]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / llvm / tools / clang / lib / CodeGen / CGObjC.cpp
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Support/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 using namespace clang;
28 using namespace CodeGen;
29
30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
31 static TryEmitResult
32 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
33 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
34                                       QualType ET,
35                                       const ObjCMethodDecl *Method,
36                                       RValue Result);
37
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
41   llvm::Type *type =
42     cast<llvm::PointerType>(addr->getType())->getElementType();
43   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
44 }
45
46 /// Emits an instance of NSConstantString representing the object.
47 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
48 {
49   llvm::Constant *C = 
50       CGM.getObjCRuntime().GenerateConstantString(E->getString());
51   // FIXME: This bitcast should just be made an invariant on the Runtime.
52   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
53 }
54
55 /// EmitObjCBoxedExpr - This routine generates code to call
56 /// the appropriate expression boxing method. This will either be
57 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   const Expr *SubExpr = E->getSubExpr();
63   // Get the method.
64   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68   
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75   
76   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
77   QualType ArgQT = argDecl->getType().getUnqualifiedType();
78   RValue RV = EmitAnyExpr(SubExpr);
79   CallArgList Args;
80   Args.add(RV, ArgQT);
81   
82   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 
83                                               BoxingMethod->getResultType(), Sel, Receiver, Args, 
84                                               ClassDecl, BoxingMethod);
85   return Builder.CreateBitCast(result.getScalarVal(), 
86                                ConvertType(E->getType()));
87 }
88
89 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
90                                     const ObjCMethodDecl *MethodWithObjects) {
91   ASTContext &Context = CGM.getContext();
92   const ObjCDictionaryLiteral *DLE = 0;
93   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
94   if (!ALE)
95     DLE = cast<ObjCDictionaryLiteral>(E);
96   
97   // Compute the type of the array we're initializing.
98   uint64_t NumElements = 
99     ALE ? ALE->getNumElements() : DLE->getNumElements();
100   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
101                             NumElements);
102   QualType ElementType = Context.getObjCIdType().withConst();
103   QualType ElementArrayType 
104     = Context.getConstantArrayType(ElementType, APNumElements, 
105                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
106
107   // Allocate the temporary array(s).
108   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");  
109   llvm::Value *Keys = 0;
110   if (DLE)
111     Keys = CreateMemTemp(ElementArrayType, "keys");
112   
113   // In ARC, we may need to do extra work to keep all the keys and
114   // values alive until after the call.
115   SmallVector<llvm::Value *, 16> NeededObjects;
116   bool TrackNeededObjects =
117     (getLangOpts().ObjCAutoRefCount &&
118     CGM.getCodeGenOpts().OptimizationLevel != 0);
119
120   // Perform the actual initialialization of the array(s).
121   for (uint64_t i = 0; i < NumElements; i++) {
122     if (ALE) {
123       // Emit the element and store it to the appropriate array slot.
124       const Expr *Rhs = ALE->getElement(i);
125       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
126                                    ElementType,
127                                    Context.getTypeAlignInChars(Rhs->getType()),
128                                    Context);
129
130       llvm::Value *value = EmitScalarExpr(Rhs);
131       EmitStoreThroughLValue(RValue::get(value), LV, true);
132       if (TrackNeededObjects) {
133         NeededObjects.push_back(value);
134       }
135     } else {      
136       // Emit the key and store it to the appropriate array slot.
137       const Expr *Key = DLE->getKeyValueElement(i).Key;
138       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
139                                       ElementType,
140                                     Context.getTypeAlignInChars(Key->getType()),
141                                       Context);
142       llvm::Value *keyValue = EmitScalarExpr(Key);
143       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
144
145       // Emit the value and store it to the appropriate array slot.
146       const Expr *Value = DLE->getKeyValueElement(i).Value;  
147       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 
148                                         ElementType,
149                                   Context.getTypeAlignInChars(Value->getType()),
150                                         Context);
151       llvm::Value *valueValue = EmitScalarExpr(Value);
152       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
153       if (TrackNeededObjects) {
154         NeededObjects.push_back(keyValue);
155         NeededObjects.push_back(valueValue);
156       }
157     }
158   }
159   
160   // Generate the argument list.
161   CallArgList Args;  
162   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
163   const ParmVarDecl *argDecl = *PI++;
164   QualType ArgQT = argDecl->getType().getUnqualifiedType();
165   Args.add(RValue::get(Objects), ArgQT);
166   if (DLE) {
167     argDecl = *PI++;
168     ArgQT = argDecl->getType().getUnqualifiedType();
169     Args.add(RValue::get(Keys), ArgQT);
170   }
171   argDecl = *PI;
172   ArgQT = argDecl->getType().getUnqualifiedType();
173   llvm::Value *Count = 
174     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
175   Args.add(RValue::get(Count), ArgQT);
176
177   // Generate a reference to the class pointer, which will be the receiver.
178   Selector Sel = MethodWithObjects->getSelector();
179   QualType ResultType = E->getType();
180   const ObjCObjectPointerType *InterfacePointerType
181     = ResultType->getAsObjCInterfacePointerType();
182   ObjCInterfaceDecl *Class 
183     = InterfacePointerType->getObjectType()->getInterface();
184   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
185   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
186
187   // Generate the message send.
188   RValue result
189     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 
190                                   MethodWithObjects->getResultType(),
191                                   Sel,
192                                   Receiver, Args, Class,
193                                   MethodWithObjects);
194
195   // The above message send needs these objects, but in ARC they are
196   // passed in a buffer that is essentially __unsafe_unretained.
