]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/llvm/include/llvm/IR/Type.h
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / llvm / include / llvm / IR / Type.h
1 //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the Type class.  For more "Type"
11 // stuff, look in DerivedTypes.h.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_TYPE_H
16 #define LLVM_IR_TYPE_H
17
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/Support/Casting.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm-c/Core.h"
24
25 namespace llvm {
26
27 class PointerType;
28 class IntegerType;
29 class raw_ostream;
30 class Module;
31 class LLVMContext;
32 class LLVMContextImpl;
33 class StringRef;
34 template<class GraphType> struct GraphTraits;
35
36 /// The instances of the Type class are immutable: once they are created,
37 /// they are never changed.  Also note that only one instance of a particular
38 /// type is ever created.  Thus seeing if two types are equal is a matter of
39 /// doing a trivial pointer comparison. To enforce that no two equal instances
40 /// are created, Type instances can only be created via static factory methods 
41 /// in class Type and in derived classes.  Once allocated, Types are never
42 /// free'd.
43 /// 
44 class Type {
45 public:
46   //===--------------------------------------------------------------------===//
47   /// Definitions of all of the base types for the Type system.  Based on this
48   /// value, you can cast to a class defined in DerivedTypes.h.
49   /// Note: If you add an element to this, you need to add an element to the
50   /// Type::getPrimitiveType function, or else things will break!
51   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
52   ///
53   enum TypeID {
54     // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
55     VoidTyID = 0,    ///<  0: type with no size
56     HalfTyID,        ///<  1: 16-bit floating point type
57     FloatTyID,       ///<  2: 32-bit floating point type
58     DoubleTyID,      ///<  3: 64-bit floating point type
59     X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
60     FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
61     PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
62     LabelTyID,       ///<  7: Labels
63     MetadataTyID,    ///<  8: Metadata
64     X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
65
66     // Derived types... see DerivedTypes.h file.
67     // Make sure FirstDerivedTyID stays up to date!
68     IntegerTyID,     ///< 10: Arbitrary bit width integers
69     FunctionTyID,    ///< 11: Functions
70     StructTyID,      ///< 12: Structures
71     ArrayTyID,       ///< 13: Arrays
72     PointerTyID,     ///< 14: Pointers
73     VectorTyID,      ///< 15: SIMD 'packed' format, or other vector type
74
75     NumTypeIDs,                         // Must remain as last defined ID
76     LastPrimitiveTyID = X86_MMXTyID,
77     FirstDerivedTyID = IntegerTyID
78   };
79
80 private:
81   /// Context - This refers to the LLVMContext in which this type was uniqued.
82   LLVMContext &Context;
83
84   // Due to Ubuntu GCC bug 910363:
85   // https://bugs.launchpad.net/ubuntu/+source/gcc-4.5/+bug/910363
86   // Bitpack ID and SubclassData manually.
87   // Note: TypeID : low 8 bit; SubclassData : high 24 bit.
88   uint32_t IDAndSubclassData;
89
90 protected:
91   friend class LLVMContextImpl;
92   explicit Type(LLVMContext &C, TypeID tid)
93     : Context(C), IDAndSubclassData(0),
94       NumContainedTys(0), ContainedTys(0) {
95     setTypeID(tid);
96   }
97   ~Type() {}
98   
99   void setTypeID(TypeID ID) {
100     IDAndSubclassData = (ID & 0xFF) | (IDAndSubclassData & 0xFFFFFF00);
101     assert(getTypeID() == ID && "TypeID data too large for field");
102   }
103   
104   unsigned getSubclassData() const { return IDAndSubclassData >> 8; }
105   
106   void setSubclassData(unsigned val) {
107     IDAndSubclassData = (IDAndSubclassData & 0xFF) | (val << 8);
108     // Ensure we don't have any accidental truncation.
109     assert(getSubclassData() == val && "Subclass data too large for field");
110   }
111
112   /// NumContainedTys - Keeps track of how many Type*'s there are in the
113   /// ContainedTys list.
114   unsigned NumContainedTys;
115
116   /// ContainedTys - A pointer to the array of Types contained by this Type.
117   /// For example, this includes the arguments of a function type, the elements
118   /// of a structure, the pointee of a pointer, the element type of an array,
119   /// etc.  This pointer may be 0 for types that don't contain other types
120   /// (Integer, Double, Float).
