortage on success to account for
1083                          * the (future) cleaned page.  Otherwise we could wind
1084                          * up laundering or cleaning too many pages.
1085                          */
1086                         vm_page_unlock_queues();
1087                         if (vm_pageout_clean(m) != 0) {
1088                                 --page_shortage;
1089                                 --maxlaunder;
1090                         }
1091                         vm_page_lock_queues();
1092 unlock_and_continue:
1093                         vm_page_lock_assert(m, MA_NOTOWNED);
1094                         VM_OBJECT_UNLOCK(object);
1095                         if (mp != NULL) {
1096                                 vm_page_unlock_queues();
1097                                 if (vp != NULL)
1098                                         vput(vp);
1099                                 VFS_UNLOCK_GIANT(vfslocked);
1100                                 vm_object_deallocate(object);
1101                                 vn_finished_write(mp);
1102                                 vm_page_lock_queues();
1103                         }
1104                         next = TAILQ_NEXT(&marker, pageq);
1105                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1106                                      &marker, pageq);
1107                         vm_page_lock_assert(m, MA_NOTOWNED);
1108                         continue;
1109                 }
1110                 vm_page_unlock(m);
1111                 VM_OBJECT_UNLOCK(object);
1112         }
1113
1114         /*
1115          * Compute the number of pages we want to try to move from the
1116          * active queue to the inactive queue.
1117          */
1118         page_shortage = vm_paging_target() +
1119                 cnt.v_inactive_target - cnt.v_inactive_count;
1120         page_shortage += addl_page_shortage;
1121
1122         /*
1123          * Scan the active queue for things we can deactivate. We nominally
1124          * track the per-page activity counter and use it to locate
1125          * deactivation candidates.
1126          */
1127         pcount = cnt.v_active_count;
1128         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1129         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1130
1131         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1132
1133                 KASSERT(m->queue == PQ_ACTIVE,
1134                     ("vm_pageout_scan: page %p isn't active", m));
1135
1136                 next = TAILQ_NEXT(m, pageq);
1137                 if ((m->flags & PG_MARKER) != 0) {
1138                         m = next;
1139                         continue;
1140                 }
1141                 if (!vm_pageout_page_lock(m, &next)) {
1142                         vm_page_unlock(m);
1143                         m = next;
1144                         continue;
1145                 }
1146                 object = m->object;
1147                 if (!VM_OBJECT_TRYLOCK(object) &&
1148                     !vm_pageout_fallback_object_lock(m, &next)) {
1149                         VM_OBJECT_UNLOCK(object);
1150                         vm_page_unlock(m);
1151                         m = next;
1152                         continue;
1153                 }
1154
1155                 /*
1156                  * Don't deactivate pages that are busy.
1157                  */
1158                 if ((m->busy != 0) ||
1159                     (m->oflags & VPO_BUSY) ||
1160                     (m->hold_count != 0)) {
1161                         vm_page_unlock(m);
1162                         VM_OBJECT_UNLOCK(object);
1163                         vm_page_requeue(m);
1164                         m = next;
1165                         continue;
1166                 }
1167
1168                 /*
1169                  * The count for pagedaemon pages is done after checking the
1170                  * page for eligibility...
1171                  */
1172                 cnt.v_pdpages++;
1173
1174                 /*
1175                  * Check to see "how much" the page has been used.
1176                  */
1177                 actcount = 0;
1178                 if (object->ref_count != 0) {
1179                         if (m->aflags & PGA_REFERENCED) {
1180                                 actcount += 1;
1181                         }
1182                         actcount += pmap_ts_referenced(m);
1183                         if (actcount) {
1184                                 m->act_count += ACT_ADVANCE + actcount;
1185                                 if (m->act_count > ACT_MAX)
1186                                         m->act_count = ACT_MAX;
1187                         }
1188                 }
1189
1190                 /*
1191                  * Since we have "tested" this bit, we need to clear it now.
1192                  */
1193                 vm_page_aflag_clear(m, PGA_REFERENCED);
1194
1195                 /*
1196                  * Only if an object is currently being used, do we use the
1197                  * page activation count stats.