197   // Therefore we must prevent the optimizer from releasing them until
198   // after the call.
199   if (TrackNeededObjects) {
200     EmitARCIntrinsicUse(NeededObjects);
201   }
202
203   return Builder.CreateBitCast(result.getScalarVal(), 
204                                ConvertType(E->getType()));
205 }
206
207 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
208   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
209 }
210
211 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
212                                             const ObjCDictionaryLiteral *E) {
213   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
214 }
215
216 /// Emit a selector.
217 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
218   // Untyped selector.
219   // Note that this implementation allows for non-constant strings to be passed
220   // as arguments to @selector().  Currently, the only thing preventing this
221   // behaviour is the type checking in the front end.
222   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
223 }
224
225 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
226   // FIXME: This should pass the Decl not the name.
227   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
228 }
229
230 /// \brief Adjust the type of the result of an Objective-C message send 
231 /// expression when the method has a related result type.
232 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
233                                       QualType ExpT,
234                                       const ObjCMethodDecl *Method,
235                                       RValue Result) {
236   if (!Method)
237     return Result;
238
239   if (!Method->hasRelatedResultType() ||
240       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
241       !Result.isScalar())
242     return Result;
243   
244   // We have applied a related result type. Cast the rvalue appropriately.
245   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
246                                                CGF.ConvertType(ExpT)));
247 }
248
249 /// Decide whether to extend the lifetime of the receiver of a
250 /// returns-inner-pointer message.
251 static bool
252 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
253   switch (message->getReceiverKind()) {
254
255   // For a normal instance message, we should extend unless the
256   // receiver is loaded from a variable with precise lifetime.
257   case ObjCMessageExpr::Instance: {
258     const Expr *receiver = message->getInstanceReceiver();
259     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
260     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
261     receiver = ice->getSubExpr()->IgnoreParens();
262
263     // Only __strong variables.
264     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
265       return true;
266
267     // All ivars and fields have precise lifetime.
268     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
269       return false;
270
271     // Otherwise, check for variables.
272     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
273     if (!declRef) return true;
274     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
275     if (!var) return true;
276
277     // All variables have precise lifetime except local variables with
278     // automatic storage duration that aren't specially marked.
279     return (var->hasLocalStorage() &&
280             !var->hasAttr<ObjCPreciseLifetimeAttr>());
281   }
282
283   case ObjCMessageExpr::Class:
284   case ObjCMessageExpr::SuperClass:
285     // It's never necessary for class objects.
286     return false;
287
288   case ObjCMessageExpr::SuperInstance:
289     // We generally assume that 'self' lives throughout a method call.
290     return false;
291   }
292
293   llvm_unreachable("invalid receiver kind");
294 }
295
296 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
297                                             ReturnValueSlot Return) {
298   // Only the lookup mechanism and first two arguments of the method
299   // implementation vary between runtimes.  We can get the receiver and
300   // arguments in generic code.
301
302   bool isDelegateInit = E->isDelegateInitCall();
303
304   const ObjCMethodDecl *method = E->getMethodDecl();
305
306   // We don't retain the receiver in delegate init calls, and this is
307   // safe because the receiver value is always loaded from 'self',
308   // which we zero out.  We don't want to Block_copy block receivers,
309   // though.
310   bool retainSelf =
311     (!isDelegateInit &&
312      CGM.getLangOpts().ObjCAutoRefCount &&
313      method &&
314      method->hasAttr<NSConsumesSelfAttr>());
315
316   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
317   bool isSuperMessage = false;
318   bool isClassMessage = false;
319   ObjCInterfaceDecl *OID = 0;
320   // Find the receiver
321   QualType ReceiverType;
322   llvm::Value *Receiver = 0;
323   switch (E->getReceiverKind()) {
324   case ObjCMessageExpr::Instance:
325     ReceiverType = E->getInstanceReceiver()->getType();
326     if (retainSelf) {
327       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
328                                                    E->getInstanceReceiver());
329       Receiver = ter.getPointer();
330       if (ter.getInt()) retainSelf = false;
331     } else
332       Receiver = EmitScalarExpr(E->getInstanceReceiver());
333     break;
334
335   case ObjCMessageExpr::Class: {
336     ReceiverType = E->getClassReceiver();
337     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
338     assert(ObjTy && "Invalid Objective-C class message send");
339     OID = ObjTy->getInterface();
340     assert(OID && "Invalid Objective-C class message send");
341     Receiver = Runtime.GetClass(*this, OID);
342     isClassMessage = true;
343     break;
344   }
345
346   case ObjCMessageExpr::SuperInstance:
347     ReceiverType = E->getSuperType();
348     Receiver = LoadObjCSelf();
349     isSuperMessage = true;
350     break;
351
352   case ObjCMessageExpr::SuperClass:
353     ReceiverType = E->getSuperType();
354     Receiver = LoadObjCSelf();
355     isSuperMessage = true;
356     isClassMessage = true;
357     break;
358   }
359
360   if (retainSelf)
361     Receiver = EmitARCRetainNonBlock(Receiver);
362
363   // In ARC, we sometimes want to "extend the lifetime"
364   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
365   // messages.
366   if (getLangOpts().ObjCAutoRefCount && method &&
367       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
368       shouldExtendReceiverForInnerPointerMessage(E))
369     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
370
371   QualType ResultType =
372     method ? method->getResultType() : E->getType();
373
374   CallArgList Args;
375   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
376
377   // For delegate init calls in ARC, do an unsafe store of null into
378   // self.  This represents the call taking direct ownership of that
379   // value.  We have to do this after emitting the other call
380   // arguments because they might also reference self, but we don't
381   // have to worry about any of them modifying self because that would
382   // be an undefined read and write of an object in unordered
383   // expressions.