121   Type * const *ContainedTys;
122
123 public:
124   void print(raw_ostream &O) const;
125   void dump() const;
126
127   /// getContext - Return the LLVMContext in which this type was uniqued.
128   LLVMContext &getContext() const { return Context; }
129
130   //===--------------------------------------------------------------------===//
131   // Accessors for working with types.
132   //
133
134   /// getTypeID - Return the type id for the type.  This will return one
135   /// of the TypeID enum elements defined above.
136   ///
137   TypeID getTypeID() const { return (TypeID)(IDAndSubclassData & 0xFF); }
138
139   /// isVoidTy - Return true if this is 'void'.
140   bool isVoidTy() const { return getTypeID() == VoidTyID; }
141
142   /// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
143   bool isHalfTy() const { return getTypeID() == HalfTyID; }
144
145   /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
146   bool isFloatTy() const { return getTypeID() == FloatTyID; }
147   
148   /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
149   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
150
151   /// isX86_FP80Ty - Return true if this is x86 long double.
152   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
153
154   /// isFP128Ty - Return true if this is 'fp128'.
155   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
156
157   /// isPPC_FP128Ty - Return true if this is powerpc long double.
158   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
159
160   /// isFloatingPointTy - Return true if this is one of the six floating point
161   /// types
162   bool isFloatingPointTy() const {
163     return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
164            getTypeID() == DoubleTyID ||
165            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
166            getTypeID() == PPC_FP128TyID;
167   }
168
169   const fltSemantics &getFltSemantics() const {
170     switch (getTypeID()) {
171     case HalfTyID: return APFloat::IEEEhalf;
172     case FloatTyID: return APFloat::IEEEsingle;
173     case DoubleTyID: return APFloat::IEEEdouble;
174     case X86_FP80TyID: return APFloat::x87DoubleExtended;
175     case FP128TyID: return APFloat::IEEEquad;
176     case PPC_FP128TyID: return APFloat::PPCDoubleDouble;
177     default: llvm_unreachable("Invalid floating type");
178     }
179   }
180
181   /// isX86_MMXTy - Return true if this is X86 MMX.
182   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
183
184   /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
185   ///
186   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
187  
188   /// isLabelTy - Return true if this is 'label'.
189   bool isLabelTy() const { return getTypeID() == LabelTyID; }
190
191   /// isMetadataTy - Return true if this is 'metadata'.
192   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
193
194   /// isIntegerTy - True if this is an instance of IntegerType.
195   ///
196   bool isIntegerTy() const { return getTypeID() == IntegerTyID; } 
197
198   /// isIntegerTy - Return true if this is an IntegerType of the given width.
199   bool isIntegerTy(unsigned Bitwidth) const;
200
201   /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
202   /// integer types.
203   ///
204   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
205   
206   /// isFunctionTy - True if this is an instance of FunctionType.
207   ///
208   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
209
210   /// isStructTy - True if this is an instance of StructType.
211   ///
212   bool isStructTy() const { return getTypeID() == StructTyID; }
213
214   /// isArrayTy - True if this is an instance of ArrayType.
215   ///
216   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
217
218   /// isPointerTy - True if this is an instance of PointerType.
219   ///
220   bool isPointerTy() const { return getTypeID() == PointerTyID; }
221
222   /// isPtrOrPtrVectorTy - Return true if this is a pointer type or a vector of
223   /// pointer types.
224   ///
225   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
226  
227   /// isVectorTy - True if this is an instance of VectorType.
228   ///
229   bool isVectorTy() const { return getTypeID() == VectorTyID; }
230
231   /// canLosslesslyBitCastTo - Return true if this type could be converted 
232   /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts 
233   /// are valid for types of the same size only where no re-interpretation of 
234   /// the bits is done.
235   /// @brief Determine if this type could be losslessly bitcast to Ty
236   bool canLosslesslyBitCastTo(Type *Ty) const;
237
238   /// isEmptyTy - Return true if this type is empty, that is, it has no
239   /// elements or all its elements are empty.
