]> CyberLeo.Net >> Repos - FreeBSD/releng/9.0.git/blob - sys/x86/x86/tsc.c
Copy stable/9 to releng/9.0 as part of the FreeBSD 9.0-RELEASE release
[FreeBSD/releng/9.0.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * Copyright (c) 1998-2003 Poul-Henning Kamp
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_clock.h"
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpu.h>
35 #include <sys/limits.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/sysctl.h>
39 #include <sys/time.h>
40 #include <sys/timetc.h>
41 #include <sys/kernel.h>
42 #include <sys/power.h>
43 #include <sys/smp.h>
44 #include <machine/clock.h>
45 #include <machine/cputypes.h>
46 #include <machine/md_var.h>
47 #include <machine/specialreg.h>
48
49 #include "cpufreq_if.h"
50
51 uint64_t        tsc_freq;
52 int             tsc_is_invariant;
53 int             tsc_perf_stat;
54
55 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
56
57 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
58     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
59 TUNABLE_INT("kern.timecounter.invariant_tsc", &tsc_is_invariant);
60
61 #ifdef SMP
62 static int      smp_tsc;
63 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
64     "Indicates whether the TSC is safe to use in SMP mode");
65 TUNABLE_INT("kern.timecounter.smp_tsc", &smp_tsc);
66 #endif
67
68 static int      tsc_disabled;
69 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
70     "Disable x86 Time Stamp Counter");
71 TUNABLE_INT("machdep.disable_tsc", &tsc_disabled);
72
73 static int      tsc_skip_calibration;
74 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
75     &tsc_skip_calibration, 0, "Disable TSC frequency calibration");
76 TUNABLE_INT("machdep.disable_tsc_calibration", &tsc_skip_calibration);
77
78 static void tsc_freq_changed(void *arg, const struct cf_level *level,
79     int status);
80 static void tsc_freq_changing(void *arg, const struct cf_level *level,
81     int *status);
82 static unsigned tsc_get_timecount(struct timecounter *tc);
83 static unsigned tsc_get_timecount_low(struct timecounter *tc);
84 static void tsc_levels_changed(void *arg, int unit);
85
86 static struct timecounter tsc_timecounter = {
87         tsc_get_timecount,      /* get_timecount */
88         0,                      /* no poll_pps */
89         ~0u,                    /* counter_mask */
90         0,                      /* frequency */
91         "TSC",                  /* name */
92         800,                    /* quality (adjusted in code) */
93 };
94
95 #define VMW_HVMAGIC             0x564d5868
96 #define VMW_HVPORT              0x5658
97 #define VMW_HVCMD_GETVERSION    10
98 #define VMW_HVCMD_GETHZ         45
99
100 static __inline void
101 vmware_hvcall(u_int cmd, u_int *p)
102 {
103
104         __asm __volatile("inl %w3, %0"
105         : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
106         : "0" (VMW_HVMAGIC), "1" (UINT_MAX), "2" (cmd), "3" (VMW_HVPORT)
107         : "memory");
108 }
109
110 static int
111 tsc_freq_vmware(void)
112 {
113         char hv_sig[13];
114         u_int regs[4];
115         char *p;
116         u_int hv_high;
117         int i;
118
119         /*
120          * [RFC] CPUID usage for interaction between Hypervisors and Linux.
121          * http://lkml.org/lkml/2008/10/1/246
122          *
123          * KB1009458: Mechanisms to determine if software is running in
124          * a VMware virtual machine
125          * http://kb.vmware.com/kb/1009458
126          */
127         hv_high = 0;
128         if ((cpu_feature2 & CPUID2_HV) != 0) {
129                 do_cpuid(0x40000000, regs);
130                 hv_high = regs[0];
131                 for (i = 1, p = hv_sig; i < 4; i++, p += sizeof(regs) / 4)
132                         memcpy(p, &regs[i], sizeof(regs[i]));
133                 *p = '\0';
134                 if (bootverbose) {
135                         /*
136                          * HV vendor    ID string
137                          * ------------+--------------
138                          * KVM          "KVMKVMKVM"
139                          * Microsoft    "Microsoft Hv"
140                          * VMware       "VMwareVMware"
141                          * Xen          "XenVMMXenVMM"
142                          */
143                         printf("Hypervisor: Origin = \"%s\"\n", hv_sig);
144                 }
145                 if (strncmp(hv_sig, "VMwareVMware", 12) != 0)
146                         return (0);
147         } else {
148                 p = getenv("smbios.system.serial");
149                 if (p == NULL)
150                         return (0);
151                 if (strncmp(p, "VMware-", 7) != 0 &&
152                     strncmp(p, "VMW", 3) != 0) {
153                         freeenv(p);
154                         return (0);
155                 }
156                 freeenv(p);
157                 vmware_hvcall(VMW_HVCMD_GETVERSION, regs);
158                 if (regs[1] != VMW_HVMAGIC)
159                         return (0);
160         }
161         if (hv_high >= 0x40000010) {
162                 do_cpuid(0x40000010, regs);
163                 tsc_freq = regs[0] * 1000;
164         } else {
165                 vmware_hvcall(VMW_HVCMD_GETHZ, regs);
166                 if (regs[1] != UINT_MAX)
167                         tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
168         }
169         tsc_is_invariant = 1;
170         return (1);
171 }
172
173 static void
174 tsc_freq_intel(void)
175 {
176         char brand[48];
177         u_int regs[4];
178         uint64_t freq;
179         char *p;
180         u_int i;
181
182         /*
183          * Intel Processor Identification and the CPUID Instruction
184          * Application Note 485.
