]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/llvm/lib/TableGen/Record.cpp
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / llvm / lib / TableGen / Record.cpp
1 //===- Record.cpp - Record implementation ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implement the tablegen record classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/TableGen/Record.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/TableGen/Error.h"
26
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 //    std::string wrapper for DenseMap purposes
31 //===----------------------------------------------------------------------===//
32
33 namespace llvm {
34
35 /// TableGenStringKey - This is a wrapper for std::string suitable for
36 /// using as a key to a DenseMap.  Because there isn't a particularly
37 /// good way to indicate tombstone or empty keys for strings, we want
38 /// to wrap std::string to indicate that this is a "special" string
39 /// not expected to take on certain values (those of the tombstone and
40 /// empty keys).  This makes things a little safer as it clarifies
41 /// that DenseMap is really not appropriate for general strings.
42
43 class TableGenStringKey {
44 public:
45   TableGenStringKey(const std::string &str) : data(str) {}
46   TableGenStringKey(const char *str) : data(str) {}
47
48   const std::string &str() const { return data; }
49
50   friend hash_code hash_value(const TableGenStringKey &Value) {
51     using llvm::hash_value;
52     return hash_value(Value.str());
53   }
54 private:
55   std::string data;
56 };
57
58 /// Specialize DenseMapInfo for TableGenStringKey.
59 template<> struct DenseMapInfo<TableGenStringKey> {
60   static inline TableGenStringKey getEmptyKey() {
61     TableGenStringKey Empty("<<<EMPTY KEY>>>");
62     return Empty;
63   }
64   static inline TableGenStringKey getTombstoneKey() {
65     TableGenStringKey Tombstone("<<<TOMBSTONE KEY>>>");
66     return Tombstone;
67   }
68   static unsigned getHashValue(const TableGenStringKey& Val) {
69     using llvm::hash_value;
70     return hash_value(Val);
71   }
72   static bool isEqual(const TableGenStringKey& LHS,
73                       const TableGenStringKey& RHS) {
74     return LHS.str() == RHS.str();
75   }
76 };
77
78 } // namespace llvm
79
80 //===----------------------------------------------------------------------===//
81 //    Type implementations
82 //===----------------------------------------------------------------------===//
83
84 BitRecTy BitRecTy::Shared;
85 IntRecTy IntRecTy::Shared;
86 StringRecTy StringRecTy::Shared;
87 DagRecTy DagRecTy::Shared;
88
89 void RecTy::anchor() { }
90 void RecTy::dump() const { print(errs()); }
91
92 ListRecTy *RecTy::getListTy() {
93   if (!ListTy)
94     ListTy = new ListRecTy(this);
95   return ListTy;
96 }
97
98 bool RecTy::baseClassOf(const RecTy *RHS) const{
99   assert (RHS && "NULL pointer");
100   return Kind == RHS->getRecTyKind();
101 }
102
103 Init *BitRecTy::convertValue(BitsInit *BI) {
104   if (BI->getNumBits() != 1) return 0; // Only accept if just one bit!
105   return BI->getBit(0);
106 }
107
108 Init *BitRecTy::convertValue(IntInit *II) {
109   int64_t Val = II->getValue();
110   if (Val != 0 && Val != 1) return 0;  // Only accept 0 or 1 for a bit!
111
112   return BitInit::get(Val != 0);
113 }
114
115 Init *BitRecTy::convertValue(TypedInit *VI) {
116   RecTy *Ty = VI->getType();
117   if (isa<BitRecTy>(Ty) || isa<BitsRecTy>(Ty) || isa<IntRecTy>(Ty))
118     return VI;  // Accept variable if it is already of bit type!
119   return 0;
120 }
121
122 bool BitRecTy::baseClassOf(const RecTy *RHS) const{
123   if(RecTy::baseClassOf(RHS) || getRecTyKind() == IntRecTyKind)
124     return true;
125   if(const BitsRecTy *BitsTy = dyn_cast<BitsRecTy>(RHS))
126     return BitsTy->getNumBits() == 1;
127   return false;
128 }
129
130 BitsRecTy *BitsRecTy::get(unsigned Sz) {
131   static std::vector<BitsRecTy*> Shared;
132   if (Sz >= Shared.size())
133     Shared.resize(Sz + 1);
134   BitsRecTy *&Ty = Shared[Sz];
135   if (!Ty)
136     Ty = new BitsRecTy(Sz);
137   return Ty;
138 }
139
140 std::string BitsRecTy::getAsString() const {
141   return "bits<" + utostr(Size) + ">";
142 }
143
144 Init *BitsRecTy::convertValue(UnsetInit *UI) {
145   SmallVector<Init *, 16> NewBits(Size);
146
147   for (unsigned i = 0; i != Size; ++i)
148     NewBits[i] = UnsetInit::get();
149
150   return BitsInit::get(NewBits);
151 }
152
153 Init *BitsRecTy::convertValue(BitInit *UI) {
154   if (Size != 1) return 0;  // Can only convert single bit.
155           return BitsInit::get(UI);
156 }
157
158 /// canFitInBitfield - Return true if the number of bits is large enough to hold
159 /// the integer value.
160 static bool canFitInBitfield(int64_t Value, unsigned NumBits) {
161   // For example, with NumBits == 4, we permit Values from [-7 .. 15].
162   return (NumBits >= sizeof(Value) * 8) ||
163          (Value >> NumBits == 0) || (Value >> (NumBits-1) == -1);
164 }
165
166 /// convertValue from Int initializer to bits type: Split the integer up into the
167 /// appropriate bits.
168 ///
169 Init *BitsRecTy::convertValue(IntInit *II) {
170   int64_t Value = II->getValue();
171   // Make sure this bitfield is large enough to hold the integer value.
172   if (!canFitInBitfield(Value, Size))
173     return 0;
174
175   SmallVector<Init *, 16> NewBits(Size);
176
177   for (unsigned i = 0; i != Size; ++i)
178     NewBits[i] = BitInit::get(Value & (1LL << i));
179
180   return BitsInit::get(NewBits);
181 }
182
183 Init *BitsRecTy::convertValue(BitsInit *BI) {
184   // If the number of bits is right, return it.  Otherwise we need to expand or
185   // truncate.
186   if (BI->getNumBits() == Size) return BI;
187   return 0;
188 }
189
190 Init *BitsRecTy::convertValue(TypedInit *VI) {
191   if (Size == 1 && isa<BitRecTy>(VI->getType()))
192     return BitsInit::get(VI);
193
194   if (VI->getType()->typeIsConvertibleTo(this)) {
195     SmallVector<Init *, 16> NewBits(Size);
196
197     for (unsigned i = 0; i != Size; ++i)
198       NewBits[i] = VarBitInit::get(VI, i);
199     return BitsInit::get(NewBits);
200   }
201
202   return 0;
203 }
204
205 bool BitsRecTy::baseClassOf(const RecTy *RHS) const{
206   if (RecTy::baseClassOf(RHS)) //argument and the receiver are the same type
207     return cast<BitsRecTy>(RHS)->Size == Size;
208   RecTyKind kind = RHS->getRecTyKind();
209   return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind);
210 }
211
212 Init *IntRecTy::convertValue(BitInit *BI) {
213   return IntInit::get(BI->getValue());
214 }
215
216 Init *IntRecTy::convertValue(BitsInit *BI) {
217   int64_t Result = 0;
218   for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i)
219     if (BitInit *Bit = dyn_cast<BitInit>(BI->getBit(i))) {
220       Result |= Bit->getValue() << i;
221     } else {
222       return 0;
223     }
224   return IntInit::get(Result);
225 }
226
227 Init *IntRecTy::convertValue(TypedInit *TI) {
228   if (TI->getType()->typeIsConvertibleTo(this))
229     return TI;  // Accept variable if already of the right type!
230   return 0;
231 }
232
233 bool IntRecTy::baseClassOf(const RecTy *RHS) const{
234   RecTyKind kind = RHS->getRecTyKind();
235   return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind;
236 }
237
238 Init *StringRecTy::convertValue(UnOpInit *BO) {
239   if (BO->getOpcode() == UnOpInit::CAST) {
240     Init *L = BO->getOperand()->convertInitializerTo(this);
241     if (L == 0) return 0;
242     if (L != BO->getOperand())
243       return UnOpInit::get(UnOpInit::CAST, L, new StringRecTy);
244     return BO;
245   }
246
247   return convertValue((TypedInit*)BO);
248 }
249
250 Init *StringRecTy::convertValue(BinOpInit *BO) {
251   if (BO->getOpcode() == BinOpInit::STRCONCAT) {
252     Init *L = BO->getLHS()->convertInitializerTo(this);
253     Init *R = BO->getRHS()->convertInitializerTo(this);
254     if (L == 0 || R == 0) return 0;
255     if (L != BO->getLHS() || R != BO->getRHS())
256       return BinOpInit::get(BinOpInit::STRCONCAT, L, R, new StringRecTy);
257     return BO;
258   }
259
260   return convertValue((TypedInit*)BO);
261 }
262
263
264 Init *StringRecTy::convertValue(TypedInit *TI) {
265   if (isa<StringRecTy>(TI->getType()))
266     return TI;  // Accept variable if already of the right type!
267   return 0;
268 }
269
270 std::string ListRecTy::getAsString() const {
271   return "list<" + Ty->getAsString() + ">";
272 }
273
274 Init *ListRecTy::convertValue(ListInit *LI) {
275   std::vector<Init*> Elements;
276
277   // Verify that all of the elements of the list are subclasses of the
278   // appropriate class!