1198                  */
1199                 if (actcount && (object->ref_count != 0)) {
1200                         vm_page_requeue(m);
1201                 } else {
1202                         m->act_count -= min(m->act_count, ACT_DECLINE);
1203                         if (vm_pageout_algorithm ||
1204                             object->ref_count == 0 ||
1205                             m->act_count == 0) {
1206                                 page_shortage--;
1207                                 if (object->ref_count == 0) {
1208                                         KASSERT(!pmap_page_is_mapped(m),
1209                                     ("vm_pageout_scan: page %p is mapped", m));
1210                                         if (m->dirty == 0)
1211                                                 vm_page_cache(m);
1212                                         else
1213                                                 vm_page_deactivate(m);
1214                                 } else {
1215                                         vm_page_deactivate(m);
1216                                 }
1217                         } else {
1218                                 vm_page_requeue(m);
1219                         }
1220                 }
1221                 vm_page_unlock(m);
1222                 VM_OBJECT_UNLOCK(object);
1223                 m = next;
1224         }
1225         vm_page_unlock_queues();
1226 #if !defined(NO_SWAPPING)
1227         /*
1228          * Idle process swapout -- run once per second.
1229          */
1230         if (vm_swap_idle_enabled) {
1231                 static long lsec;
1232                 if (time_second != lsec) {
1233                         vm_req_vmdaemon(VM_SWAP_IDLE);
1234                         lsec = time_second;
1235                 }
1236         }
1237 #endif
1238                 
1239         /*
1240          * If we didn't get enough free pages, and we have skipped a vnode
1241          * in a writeable object, wakeup the sync daemon.  And kick swapout
1242          * if we did not get enough free pages.
1243          */
1244         if (vm_paging_target() > 0) {
1245                 if (vnodes_skipped && vm_page_count_min())
1246                         (void) speedup_syncer();
1247 #if !defined(NO_SWAPPING)
1248                 if (vm_swap_enabled && vm_page_count_target())
1249                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1250 #endif
1251         }
1252
1253         /*
1254          * If we are critically low on one of RAM or swap and low on
1255          * the other, kill the largest process.  However, we avoid
1256          * doing this on the first pass in order to give ourselves a
1257          * chance to flush out dirty vnode-backed pages and to allow
1258          * active pages to be moved to the inactive queue and reclaimed.
1259          */
1260         if (pass != 0 &&
1261             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1262              (swap_pager_full && vm_paging_target() > 0)))
1263                 vm_pageout_oom(VM_OOM_MEM);
1264 }
1265
1266
1267 void
1268 vm_pageout_oom(int shortage)
1269 {
1270         struct proc *p, *bigproc;
1271         vm_offset_t size, bigsize;
1272         struct thread *td;
1273         struct vmspace *vm;
1274
1275         /*
1276          * We keep the process bigproc locked once we find it to keep anyone
1277          * from messing with it; however, there is a possibility of
1278          * deadlock if process B is bigproc and one of it's child processes
1279          * attempts to propagate a signal to B while we are waiting for A's
1280          * lock while walking this list.  To avoid this, we don't block on
1281          * the process lock but just skip a process if it is already locked.
1282          */
1283         bigproc = NULL;
1284         bigsize = 0;
1285         sx_slock(&allproc_lock);
1286         FOREACH_PROC_IN_SYSTEM(p) {
1287                 int breakout;
1288
1289                 if (PROC_TRYLOCK(p) == 0)
1290                         continue;
1291                 /*
1292                  * If this is a system, protected or killed process, skip it.
1293                  */
1294                 if (p->p_state != PRS_NORMAL ||
1295                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1296                     (p->p_pid == 1) || P_KILLED(p) ||
1297                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1298                         PROC_UNLOCK(p);
1299                         continue;
1300                 }
1301                 /*
1302                  * If the process is in a non-running type state,
1303                  * don't touch it.  Check all the threads individually.