185          * http://www.intel.com/assets/pdf/appnote/241618.pdf
186          */
187         if (cpu_exthigh >= 0x80000004) {
188                 p = brand;
189                 for (i = 0x80000002; i < 0x80000005; i++) {
190                         do_cpuid(i, regs);
191                         memcpy(p, regs, sizeof(regs));
192                         p += sizeof(regs);
193                 }
194                 p = NULL;
195                 for (i = 0; i < sizeof(brand) - 1; i++)
196                         if (brand[i] == 'H' && brand[i + 1] == 'z')
197                                 p = brand + i;
198                 if (p != NULL) {
199                         p -= 5;
200                         switch (p[4]) {
201                         case 'M':
202                                 i = 1;
203                                 break;
204                         case 'G':
205                                 i = 1000;
206                                 break;
207                         case 'T':
208                                 i = 1000000;
209                                 break;
210                         default:
211                                 return;
212                         }
213 #define C2D(c)  ((c) - '0')
214                         if (p[1] == '.') {
215                                 freq = C2D(p[0]) * 1000;
216                                 freq += C2D(p[2]) * 100;
217                                 freq += C2D(p[3]) * 10;
218                                 freq *= i * 1000;
219                         } else {
220                                 freq = C2D(p[0]) * 1000;
221                                 freq += C2D(p[1]) * 100;
222                                 freq += C2D(p[2]) * 10;
223                                 freq += C2D(p[3]);
224                                 freq *= i * 1000000;
225                         }
226 #undef C2D
227                         tsc_freq = freq;
228                 }
229         }
230 }
231
232 static void
233 probe_tsc_freq(void)
234 {
235         u_int regs[4];
236         uint64_t tsc1, tsc2;
237
238         if (cpu_high >= 6) {
239                 do_cpuid(6, regs);
240                 if ((regs[2] & CPUID_PERF_STAT) != 0) {
241                         /*
242                          * XXX Some emulators expose host CPUID without actual
243                          * support for these MSRs.  We must test whether they
244                          * really work.
245                          */
246                         wrmsr(MSR_MPERF, 0);
247                         wrmsr(MSR_APERF, 0);
248                         DELAY(10);
249                         if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
250                                 tsc_perf_stat = 1;
251                 }
252         }
253
254         if (tsc_freq_vmware())
255                 return;
256
257         switch (cpu_vendor_id) {
258         case CPU_VENDOR_AMD:
259                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
260                     (vm_guest == VM_GUEST_NO &&
261                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
262                         tsc_is_invariant = 1;
263                 break;
264         case CPU_VENDOR_INTEL:
265                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
266                     (vm_guest == VM_GUEST_NO &&
267                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
268                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
269                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
270                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
271                         tsc_is_invariant = 1;
272                 break;
273         case CPU_VENDOR_CENTAUR:
274                 if (vm_guest == VM_GUEST_NO &&
275                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
276                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
277                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
278                         tsc_is_invariant = 1;
279                 break;
280         }
281
282         if (tsc_skip_calibration) {
283                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
284                         tsc_freq_intel();
285                 return;
286         }
287
288         if (bootverbose)
289                 printf("Calibrating TSC clock ... ");
290         tsc1 = rdtsc();
291         DELAY(1000000);
292         tsc2 = rdtsc();
293         tsc_freq = tsc2 - tsc1;
294         if (bootverbose)
295                 printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
296 }
297
298 void
299 init_TSC(void)
300 {
301
302         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
303                 return;
304
305         probe_tsc_freq();
306
307         /*
308          * Inform CPU accounting about our boot-time clock rate.  This will
309          * be updated if someone loads a cpufreq driver after boot that
310          * discovers a new max frequency.