240   bool isEmptyTy() const;
241
242   /// Here are some useful little methods to query what type derived types are
243   /// Note that all other types can just compare to see if this == Type::xxxTy;
244   ///
245   bool isPrimitiveType() const { return getTypeID() <= LastPrimitiveTyID; }
246   bool isDerivedType()   const { return getTypeID() >= FirstDerivedTyID; }
247
248   /// isFirstClassType - Return true if the type is "first class", meaning it
249   /// is a valid type for a Value.
250   ///
251   bool isFirstClassType() const {
252     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
253   }
254
255   /// isSingleValueType - Return true if the type is a valid type for a
256   /// register in codegen.  This includes all first-class types except struct
257   /// and array types.
258   ///
259   bool isSingleValueType() const {
260     return (getTypeID() != VoidTyID && isPrimitiveType()) ||
261             getTypeID() == IntegerTyID || getTypeID() == PointerTyID ||
262             getTypeID() == VectorTyID;
263   }
264
265   /// isAggregateType - Return true if the type is an aggregate type. This
266   /// means it is valid as the first operand of an insertvalue or
267   /// extractvalue instruction. This includes struct and array types, but
268   /// does not include vector types.
269   ///
270   bool isAggregateType() const {
271     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
272   }
273
274   /// isSized - Return true if it makes sense to take the size of this type.  To
275   /// get the actual size for a particular target, it is reasonable to use the
276   /// DataLayout subsystem to do this.
277   ///
278   bool isSized() const {
279     // If it's a primitive, it is always sized.
280     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
281         getTypeID() == PointerTyID ||
282         getTypeID() == X86_MMXTyID)
283       return true;
284     // If it is not something that can have a size (e.g. a function or label),
285     // it doesn't have a size.
286     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
287         getTypeID() != VectorTyID)
288       return false;
289     // Otherwise we have to try harder to decide.
290     return isSizedDerivedType();
291   }
292
293   /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
294   /// primitive type.  These are fixed by LLVM and are not target dependent.
295   /// This will return zero if the type does not have a size or is not a
296   /// primitive type.
297   ///
298   /// Note that this may not reflect the size of memory allocated for an
299   /// instance of the type or the number of bytes that are written when an
300   /// instance of the type is stored to memory. The DataLayout class provides
301   /// additional query functions to provide this information.
302   ///
303   unsigned getPrimitiveSizeInBits() const;
304
305   /// getScalarSizeInBits - If this is a vector type, return the
306   /// getPrimitiveSizeInBits value for the element type. Otherwise return the
307   /// getPrimitiveSizeInBits value for this type.
308   unsigned getScalarSizeInBits();
309
310   /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
311   /// is only valid on floating point types.  If the FP type does not
312   /// have a stable mantissa (e.g. ppc long double), this method returns -1.
313   int getFPMantissaWidth() const;
314
315   /// getScalarType - If this is a vector type, return the element type,
316   /// otherwise return 'this'.
317   const Type *getScalarType() const;
318   Type *getScalarType();
319
320   //===--------------------------------------------------------------------===//
321   // Type Iteration support.
322   //
323   typedef Type * const *subtype_iterator;
324   subtype_iterator subtype_begin() const { return ContainedTys; }
325   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
326
327   /// getContainedType - This method is used to implement the type iterator
328   /// (defined a the end of the file).  For derived types, this returns the
329   /// types 'contained' in the derived type.
330   ///
331   Type *getContainedType(unsigned i) const {
332     assert(i < NumContainedTys && "Index out of range!");
333     return ContainedTys[i];
334   }
335
336   /// getNumContainedTypes - Return the number of types in the derived type.
337   ///
338   unsigned getNumContainedTypes() const { return NumContainedTys; }
339
340   //===--------------------------------------------------------------------===//
341   // Helper methods corresponding to subclass methods.  This forces a cast to
342   // the specified subclass and calls its accessor.  "getVectorNumElements" (for
343   // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
344   // only intended to cover the core methods that are frequently used, helper
345   // methods should not be added here.
346   
347   unsigned getIntegerBitWidth() const;
348
349   Type *getFunctionParamType(unsigned i) const;
350   unsigned getFunctionNumParams() const;
351   bool isFunctionVarArg() const;
352   
353   StringRef getStructName() const;
354   unsigned getStructNumElements() const;
355   Type *getStructElementType(unsigned N) const;
356   
357   Type *getSequentialElementType() const;
358   
359   uint64_t getArrayNumElements() const;
360   Type *getArrayElementType() const { return getSequentialElementType(); }
361
362   unsigned getVectorNumElements() const;
363   Type *getVectorElementType() const { return getSequentialElementType(); }
364
365   Type *getPointerElementType() const { return getSequentialElementType(); }
366
367   /// \brief Get the address space of this pointer or pointer vector type.