1304                  */
1305                 breakout = 0;
1306                 FOREACH_THREAD_IN_PROC(p, td) {
1307                         thread_lock(td);
1308                         if (!TD_ON_RUNQ(td) &&
1309                             !TD_IS_RUNNING(td) &&
1310                             !TD_IS_SLEEPING(td) &&
1311                             !TD_IS_SUSPENDED(td)) {
1312                                 thread_unlock(td);
1313                                 breakout = 1;
1314                                 break;
1315                         }
1316                         thread_unlock(td);
1317                 }
1318                 if (breakout) {
1319                         PROC_UNLOCK(p);
1320                         continue;
1321                 }
1322                 /*
1323                  * get the process size
1324                  */
1325                 vm = vmspace_acquire_ref(p);
1326                 if (vm == NULL) {
1327                         PROC_UNLOCK(p);
1328                         continue;
1329                 }
1330                 if (!vm_map_trylock_read(&vm->vm_map)) {
1331                         vmspace_free(vm);
1332                         PROC_UNLOCK(p);
1333                         continue;
1334                 }
1335                 size = vmspace_swap_count(vm);
1336                 vm_map_unlock_read(&vm->vm_map);
1337                 if (shortage == VM_OOM_MEM)
1338                         size += vmspace_resident_count(vm);
1339                 vmspace_free(vm);
1340                 /*
1341                  * if the this process is bigger than the biggest one
1342                  * remember it.
1343                  */
1344                 if (size > bigsize) {
1345                         if (bigproc != NULL)
1346                                 PROC_UNLOCK(bigproc);
1347                         bigproc = p;
1348                         bigsize = size;
1349                 } else
1350                         PROC_UNLOCK(p);
1351         }
1352         sx_sunlock(&allproc_lock);
1353         if (bigproc != NULL) {
1354                 killproc(bigproc, "out of swap space");
1355                 sched_nice(bigproc, PRIO_MIN);
1356                 PROC_UNLOCK(bigproc);
1357                 wakeup(&cnt.v_free_count);
1358         }
1359 }
1360
1361 /*
1362  * This routine tries to maintain the pseudo LRU active queue,
1363  * so that during long periods of time where there is no paging,
1364  * that some statistic accumulation still occurs.  This code
1365  * helps the situation where paging just starts to occur.
1366  */
1367 static void
1368 vm_pageout_page_stats()
1369 {
1370         vm_object_t object;
1371         vm_page_t m,next;
1372         int pcount,tpcount;             /* Number of pages to check */
1373         static int fullintervalcount = 0;
1374         int page_shortage;
1375
1376         page_shortage = 
1377             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1378             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1379
1380         if (page_shortage <= 0)
1381                 return;
1382
1383         vm_page_lock_queues();
1384         pcount = cnt.v_active_count;
1385         fullintervalcount += vm_pageout_stats_interval;
1386         if (fullintervalcount < vm_pageout_full_stats_interval) {
1387                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1388                     cnt.v_page_count;
1389                 if (pcount > tpcount)
1390                         pcount = tpcount;
1391         } else {
1392                 fullintervalcount = 0;
1393         }
1394
1395         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1396         while ((m != NULL) && (pcount-- > 0)) {
1397                 int actcount;
1398
1399                 KASSERT(m->queue == PQ_ACTIVE,
1400                     ("vm_pageout_page_stats: page %p isn't active", m));
1401
1402                 next = TAILQ_NEXT(m, pageq);
1403                 if ((m->flags & PG_MARKER) != 0) {
1404                         m = next;
1405                         continue;
1406                 }
1407                 vm_page_lock_assert(m, MA_NOTOWNED);
1408                 if (!vm_pageout_page_lock(m, &next)) {
1409                         vm_page_unlock(m);
1410                         m = next;
1411                         continue;
1412                 }
1413                 object = m->object;
1414                 if (!VM_OBJECT_TRYLOCK(object) &&
1415                     !vm_pageout_fallback_object_lock(m, &next)) {
1416                         VM_OBJECT_UNLOCK(object);
1417                         vm_page_unlock(m);
1418                         m = next;
1419                         continue;
1420                 }
1421
1422                 /*
1423                  * Don't deactivate pages that are busy.
