]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/binutils/gas/doc/c-arm.texi
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / binutils / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
2 @c Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options::              Options
21 * ARM Syntax::               Syntax
22 * ARM Floating Point::       Floating Point
23 * ARM Directives::           ARM Machine Directives
24 * ARM Opcodes::              Opcodes
25 * ARM Mapping Symbols::      Mapping Symbols
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor.  The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor.  The following processor names are
40 recognized: 
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{arm9e},
85 @code{arm926e},
86 @code{arm926ej-s},
87 @code{arm946e-r0},
88 @code{arm946e},
89 @code{arm946e-s},
90 @code{arm966e-r0},
91 @code{arm966e},
92 @code{arm966e-s},
93 @code{arm968e-s},
94 @code{arm10t},
95 @code{arm10tdmi},
96 @code{arm10e},
97 @code{arm1020},
98 @code{arm1020t},
99 @code{arm1020e},
100 @code{arm1022e},
101 @code{arm1026ej-s},
102 @code{arm1136j-s},
103 @code{arm1136jf-s},
104 @code{arm1156t2-s},
105 @code{arm1156t2f-s},
106 @code{arm1176jz-s},
107 @code{arm1176jzf-s},
108 @code{mpcore},
109 @code{mpcorenovfp},
110 @code{cortex-a8},
111 @code{cortex-r4},
112 @code{cortex-m3},
113 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
114 @code{i80200} (Intel XScale processor)
115 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
116 and
117 @code{xscale}.  
118 The special name @code{all} may be used to allow the
119 assembler to accept instructions valid for any ARM processor.
120
121 In addition to the basic instruction set, the assembler can be told to 
122 accept various extension mnemonics that extend the processor using the 
123 co-processor instruction space.  For example, @code{-mcpu=arm920+maverick}
124 is equivalent to specifying @code{-mcpu=ep9312}.  The following extensions
125 are currently supported: 
126 @code{+maverick}
127 @code{+iwmmxt}
128 and
129 @code{+xscale}.
130
131 @cindex @code{-march=} command line option, ARM
132 @item -march=@var{architecture}[+@var{extension}@dots{}]
133 This option specifies the target architecture.  The assembler will issue
134 an error message if an attempt is made to assemble an instruction which
135 will not execute on the target architecture.  The following architecture 
136 names are recognized: 
137 @code{armv1},
138 @code{armv2},
139 @code{armv2a},
140 @code{armv2s},
141 @code{armv3},
142 @code{armv3m},
143 @code{armv4},
144 @code{armv4xm},
145 @code{armv4t},
146 @code{armv4txm},
147 @code{armv5},
148 @code{armv5t},
149 @code{armv5txm},
150 @code{armv5te},
151 @code{armv5texp},
152 @code{armv6},
153 @code{armv6j},
154 @code{armv6k},
155 @code{armv6z},
156 @code{armv6zk},
157 @code{armv7},
158 @code{armv7-a},
159 @code{armv7-r},
160 @code{armv7-m},
161 @code{iwmmxt}
162 and
163 @code{xscale}.
164 If both @code{-mcpu} and
165 @code{-march} are specified, the assembler will use
166 the setting for @code{-mcpu}.
167
168 The architecture option can be extended with the same instruction set
169 extension options as the @code{-mcpu} option.
170
171 @cindex @code{-mfpu=} command line option, ARM
172 @item -mfpu=@var{floating-point-format}
173
174 This option specifies the floating point format to assemble for.  The
175 assembler will issue an error message if an attempt is made to assemble
176 an instruction which will not execute on the target floating point unit.  
177 The following format options are recognized:
178 @code{softfpa},
179 @code{fpe},
180 @code{fpe2},
181 @code{fpe3},
182 @code{fpa},
183 @code{fpa10},
184 @code{fpa11},
185 @code{arm7500fe},
186 @code{softvfp},
187 @code{softvfp+vfp},
188 @code{vfp},
189 @code{vfp10},
190 @code{vfp10-r0},
191 @code{vfp9},
192 @code{vfpxd},
193 @code{arm1020t},
194 @code{arm1020e},
195 @code{arm1136jf-s}
196 and
197 @code{maverick}.