279   for (unsigned i = 0, e = LI->getSize(); i != e; ++i)
280     if (Init *CI = LI->getElement(i)->convertInitializerTo(Ty))
281       Elements.push_back(CI);
282     else
283       return 0;
284
285   if (!isa<ListRecTy>(LI->getType()))
286     return 0;
287
288   return ListInit::get(Elements, this);
289 }
290
291 Init *ListRecTy::convertValue(TypedInit *TI) {
292   // Ensure that TI is compatible with our class.
293   if (ListRecTy *LRT = dyn_cast<ListRecTy>(TI->getType()))
294     if (LRT->getElementType()->typeIsConvertibleTo(getElementType()))
295       return TI;
296   return 0;
297 }
298
299 bool ListRecTy::baseClassOf(const RecTy *RHS) const{
300   if(const ListRecTy* ListTy = dyn_cast<ListRecTy>(RHS))
301     return ListTy->getElementType()->typeIsConvertibleTo(Ty);
302   return false;
303 }
304
305 Init *DagRecTy::convertValue(TypedInit *TI) {
306   if (TI->getType()->typeIsConvertibleTo(this))
307     return TI;
308   return 0;
309 }
310
311 Init *DagRecTy::convertValue(UnOpInit *BO) {
312   if (BO->getOpcode() == UnOpInit::CAST) {
313     Init *L = BO->getOperand()->convertInitializerTo(this);
314     if (L == 0) return 0;
315     if (L != BO->getOperand())
316       return UnOpInit::get(UnOpInit::CAST, L, new DagRecTy);
317     return BO;
318   }
319   return 0;
320 }
321
322 Init *DagRecTy::convertValue(BinOpInit *BO) {
323   if (BO->getOpcode() == BinOpInit::CONCAT) {
324     Init *L = BO->getLHS()->convertInitializerTo(this);
325     Init *R = BO->getRHS()->convertInitializerTo(this);
326     if (L == 0 || R == 0) return 0;
327     if (L != BO->getLHS() || R != BO->getRHS())
328       return BinOpInit::get(BinOpInit::CONCAT, L, R, new DagRecTy);
329     return BO;
330   }
331   return 0;
332 }
333
334 RecordRecTy *RecordRecTy::get(Record *R) {
335   return dyn_cast<RecordRecTy>(R->getDefInit()->getType());
336 }
337
338 std::string RecordRecTy::getAsString() const {
339   return Rec->getName();
340 }
341
342 Init *RecordRecTy::convertValue(DefInit *DI) {
343   // Ensure that DI is a subclass of Rec.
344   if (!DI->getDef()->isSubClassOf(Rec))
345     return 0;
346   return DI;
347 }
348
349 Init *RecordRecTy::convertValue(TypedInit *TI) {
350   // Ensure that TI is compatible with Rec.
351   if (RecordRecTy *RRT = dyn_cast<RecordRecTy>(TI->getType()))
352     if (RRT->getRecord()->isSubClassOf(getRecord()) ||
353         RRT->getRecord() == getRecord())
354       return TI;
355   return 0;
356 }
357
358 bool RecordRecTy::baseClassOf(const RecTy *RHS) const{
359   const RecordRecTy *RTy = dyn_cast<RecordRecTy>(RHS);
360   if (!RTy)
361     return false;
362
363   if (Rec == RTy->getRecord() || RTy->getRecord()->isSubClassOf(Rec))
364     return true;
365
366   const std::vector<Record*> &SC = Rec->getSuperClasses();
367   for (unsigned i = 0, e = SC.size(); i != e; ++i)
368     if (RTy->getRecord()->isSubClassOf(SC[i]))
369       return true;
370
371   return false;
372 }
373
374 /// resolveTypes - Find a common type that T1 and T2 convert to.
375 /// Return 0 if no such type exists.
376 ///
377 RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) {
378   if (T1->typeIsConvertibleTo(T2))
379     return T2;
380   if (T2->typeIsConvertibleTo(T1))
381     return T1;
382
383   // If one is a Record type, check superclasses
384   if (RecordRecTy *RecTy1 = dyn_cast<RecordRecTy>(T1)) {
385     // See if T2 inherits from a type T1 also inherits from
386     const std::vector<Record *> &T1SuperClasses =
387       RecTy1->getRecord()->getSuperClasses();
388     for(std::vector<Record *>::const_iterator i = T1SuperClasses.begin(),
389           iend = T1SuperClasses.end();
390         i != iend;
391         ++i) {
392       RecordRecTy *SuperRecTy1 = RecordRecTy::get(*i);
393       RecTy *NewType1 = resolveTypes(SuperRecTy1, T2);
394       if (NewType1 != 0) {
395         if (NewType1 != SuperRecTy1) {
396           delete SuperRecTy1;
397         }
398         return NewType1;
399       }
400     }
401   }
402   if (RecordRecTy *RecTy2 = dyn_cast<RecordRecTy>(T2)) {
403     // See if T1 inherits from a type T2 also inherits from
404     const std::vector<Record *> &T2SuperClasses =
405       RecTy2->getRecord()->getSuperClasses();
406     for (std::vector<Record *>::const_iterator i = T2SuperClasses.begin(),
407           iend = T2SuperClasses.end();
408         i != iend;
409         ++i) {
410       RecordRecTy *SuperRecTy2 = RecordRecTy::get(*i);
411       RecTy *NewType2 = resolveTypes(T1, SuperRecTy2);
412       if (NewType2 != 0) {
413         if (NewType2 != SuperRecTy2) {
414           delete SuperRecTy2;
415         }
416         return NewType2;
417       }
418     }
419   }
420   return 0;
421 }
422
423
424 //===----------------------------------------------------------------------===//
425 //    Initializer implementations
426 //===----------------------------------------------------------------------===//
427
428 void Init::anchor() { }
429 void Init::dump() const { return print(errs()); }
430
431 void UnsetInit::anchor() { }
432
433 UnsetInit *UnsetInit::get() {
434   static UnsetInit TheInit;
435   return &TheInit;
436 }
437
438 void BitInit::anchor() { }
439
440 BitInit *BitInit::get(bool V) {
441   static BitInit True(true);
442   static BitInit False(false);
443
444   return V ? &True : &False;
445 }
446
447 static void
448 ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef<Init *> Range) {
449   ID.AddInteger(Range.size());
450
451   for (ArrayRef<Init *>::iterator i = Range.begin(),
452          iend = Range.end();
453        i != iend;
454        ++i)
455     ID.AddPointer(*i);
456 }
457
458 BitsInit *BitsInit::get(ArrayRef<Init *> Range) {
459   typedef FoldingSet<BitsInit> Pool;
460   static Pool ThePool;  
461
462   FoldingSetNodeID ID;
463   ProfileBitsInit(ID, Range);
464
465   void *IP = 0;
466   if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
467     return I;
468
469   BitsInit *I = new BitsInit(Range);
470   ThePool.InsertNode(I, IP);
471
472   return I;
473 }
474
475 void BitsInit::Profile(FoldingSetNodeID &ID) const {
476   ProfileBitsInit(ID, Bits);
477 }
478
479 Init *
480 BitsInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
481   SmallVector<Init *, 16> NewBits(Bits.size());
482
483   for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
484     if (Bits[i] >= getNumBits())
485       return 0;
486     NewBits[i] = getBit(Bits[i]);
487   }
488   return BitsInit::get(NewBits);
489 }
490
491 std::string BitsInit::getAsString() const {
492   std::string Result = "{ ";
493   for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
494     if (i) Result += ", ";
495     if (Init *Bit = getBit(e-i-1))
496       Result += Bit->getAsString();
497     else
498       Result += "*";
499   }
500   return Result + " }";
501 }
502
503 // Fix bit initializer to preserve the behavior that bit reference from a unset
504 // bits initializer will resolve into VarBitInit to keep the field name and bit
505 // number used in targets with fixed insn length.
506 static Init *fixBitInit(const RecordVal *RV, Init *Before, Init *After) {
507   if (RV || After != UnsetInit::get())
508     return After;
509   return Before;
510 }
511
512 // resolveReferences - If there are any field references that refer to fields
513 // that have been filled in, we can propagate the values now.