1424                  */
1425                 if ((m->busy != 0) ||
1426                     (m->oflags & VPO_BUSY) ||
1427                     (m->hold_count != 0)) {
1428                         vm_page_unlock(m);
1429                         VM_OBJECT_UNLOCK(object);
1430                         vm_page_requeue(m);
1431                         m = next;
1432                         continue;
1433                 }
1434
1435                 actcount = 0;
1436                 if (m->aflags & PGA_REFERENCED) {
1437                         vm_page_aflag_clear(m, PGA_REFERENCED);
1438                         actcount += 1;
1439                 }
1440
1441                 actcount += pmap_ts_referenced(m);
1442                 if (actcount) {
1443                         m->act_count += ACT_ADVANCE + actcount;
1444                         if (m->act_count > ACT_MAX)
1445                                 m->act_count = ACT_MAX;
1446                         vm_page_requeue(m);
1447                 } else {
1448                         if (m->act_count == 0) {
1449                                 /*
1450                                  * We turn off page access, so that we have
1451                                  * more accurate RSS stats.  We don't do this
1452                                  * in the normal page deactivation when the
1453                                  * system is loaded VM wise, because the
1454                                  * cost of the large number of page protect
1455                                  * operations would be higher than the value
1456                                  * of doing the operation.
1457                                  */
1458                                 pmap_remove_all(m);
1459                                 vm_page_deactivate(m);
1460                         } else {
1461                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1462                                 vm_page_requeue(m);
1463                         }
1464                 }
1465                 vm_page_unlock(m);
1466                 VM_OBJECT_UNLOCK(object);
1467                 m = next;
1468         }
1469         vm_page_unlock_queues();
1470 }
1471
1472 /*
1473  *      vm_pageout is the high level pageout daemon.
1474  */
1475 static void
1476 vm_pageout()
1477 {
1478         int error, pass;
1479
1480         /*
1481          * Initialize some paging parameters.
1482          */
1483         cnt.v_interrupt_free_min = 2;
1484         if (cnt.v_page_count < 2000)
1485                 vm_pageout_page_count = 8;
1486
1487         /*
1488          * v_free_reserved needs to include enough for the largest
1489          * swap pager structures plus enough for any pv_entry structs
1490          * when paging. 
1491          */
1492         if (cnt.v_page_count > 1024)
1493                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1494         else
1495                 cnt.v_free_min = 4;
1496         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1497             cnt.v_interrupt_free_min;
1498         cnt.v_free_reserved = vm_pageout_page_count +
1499             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1500         cnt.v_free_severe = cnt.v_free_min / 2;
1501         cnt.v_free_min += cnt.v_free_reserved;
1502         cnt.v_free_severe += cnt.v_free_reserved;
1503
1504         /*
1505          * v_free_target and v_cache_min control pageout hysteresis.  Note
1506          * that these are more a measure of the VM cache queue hysteresis
1507          * then the VM free queue.  Specifically, v_free_target is the
1508          * high water mark (free+cache pages).
1509          *
1510          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1511          * low water mark, while v_free_min is the stop.  v_cache_min must
1512          * be big enough to handle memory needs while the pageout daemon
1513          * is signalled and run to free more pages.
1514          */
1515         if (cnt.v_free_count > 6144)
1516                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1517         else
1518                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1519
1520         if (cnt.v_free_count > 2048) {
1521                 cnt.v_cache_min = cnt.v_free_target;
1522                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1523                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1524         } else {
1525                 cnt.v_cache_min = 0;
1526                 cnt.v_cache_max = 0;
1527                 cnt.v_inactive_target = cnt.v_free_count / 4;
1528         }
1529         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1530                 cnt.v_inactive_target = cnt.v_free_count / 3;
1531
1532         /* XXX does not really belong here */
1533         if (vm_page_max_wired == 0)
1534                 vm_page_max_wired = cnt.v_free_count / 3;
1535
1536         if (vm_pageout_stats_max == 0)
1537                 vm_pageout_stats_max = cnt.v_free_target;
1538
1539         /*
1540          * Set interval in seconds for stats scan.
