]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / llvm / lib / Target / Sparc / SparcInstr64Bit.td
1 //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains instruction definitions and patterns needed for 64-bit
11 // code generation on SPARC v9.
12 //
13 // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14 // also be used in 32-bit code running on a SPARC v9 CPU.
15 //
16 //===----------------------------------------------------------------------===//
17
18 let Predicates = [Is64Bit] in {
19 // The same integer registers are used for i32 and i64 values.
20 // When registers hold i32 values, the high bits are don't care.
21 // This give us free trunc and anyext.
22 def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23 def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
24
25 } // Predicates = [Is64Bit]
26
27
28 //===----------------------------------------------------------------------===//
29 // 64-bit Shift Instructions.
30 //===----------------------------------------------------------------------===//
31 //
32 // The 32-bit shift instructions are still available. The left shift srl
33 // instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34 //
35 // The srl instructions only shift the low 32 bits and clear the high 32 bits.
36 // Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38 let Predicates = [Is64Bit] in {
39
40 def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41 def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43 def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44 def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
45
46 defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47 defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48 defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
49
50 } // Predicates = [Is64Bit]
51
52
53 //===----------------------------------------------------------------------===//
54 // 64-bit Immediates.
55 //===----------------------------------------------------------------------===//
56 //
57 // All 32-bit immediates can be materialized with sethi+or, but 64-bit
58 // immediates may require more code. There may be a point where it is
59 // preferable to use a constant pool load instead, depending on the
60 // microarchitecture.
61
62 // The %g0 register is constant 0.
63 // This is useful for stx %g0, [...], for example.
64 def : Pat<(i64 0), (i64 G0)>, Requires<[Is64Bit]>;
65
66 // Single-instruction patterns.
67
68 // The ALU instructions want their simm13 operands as i32 immediates.
69 def as_i32imm : SDNodeXForm<imm, [{
70   return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
71 }]>;
72 def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
73 def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
74
75 // Double-instruction patterns.
76
77 // All unsigned i32 immediates can be handled by sethi+or.
78 def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
79 def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
80       Requires<[Is64Bit]>;
81
82 // All negative i33 immediates can be handled by sethi+xor.
83 def nimm33 : PatLeaf<(imm), [{
84   int64_t Imm = N->getSExtValue();
85   return Imm < 0 && isInt<33>(Imm);
86 }]>;
87 // Bits 10-31 inverted. Same as assembler's %hix.
88 def HIX22 : SDNodeXForm<imm, [{
89   uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
90   return CurDAG->getTargetConstant(Val, MVT::i32);
91 }]>;
92 // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
93 def LOX10 : SDNodeXForm<imm, [{
94   return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
95 }]>;
96 def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
97       Requires<[Is64Bit]>;
98
99 // More possible patterns:
100 //
101 //   (sllx sethi, n)
102 //   (sllx simm13, n)
103 //
104 // 3 instrs:
105 //
106 //   (xor (sllx sethi), simm13)
107 //   (sllx (xor sethi, simm13))
108 //
109 // 4 instrs:
110 //
111 //   (or sethi, (sllx sethi))
112 //   (xnor sethi, (sllx sethi))
113 //
114 // 5 instrs:
115 //
116 //   (or (sllx sethi), (or sethi, simm13))
117 //   (xnor (sllx sethi), (or sethi, simm13))
118 //   (or (sllx sethi), (sllx sethi))
119 //   (xnor (sllx sethi), (sllx sethi))
120 //
121 // Worst case is 6 instrs:
122 //
123 //   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
124
125 // Bits 42-63, same as assembler's %hh.
126 def HH22 : SDNodeXForm<imm, [{
127   uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
128   return CurDAG->getTargetConstant(Val, MVT::i32);
129 }]>;
130 // Bits 32-41, same as assembler's %hm.
131 def HM10 : SDNodeXForm<imm, [{
132   uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
133   return CurDAG->getTargetConstant(Val, MVT::i32);
134 }]>;
135 def : Pat<(i64 imm:$val),
136           (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
137                 (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
138       Requires<[Is64Bit]>;
139
140
141 //===----------------------------------------------------------------------===//
142 // 64-bit Integer Arithmetic and Logic.
143 //===----------------------------------------------------------------------===//
144
145 let Predicates = [Is64Bit] in {
146
147 // Register-register instructions.
148
149 def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
150 def : Pat<(or  i64:$a, i64:$b), (ORrr  $a, $b)>;
151 def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
152
153 def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
154 def : Pat<(or  i64:$a, (not i64:$b)), (ORNrr  $a, $b)>;
155 def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
156
157 def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
158 def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
159
160 // Add/sub with carry were renamed to addc/subc in SPARC v9.
161 def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>;
162 def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>;
163
164 def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>;
165 def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
166
167 def : Pat<(SPcmpicc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
168
169 // Register-immediate instructions.