514 //
515 Init *BitsInit::resolveReferences(Record &R, const RecordVal *RV) const {
516   bool Changed = false;
517   SmallVector<Init *, 16> NewBits(getNumBits());
518
519   Init *CachedInit = 0;
520   Init *CachedBitVar = 0;
521   bool CachedBitVarChanged = false;
522
523   for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
524     Init *CurBit = Bits[i];
525     Init *CurBitVar = CurBit->getBitVar();
526
527     NewBits[i] = CurBit;
528
529     if (CurBitVar == CachedBitVar) {
530       if (CachedBitVarChanged) {
531         Init *Bit = CachedInit->getBit(CurBit->getBitNum());
532         NewBits[i] = fixBitInit(RV, CurBit, Bit);
533       }
534       continue;
535     }
536     CachedBitVar = CurBitVar;
537     CachedBitVarChanged = false;
538
539     Init *B;
540     do {
541       B = CurBitVar;
542       CurBitVar = CurBitVar->resolveReferences(R, RV);
543       CachedBitVarChanged |= B != CurBitVar;
544       Changed |= B != CurBitVar;
545     } while (B != CurBitVar);
546     CachedInit = CurBitVar;
547
548     if (CachedBitVarChanged) {
549       Init *Bit = CurBitVar->getBit(CurBit->getBitNum());
550       NewBits[i] = fixBitInit(RV, CurBit, Bit);
551     }
552   }
553
554   if (Changed)
555     return BitsInit::get(NewBits);
556
557   return const_cast<BitsInit *>(this);
558 }
559
560 IntInit *IntInit::get(int64_t V) {
561   typedef DenseMap<int64_t, IntInit *> Pool;
562   static Pool ThePool;
563
564   IntInit *&I = ThePool[V];
565   if (!I) I = new IntInit(V);
566   return I;
567 }
568
569 std::string IntInit::getAsString() const {
570   return itostr(Value);
571 }
572
573 Init *
574 IntInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
575   SmallVector<Init *, 16> NewBits(Bits.size());
576
577   for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
578     if (Bits[i] >= 64)
579       return 0;
580
581     NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i]));
582   }
583   return BitsInit::get(NewBits);
584 }
585
586 void StringInit::anchor() { }
587
588 StringInit *StringInit::get(StringRef V) {
589   typedef StringMap<StringInit *> Pool;
590   static Pool ThePool;
591
592   StringInit *&I = ThePool[V];
593   if (!I) I = new StringInit(V);
594   return I;
595 }
596
597 static void ProfileListInit(FoldingSetNodeID &ID,
598                             ArrayRef<Init *> Range,
599                             RecTy *EltTy) {
600   ID.AddInteger(Range.size());
601   ID.AddPointer(EltTy);
602
603   for (ArrayRef<Init *>::iterator i = Range.begin(),
604          iend = Range.end();
605        i != iend;
606        ++i)
607     ID.AddPointer(*i);
608 }
609
610 ListInit *ListInit::get(ArrayRef<Init *> Range, RecTy *EltTy) {
611   typedef FoldingSet<ListInit> Pool;
612   static Pool ThePool;
613
614   // Just use the FoldingSetNodeID to compute a hash.  Use a DenseMap
615   // for actual storage.
616   FoldingSetNodeID ID;
617   ProfileListInit(ID, Range, EltTy);
618
619   void *IP = 0;
620   if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
621     return I;
622
623   ListInit *I = new ListInit(Range, EltTy);
624   ThePool.InsertNode(I, IP);
625   return I;
626 }
627
628 void ListInit::Profile(FoldingSetNodeID &ID) const {
629   ListRecTy *ListType = dyn_cast<ListRecTy>(getType());
630   assert(ListType && "Bad type for ListInit!");
631   RecTy *EltTy = ListType->getElementType();
632
633   ProfileListInit(ID, Values, EltTy);
634 }
635
636 Init *
637 ListInit::convertInitListSlice(const std::vector<unsigned> &Elements) const {
638   std::vector<Init*> Vals;
639   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
640     if (Elements[i] >= getSize())
641       return 0;
642     Vals.push_back(getElement(Elements[i]));
643   }
644   return ListInit::get(Vals, getType());
645 }
646
647 Record *ListInit::getElementAsRecord(unsigned i) const {
648   assert(i < Values.size() && "List element index out of range!");
649   DefInit *DI = dyn_cast<DefInit>(Values[i]);
650   if (DI == 0)
651     PrintFatalError("Expected record in list!");
652   return DI->getDef();
653 }
654
655 Init *ListInit::resolveReferences(Record &R, const RecordVal *RV) const {
656   std::vector<Init*> Resolved;
657   Resolved.reserve(getSize());
658   bool Changed = false;
659
660   for (unsigned i = 0, e = getSize(); i != e; ++i) {
661     Init *E;
662     Init *CurElt = getElement(i);
663
664     do {
665       E = CurElt;
666       CurElt = CurElt->resolveReferences(R, RV);
667       Changed |= E != CurElt;
668     } while (E != CurElt);
669     Resolved.push_back(E);
670   }
671
672   if (Changed)
673     return ListInit::get(Resolved, getType());
674   return const_cast<ListInit *>(this);
675 }
676
677 Init *ListInit::resolveListElementReference(Record &R, const RecordVal *IRV,
678                                             unsigned Elt) const {
679   if (Elt >= getSize())
680     return 0;  // Out of range reference.
681   Init *E = getElement(Elt);
682   // If the element is set to some value, or if we are resolving a reference
683   // to a specific variable and that variable is explicitly unset, then
684   // replace the VarListElementInit with it.
685   if (IRV || !isa<UnsetInit>(E))
686     return E;
687   return 0;
688 }
689
690 std::string ListInit::getAsString() const {
691   std::string Result = "[";
692   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
693     if (i) Result += ", ";
694     Result += Values[i]->getAsString();
695   }
696   return Result + "]";
697 }
698
699 Init *OpInit::resolveListElementReference(Record &R, const RecordVal *IRV,
700                                           unsigned Elt) const {
701   Init *Resolved = resolveReferences(R, IRV);
702   OpInit *OResolved = dyn_cast<OpInit>(Resolved);
703   if (OResolved) {
704     Resolved = OResolved->Fold(&R, 0);
705   }
706
707   if (Resolved != this) {
708     TypedInit *Typed = dyn_cast<TypedInit>(Resolved);
709     assert(Typed && "Expected typed init for list reference");
710     if (Typed) {
711       Init *New = Typed->resolveListElementReference(R, IRV, Elt);
712       if (New)
713         return New;
714       return VarListElementInit::get(Typed, Elt);
715     }
716   }
717
718   return 0;
719 }
720
721 Init *OpInit::getBit(unsigned Bit) const {
722   if (getType() == BitRecTy::get())
723     return const_cast<OpInit*>(this);
724   return VarBitInit::get(const_cast<OpInit*>(this), Bit);
725 }
726
727 UnOpInit *UnOpInit::get(UnaryOp opc, Init *lhs, RecTy *Type) {
728   typedef std::pair<std::pair<unsigned, Init *>, RecTy *> Key;
729
730   typedef DenseMap<Key, UnOpInit *> Pool;
731   static Pool ThePool;  
732
733   Key TheKey(std::make_pair(std::make_pair(opc, lhs), Type));
734
735   UnOpInit *&I = ThePool[TheKey];
736   if (!I) I = new UnOpInit(opc, lhs, Type);
737   return I;
738 }
739
740 Init *UnOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
741   switch (getOpcode()) {
742   case CAST: {
743     if (getType()->getAsString() == "string") {
744       if (StringInit *LHSs = dyn_cast<StringInit>(LHS))
745         return LHSs;
746
747       if (DefInit *LHSd = dyn_cast<DefInit>(LHS))
748         return StringInit::get(LHSd->getDef()->getName());
749
750       if (IntInit *LHSi = dyn_cast<IntInit>(LHS))
751         return StringInit::get(LHSi->getAsString());
752     } else {
753       if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) {
754         std::string Name = LHSs->getValue();
755
756         // From TGParser::ParseIDValue
757         if (CurRec) {
758           if (const RecordVal *RV = CurRec->getValue(Name)) {
759             if (RV->getType() != getType())
760               PrintFatalError("type mismatch in cast");
761             return VarInit::get(Name, RV->getType());
762           }
763
764           Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name,
765                                               ":");
766       
767           if (CurRec->isTemplateArg(TemplateArgName)) {
768             const RecordVal *RV = CurRec->getValue(TemplateArgName);
769             assert(RV && "Template arg doesn't exist??");
770
771             if (RV->getType() != getType())
772               PrintFatalError("type mismatch in cast");
773
774             return VarInit::get(TemplateArgName, RV->getType());
775           }
776         }
777
778         if (CurMultiClass) {
779           Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::");
780
781           if (CurMultiClass->Rec.isTemplateArg(MCName)) {
782             const RecordVal *RV = CurMultiClass->Rec.getValue(MCName);
783             assert(RV && "Template arg doesn't exist??");
784
785             if (RV->getType() != getType())
786               PrintFatalError("type mismatch in cast");
787
788             return VarInit::get(MCName, RV->getType());
789           }
790         }
791
792         if (Record *D = (CurRec->getRecords()).getDef(Name))
793           return DefInit::get(D);
794
795         PrintFatalError(CurRec->getLoc(),
796                         "Undefined reference:'" + Name + "'\n");
797       }
798     }
799     break;
800   }
801   case HEAD: {
802     if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
803       if (LHSl->getSize() == 0) {
804         assert(0 && "Empty list in car");
805         return 0;
806       }
807       return LHSl->getElement(0);
808     }
809     break;
810   }
811   case TAIL: {
812     if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
813       if (LHSl->getSize() == 0) {
814         assert(0 && "Empty list in cdr");
815         return 0;
816       }
817       // Note the +1.  We can't just pass the result of getValues()
818       // directly.