198
199 In addition to determining which instructions are assembled, this option
200 also affects the way in which the @code{.double} assembler directive behaves
201 when assembling little-endian code.
202
203 The default is dependent on the processor selected.  For Architecture 5 or 
204 later, the default is to assembler for VFP instructions; for earlier 
205 architectures the default is to assemble for FPA instructions.
206
207 @cindex @code{-mthumb} command line option, ARM
208 @item -mthumb
209 This option specifies that the assembler should start assembling Thumb
210 instructions; that is, it should behave as though the file starts with a 
211 @code{.code 16} directive.
212
213 @cindex @code{-mthumb-interwork} command line option, ARM
214 @item -mthumb-interwork
215 This option specifies that the output generated by the assembler should
216 be marked as supporting interworking.
217
218 @cindex @code{-mapcs} command line option, ARM
219 @item -mapcs @code{[26|32]}
220 This option specifies that the output generated by the assembler should
221 be marked as supporting the indicated version of the Arm Procedure.
222 Calling Standard.
223
224 @cindex @code{-matpcs} command line option, ARM
225 @item -matpcs
226 This option specifies that the output generated by the assembler should 
227 be marked as supporting the Arm/Thumb Procedure Calling Standard.  If
228 enabled this option will cause the assembler to create an empty
229 debugging section in the object file called .arm.atpcs.  Debuggers can
230 use this to determine the ABI being used by.
231
232 @cindex @code{-mapcs-float} command line option, ARM
233 @item -mapcs-float
234 This indicates the floating point variant of the APCS should be
235 used.  In this variant floating point arguments are passed in FP
236 registers rather than integer registers.
237
238 @cindex @code{-mapcs-reentrant} command line option, ARM
239 @item -mapcs-reentrant
240 This indicates that the reentrant variant of the APCS should be used.
241 This variant supports position independent code.
242
243 @cindex @code{-mfloat-abi=} command line option, ARM
244 @item -mfloat-abi=@var{abi}
245 This option specifies that the output generated by the assembler should be
246 marked as using specified floating point ABI.
247 The following values are recognized:
248 @code{soft},
249 @code{softfp}
250 and
251 @code{hard}.
252
253 @cindex @code{-eabi=} command line option, ARM
254 @item -meabi=@var{ver}
255 This option specifies which EABI version the produced object files should
256 conform to.
257 The following values are recognized:
258 @code{gnu},
259 @code{4}
260 and
261 @code{5}.
262
263 @cindex @code{-EB} command line option, ARM
264 @item -EB
265 This option specifies that the output generated by the assembler should
266 be marked as being encoded for a big-endian processor.
267
268 @cindex @code{-EL} command line option, ARM
269 @item -EL
270 This option specifies that the output generated by the assembler should
271 be marked as being encoded for a little-endian processor.
272
273 @cindex @code{-k} command line option, ARM
274 @cindex PIC code generation for ARM
275 @item -k
276 This option specifies that the output of the assembler should be marked
277 as position-independent code (PIC).
278
279 @end table
280
281
282 @node ARM Syntax
283 @section Syntax
284 @menu
285 * ARM-Chars::                Special Characters
286 * ARM-Regs::                 Register Names
287 * ARM-Relocations::          Relocations
288 @end menu
289
290 @node ARM-Chars
291 @subsection Special Characters
292
293 @cindex line comment character, ARM
294 @cindex ARM line comment character
295 The presence of a @samp{@@} on a line indicates the start of a comment
296 that extends to the end of the current line.  If a @samp{#} appears as
297 the first character of a line, the whole line is treated as a comment.
