]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - cddl/contrib/opensolaris/lib/libdtrace/common/dt_aggregate.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / cddl / contrib / opensolaris / lib / libdtrace / common / dt_aggregate.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 /*
28  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29  */
30
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <dt_impl.h>
36 #include <assert.h>
37 #if defined(sun)
38 #include <alloca.h>
39 #else
40 #include <sys/sysctl.h>
41 #include <libproc_compat.h>
42 #endif
43 #include <limits.h>
44
45 #define DTRACE_AHASHSIZE        32779           /* big 'ol prime */
46
47 /*
48  * Because qsort(3C) does not allow an argument to be passed to a comparison
49  * function, the variables that affect comparison must regrettably be global;
50  * they are protected by a global static lock, dt_qsort_lock.
51  */
52 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER;
53
54 static int dt_revsort;
55 static int dt_keysort;
56 static int dt_keypos;
57
58 #define DT_LESSTHAN     (dt_revsort == 0 ? -1 : 1)
59 #define DT_GREATERTHAN  (dt_revsort == 0 ? 1 : -1)
60
61 static void
62 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size)
63 {
64         uint_t i;
65
66         for (i = 0; i < size / sizeof (int64_t); i++)
67                 existing[i] = existing[i] + new[i];
68 }
69
70 static int
71 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs)
72 {
73         int64_t lvar = *lhs;
74         int64_t rvar = *rhs;
75
76         if (lvar < rvar)
77                 return (DT_LESSTHAN);
78
79         if (lvar > rvar)
80                 return (DT_GREATERTHAN);
81
82         return (0);
83 }
84
85 /*ARGSUSED*/
86 static void
87 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size)
88 {
89         if (*new < *existing)
90                 *existing = *new;
91 }
92
93 /*ARGSUSED*/
94 static void
95 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size)
96 {
97         if (*new > *existing)
98                 *existing = *new;
99 }
100
101 static int
102 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs)
103 {
104         int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0;
105         int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0;
106
107         if (lavg < ravg)
108                 return (DT_LESSTHAN);
109
110         if (lavg > ravg)
111                 return (DT_GREATERTHAN);
112
113         return (0);
114 }
115
116 static int
117 dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs)
118 {
119         uint64_t lsd = dt_stddev((uint64_t *)lhs, 1);
120         uint64_t rsd = dt_stddev((uint64_t *)rhs, 1);
121
122         if (lsd < rsd)
123                 return (DT_LESSTHAN);
124
125         if (lsd > rsd)
126                 return (DT_GREATERTHAN);
127
128         return (0);
129 }
130
131 /*ARGSUSED*/
132 static void
133 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size)
134 {
135         int64_t arg = *existing++;
136         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
137         int i;
138
139         for (i = 0; i <= levels + 1; i++)
140                 existing[i] = existing[i] + new[i + 1];
141 }
142
143 static long double
144 dt_aggregate_lquantizedsum(int64_t *lquanta)
145 {
146         int64_t arg = *lquanta++;
147         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
148         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
149         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
150         long double total = (long double)lquanta[0] * (long double)(base - 1);
151
152         for (i = 0; i < levels; base += step, i++)
153                 total += (long double)lquanta[i + 1] * (long double)base;
154
155         return (total + (long double)lquanta[levels + 1] *
156             (long double)(base + 1));
157 }
158
159 static int64_t
160 dt_aggregate_lquantizedzero(int64_t *lquanta)
161 {
162         int64_t arg = *lquanta++;
163         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
164         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
165         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
166
167         if (base - 1 == 0)
168                 return (lquanta[0]);
169
170         for (i = 0; i < levels; base += step, i++) {
171                 if (base != 0)
172                         continue;
173
174                 return (lquanta[i + 1]);
175         }
176
177         if (base + 1 == 0)
178                 return (lquanta[levels + 1]);
179
180         return (0);
181 }
182
183 static int
184 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs)
185 {
186         long double lsum = dt_aggregate_lquantizedsum(lhs);
187         long double rsum = dt_aggregate_lquantizedsum(rhs);
188         int64_t lzero, rzero;
189
190         if (lsum < rsum)
191                 return (DT_LESSTHAN);
192
193         if (lsum > rsum)
194                 return (DT_GREATERTHAN);
195
196         /*
197          * If they're both equal, then we will compare based on the weights at
198          * zero.  If the weights at zero are equal (or if zero is not within
199          * the range of the linear quantization), then this will be judged a
200          * tie and will be resolved based on the key comparison.
201          */
202         lzero = dt_aggregate_lquantizedzero(lhs);
203         rzero = dt_aggregate_lquantizedzero(rhs);
204
205         if (lzero < rzero)
206                 return (DT_LESSTHAN);
207
208         if (lzero > rzero)
209                 return (DT_GREATERTHAN);
210
211         return (0);
212 }
213
214 static void
215 dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size)
216 {
217         int i;
218
219         for (i = 1; i < size / sizeof (int64_t); i++)
220                 existing[i] = existing[i] + new[i];
221 }
222
223 static long double
224 dt_aggregate_llquantizedsum(int64_t *llquanta)
225 {
226         int64_t arg = *llquanta++;
227         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
228         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
229         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
230         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
231         int bin = 0, order;
232         int64_t value = 1, next, step;
233         long double total;
234
235         assert(nsteps >= factor);
236         assert(nsteps % factor == 0);
237
238         for (order = 0; order < low; order++)
239                 value *= factor;
240
241         total = (long double)llquanta[bin++] * (long double)(value - 1);
242
243         next = value * factor;
244         step = next > nsteps ? next / nsteps : 1;
245
246         while (order <= high) {
247                 assert(value < next);
248                 total += (long double)llquanta[bin++] * (long double)(value);
249
250                 if ((value += step) != next)
251                         continue;
252
253                 next = value * factor;
254                 step = next > nsteps ? next / nsteps : 1;
255                 order++;
256         }
257
258         return (total + (long double)llquanta[bin] * (long double)value);
259 }
260
261 static int
262 dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs)
263 {
264         long double lsum = dt_aggregate_llquantizedsum(lhs);
265         long double rsum = dt_aggregate_llquantizedsum(rhs);
266         int64_t lzero, rzero;
267
268         if (lsum < rsum)
269                 return (DT_LESSTHAN);
270
271         if (lsum > rsum)
272                 return (DT_GREATERTHAN);
273
274         /*
275          * If they're both equal, then we will compare based on the weights at
276          * zero.  If the weights at zero are equal, then this will be judged a
277          * tie and will be resolved based on the key comparison.
278          */
279         lzero = lhs[1];
280         rzero = rhs[1];
281
282         if (lzero < rzero)
283                 return (DT_LESSTHAN);
284
285         if (lzero > rzero)
286                 return (DT_GREATERTHAN);
287
288         return (0);
289 }
290
291 static int
292 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs)
293 {
294         int nbuckets = DTRACE_QUANTIZE_NBUCKETS;
295         long double ltotal = 0, rtotal = 0;
296         int64_t lzero, rzero;
297         uint_t i;
298
299         for (i = 0; i < nbuckets; i++) {
300                 int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i);
301
302                 if (bucketval == 0) {
303                         lzero = lhs[i];
304                         rzero = rhs[i];
305                 }
306
307                 ltotal += (long double)bucketval * (long double)lhs[i];
308                 rtotal += (long double)bucketval * (long double)rhs[i];
309         }
310
311         if (ltotal < rtotal)
312                 return (DT_LESSTHAN);
313
314         if (ltotal > rtotal)
315                 return (DT_GREATERTHAN);
316
317         /*
318          * If they're both equal, then we will compare based on the weights at
319          * zero.  If the weights at zero are equal, then this will be judged a
320          * tie and will be resolved based on the key comparison.