384   if (isDelegateInit) {
385     assert(getLangOpts().ObjCAutoRefCount &&
386            "delegate init calls should only be marked in ARC");
387
388     // Do an unsafe store of null into self.
389     llvm::Value *selfAddr =
390       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
391     assert(selfAddr && "no self entry for a delegate init call?");
392
393     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
394   }
395
396   RValue result;
397   if (isSuperMessage) {
398     // super is only valid in an Objective-C method
399     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
400     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
401     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
402                                               E->getSelector(),
403                                               OMD->getClassInterface(),
404                                               isCategoryImpl,
405                                               Receiver,
406                                               isClassMessage,
407                                               Args,
408                                               method);
409   } else {
410     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
411                                          E->getSelector(),
412                                          Receiver, Args, OID,
413                                          method);
414   }
415
416   // For delegate init calls in ARC, implicitly store the result of
417   // the call back into self.  This takes ownership of the value.
418   if (isDelegateInit) {
419     llvm::Value *selfAddr =
420       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
421     llvm::Value *newSelf = result.getScalarVal();
422
423     // The delegate return type isn't necessarily a matching type; in
424     // fact, it's quite likely to be 'id'.
425     llvm::Type *selfTy =
426       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
427     newSelf = Builder.CreateBitCast(newSelf, selfTy);
428
429     Builder.CreateStore(newSelf, selfAddr);
430   }
431
432   return AdjustRelatedResultType(*this, E->getType(), method, result);
433 }
434
435 namespace {
436 struct FinishARCDealloc : EHScopeStack::Cleanup {
437   void Emit(CodeGenFunction &CGF, Flags flags) {
438     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
439
440     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
441     const ObjCInterfaceDecl *iface = impl->getClassInterface();
442     if (!iface->getSuperClass()) return;
443
444     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
445
446     // Call [super dealloc] if we have a superclass.
447     llvm::Value *self = CGF.LoadObjCSelf();
448
449     CallArgList args;
450     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
451                                                       CGF.getContext().VoidTy,
452                                                       method->getSelector(),
453                                                       iface,
454                                                       isCategory,
455                                                       self,
456                                                       /*is class msg*/ false,
457                                                       args,
458                                                       method);
459   }
460 };
461 }
462
463 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
464 /// the LLVM function and sets the other context used by
465 /// CodeGenFunction.
466 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
467                                       const ObjCContainerDecl *CD,
468                                       SourceLocation StartLoc) {
469   FunctionArgList args;
470   // Check if we should generate debug info for this method.
471   if (!OMD->hasAttr<NoDebugAttr>())
472     maybeInitializeDebugInfo();
473
474   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
475
476   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
477   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
478
479   args.push_back(OMD->getSelfDecl());
480   args.push_back(OMD->getCmdDecl());
481
482   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
483          E = OMD->param_end(); PI != E; ++PI)
484     args.push_back(*PI);
485
486   CurGD = OMD;
487
488   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
489
490   // In ARC, certain methods get an extra cleanup.
491   if (CGM.getLangOpts().ObjCAutoRefCount &&
492       OMD->isInstanceMethod() &&
493       OMD->getSelector().isUnarySelector()) {
494     const IdentifierInfo *ident = 
495       OMD->getSelector().getIdentifierInfoForSlot(0);
496     if (ident->isStr("dealloc"))
497       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
498   }
499 }
500
501 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
502                                               LValue lvalue, QualType type);
503
504 /// Generate an Objective-C method.  An Objective-C method is a C function with
505 /// its pointer, name, and types registered in the class struture.
506 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
507   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
508   EmitStmt(OMD->getBody());
509   FinishFunction(OMD->getBodyRBrace());
510 }
511
512 /// emitStructGetterCall - Call the runtime function to load a property
513 /// into the return value slot.
514 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 
515                                  bool isAtomic, bool hasStrong) {
516   ASTContext &Context = CGF.getContext();
517
518   llvm::Value *src =
519     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
520                           ivar, 0).getAddress();
521
522   // objc_copyStruct (ReturnValue, &structIvar, 
523   //                  sizeof (Type of Ivar), isAtomic, false);
524   CallArgList args;
525
526   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
527   args.add(RValue::get(dest), Context.VoidPtrTy);
528
529   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
530   args.add(RValue::get(src), Context.VoidPtrTy);
531
532   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
533   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
534   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
535   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
536
537   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
538   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
539                                                       FunctionType::ExtInfo(),
540                                                       RequiredArgs::All),
541                fn, ReturnValueSlot(), args);
542 }
543
544 /// Determine whether the given architecture supports unaligned atomic
545 /// accesses.  They don't have to be fast, just faster than a function
546 /// call and a mutex.
547 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
548   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
549   // currently supported by the backend.)
550   return 0;
551 }
552
553 /// Return the maximum size that permits atomic accesses for the given
554 /// architecture.
555 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
556                                         llvm::Triple::ArchType arch) {
557   // ARM has 8-byte atomic accesses, but it's not clear whether we
558   // want to rely on them here.
559
560   // In the default case, just assume that any size up to a pointer is
561   // fine given adequate alignment.
562   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
563 }
564
565 namespace {
566   class PropertyImplStrategy {
567   public:
568     enum StrategyKind {
569       /// The 'native' strategy is to use the architecture's provided
570       /// reads and writes.