170
171 def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
172 def : Pat<(or  i64:$a, (i64 simm13:$b)), (ORri  $a, (as_i32imm $b))>;
173 def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
174
175 def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
176 def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
177
178 def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (SUBCCri $a, (as_i32imm $b))>;
179
180 } // Predicates = [Is64Bit]
181
182
183 //===----------------------------------------------------------------------===//
184 // 64-bit Integer Multiply and Divide.
185 //===----------------------------------------------------------------------===//
186
187 let Predicates = [Is64Bit] in {
188
189 def MULXrr : F3_1<2, 0b001001,
190                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
191                   "mulx $rs1, $rs2, $rd",
192                   [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
193 def MULXri : F3_2<2, 0b001001,
194                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
195                   "mulx $rs1, $i, $rd",
196                   [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>;
197
198 // Division can trap.
199 let hasSideEffects = 1 in {
200 def SDIVXrr : F3_1<2, 0b101101,
201                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
202                    "sdivx $rs1, $rs2, $rd",
203                    [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
204 def SDIVXri : F3_2<2, 0b101101,
205                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
206                    "sdivx $rs1, $i, $rd",
207                    [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>;
208
209 def UDIVXrr : F3_1<2, 0b001101,
210                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
211                    "udivx $rs1, $rs2, $rd",
212                    [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
213 def UDIVXri : F3_2<2, 0b001101,
214                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
215                    "udivx $rs1, $i, $rd",
216                    [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>;
217 } // hasSideEffects = 1
218
219 } // Predicates = [Is64Bit]
220
221
222 //===----------------------------------------------------------------------===//
223 // 64-bit Loads and Stores.
224 //===----------------------------------------------------------------------===//
225 //
226 // All the 32-bit loads and stores are available. The extending loads are sign
227 // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
228 // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
229 // Word).
230 //
231 // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
232
233 let Predicates = [Is64Bit] in {
234
235 // 64-bit loads.
236 def LDXrr  : F3_1<3, 0b001011,
237                   (outs I64Regs:$dst), (ins MEMrr:$addr),
238                   "ldx [$addr], $dst",
239                   [(set i64:$dst, (load ADDRrr:$addr))]>;
240 def LDXri  : F3_2<3, 0b001011,
241                   (outs I64Regs:$dst), (ins MEMri:$addr),
242                   "ldx [$addr], $dst",
243                   [(set i64:$dst, (load ADDRri:$addr))]>;
244
245 // Extending loads to i64.
246 def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
247 def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
248 def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
249 def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
250 def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
251 def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
252
253 def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
254 def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
255 def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
256 def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
257 def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
258 def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
259
260 def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
261 def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
262 def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
263 def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
264
265 // Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
266 def LDSWrr : F3_1<3, 0b001011,
267                  (outs I64Regs:$dst), (ins MEMrr:$addr),
268                  "ldsw [$addr], $dst",
269                  [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
270 def LDSWri : F3_2<3, 0b001011,
271                  (outs I64Regs:$dst), (ins MEMri:$addr),
272                  "ldsw [$addr], $dst",
273                  [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
274
275 // 64-bit stores.
276 def STXrr  : F3_1<3, 0b001110,
277                  (outs), (ins MEMrr:$addr, I64Regs:$src),
278                  "stx $src, [$addr]",
279                  [(store i64:$src, ADDRrr:$addr)]>;
280 def STXri  : F3_2<3, 0b001110,
281                  (outs), (ins MEMri:$addr, I64Regs:$src),
282                  "stx $src, [$addr]",
283                  [(store i64:$src, ADDRri:$addr)]>;
284
285 // Truncating stores from i64 are identical to the i32 stores.
286 def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
287 def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
288 def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
289 def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
290 def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
291 def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
292
293 } // Predicates = [Is64Bit]
294
295
296 //===----------------------------------------------------------------------===//
297 // 64-bit Conditionals.
298 //===----------------------------------------------------------------------===//
299 //
300 // Flag-setting instructions like subcc and addcc set both icc and xcc flags.
301 // The icc flags correspond to the 32-bit result, and the xcc are for the
302 // full 64-bit result.
303 //
304 // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
305 // 64-bit compares. See LowerBR_CC.
306
307 let Predicates = [Is64Bit] in {
308
309 let Uses = [ICC] in
310 def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
311                      "bp$cc %xcc, $dst",
312                      [(SPbrxcc bb:$dst, imm:$cc)]>;
313
314 // Conditional moves on %xcc.
315 let Uses = [ICC], Constraints = "$f = $rd" in {
316 def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
317                       (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
318                       "mov$cond %xcc, $rs2, $rd",
319                       [(set i32:$rd,
320                        (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
321 def MOVXCCri : Pseudo<(outs IntRegs:$rd),
322                       (ins i32imm:$i, IntRegs:$f, CCOp:$cond),
323                       "mov$cond %xcc, $i, $rd",
324                       [(set i32:$rd,
325                        (SPselecticc simm11:$i, i32:$f, imm:$cond))]>;
326 } // Uses, Constraints
327
328 def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
329           (MOVXCCrr $t, $f, imm:$cond)>;
330 def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
331           (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
332
333 } // Predicates = [Is64Bit]