321          */
322         if (lzero < rzero)
323                 return (DT_LESSTHAN);
324
325         if (lzero > rzero)
326                 return (DT_GREATERTHAN);
327
328         return (0);
329 }
330
331 static void
332 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data)
333 {
334         uint64_t pid = data[0];
335         uint64_t *pc = &data[1];
336         struct ps_prochandle *P;
337         GElf_Sym sym;
338
339         if (dtp->dt_vector != NULL)
340                 return;
341
342         if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
343                 return;
344
345         dt_proc_lock(dtp, P);
346
347         if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0)
348                 *pc = sym.st_value;
349
350         dt_proc_unlock(dtp, P);
351         dt_proc_release(dtp, P);
352 }
353
354 static void
355 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data)
356 {
357         uint64_t pid = data[0];
358         uint64_t *pc = &data[1];
359         struct ps_prochandle *P;
360         const prmap_t *map;
361
362         if (dtp->dt_vector != NULL)
363                 return;
364
365         if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
366                 return;
367
368         dt_proc_lock(dtp, P);
369
370         if ((map = Paddr_to_map(P, *pc)) != NULL)
371                 *pc = map->pr_vaddr;
372
373         dt_proc_unlock(dtp, P);
374         dt_proc_release(dtp, P);
375 }
376
377 static void
378 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data)
379 {
380         GElf_Sym sym;
381         uint64_t *pc = data;
382
383         if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0)
384                 *pc = sym.st_value;
385 }
386
387 static void
388 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data)
389 {
390         uint64_t *pc = data;
391         dt_module_t *dmp;
392
393         if (dtp->dt_vector != NULL) {
394                 /*
395                  * We don't have a way of just getting the module for a
396                  * vectored open, and it doesn't seem to be worth defining
397                  * one.  This means that use of mod() won't get true
398                  * aggregation in the postmortem case (some modules may
399                  * appear more than once in aggregation output).  It seems
400                  * unlikely that anyone will ever notice or care...
401                  */
402                 return;
403         }
404
405         for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
406             dmp = dt_list_next(dmp)) {
407                 if (*pc - dmp->dm_text_va < dmp->dm_text_size) {
408                         *pc = dmp->dm_text_va;
409                         return;
410                 }
411         }
412 }
413
414 static dtrace_aggvarid_t
415 dt_aggregate_aggvarid(dt_ahashent_t *ent)
416 {
417         dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc;
418         caddr_t data = ent->dtahe_data.dtada_data;
419         dtrace_recdesc_t *rec = agg->dtagd_rec;
420
421         /*
422          * First, we'll check the variable ID in the aggdesc.  If it's valid,
423          * we'll return it.  If not, we'll use the compiler-generated ID
424          * present as the first record.
425          */
426         if (agg->dtagd_varid != DTRACE_AGGVARIDNONE)
427                 return (agg->dtagd_varid);
428
429         agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data +
430             rec->dtrd_offset));
431
432         return (agg->dtagd_varid);
433 }
434
435
436 static int
437 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu)
438 {
439         dtrace_epid_t id;
440         uint64_t hashval;
441         size_t offs, roffs, size, ndx;
442         int i, j, rval;
443         caddr_t addr, data;
444         dtrace_recdesc_t *rec;
445         dt_aggregate_t *agp = &dtp->dt_aggregate;
446         dtrace_aggdesc_t *agg;
447         dt_ahash_t *hash = &agp->dtat_hash;
448         dt_ahashent_t *h;
449         dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b;
450         dtrace_aggdata_t *aggdata;
451         int flags = agp->dtat_flags;
452
453         buf->dtbd_cpu = cpu;
454
455 #if defined(sun)
456         if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) {
457 #else
458         if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) {
459 #endif
460                 if (errno == ENOENT) {
461                         /*
462                          * If that failed with ENOENT, it may be because the
463                          * CPU was unconfigured.  This is okay; we'll just
464                          * do nothing but return success.
465                          */
466                         return (0);
467                 }
468
469                 return (dt_set_errno(dtp, errno));
470         }
471
472         if (buf->dtbd_drops != 0) {
473                 if (dt_handle_cpudrop(dtp, cpu,
474                     DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1)
475                         return (-1);
476         }
477
478         if (buf->dtbd_size == 0)
479                 return (0);
480
481         if (hash->dtah_hash == NULL) {
482                 size_t size;
483
484                 hash->dtah_size = DTRACE_AHASHSIZE;
485                 size = hash->dtah_size * sizeof (dt_ahashent_t *);
486
487                 if ((hash->dtah_hash = malloc(size)) == NULL)
488                         return (dt_set_errno(dtp, EDT_NOMEM));
489
490                 bzero(hash->dtah_hash, size);
491         }
492
493         for (offs = 0; offs < buf->dtbd_size; ) {
494                 /*
495                  * We're guaranteed to have an ID.
496                  */
497                 id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data +
498                     (uintptr_t)offs));
499
500                 if (id == DTRACE_AGGIDNONE) {
501                         /*
502                          * This is filler to assure proper alignment of the
503                          * next record; we simply ignore it.
504                          */
505                         offs += sizeof (id);
506                         continue;
507                 }
508
509                 if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0)
510                         return (rval);
511
512                 addr = buf->dtbd_data + offs;
513                 size = agg->dtagd_size;
514                 hashval = 0;
515
516                 for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
517                         rec = &agg->dtagd_rec[j];
518                         roffs = rec->dtrd_offset;
519
520                         switch (rec->dtrd_action) {
521                         case DTRACEACT_USYM:
522                                 dt_aggregate_usym(dtp,
523                                     /* LINTED - alignment */
524                                     (uint64_t *)&addr[roffs]);
525                                 break;
526
527                         case DTRACEACT_UMOD:
528                                 dt_aggregate_umod(dtp,
529                                     /* LINTED - alignment */
530                                     (uint64_t *)&addr[roffs]);
531                                 break;
532
533                         case DTRACEACT_SYM:
534                                 /* LINTED - alignment */
535                                 dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]);
536                                 break;
537
538                         case DTRACEACT_MOD:
539                                 /* LINTED - alignment */
540                                 dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]);
541                                 break;
542
543                         default:
544                                 break;
545                         }
546
547                         for (i = 0; i < rec->dtrd_size; i++)
548                                 hashval += addr[roffs + i];
549                 }
550
551                 ndx = hashval % hash->dtah_size;
552
553                 for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) {
554                         if (h->dtahe_hashval != hashval)
555                                 continue;
556
557                         if (h->dtahe_size != size)
558                                 continue;
559
560                         aggdata = &h->dtahe_data;
561                         data = aggdata->dtada_data;
562
563                         for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
564                                 rec = &agg->dtagd_rec[j];
565                                 roffs = rec->dtrd_offset;
566
567                                 for (i = 0; i < rec->dtrd_size; i++)
568                                         if (addr[roffs + i] != data[roffs + i])
569                                                 goto hashnext;
570                         }
571
572                         /*
573                          * We found it.  Now we need to apply the aggregating
574                          * action on the data here.
575                          */
576                         rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
577                         roffs = rec->dtrd_offset;
578                         /* LINTED - alignment */
579                         h->dtahe_aggregate((int64_t *)&data[roffs],
580                             /* LINTED - alignment */
581                             (int64_t *)&addr[roffs], rec->dtrd_size);
582
583                         /*
584                          * If we're keeping per CPU data, apply the aggregating
585                          * action there as well.