571       Native,
572
573       /// Use objc_setProperty and objc_getProperty.
574       GetSetProperty,
575
576       /// Use objc_setProperty for the setter, but use expression
577       /// evaluation for the getter.
578       SetPropertyAndExpressionGet,
579
580       /// Use objc_copyStruct.
581       CopyStruct,
582
583       /// The 'expression' strategy is to emit normal assignment or
584       /// lvalue-to-rvalue expressions.
585       Expression
586     };
587
588     StrategyKind getKind() const { return StrategyKind(Kind); }
589
590     bool hasStrongMember() const { return HasStrong; }
591     bool isAtomic() const { return IsAtomic; }
592     bool isCopy() const { return IsCopy; }
593
594     CharUnits getIvarSize() const { return IvarSize; }
595     CharUnits getIvarAlignment() const { return IvarAlignment; }
596
597     PropertyImplStrategy(CodeGenModule &CGM,
598                          const ObjCPropertyImplDecl *propImpl);
599
600   private:
601     unsigned Kind : 8;
602     unsigned IsAtomic : 1;
603     unsigned IsCopy : 1;
604     unsigned HasStrong : 1;
605
606     CharUnits IvarSize;
607     CharUnits IvarAlignment;
608   };
609 }
610
611 /// Pick an implementation strategy for the given property synthesis.
612 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
613                                      const ObjCPropertyImplDecl *propImpl) {
614   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
615   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
616
617   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
618   IsAtomic = prop->isAtomic();
619   HasStrong = false; // doesn't matter here.
620
621   // Evaluate the ivar's size and alignment.
622   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
623   QualType ivarType = ivar->getType();
624   llvm::tie(IvarSize, IvarAlignment)
625     = CGM.getContext().getTypeInfoInChars(ivarType);
626
627   // If we have a copy property, we always have to use getProperty/setProperty.
628   // TODO: we could actually use setProperty and an expression for non-atomics.
629   if (IsCopy) {
630     Kind = GetSetProperty;
631     return;
632   }
633
634   // Handle retain.
635   if (setterKind == ObjCPropertyDecl::Retain) {
636     // In GC-only, there's nothing special that needs to be done.
637     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
638       // fallthrough
639
640     // In ARC, if the property is non-atomic, use expression emission,
641     // which translates to objc_storeStrong.  This isn't required, but
642     // it's slightly nicer.
643     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
644       // Using standard expression emission for the setter is only
645       // acceptable if the ivar is __strong, which won't be true if
646       // the property is annotated with __attribute__((NSObject)).
647       // TODO: falling all the way back to objc_setProperty here is
648       // just laziness, though;  we could still use objc_storeStrong
649       // if we hacked it right.
650       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
651         Kind = Expression;
652       else
653         Kind = SetPropertyAndExpressionGet;
654       return;
655
656     // Otherwise, we need to at least use setProperty.  However, if
657     // the property isn't atomic, we can use normal expression
658     // emission for the getter.
659     } else if (!IsAtomic) {
660       Kind = SetPropertyAndExpressionGet;
661       return;
662
663     // Otherwise, we have to use both setProperty and getProperty.
664     } else {
665       Kind = GetSetProperty;
666       return;
667     }
668   }
669
670   // If we're not atomic, just use expression accesses.
671   if (!IsAtomic) {
672     Kind = Expression;
673     return;
674   }
675
676   // Properties on bitfield ivars need to be emitted using expression
677   // accesses even if they're nominally atomic.
678   if (ivar->isBitField()) {
679     Kind = Expression;
680     return;
681   }
682
683   // GC-qualified or ARC-qualified ivars need to be emitted as
684   // expressions.  This actually works out to being atomic anyway,
685   // except for ARC __strong, but that should trigger the above code.
686   if (ivarType.hasNonTrivialObjCLifetime() ||
687       (CGM.getLangOpts().getGC() &&
688        CGM.getContext().getObjCGCAttrKind(ivarType))) {
689     Kind = Expression;
690     return;
691   }
692
693   // Compute whether the ivar has strong members.
694   if (CGM.getLangOpts().getGC())
695     if (const RecordType *recordType = ivarType->getAs<RecordType>())
696       HasStrong = recordType->getDecl()->hasObjectMember();
697
698   // We can never access structs with object members with a native
699   // access, because we need to use write barriers.  This is what
700   // objc_copyStruct is for.
701   if (HasStrong) {
702     Kind = CopyStruct;
703     return;
704   }
705
706   // Otherwise, this is target-dependent and based on the size and
707   // alignment of the ivar.
708
709   // If the size of the ivar is not a power of two, give up.  We don't
710   // want to get into the business of doing compare-and-swaps.
711   if (!IvarSize.isPowerOfTwo()) {
712     Kind = CopyStruct;
713     return;
714   }
715
716   llvm::Triple::ArchType arch =
717     CGM.getTarget().getTriple().getArch();
718
719   // Most architectures require memory to fit within a single cache
720   // line, so the alignment has to be at least the size of the access.
721   // Otherwise we have to grab a lock.
722   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
723     Kind = CopyStruct;
724     return;
725   }
726
727   // If the ivar's size exceeds the architecture's maximum atomic
728   // access size, we have to use CopyStruct.
729   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
730     Kind = CopyStruct;
731     return;
732   }
733
734   // Otherwise, we can use native loads and stores.
735   Kind = Native;
736 }
737
738 /// \brief Generate an Objective-C property getter function.
739 ///
740 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
741 /// is illegal within a category.