1541          */
1542         if (vm_pageout_stats_interval == 0)
1543                 vm_pageout_stats_interval = 5;
1544         if (vm_pageout_full_stats_interval == 0)
1545                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1546
1547         swap_pager_swap_init();
1548         pass = 0;
1549         /*
1550          * The pageout daemon is never done, so loop forever.
1551          */
1552         while (TRUE) {
1553                 /*
1554                  * If we have enough free memory, wakeup waiters.  Do
1555                  * not clear vm_pages_needed until we reach our target,
1556                  * otherwise we may be woken up over and over again and
1557                  * waste a lot of cpu.
1558                  */
1559                 mtx_lock(&vm_page_queue_free_mtx);
1560                 if (vm_pages_needed && !vm_page_count_min()) {
1561                         if (!vm_paging_needed())
1562                                 vm_pages_needed = 0;
1563                         wakeup(&cnt.v_free_count);
1564                 }
1565                 if (vm_pages_needed) {
1566                         /*
1567                          * Still not done, take a second pass without waiting
1568                          * (unlimited dirty cleaning), otherwise sleep a bit
1569                          * and try again.
1570                          */
1571                         ++pass;
1572                         if (pass > 1)
1573                                 msleep(&vm_pages_needed,
1574                                     &vm_page_queue_free_mtx, PVM, "psleep",
1575                                     hz / 2);
1576                 } else {
1577                         /*
1578                          * Good enough, sleep & handle stats.  Prime the pass
1579                          * for the next run.
1580                          */
1581                         if (pass > 1)
1582                                 pass = 1;
1583                         else
1584                                 pass = 0;
1585                         error = msleep(&vm_pages_needed,
1586                             &vm_page_queue_free_mtx, PVM, "psleep",
1587                             vm_pageout_stats_interval * hz);
1588                         if (error && !vm_pages_needed) {
1589                                 mtx_unlock(&vm_page_queue_free_mtx);
1590                                 pass = 0;
1591                                 vm_pageout_page_stats();
1592                                 continue;
1593                         }
1594                 }
1595                 if (vm_pages_needed)
1596                         cnt.v_pdwakeups++;
1597                 mtx_unlock(&vm_page_queue_free_mtx);
1598                 vm_pageout_scan(pass);
1599         }
1600 }
1601
1602 /*
1603  * Unless the free page queue lock is held by the caller, this function
1604  * should be regarded as advisory.  Specifically, the caller should
1605  * not msleep() on &cnt.v_free_count following this function unless
1606  * the free page queue lock is held until the msleep() is performed.
1607  */
1608 void
1609 pagedaemon_wakeup()
1610 {
1611
1612         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1613                 vm_pages_needed = 1;
1614                 wakeup(&vm_pages_needed);
1615         }
1616 }
1617
1618 #if !defined(NO_SWAPPING)
1619 static void
1620 vm_req_vmdaemon(int req)
1621 {
1622         static int lastrun = 0;
1623
1624         mtx_lock(&vm_daemon_mtx);
1625         vm_pageout_req_swapout |= req;
1626         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1627                 wakeup(&vm_daemon_needed);
1628                 lastrun = ticks;
1629         }
1630         mtx_unlock(&vm_daemon_mtx);
1631 }
1632
1633 static void
1634 vm_daemon()
1635 {
1636         struct rlimit rsslim;
1637         struct proc *p;
1638         struct thread *td;
1639         struct vmspace *vm;
1640         int breakout, swapout_flags, tryagain, attempts;
1641 #ifdef RACCT
1642         uint64_t rsize, ravailable;
1643 #endif
1644
1645         while (TRUE) {
1646                 mtx_lock(&vm_daemon_mtx);
1647 #ifdef RACCT
1648                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1649 #else
1650                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1651 #endif
1652                 swapout_flags = vm_pageout_req_swapout;
1653                 vm_pageout_req_swapout = 0;
1654                 mtx_unlock(&vm_daemon_mtx);
1655                 if (swapout_flags)
1656                         swapout_procs(swapout_flags);
1657
1658                 /*
1659                  * scan the processes for exceeding their rlimits or if
1660                  * process is swapped out -- deactivate pages
1661                  */
1662                 tryagain = 0;
1663                 attempts = 0;
1664 again:
1665                 attempts++;
1666                 sx_slock(&allproc_lock);
1667                 FOREACH_PROC_IN_SYSTEM(p) {
1668                         vm_pindex_t limit, size;
1669
1670                         /*
1671                          * if this is a system process or if we have already
1672                          * looked at this process, skip it.