586                          */
587                         if (aggdata->dtada_percpu != NULL) {
588                                 data = aggdata->dtada_percpu[cpu];
589
590                                 /* LINTED - alignment */
591                                 h->dtahe_aggregate((int64_t *)data,
592                                     /* LINTED - alignment */
593                                     (int64_t *)&addr[roffs], rec->dtrd_size);
594                         }
595
596                         goto bufnext;
597 hashnext:
598                         continue;
599                 }
600
601                 /*
602                  * If we're here, we couldn't find an entry for this record.
603                  */
604                 if ((h = malloc(sizeof (dt_ahashent_t))) == NULL)
605                         return (dt_set_errno(dtp, EDT_NOMEM));
606                 bzero(h, sizeof (dt_ahashent_t));
607                 aggdata = &h->dtahe_data;
608
609                 if ((aggdata->dtada_data = malloc(size)) == NULL) {
610                         free(h);
611                         return (dt_set_errno(dtp, EDT_NOMEM));
612                 }
613
614                 bcopy(addr, aggdata->dtada_data, size);
615                 aggdata->dtada_size = size;
616                 aggdata->dtada_desc = agg;
617                 aggdata->dtada_handle = dtp;
618                 (void) dt_epid_lookup(dtp, agg->dtagd_epid,
619                     &aggdata->dtada_edesc, &aggdata->dtada_pdesc);
620                 aggdata->dtada_normal = 1;
621
622                 h->dtahe_hashval = hashval;
623                 h->dtahe_size = size;
624                 (void) dt_aggregate_aggvarid(h);
625
626                 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
627
628                 if (flags & DTRACE_A_PERCPU) {
629                         int max_cpus = agp->dtat_maxcpu;
630                         caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t));
631
632                         if (percpu == NULL) {
633                                 free(aggdata->dtada_data);
634                                 free(h);
635                                 return (dt_set_errno(dtp, EDT_NOMEM));
636                         }
637
638                         for (j = 0; j < max_cpus; j++) {
639                                 percpu[j] = malloc(rec->dtrd_size);
640
641                                 if (percpu[j] == NULL) {
642                                         while (--j >= 0)
643                                                 free(percpu[j]);
644
645                                         free(aggdata->dtada_data);
646                                         free(h);
647                                         return (dt_set_errno(dtp, EDT_NOMEM));
648                                 }
649
650                                 if (j == cpu) {
651                                         bcopy(&addr[rec->dtrd_offset],
652                                             percpu[j], rec->dtrd_size);
653                                 } else {
654                                         bzero(percpu[j], rec->dtrd_size);
655                                 }
656                         }
657
658                         aggdata->dtada_percpu = percpu;
659                 }
660
661                 switch (rec->dtrd_action) {
662                 case DTRACEAGG_MIN:
663                         h->dtahe_aggregate = dt_aggregate_min;
664                         break;
665
666                 case DTRACEAGG_MAX:
667                         h->dtahe_aggregate = dt_aggregate_max;
668                         break;
669
670                 case DTRACEAGG_LQUANTIZE:
671                         h->dtahe_aggregate = dt_aggregate_lquantize;
672                         break;
673
674                 case DTRACEAGG_LLQUANTIZE:
675                         h->dtahe_aggregate = dt_aggregate_llquantize;
676                         break;
677
678                 case DTRACEAGG_COUNT:
679                 case DTRACEAGG_SUM:
680                 case DTRACEAGG_AVG:
681                 case DTRACEAGG_STDDEV:
682                 case DTRACEAGG_QUANTIZE:
683                         h->dtahe_aggregate = dt_aggregate_count;
684                         break;
685
686                 default:
687                         return (dt_set_errno(dtp, EDT_BADAGG));
688                 }
689
690                 if (hash->dtah_hash[ndx] != NULL)
691                         hash->dtah_hash[ndx]->dtahe_prev = h;
692
693                 h->dtahe_next = hash->dtah_hash[ndx];
694                 hash->dtah_hash[ndx] = h;
695
696                 if (hash->dtah_all != NULL)
697                         hash->dtah_all->dtahe_prevall = h;
698
699                 h->dtahe_nextall = hash->dtah_all;
700                 hash->dtah_all = h;
701 bufnext:
702                 offs += agg->dtagd_size;
703         }
704
705         return (0);
706 }
707
708 int
709 dtrace_aggregate_snap(dtrace_hdl_t *dtp)
710 {
711         int i, rval;
712         dt_aggregate_t *agp = &dtp->dt_aggregate;
713         hrtime_t now = gethrtime();
714         dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE];
715
716         if (dtp->dt_lastagg != 0) {
717                 if (now - dtp->dt_lastagg < interval)
718                         return (0);
719
720                 dtp->dt_lastagg += interval;
721         } else {
722                 dtp->dt_lastagg = now;
723         }
724
725         if (!dtp->dt_active)
726                 return (dt_set_errno(dtp, EINVAL));
727
728         if (agp->dtat_buf.dtbd_size == 0)
729                 return (0);
730
731         for (i = 0; i < agp->dtat_ncpus; i++) {
732                 if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i])))
733                         return (rval);
734         }
735
736         return (0);
737 }
738
739 static int
740 dt_aggregate_hashcmp(const void *lhs, const void *rhs)
741 {
742         dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
743         dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
744         dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
745         dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
746
747         if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
748                 return (DT_LESSTHAN);
749
750         if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
751                 return (DT_GREATERTHAN);
752
753         return (0);
754 }
755
756 static int
757 dt_aggregate_varcmp(const void *lhs, const void *rhs)
758 {
759         dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
760         dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
761         dtrace_aggvarid_t lid, rid;
762
763         lid = dt_aggregate_aggvarid(lh);
764         rid = dt_aggregate_aggvarid(rh);
765
766         if (lid < rid)
767                 return (DT_LESSTHAN);
768
769         if (lid > rid)
770                 return (DT_GREATERTHAN);
771
772         return (0);
773 }
774
775 static int
776 dt_aggregate_keycmp(const void *lhs, const void *rhs)
777 {
778         dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
779         dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
780         dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
781         dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
782         dtrace_recdesc_t *lrec, *rrec;
783         char *ldata, *rdata;
784         int rval, i, j, keypos, nrecs;
785
786         if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
787                 return (rval);
788
789         nrecs = lagg->dtagd_nrecs - 1;
790         assert(nrecs == ragg->dtagd_nrecs - 1);
791
792         keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos;
793
794         for (i = 1; i < nrecs; i++) {
795                 uint64_t lval, rval;
796                 int ndx = i + keypos;
797
798                 if (ndx >= nrecs)
799                         ndx = ndx - nrecs + 1;
800
801                 lrec = &lagg->dtagd_rec[ndx];
802                 rrec = &ragg->dtagd_rec[ndx];
803
804                 ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset;
805                 rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset;
806
807                 if (lrec->dtrd_size < rrec->dtrd_size)
808                         return (DT_LESSTHAN);
809
810                 if (lrec->dtrd_size > rrec->dtrd_size)
811                         return (DT_GREATERTHAN);
812
813                 switch (lrec->dtrd_size) {
814                 case sizeof (uint64_t):
815                         /* LINTED - alignment */
816                         lval = *((uint64_t *)ldata);
817                         /* LINTED - alignment */
818                         rval = *((uint64_t *)rdata);
819                         break;
820
821                 case sizeof (uint32_t):
822                         /* LINTED - alignment */
823                         lval = *((uint32_t *)ldata);
824                         /* LINTED - alignment */
825                         rval = *((uint32_t *)rdata);