742 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
743                                          const ObjCPropertyImplDecl *PID) {
744   llvm::Constant *AtomicHelperFn = 
745     GenerateObjCAtomicGetterCopyHelperFunction(PID);
746   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
747   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
748   assert(OMD && "Invalid call to generate getter (empty method)");
749   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
750
751   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
752
753   FinishFunction();
754 }
755
756 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
757   const Expr *getter = propImpl->getGetterCXXConstructor();
758   if (!getter) return true;
759
760   // Sema only makes only of these when the ivar has a C++ class type,
761   // so the form is pretty constrained.
762
763   // If the property has a reference type, we might just be binding a
764   // reference, in which case the result will be a gl-value.  We should
765   // treat this as a non-trivial operation.
766   if (getter->isGLValue())
767     return false;
768
769   // If we selected a trivial copy-constructor, we're okay.
770   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
771     return (construct->getConstructor()->isTrivial());
772
773   // The constructor might require cleanups (in which case it's never
774   // trivial).
775   assert(isa<ExprWithCleanups>(getter));
776   return false;
777 }
778
779 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 
780 /// copy the ivar into the resturn slot.
781 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 
782                                           llvm::Value *returnAddr,
783                                           ObjCIvarDecl *ivar,
784                                           llvm::Constant *AtomicHelperFn) {
785   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
786   //                           AtomicHelperFn);
787   CallArgList args;
788   
789   // The 1st argument is the return Slot.
790   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
791   
792   // The 2nd argument is the address of the ivar.
793   llvm::Value *ivarAddr = 
794   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 
795                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
796   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
797   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
798   
799   // Third argument is the helper function.
800   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
801   
802   llvm::Value *copyCppAtomicObjectFn = 
803     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
804   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
805                                                       args,
806                                                       FunctionType::ExtInfo(),
807                                                       RequiredArgs::All),
808                copyCppAtomicObjectFn, ReturnValueSlot(), args);
809 }
810
811 void
812 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
813                                         const ObjCPropertyImplDecl *propImpl,
814                                         const ObjCMethodDecl *GetterMethodDecl,
815                                         llvm::Constant *AtomicHelperFn) {
816   // If there's a non-trivial 'get' expression, we just have to emit that.
817   if (!hasTrivialGetExpr(propImpl)) {
818     if (!AtomicHelperFn) {
819       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
820                      /*nrvo*/ 0);
821       EmitReturnStmt(ret);
822     }
823     else {
824       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
825       emitCPPObjectAtomicGetterCall(*this, ReturnValue, 
826                                     ivar, AtomicHelperFn);
827     }
828     return;
829   }
830
831   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
832   QualType propType = prop->getType();
833   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
834
835   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();  
836
837   // Pick an implementation strategy.
838   PropertyImplStrategy strategy(CGM, propImpl);
839   switch (strategy.getKind()) {
840   case PropertyImplStrategy::Native: {
841     // We don't need to do anything for a zero-size struct.
842     if (strategy.getIvarSize().isZero())
843       return;
844
845     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
846
847     // Currently, all atomic accesses have to be through integer
848     // types, so there's no point in trying to pick a prettier type.
849     llvm::Type *bitcastType =
850       llvm::Type::getIntNTy(getLLVMContext(),
851                             getContext().toBits(strategy.getIvarSize()));
852     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
853
854     // Perform an atomic load.  This does not impose ordering constraints.
855     llvm::Value *ivarAddr = LV.getAddress();
856     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
857     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
858     load->setAlignment(strategy.getIvarAlignment().getQuantity());
859     load->setAtomic(llvm::Unordered);
860
861     // Store that value into the return address.  Doing this with a
862     // bitcast is likely to produce some pretty ugly IR, but it's not
863     // the *most* terrible thing in the world.
864     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
865
866     // Make sure we don't do an autorelease.
867     AutoreleaseResult = false;
868     return;
869   }
870
871   case PropertyImplStrategy::GetSetProperty: {
872     llvm::Value *getPropertyFn =
873       CGM.getObjCRuntime().GetPropertyGetFunction();
874     if (!getPropertyFn) {
875       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
876       return;
877     }
878
879     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
880     // FIXME: Can't this be simpler? This might even be worse than the
881     // corresponding gcc code.
882     llvm::Value *cmd =
883       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
884     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
885     llvm::Value *ivarOffset =
886       EmitIvarOffset(classImpl->getClassInterface(), ivar);
887
888     CallArgList args;
889     args.add(RValue::get(self), getContext().getObjCIdType());
890     args.add(RValue::get(cmd), getContext().getObjCSelType());
891     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
892     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
893              getContext().BoolTy);
894
895     // FIXME: We shouldn't need to get the function info here, the
896     // runtime already should have computed it to build the function.
897     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
898                                                        FunctionType::ExtInfo(),
899                                                             RequiredArgs::All),
900                          getPropertyFn, ReturnValueSlot(), args);
901
902     // We need to fix the type here. Ivars with copy & retain are
903     // always objects so we don't need to worry about complex or
904     // aggregates.
905     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
906            getTypes().ConvertType(getterMethod->getResultType())));
907
908     EmitReturnOfRValue(RV, propType);
909
910     // objc_getProperty does an autorelease, so we should suppress ours.
