]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/compiler-rt/lib/truncdfsf2.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / compiler-rt / lib / truncdfsf2.c
1 //===-- lib/truncdfsf2.c - double -> single conversion ------------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a fairly generic conversion from a wider to a narrower
11 // IEEE-754 floating-point type in the default (round to nearest, ties to even)
12 // rounding mode.  The constants and types defined following the includes below
13 // parameterize the conversion.
14 //
15 // This routine can be trivially adapted to support conversions to 
16 // half-precision or from quad-precision. It does not support types that don't
17 // use the usual IEEE-754 interchange formats; specifically, some work would be
18 // needed to adapt it to (for example) the Intel 80-bit format or PowerPC
19 // double-double format.
20 //
21 // Note please, however, that this implementation is only intended to support
22 // *narrowing* operations; if you need to convert to a *wider* floating-point
23 // type (e.g. float -> double), then this routine will not do what you want it
24 // to.
25 //
26 // It also requires that integer types at least as large as both formats
27 // are available on the target platform; this may pose a problem when trying
28 // to add support for quad on some 32-bit systems, for example.
29 //
30 // Finally, the following assumptions are made:
31 //
32 // 1. floating-point types and integer types have the same endianness on the
33 //    target platform
34 //
35 // 2. quiet NaNs, if supported, are indicated by the leading bit of the
36 //    significand field being set
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "int_lib.h"
41
42 typedef double src_t;
43 typedef uint64_t src_rep_t;
44 #define SRC_REP_C UINT64_C
45 static const int srcSigBits = 52;
46
47 typedef float dst_t;
48 typedef uint32_t dst_rep_t;
49 #define DST_REP_C UINT32_C
50 static const int dstSigBits = 23;
51
52 // End of specialization parameters.  Two helper routines for conversion to and
53 // from the representation of floating-point data as integer values follow.
54
55 static inline src_rep_t srcToRep(src_t x) {
56     const union { src_t f; src_rep_t i; } rep = {.f = x};
57     return rep.i;
58 }
59
60 static inline dst_t dstFromRep(dst_rep_t x) {
61     const union { dst_t f; dst_rep_t i; } rep = {.i = x};
62     return rep.f;
63 }
64
65 // End helper routines.  Conversion implementation follows.
66
67 ARM_EABI_FNALIAS(d2f, truncdfsf2);
68
69 COMPILER_RT_ABI dst_t
70 __truncdfsf2(src_t a) {
71     
72     // Various constants whose values follow from the type parameters.
73     // Any reasonable optimizer will fold and propagate all of these.
74     const int srcBits = sizeof(src_t)*CHAR_BIT;
75     const int srcExpBits = srcBits - srcSigBits - 1;
76     const int srcInfExp = (1 << srcExpBits) - 1;
77     const int srcExpBias = srcInfExp >> 1;
78     
79     const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
80     const src_rep_t significandMask = srcMinNormal - 1;
81     const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
82     const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
83     const src_rep_t srcAbsMask = srcSignMask - 1;
84     const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
85     const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
86     
87     const int dstBits = sizeof(dst_t)*CHAR_BIT;
88     const int dstExpBits = dstBits - dstSigBits - 1;
89     const int dstInfExp = (1 << dstExpBits) - 1;
90     const int dstExpBias = dstInfExp >> 1;
91     
92     const int underflowExponent = srcExpBias + 1 - dstExpBias;
93     const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
94     const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
95     const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
96     
97     const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
98     const dst_rep_t dstNaNCode = dstQNaN - 1;
99
100     // Break a into a sign and representation of the absolute value
101     const src_rep_t aRep = srcToRep(a);
102     const src_rep_t aAbs = aRep & srcAbsMask;
103     const src_rep_t sign = aRep & srcSignMask;
104     dst_rep_t absResult;
105     
106     if (aAbs - underflow < aAbs - overflow) {
107         // The exponent of a is within the range of normal numbers in the
108         // destination format.  We can convert by simply right-shifting with
109         // rounding and adjusting the exponent.
110         absResult = aAbs >> (srcSigBits - dstSigBits);
111         absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
112         
113         const src_rep_t roundBits = aAbs & roundMask;
114         
115         // Round to nearest
116         if (roundBits > halfway)
117             absResult++;
118         
119         // Ties to even
120         else if (roundBits == halfway)
121             absResult += absResult & 1;
122     }
123     
124     else if (aAbs > srcInfinity) {
125         // a is NaN.
126         // Conjure the result by beginning with infinity, setting the qNaN
127         // bit and inserting the (truncated) trailing NaN field.
128         absResult = (dst_rep_t)dstInfExp << dstSigBits;
129         absResult |= dstQNaN;
130         absResult |= aAbs & dstNaNCode;
131     }
132     
133     else if (aAbs > overflow) {
134         // a overflows to infinity.
135         absResult = (dst_rep_t)dstInfExp << dstSigBits;
136     }
137     
138     else {
139         // a underflows on conversion to the destination type or is an exact
140         // zero.  The result may be a denormal or zero.  Extract the exponent
141         // to get the shift amount for the denormalization.
142         const int aExp = aAbs >> srcSigBits;
143         const int shift = srcExpBias - dstExpBias - aExp + 1;
144         
145         const src_rep_t significand = (aRep & significandMask) | srcMinNormal;
146         
147         // Right shift by the denormalization amount with sticky.
148         if (shift > srcSigBits) {
149             absResult = 0;
150         } else {
151             const bool sticky = significand << (srcBits - shift);
152             src_rep_t denormalizedSignificand = significand >> shift | sticky;
153             absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
154             const src_rep_t roundBits = denormalizedSignificand & roundMask;
155             // Round to nearest
156             if (roundBits > halfway)
157                 absResult++;
158             // Ties to even
159             else if (roundBits == halfway)
160                 absResult += absResult & 1;
161         }
162     }
163     
164     // Apply the signbit to (dst_t)abs(a).
165     const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
166     return dstFromRep(result);
167     
168 }