826                         break;
827
828                 case sizeof (uint16_t):
829                         /* LINTED - alignment */
830                         lval = *((uint16_t *)ldata);
831                         /* LINTED - alignment */
832                         rval = *((uint16_t *)rdata);
833                         break;
834
835                 case sizeof (uint8_t):
836                         lval = *((uint8_t *)ldata);
837                         rval = *((uint8_t *)rdata);
838                         break;
839
840                 default:
841                         switch (lrec->dtrd_action) {
842                         case DTRACEACT_UMOD:
843                         case DTRACEACT_UADDR:
844                         case DTRACEACT_USYM:
845                                 for (j = 0; j < 2; j++) {
846                                         /* LINTED - alignment */
847                                         lval = ((uint64_t *)ldata)[j];
848                                         /* LINTED - alignment */
849                                         rval = ((uint64_t *)rdata)[j];
850
851                                         if (lval < rval)
852                                                 return (DT_LESSTHAN);
853
854                                         if (lval > rval)
855                                                 return (DT_GREATERTHAN);
856                                 }
857
858                                 break;
859
860                         default:
861                                 for (j = 0; j < lrec->dtrd_size; j++) {
862                                         lval = ((uint8_t *)ldata)[j];
863                                         rval = ((uint8_t *)rdata)[j];
864
865                                         if (lval < rval)
866                                                 return (DT_LESSTHAN);
867
868                                         if (lval > rval)
869                                                 return (DT_GREATERTHAN);
870                                 }
871                         }
872
873                         continue;
874                 }
875
876                 if (lval < rval)
877                         return (DT_LESSTHAN);
878
879                 if (lval > rval)
880                         return (DT_GREATERTHAN);
881         }
882
883         return (0);
884 }
885
886 static int
887 dt_aggregate_valcmp(const void *lhs, const void *rhs)
888 {
889         dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
890         dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
891         dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
892         dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
893         caddr_t ldata = lh->dtahe_data.dtada_data;
894         caddr_t rdata = rh->dtahe_data.dtada_data;
895         dtrace_recdesc_t *lrec, *rrec;
896         int64_t *laddr, *raddr;
897         int rval, i;
898
899         if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
900                 return (rval);
901
902         if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
903                 return (DT_GREATERTHAN);
904
905         if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
906                 return (DT_LESSTHAN);
907
908         for (i = 0; i < lagg->dtagd_nrecs; i++) {
909                 lrec = &lagg->dtagd_rec[i];
910                 rrec = &ragg->dtagd_rec[i];
911
912                 if (lrec->dtrd_offset < rrec->dtrd_offset)
913                         return (DT_LESSTHAN);
914
915                 if (lrec->dtrd_offset > rrec->dtrd_offset)
916                         return (DT_GREATERTHAN);
917
918                 if (lrec->dtrd_action < rrec->dtrd_action)
919                         return (DT_LESSTHAN);
920
921                 if (lrec->dtrd_action > rrec->dtrd_action)
922                         return (DT_GREATERTHAN);
923         }
924
925         laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset);
926         raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset);
927
928         switch (lrec->dtrd_action) {
929         case DTRACEAGG_AVG:
930                 rval = dt_aggregate_averagecmp(laddr, raddr);
931                 break;
932
933         case DTRACEAGG_STDDEV:
934                 rval = dt_aggregate_stddevcmp(laddr, raddr);
935                 break;
936
937         case DTRACEAGG_QUANTIZE:
938                 rval = dt_aggregate_quantizedcmp(laddr, raddr);
939                 break;
940
941         case DTRACEAGG_LQUANTIZE:
942                 rval = dt_aggregate_lquantizedcmp(laddr, raddr);
943                 break;
944
945         case DTRACEAGG_LLQUANTIZE:
946                 rval = dt_aggregate_llquantizedcmp(laddr, raddr);
947                 break;
948
949         case DTRACEAGG_COUNT:
950         case DTRACEAGG_SUM:
951         case DTRACEAGG_MIN:
952         case DTRACEAGG_MAX:
953                 rval = dt_aggregate_countcmp(laddr, raddr);
954                 break;
955
956         default:
957                 assert(0);
958         }
959
960         return (rval);
961 }
962
963 static int
964 dt_aggregate_valkeycmp(const void *lhs, const void *rhs)
965 {
966         int rval;
967
968         if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0)
969                 return (rval);
970
971         /*
972          * If we're here, the values for the two aggregation elements are
973          * equal.  We already know that the key layout is the same for the two
974          * elements; we must now compare the keys themselves as a tie-breaker.
975          */
976         return (dt_aggregate_keycmp(lhs, rhs));
977 }
978
979 static int
980 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs)
981 {
982         int rval;
983
984         if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0)
985                 return (rval);
986
987         return (dt_aggregate_varcmp(lhs, rhs));
988 }
989
990 static int
991 dt_aggregate_varkeycmp(const void *lhs, const void *rhs)
992 {
993         int rval;
994
995         if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
996                 return (rval);
997
998         return (dt_aggregate_keycmp(lhs, rhs));
999 }
1000
1001 static int
1002 dt_aggregate_valvarcmp(const void *lhs, const void *rhs)
1003 {
1004         int rval;
1005
1006         if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0)
1007                 return (rval);
1008
1009         return (dt_aggregate_varcmp(lhs, rhs));
1010 }
1011
1012 static int
1013 dt_aggregate_varvalcmp(const void *lhs, const void *rhs)
1014 {
1015         int rval;
1016
1017         if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
1018                 return (rval);
1019
1020         return (dt_aggregate_valkeycmp(lhs, rhs));
1021 }
1022
1023 static int
1024 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs)
1025 {
1026         return (dt_aggregate_keyvarcmp(rhs, lhs));
1027 }
1028
1029 static int
1030 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs)
1031 {
1032         return (dt_aggregate_varkeycmp(rhs, lhs));
1033 }
1034
1035 static int
1036 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs)
1037 {
1038         return (dt_aggregate_valvarcmp(rhs, lhs));
1039 }
1040
1041 static int
1042 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs)
1043 {
1044         return (dt_aggregate_varvalcmp(rhs, lhs));
1045 }
1046
1047 static int
1048 dt_aggregate_bundlecmp(const void *lhs, const void *rhs)
1049 {
1050         dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs);
1051         dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs);
1052         int i, rval;
1053
1054         if (dt_keysort) {
1055                 /*
1056                  * If we're sorting on keys, we need to scan until we find the
1057                  * last entry -- that's the representative key.  (The order of
1058                  * the bundle is values followed by key to accommodate the
1059                  * default behavior of sorting by value.)  If the keys are
1060                  * equal, we'll fall into the value comparison loop, below.
1061                  */
1062                 for (i = 0; lh[i + 1] != NULL; i++)
1063                         continue;
1064
1065                 assert(i != 0);
1066                 assert(rh[i + 1] == NULL);
1067
1068                 if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0)
1069                         return (rval);
1070         }
1071
1072         for (i = 0; ; i++) {
1073                 if (lh[i + 1] == NULL) {
1074                         /*
1075                          * All of the values are equal; if we're sorting on
1076                          * keys, then we're only here because the keys were
1077                          * found to be equal and these records are therefore
1078                          * equal.  If we're not sorting on keys, we'll use the
1079                          * key comparison from the representative key as the
1080                          * tie-breaker.