911     AutoreleaseResult = false;
912
913     return;
914   }
915
916   case PropertyImplStrategy::CopyStruct:
917     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
918                          strategy.hasStrongMember());
919     return;
920
921   case PropertyImplStrategy::Expression:
922   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
923     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
924
925     QualType ivarType = ivar->getType();
926     switch (getEvaluationKind(ivarType)) {
927     case TEK_Complex: {
928       ComplexPairTy pair = EmitLoadOfComplex(LV);
929       EmitStoreOfComplex(pair,
930                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
931                          /*init*/ true);
932       return;
933     }
934     case TEK_Aggregate:
935       // The return value slot is guaranteed to not be aliased, but
936       // that's not necessarily the same as "on the stack", so
937       // we still potentially need objc_memmove_collectable.
938       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
939       return;
940     case TEK_Scalar: {
941       llvm::Value *value;
942       if (propType->isReferenceType()) {
943         value = LV.getAddress();
944       } else {
945         // We want to load and autoreleaseReturnValue ARC __weak ivars.
946         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
947           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
948
949         // Otherwise we want to do a simple load, suppressing the
950         // final autorelease.
951         } else {
952           value = EmitLoadOfLValue(LV).getScalarVal();
953           AutoreleaseResult = false;
954         }
955
956         value = Builder.CreateBitCast(value, ConvertType(propType));
957         value = Builder.CreateBitCast(value, 
958                   ConvertType(GetterMethodDecl->getResultType()));
959       }
960       
961       EmitReturnOfRValue(RValue::get(value), propType);
962       return;
963     }
964     }
965     llvm_unreachable("bad evaluation kind");
966   }
967
968   }
969   llvm_unreachable("bad @property implementation strategy!");
970 }
971
972 /// emitStructSetterCall - Call the runtime function to store the value
973 /// from the first formal parameter into the given ivar.
974 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
975                                  ObjCIvarDecl *ivar) {
976   // objc_copyStruct (&structIvar, &Arg, 
977   //                  sizeof (struct something), true, false);
978   CallArgList args;
979
980   // The first argument is the address of the ivar.
981   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
982                                                 CGF.LoadObjCSelf(), ivar, 0)
983     .getAddress();
984   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
985   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
986
987   // The second argument is the address of the parameter variable.
988   ParmVarDecl *argVar = *OMD->param_begin();
989   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 
990                      VK_LValue, SourceLocation());
991   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
992   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
993   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
994
995   // The third argument is the sizeof the type.
996   llvm::Value *size =
997     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
998   args.add(RValue::get(size), CGF.getContext().getSizeType());
999
1000   // The fourth argument is the 'isAtomic' flag.
1001   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1002
1003   // The fifth argument is the 'hasStrong' flag.
1004   // FIXME: should this really always be false?
1005   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1006
1007   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1008   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1009                                                       args,
1010                                                       FunctionType::ExtInfo(),
1011                                                       RequiredArgs::All),
1012                copyStructFn, ReturnValueSlot(), args);
1013 }
1014
1015 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 
1016 /// the value from the first formal parameter into the given ivar, using 
1017 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1018 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 
1019                                           ObjCMethodDecl *OMD,
1020                                           ObjCIvarDecl *ivar,
1021                                           llvm::Constant *AtomicHelperFn) {
1022   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 
1023   //                           AtomicHelperFn);
1024   CallArgList args;
1025   
1026   // The first argument is the address of the ivar.
1027   llvm::Value *ivarAddr = 
1028     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 
1029                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1030   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1031   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1032   
1033   // The second argument is the address of the parameter variable.
1034   ParmVarDecl *argVar = *OMD->param_begin();
1035   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 
1036                      VK_LValue, SourceLocation());
1037   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1038   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1039   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1040   
1041   // Third argument is the helper function.
1042   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1043   
1044   llvm::Value *copyCppAtomicObjectFn = 
1045     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1046   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1047                                                       args,
1048                                                       FunctionType::ExtInfo(),
1049                                                       RequiredArgs::All),
1050                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1051   
1052
1053 }
1054
1055
1056 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1057   Expr *setter = PID->getSetterCXXAssignment();
1058   if (!setter) return true;
1059
1060   // Sema only makes only of these when the ivar has a C++ class type,
1061   // so the form is pretty constrained.
1062
1063   // An operator call is trivial if the function it calls is trivial.
1064   // This also implies that there's nothing non-trivial going on with
1065   // the arguments, because operator= can only be trivial if it's a
1066   // synthesized assignment operator and therefore both parameters are
1067   // references.
1068   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1069     if (const FunctionDecl *callee
1070           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1071       if (callee->isTrivial())
1072         return true;
1073     return false;
1074   }
1075
1076   assert(isa<ExprWithCleanups>(setter));
1077   return false;
1078 }
1079
1080 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1081   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1082     return false;
1083   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1084 }
1085
1086 void
1087 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1088                                         const ObjCPropertyImplDecl *propImpl,
1089                                         llvm::Constant *AtomicHelperFn) {
1090   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1091   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1092   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1093   
1094   // Just use the setter expression if Sema gave us one and it's
1095   // non-trivial.
1096   if (!hasTrivialSetExpr(propImpl)) {
1097     if (!AtomicHelperFn)
1098       // If non-atomic, assignment is called directly.
1099       EmitStmt(propImpl->getSetterCXXAssignment());
1100     else
1101       // If atomic, assignment is called via a locking api.
1102       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1103                                     AtomicHelperFn);
1104     return;
1105   }
1106
1107   PropertyImplStrategy strategy(CGM, propImpl);
1108   switch (strategy.getKind()) {
1109   case PropertyImplStrategy::Native: {
1110     // We don't need to do anything for a zero-size struct.