298
299 @cindex line separator, ARM
300 @cindex statement separator, ARM
301 @cindex ARM line separator
302 The @samp{;} character can be used instead of a newline to separate
303 statements.
304
305 @cindex immediate character, ARM
306 @cindex ARM immediate character
307 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
308
309 @cindex identifiers, ARM
310 @cindex ARM identifiers
311 *TODO* Explain about /data modifier on symbols.
312
313 @node ARM-Regs
314 @subsection Register Names
315
316 @cindex ARM register names
317 @cindex register names, ARM
318 *TODO* Explain about ARM register naming, and the predefined names.
319
320 @node ARM Floating Point
321 @section Floating Point
322
323 @cindex floating point, ARM (@sc{ieee})
324 @cindex ARM floating point (@sc{ieee})
325 The ARM family uses @sc{ieee} floating-point numbers.
326
327 @node ARM-Relocations
328 @subsection ARM relocation generation
329
330 @cindex data relocations, ARM
331 @cindex ARM data relocations
332 Specific data relocations can be generated by putting the relocation name
333 in parentheses after the symbol name.  For example:
334
335 @smallexample
336         .word foo(TARGET1)
337 @end smallexample
338
339 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
340 @var{foo}.
341 The following relocations are supported:
342 @code{GOT},
343 @code{GOTOFF},
344 @code{TARGET1},
345 @code{TARGET2},
346 @code{SBREL},
347 @code{TLSGD},
348 @code{TLSLDM},
349 @code{TLSLDO},
350 @code{GOTTPOFF}
351 and
352 @code{TPOFF}.
353
354 For compatibility with older toolchains the assembler also accepts
355 @code{(PLT)} after branch targets.  This will generate the deprecated
356 @samp{R_ARM_PLT32} relocation.
357
358 @cindex MOVW and MOVT relocations, ARM
359 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
360 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
361 respectively.  For example to load the 32-bit address of foo into r0:
362
363 @smallexample
364         MOVW r0, #:lower16:foo
365         MOVT r0, #:upper16:foo
366 @end smallexample
367
368 @node ARM Directives
369 @section ARM Machine Directives
370
371 @cindex machine directives, ARM
372 @cindex ARM machine directives
373 @table @code
374
375 @cindex @code{align} directive, ARM
376 @item .align @var{expression} [, @var{expression}]
377 This is the generic @var{.align} directive.  For the ARM however if the
378 first argument is zero (ie no alignment is needed) the assembler will
379 behave as if the argument had been 2 (ie pad to the next four byte
380 boundary).  This is for compatibility with ARM's own assembler.
381
382 @cindex @code{req} directive, ARM
383 @item @var{name} .req @var{register name}
384 This creates an alias for @var{register name} called @var{name}.  For
385 example:
386
387 @smallexample
388         foo .req r0
389 @end smallexample
390
391 @cindex @code{unreq} directive, ARM
392 @item .unreq @var{alias-name}
393 This undefines a register alias which was previously defined using the
394 @code{req}, @code{dn} or @code{qn} directives.  For example:
395
396 @smallexample
397         foo .req r0
398         .unreq foo
399 @end smallexample
400
401 An error occurs if the name is undefined.  Note - this pseudo op can
402 be used to delete builtin in register name aliases (eg 'r0').  This
403 should only be done if it is really necessary.
404
405 @cindex @code{dn} and @code{qn} directives, ARM
406 @item @var{name} .dn @var{register name} [@var{.type}] [@var{[index]}]
407 @item @var{name} .qn @var{register name} [@var{.type}] [@var{[index]}]
408
409 The @code{dn} and @code{qn} directives are used to create typed
410 and/or indexed register aliases for use in Advanced SIMD Extension
411 (Neon) instructions.  The former should be used to create aliases
412 of double-precision registers, and the latter to create aliases of
413 quad-precision registers.