819       ArrayRef<Init *>::iterator begin = LHSl->getValues().begin()+1;
820       ArrayRef<Init *>::iterator end   = LHSl->getValues().end();
821       ListInit *Result =
822         ListInit::get(ArrayRef<Init *>(begin, end - begin),
823                       LHSl->getType());
824       return Result;
825     }
826     break;
827   }
828   case EMPTY: {
829     if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
830       if (LHSl->getSize() == 0) {
831         return IntInit::get(1);
832       } else {
833         return IntInit::get(0);
834       }
835     }
836     if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) {
837       if (LHSs->getValue().empty()) {
838         return IntInit::get(1);
839       } else {
840         return IntInit::get(0);
841       }
842     }
843
844     break;
845   }
846   }
847   return const_cast<UnOpInit *>(this);
848 }
849
850 Init *UnOpInit::resolveReferences(Record &R, const RecordVal *RV) const {
851   Init *lhs = LHS->resolveReferences(R, RV);
852
853   if (LHS != lhs)
854     return (UnOpInit::get(getOpcode(), lhs, getType()))->Fold(&R, 0);
855   return Fold(&R, 0);
856 }
857
858 std::string UnOpInit::getAsString() const {
859   std::string Result;
860   switch (Opc) {
861   case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break;
862   case HEAD: Result = "!head"; break;
863   case TAIL: Result = "!tail"; break;
864   case EMPTY: Result = "!empty"; break;
865   }
866   return Result + "(" + LHS->getAsString() + ")";
867 }
868
869 BinOpInit *BinOpInit::get(BinaryOp opc, Init *lhs,
870                           Init *rhs, RecTy *Type) {
871   typedef std::pair<
872     std::pair<std::pair<unsigned, Init *>, Init *>,
873     RecTy *
874     > Key;
875
876   typedef DenseMap<Key, BinOpInit *> Pool;
877   static Pool ThePool;  
878
879   Key TheKey(std::make_pair(std::make_pair(std::make_pair(opc, lhs), rhs),
880                             Type));
881
882   BinOpInit *&I = ThePool[TheKey];
883   if (!I) I = new BinOpInit(opc, lhs, rhs, Type);
884   return I;
885 }
886
887 Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
888   switch (getOpcode()) {
889   case CONCAT: {
890     DagInit *LHSs = dyn_cast<DagInit>(LHS);
891     DagInit *RHSs = dyn_cast<DagInit>(RHS);
892     if (LHSs && RHSs) {
893       DefInit *LOp = dyn_cast<DefInit>(LHSs->getOperator());
894       DefInit *ROp = dyn_cast<DefInit>(RHSs->getOperator());
895       if (LOp == 0 || ROp == 0 || LOp->getDef() != ROp->getDef())
896         PrintFatalError("Concated Dag operators do not match!");
897       std::vector<Init*> Args;
898       std::vector<std::string> ArgNames;
899       for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) {
900         Args.push_back(LHSs->getArg(i));
901         ArgNames.push_back(LHSs->getArgName(i));
902       }
903       for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) {
904         Args.push_back(RHSs->getArg(i));
905         ArgNames.push_back(RHSs->getArgName(i));
906       }
907       return DagInit::get(LHSs->getOperator(), "", Args, ArgNames);
908     }
909     break;
910   }
911   case STRCONCAT: {
912     StringInit *LHSs = dyn_cast<StringInit>(LHS);
913     StringInit *RHSs = dyn_cast<StringInit>(RHS);
914     if (LHSs && RHSs)
915       return StringInit::get(LHSs->getValue() + RHSs->getValue());
916     break;
917   }
918   case EQ: {
919     // try to fold eq comparison for 'bit' and 'int', otherwise fallback
920     // to string objects.
921     IntInit *L =
922       dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get()));
923     IntInit *R =
924       dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get()));
925
926     if (L && R)
927       return IntInit::get(L->getValue() == R->getValue());
928
929     StringInit *LHSs = dyn_cast<StringInit>(LHS);
930     StringInit *RHSs = dyn_cast<StringInit>(RHS);
931
932     // Make sure we've resolved
933     if (LHSs && RHSs)
934       return IntInit::get(LHSs->getValue() == RHSs->getValue());
935
936     break;
937   }
938   case ADD:
939   case SHL:
940   case SRA:
941   case SRL: {
942     IntInit *LHSi = dyn_cast<IntInit>(LHS);
943     IntInit *RHSi = dyn_cast<IntInit>(RHS);
944     if (LHSi && RHSi) {
945       int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue();
946       int64_t Result;
947       switch (getOpcode()) {
948       default: llvm_unreachable("Bad opcode!");
949       case ADD: Result = LHSv +  RHSv; break;
950       case SHL: Result = LHSv << RHSv; break;
951       case SRA: Result = LHSv >> RHSv; break;
952       case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break;
953       }
954       return IntInit::get(Result);
955     }
956     break;
957   }
958   }
959   return const_cast<BinOpInit *>(this);
960 }
961
962 Init *BinOpInit::resolveReferences(Record &R, const RecordVal *RV) const {
963   Init *lhs = LHS->resolveReferences(R, RV);
964   Init *rhs = RHS->resolveReferences(R, RV);
965
966   if (LHS != lhs || RHS != rhs)
967     return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))->Fold(&R, 0);
968   return Fold(&R, 0);
969 }
970
971 std::string BinOpInit::getAsString() const {
972   std::string Result;
973   switch (Opc) {
974   case CONCAT: Result = "!con"; break;
975   case ADD: Result = "!add"; break;
976   case SHL: Result = "!shl"; break;
977   case SRA: Result = "!sra"; break;
978   case SRL: Result = "!srl"; break;
979   case EQ: Result = "!eq"; break;
980   case STRCONCAT: Result = "!strconcat"; break;
981   }
982   return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")";
983 }
984
985 TernOpInit *TernOpInit::get(TernaryOp opc, Init *lhs,
986                                   Init *mhs, Init *rhs,
987                                   RecTy *Type) {
988   typedef std::pair<
989     std::pair<
990       std::pair<std::pair<unsigned, RecTy *>, Init *>,
991       Init *
992       >,
993     Init *
994     > Key;
995
996   typedef DenseMap<Key, TernOpInit *> Pool;
997   static Pool ThePool;
998
999   Key TheKey(std::make_pair(std::make_pair(std::make_pair(std::make_pair(opc,
1000                                                                          Type),
1001                                                           lhs),
1002                                            mhs),
1003                             rhs));
1004
1005   TernOpInit *&I = ThePool[TheKey];
1006   if (!I) I = new TernOpInit(opc, lhs, mhs, rhs, Type);
1007   return I;
1008 }
1009
1010 static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
1011                            Record *CurRec, MultiClass *CurMultiClass);
1012
1013 static Init *EvaluateOperation(OpInit *RHSo, Init *LHS, Init *Arg,
1014                                RecTy *Type, Record *CurRec,
1015                                MultiClass *CurMultiClass) {
1016   std::vector<Init *> NewOperands;
1017
1018   TypedInit *TArg = dyn_cast<TypedInit>(Arg);
1019
1020   // If this is a dag, recurse
1021   if (TArg && TArg->getType()->getAsString() == "dag") {
1022     Init *Result = ForeachHelper(LHS, Arg, RHSo, Type,
1023                                  CurRec, CurMultiClass);
1024     if (Result != 0) {
1025       return Result;
1026     } else {
1027       return 0;
1028     }
1029   }
1030
1031   for (int i = 0; i < RHSo->getNumOperands(); ++i) {
1032     OpInit *RHSoo = dyn_cast<OpInit>(RHSo->getOperand(i));
1033
1034     if (RHSoo) {
1035       Init *Result = EvaluateOperation(RHSoo, LHS, Arg,
1036                                        Type, CurRec, CurMultiClass);
1037       if (Result != 0) {
1038         NewOperands.push_back(Result);
1039       } else {
1040         NewOperands.push_back(Arg);
1041       }
1042     } else if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) {
1043       NewOperands.push_back(Arg);
1044     } else {
1045       NewOperands.push_back(RHSo->getOperand(i));
1046     }
1047   }
1048
1049   // Now run the operator and use its result as the new leaf
1050   const OpInit *NewOp = RHSo->clone(NewOperands);
1051   Init *NewVal = NewOp->Fold(CurRec, CurMultiClass);
1052   if (NewVal != NewOp)
1053     return NewVal;
1054
1055   return 0;
1056 }
1057
1058 static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
1059                            Record *CurRec, MultiClass *CurMultiClass) {
1060   DagInit *MHSd = dyn_cast<DagInit>(MHS);
1061   ListInit *MHSl = dyn_cast<ListInit>(MHS);
1062
1063   OpInit *RHSo = dyn_cast<OpInit>(RHS);
1064
1065   if (!RHSo) {
1066     PrintFatalError(CurRec->getLoc(), "!foreach requires an operator\n");
1067   }
1068
1069   TypedInit *LHSt = dyn_cast<TypedInit>(LHS);
1070
1071   if (!LHSt)
1072     PrintFatalError(CurRec->getLoc(), "!foreach requires typed variable\n");
1073
1074   if ((MHSd && isa<DagRecTy>(Type)) || (MHSl && isa<ListRecTy>(Type))) {
1075     if (MHSd) {
1076       Init *Val = MHSd->getOperator();
1077       Init *Result = EvaluateOperation(RHSo, LHS, Val,
1078                                        Type, CurRec, CurMultiClass);
1079       if (Result != 0) {
1080         Val = Result;
1081       }
1082
1083       std::vector<std::pair<Init *, std::string> > args;
1084       for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) {