311          */
312         if (tsc_freq != 0)
313                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
314
315         if (tsc_is_invariant)
316                 return;
317
318         /* Register to find out about changes in CPU frequency. */
319         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
320             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
321         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
322             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
323         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
324             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
325 }
326
327 #ifdef SMP
328
329 #define TSC_READ(x)                     \
330 static void                             \
331 tsc_read_##x(void *arg)                 \
332 {                                       \
333         uint32_t *tsc = arg;            \
334         u_int cpu = PCPU_GET(cpuid);    \
335                                         \
336         tsc[cpu * 3 + x] = rdtsc32();   \
337 }
338 TSC_READ(0)
339 TSC_READ(1)
340 TSC_READ(2)
341 #undef TSC_READ
342
343 #define N       1000
344
345 static void
346 comp_smp_tsc(void *arg)
347 {
348         uint32_t *tsc;
349         int32_t d1, d2;
350         u_int cpu = PCPU_GET(cpuid);
351         u_int i, j, size;
352
353         size = (mp_maxid + 1) * 3;
354         for (i = 0, tsc = arg; i < N; i++, tsc += size)
355                 CPU_FOREACH(j) {
356                         if (j == cpu)
357                                 continue;
358                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
359                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
360                         if (d1 <= 0 || d2 <= 0) {
361                                 smp_tsc = 0;
362                                 return;
363                         }
364                 }
365 }
366
367 static int
368 test_smp_tsc(void)
369 {
370         uint32_t *data, *tsc;
371         u_int i, size;
372
373         if (!smp_tsc && !tsc_is_invariant)
374                 return (-100);
375         size = (mp_maxid + 1) * 3;
376         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
377         for (i = 0, tsc = data; i < N; i++, tsc += size)
378                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
379         smp_tsc = 1;    /* XXX */
380         smp_rendezvous(smp_no_rendevous_barrier, comp_smp_tsc,
381             smp_no_rendevous_barrier, data);
382         free(data, M_TEMP);
383         if (bootverbose)
384                 printf("SMP: %sed TSC synchronization test\n",
385                     smp_tsc ? "pass" : "fail");
386         if (smp_tsc && tsc_is_invariant) {
387                 switch (cpu_vendor_id) {
388                 case CPU_VENDOR_AMD:
389                         /*
390                          * Starting with Family 15h processors, TSC clock
391                          * source is in the north bridge.  Check whether
392                          * we have a single-socket/multi-core platform.
393                          * XXX Need more work for complex cases.
394                          */
395                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
396                             (amd_feature2 & AMDID2_CMP) == 0 ||
397                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
398                                 break;
399                         return (1000);
400                 case CPU_VENDOR_INTEL:
401                         /*
402                          * XXX Assume Intel platforms have synchronized TSCs.
403                          */
404                         return (1000);
405                 }
406                 return (800);
407         }
408         return (-100);
409 }
410
411 #undef N
412
413 #endif /* SMP */
414
415 static void
416 init_TSC_tc(void)
417 {
418         uint64_t max_freq;
419         int shift;
420
421         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
422                 return;
423
424         /*
425          * Limit timecounter frequency to fit in an int and prevent it from
426          * overflowing too fast.
427          */
428         max_freq = UINT_MAX;
429
430         /*
431          * We can not use the TSC if we support APM.  Precise timekeeping
432          * on an APM'ed machine is at best a fools pursuit, since 
433          * any and all of the time spent in various SMM code can't 
434          * be reliably accounted for.  Reading the RTC is your only
435          * source of reliable time info.  The i8254 loses too, of course,
436          * but we need to have some kind of time...
437          * We don't know at this point whether APM is going to be used
438          * or not, nor when it might be activated.  Play it safe.
439          */
440         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
441                 tsc_timecounter.tc_quality = -1000;
442                 if (bootverbose)
443                         printf("TSC timecounter disabled: APM enabled.\n");
444                 goto init;
445         }
446
447         /*
448          * We cannot use the TSC if it stops incrementing in deep sleep.
449          * Currently only Intel CPUs are known for this problem unless
450          * the invariant TSC bit is set.