1673                          */
1674                         PROC_LOCK(p);
1675                         if (p->p_state != PRS_NORMAL ||
1676                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1677                                 PROC_UNLOCK(p);
1678                                 continue;
1679                         }
1680                         /*
1681                          * if the process is in a non-running type state,
1682                          * don't touch it.
1683                          */
1684                         breakout = 0;
1685                         FOREACH_THREAD_IN_PROC(p, td) {
1686                                 thread_lock(td);
1687                                 if (!TD_ON_RUNQ(td) &&
1688                                     !TD_IS_RUNNING(td) &&
1689                                     !TD_IS_SLEEPING(td) &&
1690                                     !TD_IS_SUSPENDED(td)) {
1691                                         thread_unlock(td);
1692                                         breakout = 1;
1693                                         break;
1694                                 }
1695                                 thread_unlock(td);
1696                         }
1697                         if (breakout) {
1698                                 PROC_UNLOCK(p);
1699                                 continue;
1700                         }
1701                         /*
1702                          * get a limit
1703                          */
1704                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1705                         limit = OFF_TO_IDX(
1706                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1707
1708                         /*
1709                          * let processes that are swapped out really be
1710                          * swapped out set the limit to nothing (will force a
1711                          * swap-out.)
1712                          */
1713                         if ((p->p_flag & P_INMEM) == 0)
1714                                 limit = 0;      /* XXX */
1715                         vm = vmspace_acquire_ref(p);
1716                         PROC_UNLOCK(p);
1717                         if (vm == NULL)
1718                                 continue;
1719
1720                         size = vmspace_resident_count(vm);
1721                         if (limit >= 0 && size >= limit) {
1722                                 vm_pageout_map_deactivate_pages(
1723                                     &vm->vm_map, limit);
1724                         }
1725 #ifdef RACCT
1726                         rsize = IDX_TO_OFF(size);
1727                         PROC_LOCK(p);
1728                         racct_set(p, RACCT_RSS, rsize);
1729                         ravailable = racct_get_available(p, RACCT_RSS);
1730                         PROC_UNLOCK(p);
1731                         if (rsize > ravailable) {
1732                                 /*
1733                                  * Don't be overly aggressive; this might be
1734                                  * an innocent process, and the limit could've
1735                                  * been exceeded by some memory hog.  Don't
1736                                  * try to deactivate more than 1/4th of process'
1737                                  * resident set size.
1738                                  */
1739                                 if (attempts <= 8) {
1740                                         if (ravailable < rsize - (rsize / 4))
1741                                                 ravailable = rsize - (rsize / 4);
1742                                 }
1743                                 vm_pageout_map_deactivate_pages(
1744                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1745                                 /* Update RSS usage after paging out. */
1746                                 size = vmspace_resident_count(vm);
1747                                 rsize = IDX_TO_OFF(size);
1748                                 PROC_LOCK(p);
1749                                 racct_set(p, RACCT_RSS, rsize);
1750                                 PROC_UNLOCK(p);
1751                                 if (rsize > ravailable)
1752                                         tryagain = 1;
1753                         }
1754 #endif
1755                         vmspace_free(vm);
1756                 }
1757                 sx_sunlock(&allproc_lock);
1758                 if (tryagain != 0 && attempts <= 10)
1759                         goto again;
1760         }
1761 }
1762 #endif                  /* !defined(NO_SWAPPING) */