1111     if (strategy.getIvarSize().isZero())
1112       return;
1113
1114     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1115
1116     LValue ivarLValue =
1117       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1118     llvm::Value *ivarAddr = ivarLValue.getAddress();
1119
1120     // Currently, all atomic accesses have to be through integer
1121     // types, so there's no point in trying to pick a prettier type.
1122     llvm::Type *bitcastType =
1123       llvm::Type::getIntNTy(getLLVMContext(),
1124                             getContext().toBits(strategy.getIvarSize()));
1125     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1126
1127     // Cast both arguments to the chosen operation type.
1128     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1129     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1130
1131     // This bitcast load is likely to cause some nasty IR.
1132     llvm::Value *load = Builder.CreateLoad(argAddr);
1133
1134     // Perform an atomic store.  There are no memory ordering requirements.
1135     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1136     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1137     store->setAtomic(llvm::Unordered);
1138     return;
1139   }
1140
1141   case PropertyImplStrategy::GetSetProperty:
1142   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1143   
1144     llvm::Value *setOptimizedPropertyFn = 0;
1145     llvm::Value *setPropertyFn = 0;
1146     if (UseOptimizedSetter(CGM)) {
1147       // 10.8 and iOS 6.0 code and GC is off
1148       setOptimizedPropertyFn = 
1149         CGM.getObjCRuntime()
1150            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1151                                             strategy.isCopy());
1152       if (!setOptimizedPropertyFn) {
1153         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1154         return;
1155       }
1156     }
1157     else {
1158       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1159       if (!setPropertyFn) {
1160         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1161         return;
1162       }
1163     }
1164    
1165     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1166     //                       <is-atomic>, <is-copy>).
1167     llvm::Value *cmd =
1168       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1169     llvm::Value *self =
1170       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1171     llvm::Value *ivarOffset =
1172       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1173     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1174     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1175
1176     CallArgList args;
1177     args.add(RValue::get(self), getContext().getObjCIdType());
1178     args.add(RValue::get(cmd), getContext().getObjCSelType());
1179     if (setOptimizedPropertyFn) {
1180       args.add(RValue::get(arg), getContext().getObjCIdType());
1181       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1182       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1183                                                   FunctionType::ExtInfo(),
1184                                                   RequiredArgs::All),
1185                setOptimizedPropertyFn, ReturnValueSlot(), args);
1186     } else {
1187       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1188       args.add(RValue::get(arg), getContext().getObjCIdType());
1189       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1190                getContext().BoolTy);
1191       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1192                getContext().BoolTy);
1193       // FIXME: We shouldn't need to get the function info here, the runtime
1194       // already should have computed it to build the function.
1195       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1196                                                   FunctionType::ExtInfo(),
1197                                                   RequiredArgs::All),
1198                setPropertyFn, ReturnValueSlot(), args);
1199     }
1200     
1201     return;
1202   }
1203
1204   case PropertyImplStrategy::CopyStruct:
1205     emitStructSetterCall(*this, setterMethod, ivar);
1206     return;
1207
1208   case PropertyImplStrategy::Expression:
1209     break;
1210   }
1211
1212   // Otherwise, fake up some ASTs and emit a normal assignment.
1213   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1214   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1215                    VK_LValue, SourceLocation());
1216   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1217                             selfDecl->getType(), CK_LValueToRValue, &self,
1218                             VK_RValue);
1219   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1220                           SourceLocation(), SourceLocation(),
1221                           &selfLoad, true, true);
1222
1223   ParmVarDecl *argDecl = *setterMethod->param_begin();
1224   QualType argType = argDecl->getType().getNonReferenceType();
1225   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1226   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1227                            argType.getUnqualifiedType(), CK_LValueToRValue,
1228                            &arg, VK_RValue);
1229     
1230   // The property type can differ from the ivar type in some situations with
1231   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1232   // The following absurdity is just to ensure well-formed IR.
1233   CastKind argCK = CK_NoOp;
1234   if (ivarRef.getType()->isObjCObjectPointerType()) {
1235     if (argLoad.getType()->isObjCObjectPointerType())
1236       argCK = CK_BitCast;
1237     else if (argLoad.getType()->isBlockPointerType())
1238       argCK = CK_BlockPointerToObjCPointerCast;
1239     else
1240       argCK = CK_CPointerToObjCPointerCast;
1241   } else if (ivarRef.getType()->isBlockPointerType()) {
1242      if (argLoad.getType()->isBlockPointerType())
1243       argCK = CK_BitCast;
1244     else
1245       argCK = CK_AnyPointerToBlockPointerCast;
1246   } else if (ivarRef.getType()->isPointerType()) {
1247     argCK = CK_BitCast;
1248   }
1249   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1250                            ivarRef.getType(), argCK, &argLoad,
1251                            VK_RValue);
1252   Expr *finalArg = &argLoad;
1253   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1254                                            argLoad.getType()))
1255     finalArg = &argCast;
1256
1257
1258   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1259                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1260                         SourceLocation(), false);
1261   EmitStmt(&assign);
1262 }
1263
1264 /// \brief Generate an Objective-C property setter function.
1265 ///
1266 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1267 /// is illegal within a category.