1085         Init *Arg;
1086         std::string ArgName;
1087         Arg = MHSd->getArg(i);
1088         ArgName = MHSd->getArgName(i);
1089
1090         // Process args
1091         Init *Result = EvaluateOperation(RHSo, LHS, Arg, Type,
1092                                          CurRec, CurMultiClass);
1093         if (Result != 0) {
1094           Arg = Result;
1095         }
1096
1097         // TODO: Process arg names
1098         args.push_back(std::make_pair(Arg, ArgName));
1099       }
1100
1101       return DagInit::get(Val, "", args);
1102     }
1103     if (MHSl) {
1104       std::vector<Init *> NewOperands;
1105       std::vector<Init *> NewList(MHSl->begin(), MHSl->end());
1106
1107       for (std::vector<Init *>::iterator li = NewList.begin(),
1108              liend = NewList.end();
1109            li != liend;
1110            ++li) {
1111         Init *Item = *li;
1112         NewOperands.clear();
1113         for(int i = 0; i < RHSo->getNumOperands(); ++i) {
1114           // First, replace the foreach variable with the list item
1115           if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) {
1116             NewOperands.push_back(Item);
1117           } else {
1118             NewOperands.push_back(RHSo->getOperand(i));
1119           }
1120         }
1121
1122         // Now run the operator and use its result as the new list item
1123         const OpInit *NewOp = RHSo->clone(NewOperands);
1124         Init *NewItem = NewOp->Fold(CurRec, CurMultiClass);
1125         if (NewItem != NewOp)
1126           *li = NewItem;
1127       }
1128       return ListInit::get(NewList, MHSl->getType());
1129     }
1130   }
1131   return 0;
1132 }
1133
1134 Init *TernOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
1135   switch (getOpcode()) {
1136   case SUBST: {
1137     DefInit *LHSd = dyn_cast<DefInit>(LHS);
1138     VarInit *LHSv = dyn_cast<VarInit>(LHS);
1139     StringInit *LHSs = dyn_cast<StringInit>(LHS);
1140
1141     DefInit *MHSd = dyn_cast<DefInit>(MHS);
1142     VarInit *MHSv = dyn_cast<VarInit>(MHS);
1143     StringInit *MHSs = dyn_cast<StringInit>(MHS);
1144
1145     DefInit *RHSd = dyn_cast<DefInit>(RHS);
1146     VarInit *RHSv = dyn_cast<VarInit>(RHS);
1147     StringInit *RHSs = dyn_cast<StringInit>(RHS);
1148
1149     if ((LHSd && MHSd && RHSd)
1150         || (LHSv && MHSv && RHSv)
1151         || (LHSs && MHSs && RHSs)) {
1152       if (RHSd) {
1153         Record *Val = RHSd->getDef();
1154         if (LHSd->getAsString() == RHSd->getAsString()) {
1155           Val = MHSd->getDef();
1156         }
1157         return DefInit::get(Val);
1158       }
1159       if (RHSv) {
1160         std::string Val = RHSv->getName();
1161         if (LHSv->getAsString() == RHSv->getAsString()) {
1162           Val = MHSv->getName();
1163         }
1164         return VarInit::get(Val, getType());
1165       }
1166       if (RHSs) {
1167         std::string Val = RHSs->getValue();
1168
1169         std::string::size_type found;
1170         std::string::size_type idx = 0;
1171         do {
1172           found = Val.find(LHSs->getValue(), idx);
1173           if (found != std::string::npos) {
1174             Val.replace(found, LHSs->getValue().size(), MHSs->getValue());
1175           }
1176           idx = found +  MHSs->getValue().size();
1177         } while (found != std::string::npos);
1178
1179         return StringInit::get(Val);
1180       }
1181     }
1182     break;
1183   }
1184
1185   case FOREACH: {
1186     Init *Result = ForeachHelper(LHS, MHS, RHS, getType(),
1187                                  CurRec, CurMultiClass);
1188     if (Result != 0) {
1189       return Result;
1190     }
1191     break;
1192   }
1193
1194   case IF: {
1195     IntInit *LHSi = dyn_cast<IntInit>(LHS);
1196     if (Init *I = LHS->convertInitializerTo(IntRecTy::get()))
1197       LHSi = dyn_cast<IntInit>(I);
1198     if (LHSi) {
1199       if (LHSi->getValue()) {
1200         return MHS;
1201       } else {
1202         return RHS;
1203       }
1204     }
1205     break;
1206   }
1207   }
1208
1209   return const_cast<TernOpInit *>(this);
1210 }
1211
1212 Init *TernOpInit::resolveReferences(Record &R,
1213                                     const RecordVal *RV) const {
1214   Init *lhs = LHS->resolveReferences(R, RV);
1215
1216   if (Opc == IF && lhs != LHS) {
1217     IntInit *Value = dyn_cast<IntInit>(lhs);
1218     if (Init *I = lhs->convertInitializerTo(IntRecTy::get()))
1219       Value = dyn_cast<IntInit>(I);
1220     if (Value != 0) {
1221       // Short-circuit
1222       if (Value->getValue()) {
1223         Init *mhs = MHS->resolveReferences(R, RV);
1224         return (TernOpInit::get(getOpcode(), lhs, mhs,
1225                                 RHS, getType()))->Fold(&R, 0);
1226       } else {
1227         Init *rhs = RHS->resolveReferences(R, RV);
1228         return (TernOpInit::get(getOpcode(), lhs, MHS,
1229                                 rhs, getType()))->Fold(&R, 0);
1230       }
1231     }
1232   }
1233
1234   Init *mhs = MHS->resolveReferences(R, RV);
1235   Init *rhs = RHS->resolveReferences(R, RV);
1236
1237   if (LHS != lhs || MHS != mhs || RHS != rhs)
1238     return (TernOpInit::get(getOpcode(), lhs, mhs, rhs,
1239                             getType()))->Fold(&R, 0);
1240   return Fold(&R, 0);
1241 }
1242
1243 std::string TernOpInit::getAsString() const {
1244   std::string Result;
1245   switch (Opc) {
1246   case SUBST: Result = "!subst"; break;
1247   case FOREACH: Result = "!foreach"; break;
1248   case IF: Result = "!if"; break;
1249  }
1250   return Result + "(" + LHS->getAsString() + ", " + MHS->getAsString() + ", "
1251     + RHS->getAsString() + ")";
1252 }
1253
1254 RecTy *TypedInit::getFieldType(const std::string &FieldName) const {
1255   if (RecordRecTy *RecordType = dyn_cast<RecordRecTy>(getType()))
1256     if (RecordVal *Field = RecordType->getRecord()->getValue(FieldName))
1257       return Field->getType();
1258   return 0;
1259 }
1260
1261 Init *
1262 TypedInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
1263   BitsRecTy *T = dyn_cast<BitsRecTy>(getType());
1264   if (T == 0) return 0;  // Cannot subscript a non-bits variable.
1265   unsigned NumBits = T->getNumBits();
1266
1267   SmallVector<Init *, 16> NewBits(Bits.size());
1268   for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
1269     if (Bits[i] >= NumBits)
1270       return 0;
1271
1272     NewBits[i] = VarBitInit::get(const_cast<TypedInit *>(this), Bits[i]);
1273   }
1274   return BitsInit::get(NewBits);
1275 }
1276
1277 Init *
1278 TypedInit::convertInitListSlice(const std::vector<unsigned> &Elements) const {
1279   ListRecTy *T = dyn_cast<ListRecTy>(getType());
1280   if (T == 0) return 0;  // Cannot subscript a non-list variable.
1281
1282   if (Elements.size() == 1)
1283     return VarListElementInit::get(const_cast<TypedInit *>(this), Elements[0]);
1284
1285   std::vector<Init*> ListInits;
1286   ListInits.reserve(Elements.size());
1287   for (unsigned i = 0, e = Elements.size(); i != e; ++i)
1288     ListInits.push_back(VarListElementInit::get(const_cast<TypedInit *>(this),
1289                                                 Elements[i]));
1290   return ListInit::get(ListInits, T);
1291 }
1292
1293
1294 VarInit *VarInit::get(const std::string &VN, RecTy *T) {
1295   Init *Value = StringInit::get(VN);
1296   return VarInit::get(Value, T);
1297 }
1298
1299 VarInit *VarInit::get(Init *VN, RecTy *T) {
1300   typedef std::pair<RecTy *, Init *> Key;
1301   typedef DenseMap<Key, VarInit *> Pool;
1302   static Pool ThePool;
1303
1304   Key TheKey(std::make_pair(T, VN));
1305
1306   VarInit *&I = ThePool[TheKey];
1307   if (!I) I = new VarInit(VN, T);
1308   return I;
1309 }
1310
1311 const std::string &VarInit::getName() const {
1312   StringInit *NameString = dyn_cast<StringInit>(getNameInit());
1313   assert(NameString && "VarInit name is not a string!");
1314   return NameString->getValue();
1315 }
1316
1317 Init *VarInit::getBit(unsigned Bit) const {
1318   if (getType() == BitRecTy::get())
1319     return const_cast<VarInit*>(this);
1320   return VarBitInit::get(const_cast<VarInit*>(this), Bit);
1321 }
1322
1323 Init *VarInit::resolveListElementReference(Record &R,
1324                                            const RecordVal *IRV,
1325                                            unsigned Elt) const {
1326   if (R.isTemplateArg(getNameInit())) return 0;
1327   if (IRV && IRV->getNameInit() != getNameInit()) return 0;
1328
1329   RecordVal *RV = R.getValue(getNameInit());
1330   assert(RV && "Reference to a non-existent variable?");
1331   ListInit *LI = dyn_cast<ListInit>(RV->getValue());
1332   if (!LI) {
1333     TypedInit *VI = dyn_cast<TypedInit>(RV->getValue());
1334     assert(VI && "Invalid list element!");
1335     return VarListElementInit::get(VI, Elt);
1336   }
1337
1338   if (Elt >= LI->getSize())
1339     return 0;  // Out of range reference.
1340   Init *E = LI->getElement(Elt);
1341   // If the element is set to some value, or if we are resolving a reference
1342   // to a specific variable and that variable is explicitly unset, then
1343   // replace the VarListElementInit with it.