1081                          */
1082                         if (dt_keysort)
1083                                 return (0);
1084
1085                         assert(i != 0);
1086                         assert(rh[i + 1] == NULL);
1087                         return (dt_aggregate_keycmp(&lh[i], &rh[i]));
1088                 } else {
1089                         if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0)
1090                                 return (rval);
1091                 }
1092         }
1093 }
1094
1095 int
1096 dt_aggregate_go(dtrace_hdl_t *dtp)
1097 {
1098         dt_aggregate_t *agp = &dtp->dt_aggregate;
1099         dtrace_optval_t size, cpu;
1100         dtrace_bufdesc_t *buf = &agp->dtat_buf;
1101         int rval, i;
1102
1103         assert(agp->dtat_maxcpu == 0);
1104         assert(agp->dtat_ncpu == 0);
1105         assert(agp->dtat_cpus == NULL);
1106
1107         agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
1108         agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX);
1109         agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t));
1110
1111         if (agp->dtat_cpus == NULL)
1112                 return (dt_set_errno(dtp, EDT_NOMEM));
1113
1114         /*
1115          * Use the aggregation buffer size as reloaded from the kernel.
1116          */
1117         size = dtp->dt_options[DTRACEOPT_AGGSIZE];
1118
1119         rval = dtrace_getopt(dtp, "aggsize", &size);
1120         assert(rval == 0);
1121
1122         if (size == 0 || size == DTRACEOPT_UNSET)
1123                 return (0);
1124
1125         buf = &agp->dtat_buf;
1126         buf->dtbd_size = size;
1127
1128         if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL)
1129                 return (dt_set_errno(dtp, EDT_NOMEM));
1130
1131         /*
1132          * Now query for the CPUs enabled.
1133          */
1134         rval = dtrace_getopt(dtp, "cpu", &cpu);
1135         assert(rval == 0 && cpu != DTRACEOPT_UNSET);
1136
1137         if (cpu != DTRACE_CPUALL) {
1138                 assert(cpu < agp->dtat_ncpu);
1139                 agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu;
1140
1141                 return (0);
1142         }
1143
1144         agp->dtat_ncpus = 0;
1145         for (i = 0; i < agp->dtat_maxcpu; i++) {
1146                 if (dt_status(dtp, i) == -1)
1147                         continue;
1148
1149                 agp->dtat_cpus[agp->dtat_ncpus++] = i;
1150         }
1151
1152         return (0);
1153 }
1154
1155 static int
1156 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval)
1157 {
1158         dt_aggregate_t *agp = &dtp->dt_aggregate;
1159         dtrace_aggdata_t *data;
1160         dtrace_aggdesc_t *aggdesc;
1161         dtrace_recdesc_t *rec;
1162         int i;
1163
1164         switch (rval) {
1165         case DTRACE_AGGWALK_NEXT:
1166                 break;
1167
1168         case DTRACE_AGGWALK_CLEAR: {
1169                 uint32_t size, offs = 0;
1170
1171                 aggdesc = h->dtahe_data.dtada_desc;
1172                 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1173                 size = rec->dtrd_size;
1174                 data = &h->dtahe_data;
1175
1176                 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1177                         offs = sizeof (uint64_t);
1178                         size -= sizeof (uint64_t);
1179                 }
1180
1181                 bzero(&data->dtada_data[rec->dtrd_offset] + offs, size);
1182
1183                 if (data->dtada_percpu == NULL)
1184                         break;
1185
1186                 for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++)
1187                         bzero(data->dtada_percpu[i] + offs, size);
1188                 break;
1189         }
1190
1191         case DTRACE_AGGWALK_ERROR:
1192                 /*
1193                  * We assume that errno is already set in this case.
1194                  */
1195                 return (dt_set_errno(dtp, errno));
1196
1197         case DTRACE_AGGWALK_ABORT:
1198                 return (dt_set_errno(dtp, EDT_DIRABORT));
1199
1200         case DTRACE_AGGWALK_DENORMALIZE:
1201                 h->dtahe_data.dtada_normal = 1;
1202                 return (0);
1203
1204         case DTRACE_AGGWALK_NORMALIZE:
1205                 if (h->dtahe_data.dtada_normal == 0) {
1206                         h->dtahe_data.dtada_normal = 1;
1207                         return (dt_set_errno(dtp, EDT_BADRVAL));
1208                 }
1209
1210                 return (0);
1211
1212         case DTRACE_AGGWALK_REMOVE: {
1213                 dtrace_aggdata_t *aggdata = &h->dtahe_data;
1214                 int max_cpus = agp->dtat_maxcpu;
1215
1216                 /*
1217                  * First, remove this hash entry from its hash chain.
1218                  */
1219                 if (h->dtahe_prev != NULL) {
1220                         h->dtahe_prev->dtahe_next = h->dtahe_next;
1221                 } else {
1222                         dt_ahash_t *hash = &agp->dtat_hash;
1223                         size_t ndx = h->dtahe_hashval % hash->dtah_size;
1224
1225                         assert(hash->dtah_hash[ndx] == h);
1226                         hash->dtah_hash[ndx] = h->dtahe_next;
1227                 }
1228
1229                 if (h->dtahe_next != NULL)
1230                         h->dtahe_next->dtahe_prev = h->dtahe_prev;
1231
1232                 /*
1233                  * Now remove it from the list of all hash entries.
1234                  */
1235                 if (h->dtahe_prevall != NULL) {
1236                         h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall;
1237                 } else {
1238                         dt_ahash_t *hash = &agp->dtat_hash;
1239
1240                         assert(hash->dtah_all == h);
1241                         hash->dtah_all = h->dtahe_nextall;
1242                 }
1243
1244                 if (h->dtahe_nextall != NULL)
1245                         h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall;
1246
1247                 /*
1248                  * We're unlinked.  We can safely destroy the data.
1249                  */
1250                 if (aggdata->dtada_percpu != NULL) {
1251                         for (i = 0; i < max_cpus; i++)
1252                                 free(aggdata->dtada_percpu[i]);
1253                         free(aggdata->dtada_percpu);
1254                 }
1255
1256                 free(aggdata->dtada_data);
1257                 free(h);
1258
1259                 return (0);
1260         }
1261
1262         default:
1263                 return (dt_set_errno(dtp, EDT_BADRVAL));
1264         }
1265
1266         return (0);
1267 }
1268
1269 void
1270 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width,
1271     int (*compar)(const void *, const void *))
1272 {
1273         int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos;
1274         dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS];
1275
1276         dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET);
1277         dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET);
1278
1279         if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) {
1280                 dt_keypos = (int)keyposopt;
1281         } else {
1282                 dt_keypos = 0;
1283         }
1284
1285         if (compar == NULL) {
1286                 if (!dt_keysort) {
1287                         compar = dt_aggregate_varvalcmp;
1288                 } else {
1289                         compar = dt_aggregate_varkeycmp;
1290                 }
1291         }
1292
1293         qsort(base, nel, width, compar);
1294
1295         dt_revsort = rev;
1296         dt_keysort = key;
1297         dt_keypos = keypos;
1298 }
1299
1300 int
1301 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg)
1302 {
1303         dt_ahashent_t *h, *next;
1304         dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash;
1305
1306         for (h = hash->dtah_all; h != NULL; h = next) {
1307                 /*
1308                  * dt_aggwalk_rval() can potentially remove the current hash
1309                  * entry; we need to load the next hash entry before calling
1310                  * into it.