368   unsigned getPointerAddressSpace() const;
369   
370   //===--------------------------------------------------------------------===//
371   // Static members exported by the Type class itself.  Useful for getting
372   // instances of Type.
373   //
374
375   /// getPrimitiveType - Return a type based on an identifier.
376   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
377
378   //===--------------------------------------------------------------------===//
379   // These are the builtin types that are always available.
380   //
381   static Type *getVoidTy(LLVMContext &C);
382   static Type *getLabelTy(LLVMContext &C);
383   static Type *getHalfTy(LLVMContext &C);
384   static Type *getFloatTy(LLVMContext &C);
385   static Type *getDoubleTy(LLVMContext &C);
386   static Type *getMetadataTy(LLVMContext &C);
387   static Type *getX86_FP80Ty(LLVMContext &C);
388   static Type *getFP128Ty(LLVMContext &C);
389   static Type *getPPC_FP128Ty(LLVMContext &C);
390   static Type *getX86_MMXTy(LLVMContext &C);
391   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
392   static IntegerType *getInt1Ty(LLVMContext &C);
393   static IntegerType *getInt8Ty(LLVMContext &C);
394   static IntegerType *getInt16Ty(LLVMContext &C);
395   static IntegerType *getInt32Ty(LLVMContext &C);
396   static IntegerType *getInt64Ty(LLVMContext &C);
397
398   //===--------------------------------------------------------------------===//
399   // Convenience methods for getting pointer types with one of the above builtin
400   // types as pointee.
401   //
402   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
403   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
404   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
405   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
406   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
407   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
408   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
409   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
410   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
411   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
412   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
413   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
414   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
415
416   /// getPointerTo - Return a pointer to the current type.  This is equivalent
417   /// to PointerType::get(Foo, AddrSpace).
418   PointerType *getPointerTo(unsigned AddrSpace = 0);
419
420 private:
421   /// isSizedDerivedType - Derived types like structures and arrays are sized
422   /// iff all of the members of the type are sized as well.  Since asking for
423   /// their size is relatively uncommon, move this operation out of line.
424   bool isSizedDerivedType() const;
425 };
426
427 // Printing of types.
428 static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
429   T.print(OS);
430   return OS;
431 }
432
433 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
434 template <> struct isa_impl<PointerType, Type> {
435   static inline bool doit(const Type &Ty) {
436     return Ty.getTypeID() == Type::PointerTyID;
437   }
438 };
439
440   
441 //===----------------------------------------------------------------------===//
442 // Provide specializations of GraphTraits to be able to treat a type as a
443 // graph of sub types.
444
445
446 template <> struct GraphTraits<Type*> {
447   typedef Type NodeType;
448   typedef Type::subtype_iterator ChildIteratorType;
449
450   static inline NodeType *getEntryNode(Type *T) { return T; }
451   static inline ChildIteratorType child_begin(NodeType *N) {
452     return N->subtype_begin();
453   }
454   static inline ChildIteratorType child_end(NodeType *N) {
455     return N->subtype_end();
456   }
457 };
458
459 template <> struct GraphTraits<const Type*> {
460   typedef const Type NodeType;
461   typedef Type::subtype_iterator ChildIteratorType;
462
463   static inline NodeType *getEntryNode(NodeType *T) { return T; }
464   static inline ChildIteratorType child_begin(NodeType *N) {
465     return N->subtype_begin();
466   }
467   static inline ChildIteratorType child_end(NodeType *N) {
468     return N->subtype_end();
469   }
470 };
471
472 // Create wrappers for C Binding types (see CBindingWrapping.h).
473 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
474
475 /* Specialized opaque type conversions.
476  */
477 inline Type **unwrap(LLVMTypeRef* Tys) {
478   return reinterpret_cast<Type**>(Tys);
479 }
480
481 inline LLVMTypeRef *wrap(Type **Tys) {
482   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
483 }
484   
485 } // End llvm namespace
486
487 #endif