1344   if (IRV || !isa<UnsetInit>(E))
1345     return E;
1346   return 0;
1347 }
1348
1349
1350 RecTy *VarInit::getFieldType(const std::string &FieldName) const {
1351   if (RecordRecTy *RTy = dyn_cast<RecordRecTy>(getType()))
1352     if (const RecordVal *RV = RTy->getRecord()->getValue(FieldName))
1353       return RV->getType();
1354   return 0;
1355 }
1356
1357 Init *VarInit::getFieldInit(Record &R, const RecordVal *RV,
1358                             const std::string &FieldName) const {
1359   if (isa<RecordRecTy>(getType()))
1360     if (const RecordVal *Val = R.getValue(VarName)) {
1361       if (RV != Val && (RV || isa<UnsetInit>(Val->getValue())))
1362         return 0;
1363       Init *TheInit = Val->getValue();
1364       assert(TheInit != this && "Infinite loop detected!");
1365       if (Init *I = TheInit->getFieldInit(R, RV, FieldName))
1366         return I;
1367       else
1368         return 0;
1369     }
1370   return 0;
1371 }
1372
1373 /// resolveReferences - This method is used by classes that refer to other
1374 /// variables which may not be defined at the time the expression is formed.
1375 /// If a value is set for the variable later, this method will be called on
1376 /// users of the value to allow the value to propagate out.
1377 ///
1378 Init *VarInit::resolveReferences(Record &R, const RecordVal *RV) const {
1379   if (RecordVal *Val = R.getValue(VarName))
1380     if (RV == Val || (RV == 0 && !isa<UnsetInit>(Val->getValue())))
1381       return Val->getValue();
1382   return const_cast<VarInit *>(this);
1383 }
1384
1385 VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) {
1386   typedef std::pair<TypedInit *, unsigned> Key;
1387   typedef DenseMap<Key, VarBitInit *> Pool;
1388
1389   static Pool ThePool;
1390
1391   Key TheKey(std::make_pair(T, B));
1392
1393   VarBitInit *&I = ThePool[TheKey];
1394   if (!I) I = new VarBitInit(T, B);
1395   return I;
1396 }
1397
1398 std::string VarBitInit::getAsString() const {
1399    return TI->getAsString() + "{" + utostr(Bit) + "}";
1400 }
1401
1402 Init *VarBitInit::resolveReferences(Record &R, const RecordVal *RV) const {
1403   Init *I = TI->resolveReferences(R, RV);
1404   if (TI != I)
1405     return I->getBit(getBitNum());
1406
1407   return const_cast<VarBitInit*>(this);
1408 }
1409
1410 VarListElementInit *VarListElementInit::get(TypedInit *T,
1411                                             unsigned E) {
1412   typedef std::pair<TypedInit *, unsigned> Key;
1413   typedef DenseMap<Key, VarListElementInit *> Pool;
1414
1415   static Pool ThePool;
1416
1417   Key TheKey(std::make_pair(T, E));
1418
1419   VarListElementInit *&I = ThePool[TheKey];
1420   if (!I) I = new VarListElementInit(T, E);
1421   return I;
1422 }
1423
1424 std::string VarListElementInit::getAsString() const {
1425   return TI->getAsString() + "[" + utostr(Element) + "]";
1426 }
1427
1428 Init *
1429 VarListElementInit::resolveReferences(Record &R, const RecordVal *RV) const {
1430   if (Init *I = getVariable()->resolveListElementReference(R, RV,
1431                                                            getElementNum()))
1432     return I;
1433   return const_cast<VarListElementInit *>(this);
1434 }
1435
1436 Init *VarListElementInit::getBit(unsigned Bit) const {
1437   if (getType() == BitRecTy::get())
1438     return const_cast<VarListElementInit*>(this);
1439   return VarBitInit::get(const_cast<VarListElementInit*>(this), Bit);
1440 }
1441
1442 Init *VarListElementInit:: resolveListElementReference(Record &R,
1443                                                        const RecordVal *RV,
1444                                                        unsigned Elt) const {
1445   Init *Result = TI->resolveListElementReference(R, RV, Element);
1446   
1447   if (Result) {
1448     if (TypedInit *TInit = dyn_cast<TypedInit>(Result)) {
1449       Init *Result2 = TInit->resolveListElementReference(R, RV, Elt);
1450       if (Result2) return Result2;
1451       return new VarListElementInit(TInit, Elt);
1452     }
1453     return Result;
1454   }
1455  
1456   return 0;
1457 }
1458
1459 DefInit *DefInit::get(Record *R) {
1460   return R->getDefInit();
1461 }
1462
1463 RecTy *DefInit::getFieldType(const std::string &FieldName) const {
1464   if (const RecordVal *RV = Def->getValue(FieldName))
1465     return RV->getType();
1466   return 0;
1467 }
1468
1469 Init *DefInit::getFieldInit(Record &R, const RecordVal *RV,
1470                             const std::string &FieldName) const {
1471   return Def->getValue(FieldName)->getValue();
1472 }
1473
1474
1475 std::string DefInit::getAsString() const {
1476   return Def->getName();
1477 }
1478
1479 FieldInit *FieldInit::get(Init *R, const std::string &FN) {
1480   typedef std::pair<Init *, TableGenStringKey> Key;
1481   typedef DenseMap<Key, FieldInit *> Pool;
1482   static Pool ThePool;  
1483
1484   Key TheKey(std::make_pair(R, FN));
1485
1486   FieldInit *&I = ThePool[TheKey];
1487   if (!I) I = new FieldInit(R, FN);
1488   return I;
1489 }
1490
1491 Init *FieldInit::getBit(unsigned Bit) const {
1492   if (getType() == BitRecTy::get())
1493     return const_cast<FieldInit*>(this);
1494   return VarBitInit::get(const_cast<FieldInit*>(this), Bit);
1495 }
1496
1497 Init *FieldInit::resolveListElementReference(Record &R, const RecordVal *RV,
1498                                              unsigned Elt) const {
1499   if (Init *ListVal = Rec->getFieldInit(R, RV, FieldName))
1500     if (ListInit *LI = dyn_cast<ListInit>(ListVal)) {
1501       if (Elt >= LI->getSize()) return 0;
1502       Init *E = LI->getElement(Elt);
1503
1504       // If the element is set to some value, or if we are resolving a
1505       // reference to a specific variable and that variable is explicitly
1506       // unset, then replace the VarListElementInit with it.
1507       if (RV || !isa<UnsetInit>(E))
1508         return E;
1509     }
1510   return 0;
1511 }
1512
1513 Init *FieldInit::resolveReferences(Record &R, const RecordVal *RV) const {
1514   Init *NewRec = RV ? Rec->resolveReferences(R, RV) : Rec;
1515
1516   Init *BitsVal = NewRec->getFieldInit(R, RV, FieldName);
1517   if (BitsVal) {
1518     Init *BVR = BitsVal->resolveReferences(R, RV);
1519     return BVR->isComplete() ? BVR : const_cast<FieldInit *>(this);
1520   }
1521
1522   if (NewRec != Rec) {
1523     return FieldInit::get(NewRec, FieldName);
1524   }
1525   return const_cast<FieldInit *>(this);
1526 }
1527
1528 static void ProfileDagInit(FoldingSetNodeID &ID, Init *V, const std::string &VN,
1529                            ArrayRef<Init *> ArgRange,
1530                            ArrayRef<std::string> NameRange) {
1531   ID.AddPointer(V);
1532   ID.AddString(VN);
1533
1534   ArrayRef<Init *>::iterator Arg  = ArgRange.begin();
1535   ArrayRef<std::string>::iterator  Name = NameRange.begin();
1536   while (Arg != ArgRange.end()) {
1537     assert(Name != NameRange.end() && "Arg name underflow!");
1538     ID.AddPointer(*Arg++);
1539     ID.AddString(*Name++);
1540   }
1541   assert(Name == NameRange.end() && "Arg name overflow!");
1542 }
1543
1544 DagInit *
1545 DagInit::get(Init *V, const std::string &VN,
1546              ArrayRef<Init *> ArgRange,
1547              ArrayRef<std::string> NameRange) {
1548   typedef FoldingSet<DagInit> Pool;
1549   static Pool ThePool;  
1550
1551   FoldingSetNodeID ID;
1552   ProfileDagInit(ID, V, VN, ArgRange, NameRange);
1553
1554   void *IP = 0;
1555   if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
1556     return I;
1557
1558   DagInit *I = new DagInit(V, VN, ArgRange, NameRange);
1559   ThePool.InsertNode(I, IP);
1560
1561   return I;
1562 }
1563
1564 DagInit *
1565 DagInit::get(Init *V, const std::string &VN,
1566              const std::vector<std::pair<Init*, std::string> > &args) {
1567   typedef std::pair<Init*, std::string> PairType;
1568
1569   std::vector<Init *> Args;
1570   std::vector<std::string> Names;
1571
1572   for (std::vector<PairType>::const_iterator i = args.begin(),
1573          iend = args.end();
1574        i != iend;
1575        ++i) {
1576     Args.push_back(i->first);
1577     Names.push_back(i->second);
1578   }
1579
1580   return DagInit::get(V, VN, Args, Names);
1581 }
1582
1583 void DagInit::Profile(FoldingSetNodeID &ID) const {
1584   ProfileDagInit(ID, Val, ValName, Args, ArgNames);
1585 }
1586
1587 Init *DagInit::resolveReferences(Record &R, const RecordVal *RV) const {
1588   std::vector<Init*> NewArgs;
1589   for (unsigned i = 0, e = Args.size(); i != e; ++i)
1590     NewArgs.push_back(Args[i]->resolveReferences(R, RV));
1591
1592   Init *Op = Val->resolveReferences(R, RV);
1593
1594   if (Args != NewArgs || Op != Val)
1595     return DagInit::get(Op, ValName, NewArgs, ArgNames);
1596
1597   return const_cast<DagInit *>(this);
1598 }
1599
1600
1601 std::string DagInit::getAsString() const {
1602   std::string Result = "(" + Val->getAsString();
1603   if (!ValName.empty())
1604     Result += ":" + ValName;
1605   if (Args.size()) {
1606     Result += " " + Args[0]->getAsString();
1607     if (!ArgNames[0].empty()) Result += ":$" + ArgNames[0];
1608     for (unsigned i = 1, e = Args.size(); i != e; ++i) {
1609       Result += ", " + Args[i]->getAsString();
1610       if (!ArgNames[i].empty()) Result += ":$" + ArgNames[i];
1611     }
1612   }
1613   return Result + ")";
1614 }
1615
1616
1617 //===----------------------------------------------------------------------===//
1618 //    Other implementations
1619 //===----------------------------------------------------------------------===//
1620
1621 RecordVal::RecordVal(Init *N, RecTy *T, unsigned P)
1622   : Name(N), Ty(T), Prefix(P) {
1623   Value = Ty->convertValue(UnsetInit::get());
1624   assert(Value && "Cannot create unset value for current type!");
1625 }
1626
1627 RecordVal::RecordVal(const std::string &N, RecTy *T, unsigned P)
1628   : Name(StringInit::get(N)), Ty(T), Prefix(P) {
1629   Value = Ty->convertValue(UnsetInit::get());
1630   assert(Value && "Cannot create unset value for current type!");
1631 }
1632
1633 const std::string &RecordVal::getName() const {
1634   StringInit *NameString = dyn_cast<StringInit>(Name);
1635   assert(NameString && "RecordVal name is not a string!");
1636   return NameString->getValue();
1637 }
1638
1639 void RecordVal::dump() const { errs() << *this; }
1640
1641 void RecordVal::print(raw_ostream &OS, bool PrintSem) const {
1642   if (getPrefix()) OS << "field ";
1643   OS << *getType() << " " << getNameInitAsString();
1644
1645   if (getValue())
1646     OS << " = " << *getValue();
1647
1648   if (PrintSem) OS << ";\n";
1649 }
1650
1651 unsigned Record::LastID = 0;
1652
1653 void Record::init() {
1654   checkName();
1655
1656   // Every record potentially has a def at the top.  This value is
1657   // replaced with the top-level def name at instantiation time.