1311                  */
1312                 next = h->dtahe_nextall;
1313
1314                 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1315                         return (-1);
1316         }
1317
1318         return (0);
1319 }
1320
1321 static int
1322 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1323     dtrace_aggregate_f *func, void *arg,
1324     int (*sfunc)(const void *, const void *))
1325 {
1326         dt_aggregate_t *agp = &dtp->dt_aggregate;
1327         dt_ahashent_t *h, **sorted;
1328         dt_ahash_t *hash = &agp->dtat_hash;
1329         size_t i, nentries = 0;
1330
1331         for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall)
1332                 nentries++;
1333
1334         sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1335
1336         if (sorted == NULL)
1337                 return (-1);
1338
1339         for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall)
1340                 sorted[i++] = h;
1341
1342         (void) pthread_mutex_lock(&dt_qsort_lock);
1343
1344         if (sfunc == NULL) {
1345                 dt_aggregate_qsort(dtp, sorted, nentries,
1346                     sizeof (dt_ahashent_t *), NULL);
1347         } else {
1348                 /*
1349                  * If we've been explicitly passed a sorting function,
1350                  * we'll use that -- ignoring the values of the "aggsortrev",
1351                  * "aggsortkey" and "aggsortkeypos" options.
1352                  */
1353                 qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc);
1354         }
1355
1356         (void) pthread_mutex_unlock(&dt_qsort_lock);
1357
1358         for (i = 0; i < nentries; i++) {
1359                 h = sorted[i];
1360
1361                 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) {
1362                         dt_free(dtp, sorted);
1363                         return (-1);
1364                 }
1365         }
1366
1367         dt_free(dtp, sorted);
1368         return (0);
1369 }
1370
1371 int
1372 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1373     dtrace_aggregate_f *func, void *arg)
1374 {
1375         return (dt_aggregate_walk_sorted(dtp, func, arg, NULL));
1376 }
1377
1378 int
1379 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp,
1380     dtrace_aggregate_f *func, void *arg)
1381 {
1382         return (dt_aggregate_walk_sorted(dtp, func,
1383             arg, dt_aggregate_varkeycmp));
1384 }
1385
1386 int
1387 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp,
1388     dtrace_aggregate_f *func, void *arg)
1389 {
1390         return (dt_aggregate_walk_sorted(dtp, func,
1391             arg, dt_aggregate_varvalcmp));
1392 }
1393
1394 int
1395 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp,
1396     dtrace_aggregate_f *func, void *arg)
1397 {
1398         return (dt_aggregate_walk_sorted(dtp, func,
1399             arg, dt_aggregate_keyvarcmp));
1400 }
1401
1402 int
1403 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp,
1404     dtrace_aggregate_f *func, void *arg)
1405 {
1406         return (dt_aggregate_walk_sorted(dtp, func,
1407             arg, dt_aggregate_valvarcmp));
1408 }
1409
1410 int
1411 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp,
1412     dtrace_aggregate_f *func, void *arg)
1413 {
1414         return (dt_aggregate_walk_sorted(dtp, func,
1415             arg, dt_aggregate_varkeyrevcmp));
1416 }
1417
1418 int
1419 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp,
1420     dtrace_aggregate_f *func, void *arg)
1421 {
1422         return (dt_aggregate_walk_sorted(dtp, func,
1423             arg, dt_aggregate_varvalrevcmp));
1424 }
1425
1426 int
1427 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp,
1428     dtrace_aggregate_f *func, void *arg)
1429 {
1430         return (dt_aggregate_walk_sorted(dtp, func,
1431             arg, dt_aggregate_keyvarrevcmp));
1432 }
1433
1434 int
1435 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp,
1436     dtrace_aggregate_f *func, void *arg)
1437 {
1438         return (dt_aggregate_walk_sorted(dtp, func,
1439             arg, dt_aggregate_valvarrevcmp));
1440 }
1441
1442 int
1443 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars,
1444     int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
1445 {
1446         dt_aggregate_t *agp = &dtp->dt_aggregate;
1447         dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle;
1448         const dtrace_aggdata_t **data;
1449         dt_ahashent_t *zaggdata = NULL;
1450         dt_ahash_t *hash = &agp->dtat_hash;
1451         size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize;
1452         dtrace_aggvarid_t max = 0, aggvar;
1453         int rval = -1, *map, *remap = NULL;
1454         int i, j;
1455         dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS];
1456
1457         /*
1458          * If the sorting position is greater than the number of aggregation
1459          * variable IDs, we silently set it to 0.
1460          */
1461         if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars)
1462                 sortpos = 0;
1463
1464         /*
1465          * First we need to translate the specified aggregation variable IDs
1466          * into a linear map that will allow us to translate an aggregation
1467          * variable ID into its position in the specified aggvars.
1468          */
1469         for (i = 0; i < naggvars; i++) {
1470                 if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0)
1471                         return (dt_set_errno(dtp, EDT_BADAGGVAR));
1472
1473                 if (aggvars[i] > max)
1474                         max = aggvars[i];
1475         }
1476
1477         if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL)
1478                 return (-1);
1479
1480         zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t));
1481
1482         if (zaggdata == NULL)
1483                 goto out;
1484
1485         for (i = 0; i < naggvars; i++) {
1486                 int ndx = i + sortpos;
1487
1488                 if (ndx >= naggvars)
1489                         ndx -= naggvars;
1490
1491                 aggvar = aggvars[ndx];
1492                 assert(aggvar <= max);
1493
1494                 if (map[aggvar]) {
1495                         /*
1496                          * We have an aggregation variable that is present
1497                          * more than once in the array of aggregation
1498                          * variables.  While it's unclear why one might want
1499                          * to do this, it's legal.  To support this construct,
1500                          * we will allocate a remap that will indicate the
1501                          * position from which this aggregation variable
1502                          * should be pulled.  (That is, where the remap will
1503                          * map from one position to another.)
1504                          */
1505                         if (remap == NULL) {
1506                                 remap = dt_zalloc(dtp, naggvars * sizeof (int));
1507
1508                                 if (remap == NULL)
1509                                         goto out;
1510                         }
1511
1512                         /*
1513                          * Given that the variable is already present, assert
1514                          * that following through the mapping and adjusting
1515                          * for the sort position yields the same aggregation
1516                          * variable ID.
1517                          */
1518                         assert(aggvars[(map[aggvar] - 1 + sortpos) %
1519                             naggvars] == aggvars[ndx]);
1520
1521                         remap[i] = map[aggvar];
1522                         continue;
1523                 }
1524
1525                 map[aggvar] = i + 1;
1526         }
1527
1528         /*
1529          * We need to take two passes over the data to size our allocation, so
1530          * we'll use the first pass to also fill in the zero-filled data to be
1531          * used to properly format a zero-valued aggregation.
1532          */
1533         for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1534                 dtrace_aggvarid_t id;
1535                 int ndx;
1536
1537                 if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id]))
1538                         continue;
1539
1540                 if (zaggdata[ndx - 1].dtahe_size == 0) {
1541                         zaggdata[ndx - 1].dtahe_size = h->dtahe_size;
1542                         zaggdata[ndx - 1].dtahe_data = h->dtahe_data;
1543                 }
1544
1545                 nentries++;
1546         }
1547
1548         if (nentries == 0) {
1549                 /*
1550                  * We couldn't find any entries; there is nothing else to do.