414
415 If these directives are used to create typed aliases, those aliases can
416 be used in Neon instructions instead of writing types after the mnemonic
417 or after each operand.  For example:
418
419 @smallexample
420         x .dn d2.f32
421         y .dn d3.f32
422         z .dn d4.f32[1]
423         vmul x,y,z
424 @end smallexample
425
426 This is equivalent to writing the following:
427
428 @smallexample
429         vmul.f32 d2,d3,d4[1]
430 @end smallexample
431
432 Aliases created using @code{dn} or @code{qn} can be destroyed using
433 @code{unreq}.
434
435 @cindex @code{code} directive, ARM
436 @item .code @code{[16|32]}
437 This directive selects the instruction set being generated. The value 16
438 selects Thumb, with the value 32 selecting ARM.
439
440 @cindex @code{thumb} directive, ARM
441 @item .thumb
442 This performs the same action as @var{.code 16}.
443
444 @cindex @code{arm} directive, ARM
445 @item .arm
446 This performs the same action as @var{.code 32}.
447
448 @cindex @code{force_thumb} directive, ARM
449 @item .force_thumb
450 This directive forces the selection of Thumb instructions, even if the
451 target processor does not support those instructions
452
453 @cindex @code{thumb_func} directive, ARM
454 @item .thumb_func
455 This directive specifies that the following symbol is the name of a
456 Thumb encoded function.  This information is necessary in order to allow
457 the assembler and linker to generate correct code for interworking
458 between Arm and Thumb instructions and should be used even if
459 interworking is not going to be performed.  The presence of this
460 directive also implies @code{.thumb}
461
462 This directive is not neccessary when generating EABI objects.  On these
463 targets the encoding is implicit when generating Thumb code.
464
465 @cindex @code{thumb_set} directive, ARM
466 @item .thumb_set
467 This performs the equivalent of a @code{.set} directive in that it
468 creates a symbol which is an alias for another symbol (possibly not yet
469 defined).  This directive also has the added property in that it marks
470 the aliased symbol as being a thumb function entry point, in the same
471 way that the @code{.thumb_func} directive does.
472
473 @cindex @code{.ltorg} directive, ARM
474 @item .ltorg
475 This directive causes the current contents of the literal pool to be
476 dumped into the current section (which is assumed to be the .text
477 section) at the current location (aligned to a word boundary).
478 @code{GAS} maintains a separate literal pool for each section and each
479 sub-section.  The @code{.ltorg} directive will only affect the literal
480 pool of the current section and sub-section.  At the end of assembly
481 all remaining, un-empty literal pools will automatically be dumped.
482
483 Note - older versions of @code{GAS} would dump the current literal
484 pool any time a section change occurred.  This is no longer done, since
485 it prevents accurate control of the placement of literal pools.
486
487 @cindex @code{.pool} directive, ARM
488 @item .pool
489 This is a synonym for .ltorg.
490
491 @cindex @code{.fnstart} directive, ARM
492 @item .unwind_fnstart
493 Marks the start of a function with an unwind table entry.
494
495 @cindex @code{.fnend} directive, ARM
496 @item .unwind_fnend
497 Marks the end of a function with an unwind table entry.  The unwind index
498 table entry is created when this directive is processed.
499
500 If no personality routine has been specified then standard personality
501 routine 0 or 1 will be used, depending on the number of unwind opcodes
502 required.
503
504 @cindex @code{.cantunwind} directive, ARM
505 @item .cantunwind
506 Prevents unwinding through the current function.  No personality routine
507 or exception table data is required or permitted.
508
509 @cindex @code{.personality} directive, ARM
510 @item .personality @var{name}
511 Sets the personality routine for the current function to @var{name}.
512
513 @cindex @code{.personalityindex} directive, ARM
514 @item .personalityindex @var{index}
515 Sets the personality routine for the current function to the EABI standard
516 routine number @var{index}
517
518 @cindex @code{.handlerdata} directive, ARM
519 @item .handlerdata
520 Marks the end of the current function, and the start of the exception table
521 entry for that function.  Anything between this directive and the
522 @code{.fnend} directive will be added to the exception table entry.