1658   RecordVal DN("NAME", StringRecTy::get(), 0);
1659   addValue(DN);
1660 }
1661
1662 void Record::checkName() {
1663   // Ensure the record name has string type.
1664   const TypedInit *TypedName = dyn_cast<const TypedInit>(Name);
1665   assert(TypedName && "Record name is not typed!");
1666   RecTy *Type = TypedName->getType();
1667   if (!isa<StringRecTy>(Type))
1668     PrintFatalError(getLoc(), "Record name is not a string!");
1669 }
1670
1671 DefInit *Record::getDefInit() {
1672   if (!TheInit)
1673     TheInit = new DefInit(this, new RecordRecTy(this));
1674   return TheInit;
1675 }
1676
1677 const std::string &Record::getName() const {
1678   const StringInit *NameString = dyn_cast<StringInit>(Name);
1679   assert(NameString && "Record name is not a string!");
1680   return NameString->getValue();
1681 }
1682
1683 void Record::setName(Init *NewName) {
1684   if (TrackedRecords.getDef(Name->getAsUnquotedString()) == this) {
1685     TrackedRecords.removeDef(Name->getAsUnquotedString());
1686     TrackedRecords.addDef(this);
1687   } else if (TrackedRecords.getClass(Name->getAsUnquotedString()) == this) {
1688     TrackedRecords.removeClass(Name->getAsUnquotedString());
1689     TrackedRecords.addClass(this);
1690   }  // Otherwise this isn't yet registered.
1691   Name = NewName;
1692   checkName();
1693   // DO NOT resolve record values to the name at this point because
1694   // there might be default values for arguments of this def.  Those
1695   // arguments might not have been resolved yet so we don't want to
1696   // prematurely assume values for those arguments were not passed to
1697   // this def.
1698   //
1699   // Nonetheless, it may be that some of this Record's values
1700   // reference the record name.  Indeed, the reason for having the
1701   // record name be an Init is to provide this flexibility.  The extra
1702   // resolve steps after completely instantiating defs takes care of
1703   // this.  See TGParser::ParseDef and TGParser::ParseDefm.
1704 }
1705
1706 void Record::setName(const std::string &Name) {
1707   setName(StringInit::get(Name));
1708 }
1709
1710 /// resolveReferencesTo - If anything in this record refers to RV, replace the
1711 /// reference to RV with the RHS of RV.  If RV is null, we resolve all possible
1712 /// references.
1713 void Record::resolveReferencesTo(const RecordVal *RV) {
1714   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1715     if (RV == &Values[i]) // Skip resolve the same field as the given one
1716       continue;
1717     if (Init *V = Values[i].getValue())
1718       if (Values[i].setValue(V->resolveReferences(*this, RV)))
1719         PrintFatalError(getLoc(), "Invalid value is found when setting '"
1720                       + Values[i].getNameInitAsString()
1721                       + "' after resolving references"
1722                       + (RV ? " against '" + RV->getNameInitAsString()
1723                               + "' of ("
1724                               + RV->getValue()->getAsUnquotedString() + ")"
1725                             : "")
1726                       + "\n");
1727   }
1728   Init *OldName = getNameInit();
1729   Init *NewName = Name->resolveReferences(*this, RV);
1730   if (NewName != OldName) {
1731     // Re-register with RecordKeeper.
1732     setName(NewName);
1733   }
1734 }
1735
1736 void Record::dump() const { errs() << *this; }
1737
1738 raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) {
1739   OS << R.getNameInitAsString();
1740
1741   const std::vector<Init *> &TArgs = R.getTemplateArgs();
1742   if (!TArgs.empty()) {
1743     OS << "<";
1744     for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
1745       if (i) OS << ", ";
1746       const RecordVal *RV = R.getValue(TArgs[i]);
1747       assert(RV && "Template argument record not found??");
1748       RV->print(OS, false);
1749     }
1750     OS << ">";
1751   }
1752
1753   OS << " {";
1754   const std::vector<Record*> &SC = R.getSuperClasses();
1755   if (!SC.empty()) {
1756     OS << "\t//";
1757     for (unsigned i = 0, e = SC.size(); i != e; ++i)
1758       OS << " " << SC[i]->getNameInitAsString();
1759   }
1760   OS << "\n";
1761
1762   const std::vector<RecordVal> &Vals = R.getValues();
1763   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
1764     if (Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName()))
1765       OS << Vals[i];
1766   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
1767     if (!Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName()))
1768       OS << Vals[i];
1769
1770   return OS << "}\n";
1771 }
1772
1773 /// getValueInit - Return the initializer for a value with the specified name,
1774 /// or abort if the field does not exist.
1775 ///
1776 Init *Record::getValueInit(StringRef FieldName) const {
1777   const RecordVal *R = getValue(FieldName);
1778   if (R == 0 || R->getValue() == 0)
1779     PrintFatalError(getLoc(), "Record `" + getName() +
1780       "' does not have a field named `" + FieldName.str() + "'!\n");
1781   return R->getValue();
1782 }
1783
1784
1785 /// getValueAsString - This method looks up the specified field and returns its
1786 /// value as a string, aborts if the field does not exist or if
1787 /// the value is not a string.
1788 ///
1789 std::string Record::getValueAsString(StringRef FieldName) const {
1790   const RecordVal *R = getValue(FieldName);
1791   if (R == 0 || R->getValue() == 0)
1792     PrintFatalError(getLoc(), "Record `" + getName() +
1793       "' does not have a field named `" + FieldName.str() + "'!\n");
1794
1795   if (StringInit *SI = dyn_cast<StringInit>(R->getValue()))
1796     return SI->getValue();
1797   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1798     FieldName.str() + "' does not have a string initializer!");
1799 }
1800
1801 /// getValueAsBitsInit - This method looks up the specified field and returns
1802 /// its value as a BitsInit, aborts if the field does not exist or if
1803 /// the value is not the right type.
1804 ///
1805 BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const {
1806   const RecordVal *R = getValue(FieldName);
1807   if (R == 0 || R->getValue() == 0)
1808     PrintFatalError(getLoc(), "Record `" + getName() +
1809       "' does not have a field named `" + FieldName.str() + "'!\n");
1810
1811   if (BitsInit *BI = dyn_cast<BitsInit>(R->getValue()))
1812     return BI;
1813   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1814     FieldName.str() + "' does not have a BitsInit initializer!");
1815 }
1816
1817 /// getValueAsListInit - This method looks up the specified field and returns
1818 /// its value as a ListInit, aborting if the field does not exist or if
1819 /// the value is not the right type.