1551                  */
1552                 rval = 0;
1553                 goto out;
1554         }
1555
1556         /*
1557          * Before we sort the data, we're going to look for any holes in our
1558          * zero-filled data.  This will occur if an aggregation variable that
1559          * we are being asked to print has not yet been assigned the result of
1560          * any aggregating action for _any_ tuple.  The issue becomes that we
1561          * would like a zero value to be printed for all columns for this
1562          * aggregation, but without any record description, we don't know the
1563          * aggregating action that corresponds to the aggregation variable.  To
1564          * try to find a match, we're simply going to lookup aggregation IDs
1565          * (which are guaranteed to be contiguous and to start from 1), looking
1566          * for the specified aggregation variable ID.  If we find a match,
1567          * we'll use that.  If we iterate over all aggregation IDs and don't
1568          * find a match, then we must be an anonymous enabling.  (Anonymous
1569          * enablings can't currently derive either aggregation variable IDs or
1570          * aggregation variable names given only an aggregation ID.)  In this
1571          * obscure case (anonymous enabling, multiple aggregation printa() with
1572          * some aggregations not represented for any tuple), our defined
1573          * behavior is that the zero will be printed in the format of the first
1574          * aggregation variable that contains any non-zero value.
1575          */
1576         for (i = 0; i < naggvars; i++) {
1577                 if (zaggdata[i].dtahe_size == 0) {
1578                         dtrace_aggvarid_t aggvar;
1579
1580                         aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1581                         assert(zaggdata[i].dtahe_data.dtada_data == NULL);
1582
1583                         for (j = DTRACE_AGGIDNONE + 1; ; j++) {
1584                                 dtrace_aggdesc_t *agg;
1585                                 dtrace_aggdata_t *aggdata;
1586
1587                                 if (dt_aggid_lookup(dtp, j, &agg) != 0)
1588                                         break;
1589
1590                                 if (agg->dtagd_varid != aggvar)
1591                                         continue;
1592
1593                                 /*
1594                                  * We have our description -- now we need to
1595                                  * cons up the zaggdata entry for it.
1596                                  */
1597                                 aggdata = &zaggdata[i].dtahe_data;
1598                                 aggdata->dtada_size = agg->dtagd_size;
1599                                 aggdata->dtada_desc = agg;
1600                                 aggdata->dtada_handle = dtp;
1601                                 (void) dt_epid_lookup(dtp, agg->dtagd_epid,
1602                                     &aggdata->dtada_edesc,
1603                                     &aggdata->dtada_pdesc);
1604                                 aggdata->dtada_normal = 1;
1605                                 zaggdata[i].dtahe_hashval = 0;
1606                                 zaggdata[i].dtahe_size = agg->dtagd_size;
1607                                 break;
1608                         }
1609
1610                         if (zaggdata[i].dtahe_size == 0) {
1611                                 caddr_t data;
1612
1613                                 /*
1614                                  * We couldn't find this aggregation, meaning
1615                                  * that we have never seen it before for any
1616                                  * tuple _and_ this is an anonymous enabling.
1617                                  * That is, we're in the obscure case outlined
1618                                  * above.  In this case, our defined behavior
1619                                  * is to format the data in the format of the
1620                                  * first non-zero aggregation -- of which, of
1621                                  * course, we know there to be at least one
1622                                  * (or nentries would have been zero).
1623                                  */
1624                                 for (j = 0; j < naggvars; j++) {
1625                                         if (zaggdata[j].dtahe_size != 0)
1626                                                 break;
1627                                 }
1628
1629                                 assert(j < naggvars);
1630                                 zaggdata[i] = zaggdata[j];
1631
1632                                 data = zaggdata[i].dtahe_data.dtada_data;
1633                                 assert(data != NULL);
1634                         }
1635                 }
1636         }
1637
1638         /*
1639          * Now we need to allocate our zero-filled data for use for
1640          * aggregations that don't have a value corresponding to a given key.
1641          */
1642         for (i = 0; i < naggvars; i++) {
1643                 dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data;
1644                 dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc;
1645                 dtrace_recdesc_t *rec;
1646                 uint64_t larg;
1647                 caddr_t zdata;
1648
1649                 zsize = zaggdata[i].dtahe_size;
1650                 assert(zsize != 0);
1651
1652                 if ((zdata = dt_zalloc(dtp, zsize)) == NULL) {
1653                         /*
1654                          * If we failed to allocated some zero-filled data, we
1655                          * need to zero out the remaining dtada_data pointers
1656                          * to prevent the wrong data from being freed below.
1657                          */
1658                         for (j = i; j < naggvars; j++)
1659                                 zaggdata[j].dtahe_data.dtada_data = NULL;
1660                         goto out;
1661                 }
1662
1663                 aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1664
1665                 /*
1666                  * First, the easy bit.  To maintain compatibility with
1667                  * consumers that pull the compiler-generated ID out of the
1668                  * data, we put that ID at the top of the zero-filled data.
1669                  */
1670                 rec = &aggdesc->dtagd_rec[0];
1671                 /* LINTED - alignment */
1672                 *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar;
1673
1674                 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1675
1676                 /*
1677                  * Now for the more complicated part.  If (and only if) this
1678                  * is an lquantize() aggregating action, zero-filled data is
1679                  * not equivalent to an empty record:  we must also get the
1680                  * parameters for the lquantize().
1681                  */
1682                 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1683                         if (aggdata->dtada_data != NULL) {
1684                                 /*
1685                                  * The easier case here is if we actually have
1686                                  * some prototype data -- in which case we
1687                                  * manually dig it out of the aggregation
1688                                  * record.
1689                                  */
1690                                 /* LINTED - alignment */
1691                                 larg = *((uint64_t *)(aggdata->dtada_data +
1692                                     rec->dtrd_offset));
1693                         } else {
1694                                 /*
1695                                  * We don't have any prototype data.  As a
1696                                  * result, we know that we _do_ have the
1697                                  * compiler-generated information.  (If this
1698                                  * were an anonymous enabling, all of our
1699                                  * zero-filled data would have prototype data
1700                                  * -- either directly or indirectly.) So as
1701                                  * gross as it is, we'll grovel around in the
1702                                  * compiler-generated information to find the
1703                                  * lquantize() parameters.
1704                                  */
1705                                 dtrace_stmtdesc_t *sdp;
1706                                 dt_ident_t *aid;
1707                                 dt_idsig_t *isp;
1708
1709                                 sdp = (dtrace_stmtdesc_t *)(uintptr_t)
1710                                     aggdesc->dtagd_rec[0].dtrd_uarg;
1711                                 aid = sdp->dtsd_aggdata;
1712                                 isp = (dt_idsig_t *)aid->di_data;
1713                                 assert(isp->dis_auxinfo != 0);
1714                                 larg = isp->dis_auxinfo;
1715                         }
1716
1717                         /* LINTED - alignment */
1718                         *((uint64_t *)(zdata + rec->dtrd_offset)) = larg;
1719                 }
1720
1721                 aggdata->dtada_data = zdata;
1722         }
1723
1724         /*
1725          * Now that we've dealt with setting up our zero-filled data, we can
1726          * allocate our sorted array, and take another pass over the data to
1727          * fill it.
1728          */
1729         sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1730
1731         if (sorted == NULL)
1732                 goto out;
1733
1734         for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) {
1735                 dtrace_aggvarid_t id;
1736
1737                 if ((id = dt_aggregate_aggvarid(h)) > max || !map[id])
1738                         continue;
1739
1740                 sorted[i++] = h;
1741         }
1742
1743         assert(i == nentries);
1744
1745         /*
1746          * We've loaded our array; now we need to sort by value to allow us
1747          * to create bundles of like value.  We're going to acquire the
1748          * dt_qsort_lock here, and hold it across all of our subsequent
1749          * comparison and sorting.