451          */
452         if (cpu_can_deep_sleep && cpu_vendor_id == CPU_VENDOR_INTEL &&
453             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
454                 tsc_timecounter.tc_quality = -1000;
455                 tsc_timecounter.tc_flags |= TC_FLAGS_C3STOP;
456                 if (bootverbose)
457                         printf("TSC timecounter disabled: C3 enabled.\n");
458                 goto init;
459         }
460
461 #ifdef SMP
462         /*
463          * We can not use the TSC in SMP mode unless the TSCs on all CPUs are
464          * synchronized.  If the user is sure that the system has synchronized
465          * TSCs, set kern.timecounter.smp_tsc tunable to a non-zero value.
466          * We also limit the frequency even lower to avoid "temporal anomalies"
467          * as much as possible.  The TSC seems unreliable in virtualized SMP
468          * environments, so it is set to a negative quality in those cases.
469          */
470         if (smp_cpus > 1) {
471                 if (vm_guest != 0) {
472                         tsc_timecounter.tc_quality = -100;
473                 } else {
474                         tsc_timecounter.tc_quality = test_smp_tsc();
475                         max_freq >>= 8;
476                 }
477         } else
478 #endif
479         if (tsc_is_invariant)
480                 tsc_timecounter.tc_quality = 1000;
481
482 init:
483         for (shift = 0; shift < 31 && (tsc_freq >> shift) > max_freq; shift++)
484                 ;
485         if (shift > 0) {
486                 tsc_timecounter.tc_get_timecount = tsc_get_timecount_low;
487                 tsc_timecounter.tc_name = "TSC-low";
488                 if (bootverbose)
489                         printf("TSC timecounter discards lower %d bit(s)\n",
490                             shift);
491         }
492         if (tsc_freq != 0) {
493                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
494                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
495                 tc_init(&tsc_timecounter);
496         }
497 }
498 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
499
500 /*
501  * When cpufreq levels change, find out about the (new) max frequency.  We
502  * use this to update CPU accounting in case it got a lower estimate at boot.
503  */
504 static void
505 tsc_levels_changed(void *arg, int unit)
506 {
507         device_t cf_dev;
508         struct cf_level *levels;
509         int count, error;
510         uint64_t max_freq;
511
512         /* Only use values from the first CPU, assuming all are equal. */
513         if (unit != 0)
514                 return;
515
516         /* Find the appropriate cpufreq device instance. */
517         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
518         if (cf_dev == NULL) {
519                 printf("tsc_levels_changed() called but no cpufreq device?\n");
520                 return;
521         }
522
523         /* Get settings from the device and find the max frequency. */
524         count = 64;
525         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
526         if (levels == NULL)
527                 return;
528         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
529         if (error == 0 && count != 0) {
530                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
531                 set_cputicker(rdtsc, max_freq, 1);
532         } else
533                 printf("tsc_levels_changed: no max freq found\n");
534         free(levels, M_TEMP);
535 }
536
537 /*
538  * If the TSC timecounter is in use, veto the pending change.  It may be
539  * possible in the future to handle a dynamically-changing timecounter rate.
540  */
541 static void
542 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
543 {
544
545         if (*status != 0 || timecounter != &tsc_timecounter)
546                 return;
547
548         printf("timecounter TSC must not be in use when "
549             "changing frequencies; change denied\n");
550         *status = EBUSY;
551 }
552
553 /* Update TSC freq with the value indicated by the caller. */
554 static void
555 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
556 {
557         uint64_t freq;
558
559         /* If there was an error during the transition, don't do anything. */
560         if (tsc_disabled || status != 0)
561                 return;
562
563         /* Total setting for this level gives the new frequency in MHz. */
564         freq = (uint64_t)level->total_set.freq * 1000000;
565         atomic_store_rel_64(&tsc_freq, freq);
566         tsc_timecounter.tc_frequency =
567             freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
568 }
569
570 static int
571 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
572 {
573         int error;
574         uint64_t freq;
575
576         freq = atomic_load_acq_64(&tsc_freq);
577         if (freq == 0)
578                 return (EOPNOTSUPP);
579         error = sysctl_handle_64(oidp, &freq, 0, req);
580         if (error == 0 && req->newptr != NULL) {
581                 atomic_store_rel_64(&tsc_freq, freq);
582                 atomic_store_rel_64(&tsc_timecounter.tc_frequency,
583                     freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
584         }
585         return (error);
586 }
587
588 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_U64 | CTLFLAG_RW,
589     0, 0, sysctl_machdep_tsc_freq, "QU", "Time Stamp Counter frequency");
590
591 static u_int
592 tsc_get_timecount(struct timecounter *tc __unused)
593 {
594
595         return (rdtsc32());
596 }
597
598 static u_int
599 tsc_get_timecount_low(struct timecounter *tc)
600 {
601         uint32_t rv;
602
603         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
604         : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
605         return (rv);
606 }