1820 ///
1821 ListInit *Record::getValueAsListInit(StringRef FieldName) const {
1822   const RecordVal *R = getValue(FieldName);
1823   if (R == 0 || R->getValue() == 0)
1824     PrintFatalError(getLoc(), "Record `" + getName() +
1825       "' does not have a field named `" + FieldName.str() + "'!\n");
1826
1827   if (ListInit *LI = dyn_cast<ListInit>(R->getValue()))
1828     return LI;
1829   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1830     FieldName.str() + "' does not have a list initializer!");
1831 }
1832
1833 /// getValueAsListOfDefs - This method looks up the specified field and returns
1834 /// its value as a vector of records, aborting if the field does not exist
1835 /// or if the value is not the right type.
1836 ///
1837 std::vector<Record*>
1838 Record::getValueAsListOfDefs(StringRef FieldName) const {
1839   ListInit *List = getValueAsListInit(FieldName);
1840   std::vector<Record*> Defs;
1841   for (unsigned i = 0; i < List->getSize(); i++) {
1842     if (DefInit *DI = dyn_cast<DefInit>(List->getElement(i))) {
1843       Defs.push_back(DI->getDef());
1844     } else {
1845       PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1846         FieldName.str() + "' list is not entirely DefInit!");
1847     }
1848   }
1849   return Defs;
1850 }
1851
1852 /// getValueAsInt - This method looks up the specified field and returns its
1853 /// value as an int64_t, aborting if the field does not exist or if the value
1854 /// is not the right type.
1855 ///
1856 int64_t Record::getValueAsInt(StringRef FieldName) const {
1857   const RecordVal *R = getValue(FieldName);
1858   if (R == 0 || R->getValue() == 0)
1859     PrintFatalError(getLoc(), "Record `" + getName() +
1860       "' does not have a field named `" + FieldName.str() + "'!\n");
1861
1862   if (IntInit *II = dyn_cast<IntInit>(R->getValue()))
1863     return II->getValue();
1864   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1865     FieldName.str() + "' does not have an int initializer!");
1866 }
1867
1868 /// getValueAsListOfInts - This method looks up the specified field and returns
1869 /// its value as a vector of integers, aborting if the field does not exist or
1870 /// if the value is not the right type.
1871 ///
1872 std::vector<int64_t>
1873 Record::getValueAsListOfInts(StringRef FieldName) const {
1874   ListInit *List = getValueAsListInit(FieldName);
1875   std::vector<int64_t> Ints;
1876   for (unsigned i = 0; i < List->getSize(); i++) {
1877     if (IntInit *II = dyn_cast<IntInit>(List->getElement(i))) {
1878       Ints.push_back(II->getValue());
1879     } else {
1880       PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1881         FieldName.str() + "' does not have a list of ints initializer!");
1882     }
1883   }
1884   return Ints;
1885 }
1886
1887 /// getValueAsListOfStrings - This method looks up the specified field and
1888 /// returns its value as a vector of strings, aborting if the field does not
1889 /// exist or if the value is not the right type.
1890 ///
1891 std::vector<std::string>
1892 Record::getValueAsListOfStrings(StringRef FieldName) const {
1893   ListInit *List = getValueAsListInit(FieldName);
1894   std::vector<std::string> Strings;
1895   for (unsigned i = 0; i < List->getSize(); i++) {
1896     if (StringInit *II = dyn_cast<StringInit>(List->getElement(i))) {
1897       Strings.push_back(II->getValue());
1898     } else {
1899       PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1900         FieldName.str() + "' does not have a list of strings initializer!");
1901     }
1902   }
1903   return Strings;
1904 }
1905
1906 /// getValueAsDef - This method looks up the specified field and returns its
1907 /// value as a Record, aborting if the field does not exist or if the value
1908 /// is not the right type.
1909 ///
1910 Record *Record::getValueAsDef(StringRef FieldName) const {
1911   const RecordVal *R = getValue(FieldName);
1912   if (R == 0 || R->getValue() == 0)
1913     PrintFatalError(getLoc(), "Record `" + getName() +
1914       "' does not have a field named `" + FieldName.str() + "'!\n");
1915
1916   if (DefInit *DI = dyn_cast<DefInit>(R->getValue()))
1917     return DI->getDef();
1918   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1919     FieldName.str() + "' does not have a def initializer!");
1920 }
1921
1922 /// getValueAsBit - This method looks up the specified field and returns its
1923 /// value as a bit, aborting if the field does not exist or if the value is
1924 /// not the right type.
1925 ///
1926 bool Record::getValueAsBit(StringRef FieldName) const {
1927   const RecordVal *R = getValue(FieldName);
1928   if (R == 0 || R->getValue() == 0)
1929     PrintFatalError(getLoc(), "Record `" + getName() +
1930       "' does not have a field named `" + FieldName.str() + "'!\n");
1931
1932   if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
1933     return BI->getValue();
1934   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1935     FieldName.str() + "' does not have a bit initializer!");
1936 }
1937
1938 bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const {
1939   const RecordVal *R = getValue(FieldName);
1940   if (R == 0 || R->getValue() == 0)
1941     PrintFatalError(getLoc(), "Record `" + getName() +
1942       "' does not have a field named `" + FieldName.str() + "'!\n");
1943
1944   if (R->getValue() == UnsetInit::get()) {
1945     Unset = true;
1946     return false;
1947   }
1948   Unset = false;
1949   if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
1950     return BI->getValue();
1951   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1952     FieldName.str() + "' does not have a bit initializer!");
1953 }
1954
1955 /// getValueAsDag - This method looks up the specified field and returns its
1956 /// value as an Dag, aborting if the field does not exist or if the value is
1957 /// not the right type.
1958 ///
1959 DagInit *Record::getValueAsDag(StringRef FieldName) const {
1960   const RecordVal *R = getValue(FieldName);
1961   if (R == 0 || R->getValue() == 0)
1962     PrintFatalError(getLoc(), "Record `" + getName() +
1963       "' does not have a field named `" + FieldName.str() + "'!\n");
1964
1965   if (DagInit *DI = dyn_cast<DagInit>(R->getValue()))
1966     return DI;
1967   PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
1968     FieldName.str() + "' does not have a dag initializer!");
1969 }
1970
1971
1972 void MultiClass::dump() const {
1973   errs() << "Record:\n";
1974   Rec.dump();
1975
1976   errs() << "Defs:\n";
1977   for (RecordVector::const_iterator r = DefPrototypes.begin(),
1978          rend = DefPrototypes.end();
1979        r != rend;
1980        ++r) {
1981     (*r)->dump();
1982   }
1983 }
1984
1985
1986 void RecordKeeper::dump() const { errs() << *this; }
1987
1988 raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) {
1989   OS << "------------- Classes -----------------\n";
1990   const std::map<std::string, Record*> &Classes = RK.getClasses();
1991   for (std::map<std::string, Record*>::const_iterator I = Classes.begin(),
1992          E = Classes.end(); I != E; ++I)
1993     OS << "class " << *I->second;
1994
1995   OS << "------------- Defs -----------------\n";
1996   const std::map<std::string, Record*> &Defs = RK.getDefs();
1997   for (std::map<std::string, Record*>::const_iterator I = Defs.begin(),
1998          E = Defs.end(); I != E; ++I)
1999     OS << "def " << *I->second;
2000   return OS;
2001 }
2002
2003
2004 /// getAllDerivedDefinitions - This method returns all concrete definitions
2005 /// that derive from the specified class name.  If a class with the specified
2006 /// name does not exist, an error is printed and true is returned.
2007 std::vector<Record*>
2008 RecordKeeper::getAllDerivedDefinitions(const std::string &ClassName) const {
2009   Record *Class = getClass(ClassName);
2010   if (!Class)
2011     PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n");
2012
2013   std::vector<Record*> Defs;
2014   for (std::map<std::string, Record*>::const_iterator I = getDefs().begin(),
2015          E = getDefs().end(); I != E; ++I)
2016     if (I->second->isSubClassOf(Class))
2017       Defs.push_back(I->second);
2018
2019   return Defs;
2020 }
2021
2022 /// QualifyName - Return an Init with a qualifier prefix referring
2023 /// to CurRec's name.
2024 Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass,
2025                         Init *Name, const std::string &Scoper) {
2026   RecTy *Type = dyn_cast<TypedInit>(Name)->getType();
2027
2028   BinOpInit *NewName =
2029     BinOpInit::get(BinOpInit::STRCONCAT, 
2030                       BinOpInit::get(BinOpInit::STRCONCAT,
2031                                         CurRec.getNameInit(),
2032                                         StringInit::get(Scoper),
2033                                         Type)->Fold(&CurRec, CurMultiClass),
2034                       Name,
2035                       Type);
2036
2037   if (CurMultiClass && Scoper != "::") {
2038     NewName =
2039       BinOpInit::get(BinOpInit::STRCONCAT, 
2040                         BinOpInit::get(BinOpInit::STRCONCAT,
2041                                           CurMultiClass->Rec.getNameInit(),
2042                                           StringInit::get("::"),
2043                                           Type)->Fold(&CurRec, CurMultiClass),
2044                         NewName->Fold(&CurRec, CurMultiClass),
2045                         Type);
2046   }
2047
2048   return NewName->Fold(&CurRec, CurMultiClass);
2049 }
2050
2051 /// QualifyName - Return an Init with a qualifier prefix referring
2052 /// to CurRec's name.
2053 Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass,
2054                         const std::string &Name,
2055                         const std::string &Scoper) {
2056   return QualifyName(CurRec, CurMultiClass, StringInit::get(Name), Scoper);
2057 }