1750          */
1751         (void) pthread_mutex_lock(&dt_qsort_lock);
1752
1753         qsort(sorted, nentries, sizeof (dt_ahashent_t *),
1754             dt_aggregate_keyvarcmp);
1755
1756         /*
1757          * Now we need to go through and create bundles.  Because the number
1758          * of bundles is bounded by the size of the sorted array, we're going
1759          * to reuse the underlying storage.  And note that "bundle" is an
1760          * array of pointers to arrays of pointers to dt_ahashent_t -- making
1761          * its type (regrettably) "dt_ahashent_t ***".  (Regrettable because
1762          * '*' -- like '_' and 'X' -- should never appear in triplicate in
1763          * an ideal world.)
1764          */
1765         bundle = (dt_ahashent_t ***)sorted;
1766
1767         for (i = 1, start = 0; i <= nentries; i++) {
1768                 if (i < nentries &&
1769                     dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0)
1770                         continue;
1771
1772                 /*
1773                  * We have a bundle boundary.  Everything from start to
1774                  * (i - 1) belongs in one bundle.
1775                  */
1776                 assert(i - start <= naggvars);
1777                 bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *);
1778
1779                 if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) {
1780                         (void) pthread_mutex_unlock(&dt_qsort_lock);
1781                         goto out;
1782                 }
1783
1784                 for (j = start; j < i; j++) {
1785                         dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]);
1786
1787                         assert(id <= max);
1788                         assert(map[id] != 0);
1789                         assert(map[id] - 1 < naggvars);
1790                         assert(nbundle[map[id] - 1] == NULL);
1791                         nbundle[map[id] - 1] = sorted[j];
1792
1793                         if (nbundle[naggvars] == NULL)
1794                                 nbundle[naggvars] = sorted[j];
1795                 }
1796
1797                 for (j = 0; j < naggvars; j++) {
1798                         if (nbundle[j] != NULL)
1799                                 continue;
1800
1801                         /*
1802                          * Before we assume that this aggregation variable
1803                          * isn't present (and fall back to using the
1804                          * zero-filled data allocated earlier), check the
1805                          * remap.  If we have a remapping, we'll drop it in
1806                          * here.  Note that we might be remapping an
1807                          * aggregation variable that isn't present for this
1808                          * key; in this case, the aggregation data that we
1809                          * copy will point to the zeroed data.
1810                          */
1811                         if (remap != NULL && remap[j]) {
1812                                 assert(remap[j] - 1 < j);
1813                                 assert(nbundle[remap[j] - 1] != NULL);
1814                                 nbundle[j] = nbundle[remap[j] - 1];
1815                         } else {
1816                                 nbundle[j] = &zaggdata[j];
1817                         }
1818                 }
1819
1820                 bundle[nbundles++] = nbundle;
1821                 start = i;
1822         }
1823
1824         /*
1825          * Now we need to re-sort based on the first value.
1826          */
1827         dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **),
1828             dt_aggregate_bundlecmp);
1829
1830         (void) pthread_mutex_unlock(&dt_qsort_lock);
1831
1832         /*
1833          * We're done!  Now we just need to go back over the sorted bundles,
1834          * calling the function.
1835          */
1836         data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *));
1837
1838         for (i = 0; i < nbundles; i++) {
1839                 for (j = 0; j < naggvars; j++)
1840                         data[j + 1] = NULL;
1841
1842                 for (j = 0; j < naggvars; j++) {
1843                         int ndx = j - sortpos;
1844
1845                         if (ndx < 0)
1846                                 ndx += naggvars;
1847
1848                         assert(bundle[i][ndx] != NULL);
1849                         data[j + 1] = &bundle[i][ndx]->dtahe_data;
1850                 }
1851
1852                 for (j = 0; j < naggvars; j++)
1853                         assert(data[j + 1] != NULL);
1854
1855                 /*
1856                  * The representative key is the last element in the bundle.
1857                  * Assert that we have one, and then set it to be the first
1858                  * element of data.
1859                  */
1860                 assert(bundle[i][j] != NULL);
1861                 data[0] = &bundle[i][j]->dtahe_data;
1862
1863                 if ((rval = func(data, naggvars + 1, arg)) == -1)
1864                         goto out;
1865         }
1866
1867         rval = 0;
1868 out:
1869         for (i = 0; i < nbundles; i++)
1870                 dt_free(dtp, bundle[i]);
1871
1872         if (zaggdata != NULL) {
1873                 for (i = 0; i < naggvars; i++)
1874                         dt_free(dtp, zaggdata[i].dtahe_data.dtada_data);
1875         }
1876
1877         dt_free(dtp, zaggdata);
1878         dt_free(dtp, sorted);
1879         dt_free(dtp, remap);
1880         dt_free(dtp, map);
1881
1882         return (rval);
1883 }
1884
1885 int
1886 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
1887     dtrace_aggregate_walk_f *func)
1888 {
1889         dt_print_aggdata_t pd;
1890
1891         pd.dtpa_dtp = dtp;
1892         pd.dtpa_fp = fp;
1893         pd.dtpa_allunprint = 1;
1894
1895         if (func == NULL)
1896                 func = dtrace_aggregate_walk_sorted;
1897
1898         if ((*func)(dtp, dt_print_agg, &pd) == -1)
1899                 return (dt_set_errno(dtp, dtp->dt_errno));
1900
1901         return (0);
1902 }
1903
1904 void
1905 dtrace_aggregate_clear(dtrace_hdl_t *dtp)
1906 {
1907         dt_aggregate_t *agp = &dtp->dt_aggregate;
1908         dt_ahash_t *hash = &agp->dtat_hash;
1909         dt_ahashent_t *h;
1910         dtrace_aggdata_t *data;
1911         dtrace_aggdesc_t *aggdesc;
1912         dtrace_recdesc_t *rec;
1913         int i, max_cpus = agp->dtat_maxcpu;
1914
1915         for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1916                 aggdesc = h->dtahe_data.dtada_desc;
1917                 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1918                 data = &h->dtahe_data;
1919
1920                 bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size);
1921
1922                 if (data->dtada_percpu == NULL)
1923                         continue;
1924
1925                 for (i = 0; i < max_cpus; i++)
1926                         bzero(data->dtada_percpu[i], rec->dtrd_size);
1927         }
1928 }
1929
1930 void
1931 dt_aggregate_destroy(dtrace_hdl_t *dtp)
1932 {
1933         dt_aggregate_t *agp = &dtp->dt_aggregate;
1934         dt_ahash_t *hash = &agp->dtat_hash;
1935         dt_ahashent_t *h, *next;
1936         dtrace_aggdata_t *aggdata;
1937         int i, max_cpus = agp->dtat_maxcpu;
1938
1939         if (hash->dtah_hash == NULL) {
1940                 assert(hash->dtah_all == NULL);
1941         } else {
1942                 free(hash->dtah_hash);
1943
1944                 for (h = hash->dtah_all; h != NULL; h = next) {
1945                         next = h->dtahe_nextall;
1946
1947                         aggdata = &h->dtahe_data;
1948
1949                         if (aggdata->dtada_percpu != NULL) {
1950                                 for (i = 0; i < max_cpus; i++)
1951                                         free(aggdata->dtada_percpu[i]);
1952                                 free(aggdata->dtada_percpu);
1953                         }
1954
1955                         free(aggdata->dtada_data);
1956                         free(h);
1957                 }
1958
1959                 hash->dtah_hash = NULL;
1960                 hash->dtah_all = NULL;
1961                 hash->dtah_size = 0;
1962         }
1963
1964         free(agp->dtat_buf.dtbd_data);
1965         free(agp->dtat_cpus);
1966 }