523
524 Must be preceded by a @code{.personality} or @code{.personalityindex}
525 directive.
526
527 @cindex @code{.save} directive, ARM
528 @item .save @var{reglist}
529 Generate unwinder annotations to restore the registers in @var{reglist}.
530 The format of @var{reglist} is the same as the corresponding store-multiple
531 instruction.
532
533 @smallexample
534 @exdent @emph{core registers}
535   .save @{r4, r5, r6, lr@}
536   stmfd sp!, @{r4, r5, r6, lr@}
537 @exdent @emph{FPA registers}
538   .save f4, 2
539   sfmfd f4, 2, [sp]!
540 @exdent @emph{VFP registers}
541   .save @{d8, d9, d10@}
542   fstmdx sp!, @{d8, d9, d10@}
543 @exdent @emph{iWMMXt registers}
544   .save @{wr10, wr11@}
545   wstrd wr11, [sp, #-8]!
546   wstrd wr10, [sp, #-8]!
547 or
548   .save wr11
549   wstrd wr11, [sp, #-8]!
550   .save wr10
551   wstrd wr10, [sp, #-8]!
552 @end smallexample
553
554 @cindex @code{.vsave} directive, ARM
555 @item .vsave @var{vfp-reglist}
556 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
557 using FLDMD.  Also works for VFPv3 registers
558 that are to be restored using VLDM.
559 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
560 instruction.
561
562 @smallexample
563 @exdent @emph{VFP registers}
564   .vsave @{d8, d9, d10@}
565   fstmdd sp!, @{d8, d9, d10@}
566 @exdent @emph{VFPv3 registers}
567   .vsave @{d15, d16, d17@}
568   vstm sp!, @{d15, d16, d17@}
569 @end smallexample
570
571 Since FLDMX and FSTMX are now deprecated, this directive should be
572 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
573
574 @cindex @code{.pad} directive, ARM
575 @item .pad #@var{count}
576 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
577 A positive value indicates the function prologue allocated stack space by
578 decrementing the stack pointer.
579
580 @cindex @code{.movsp} directive, ARM
581 @item .movsp @var{reg} [, #@var{offset}]
582 Tell the unwinder that @var{reg} contains an offset from the current
583 stack pointer.  If @var{offset} is not specified then it is assumed to be
584 zero.
585
586 @cindex @code{.setfp} directive, ARM
587 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
588 Make all unwinder annotations relaive to a frame pointer.  Without this
589 the unwinder will use offsets from the stack pointer.
590
591 The syntax of this directive is the same as the @code{sub} or @code{mov}
592 instruction used to set the frame pointer.  @var{spreg} must be either
593 @code{sp} or mentioned in a previous @code{.movsp} directive.
594
595 @smallexample
596 .movsp ip
597 mov ip, sp
598 @dots{}
599 .setfp fp, ip, #4
600 sub fp, ip, #4
601 @end smallexample
602
603 @cindex @code{.unwind_raw} directive, ARM
604 @item .raw @var{offset}, @var{byte1}, @dots{}
605 Insert one of more arbitary unwind opcode bytes, which are known to adjust
606 the stack pointer by @var{offset} bytes.
607
608 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
609 @code{.save @{r0@}}
610
611 @cindex @code{.cpu} directive, ARM
612 @item .cpu @var{name}
613 Select the target processor.  Valid values for @var{name} are the same as
614 for the @option{-mcpu} commandline option.
615
616 @cindex @code{.arch} directive, ARM
617 @item .arch @var{name}
618 Select the target architecture.  Valid values for @var{name} are the same as
619 for the @option{-march} commandline option.
620
621 @cindex @code{.object_arch} directive, ARM
622 @item .object_arch @var{name}
623 Override the architecture recorded in the EABI object attribute section.
624 Valid values for @var{name} are the same as for the @code{.arch} directive.
625 Typically this is useful when code uses runtime detection of CPU features.
626
627 @cindex @code{.fpu} directive, ARM
628 @item .fpu @var{name}
629 Select the floating point unit to assemble for.  Valid values for @var{name}
630 are the same as for the @option{-mfpu} commandline option.
631
632 @cindex @code{.eabi_attribute} directive, ARM
633 @item .eabi_attribute @var{tag}, @var{value}
634 Set the EABI object attribute number @var{tag} to @var{value}.  The value
635 is either a @code{number}, @code{"string"}, or @code{number, "string"}
636 depending on the tag.
637
638 @end table
639
640 @node ARM Opcodes
641 @section Opcodes
642
643 @cindex ARM opcodes
644 @cindex opcodes for ARM
645 @code{@value{AS}} implements all the standard ARM opcodes.  It also
646 implements several pseudo opcodes, including several synthetic load
647 instructions. 
648
649 @table @code
650
651 @cindex @code{NOP} pseudo op, ARM
652 @item NOP
653 @smallexample
654   nop
655 @end smallexample
656
657 This pseudo op will always evaluate to a legal ARM instruction that does
658 nothing.  Currently it will evaluate to MOV r0, r0.
659
660 @cindex @code{LDR reg,=<label>} pseudo op, ARM
661 @item LDR 
662 @smallexample
663   ldr <register> , = <expression>
664 @end smallexample
665
666 If expression evaluates to a numeric constant then a MOV or MVN
667 instruction will be used in place of the LDR instruction, if the
668 constant can be generated by either of these instructions.  Otherwise
669 the constant will be placed into the nearest literal pool (if it not
670 already there) and a PC relative LDR instruction will be generated.
671
672 @cindex @code{ADR reg,<label>} pseudo op, ARM
673 @item ADR
674 @smallexample
675   adr <register> <label>
676 @end smallexample
677
678 This instruction will load the address of @var{label} into the indicated
679 register.  The instruction will evaluate to a PC relative ADD or SUB
680 instruction depending upon where the label is located.  If the label is
681 out of range, or if it is not defined in the same file (and section) as
682 the ADR instruction, then an error will be generated.  This instruction
683 will not make use of the literal pool.
684
685 @cindex @code{ADRL reg,<label>} pseudo op, ARM
686 @item ADRL 
687 @smallexample
688   adrl <register> <label>
689 @end smallexample
690
691 This instruction will load the address of @var{label} into the indicated
692 register.  The instruction will evaluate to one or two PC relative ADD
693 or SUB instructions depending upon where the label is located.  If a
694 second instruction is not needed a NOP instruction will be generated in
695 its place, so that this instruction is always 8 bytes long.
696
697 If the label is out of range, or if it is not defined in the same file
698 (and section) as the ADRL instruction, then an error will be generated.
699 This instruction will not make use of the literal pool.
700
701 @end table
702
703 For information on the ARM or Thumb instruction sets, see @cite{ARM
704 Software Development Toolkit Reference Manual}, Advanced RISC Machines
705 Ltd.
706
707 @node ARM Mapping Symbols
708 @section Mapping Symbols
709
710 The ARM ELF specification requires that special symbols be inserted
711 into object files to mark certain features:
712
713 @table @code
714
715 @cindex @code{$a}
716 @item $a
717 At the start of a region of code containing ARM instructions.
718
719 @cindex @code{$t}
720 @item $t
721 At the start of a region of code containing THUMB instructions.
722
723 @cindex @code{$d}
724 @item $d
725 At the start of a region of data.
726
727 @end table
728
729 The assembler will automatically insert these symbols for you - there
730 is no need to code them yourself.  Support for tagging symbols ($b,
731 $f, $p and $m) which is also mentioned in the current ARM ELF
732 specification is not implemented.  This is because they have been
733 dropped from the new EABI and so tools cannot rely upon their
734 presence.
735