1268 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1269                                          const ObjCPropertyImplDecl *PID) {
1270   llvm::Constant *AtomicHelperFn = 
1271     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1272   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1273   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1274   assert(OMD && "Invalid call to generate setter (empty method)");
1275   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1276
1277   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1278
1279   FinishFunction();
1280 }
1281
1282 namespace {
1283   struct DestroyIvar : EHScopeStack::Cleanup {
1284   private:
1285     llvm::Value *addr;
1286     const ObjCIvarDecl *ivar;
1287     CodeGenFunction::Destroyer *destroyer;
1288     bool useEHCleanupForArray;
1289   public:
1290     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1291                 CodeGenFunction::Destroyer *destroyer,
1292                 bool useEHCleanupForArray)
1293       : addr(addr), ivar(ivar), destroyer(destroyer),
1294         useEHCleanupForArray(useEHCleanupForArray) {}
1295
1296     void Emit(CodeGenFunction &CGF, Flags flags) {
1297       LValue lvalue
1298         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1299       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1300                       flags.isForNormalCleanup() && useEHCleanupForArray);
1301     }
1302   };
1303 }
1304
1305 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1306 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1307                                       llvm::Value *addr,
1308                                       QualType type) {
1309   llvm::Value *null = getNullForVariable(addr);
1310   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1311 }
1312
1313 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1314                                   ObjCImplementationDecl *impl) {
1315   CodeGenFunction::RunCleanupsScope scope(CGF);
1316
1317   llvm::Value *self = CGF.LoadObjCSelf();
1318
1319   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1320   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1321        ivar; ivar = ivar->getNextIvar()) {
1322     QualType type = ivar->getType();
1323
1324     // Check whether the ivar is a destructible type.
1325     QualType::DestructionKind dtorKind = type.isDestructedType();
1326     if (!dtorKind) continue;
1327
1328     CodeGenFunction::Destroyer *destroyer = 0;
1329
1330     // Use a call to objc_storeStrong to destroy strong ivars, for the
1331     // general benefit of the tools.
1332     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1333       destroyer = destroyARCStrongWithStore;
1334
1335     // Otherwise use the default for the destruction kind.
1336     } else {
1337       destroyer = CGF.getDestroyer(dtorKind);
1338     }
1339
1340     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1341
1342     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1343                                          cleanupKind & EHCleanup);
1344   }
1345
1346   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1347 }
1348
1349 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1350                                                  ObjCMethodDecl *MD,
1351                                                  bool ctor) {
1352   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1353   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1354
1355   // Emit .cxx_construct.
1356   if (ctor) {
1357     // Suppress the final autorelease in ARC.
1358     AutoreleaseResult = false;
1359
1360     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1361     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1362            E = IMP->init_end(); B != E; ++B) {
1363       CXXCtorInitializer *IvarInit = (*B);
1364       FieldDecl *Field = IvarInit->getAnyMember();
1365       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1366       LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 
1367                                     LoadObjCSelf(), Ivar, 0);
1368       EmitAggExpr(IvarInit->getInit(),
1369                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1370                                           AggValueSlot::DoesNotNeedGCBarriers,
1371                                           AggValueSlot::IsNotAliased));
1372     }
1373     // constructor returns 'self'.
1374     CodeGenTypes &Types = CGM.getTypes();
1375     QualType IdTy(CGM.getContext().getObjCIdType());
1376     llvm::Value *SelfAsId =
1377       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1378     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1379
1380   // Emit .cxx_destruct.
1381   } else {
1382     emitCXXDestructMethod(*this, IMP);
1383   }
1384   FinishFunction();
1385 }
1386
1387 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1388   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1389   it++; it++;
1390   const ABIArgInfo &AI = it->info;
1391   // FIXME. Is this sufficient check?
1392   return (AI.getKind() == ABIArgInfo::Indirect);
1393 }
1394
1395 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1396   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1397     return false;
1398   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1399     return FDTTy->getDecl()->hasObjectMember();
1400   return false;
1401 }
1402
1403 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1404   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1405   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1406                   Self->getType(), VK_LValue, SourceLocation());
1407   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE));
1408 }
1409
1410 QualType CodeGenFunction::TypeOfSelfObject() {
1411   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1412   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1413   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1414     getContext().getCanonicalType(selfDecl->getType()));
1415   return PTy->getPointeeType();
1416 }
1417
1418 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1419   llvm::Constant *EnumerationMutationFn =
1420     CGM.getObjCRuntime().EnumerationMutationFunction();
1421
1422   if (!EnumerationMutationFn) {
1423     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1424     return;
1425   }
1426
1427   CGDebugInfo *DI = getDebugInfo();
1428   if (DI)
1429     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1430
1431   // The local variable comes into scope immediately.
1432   AutoVarEmission variable = AutoVarEmission::invalid();
1433   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1434     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1435
1436   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1437
1438   // Fast enumeration state.
1439   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1440   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1441   EmitNullInitialization(StatePtr, StateTy);
1442
1443   // Number of elements in the items array.
1444   static const unsigned NumItems = 16;
1445
1446   // Fetch the countByEnumeratingWithState:objects:count: selector.
1447   IdentifierInfo *II[] = {
1448     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1449     &CGM.getContext().Idents.get("objects"),
1450     &CGM.getContext().Idents.get("count")
1451   };
1452   Selector FastEnumSel =
1453     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1454
1455   QualType ItemsTy =
1456     getContext().getConstantArrayType(getContext().getObjCIdType(),
1457                                       llvm::APInt(32, NumItems),
1458                                       ArrayType::Normal, 0);
1459   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1460
1461   // Emit the collection pointer.  In ARC, we do a retain.
1462   llvm::Value *Collection;
1463   if (getLangOpts().ObjCAutoRefCount) {
1464     Collection = EmitARCRetainScalarExpr(S.getCollection());
1465
1466     // Enter a cleanup to do the release.
1467     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1468   } else {
1469     Collection = EmitScalarExpr(S.getCollection());
1470   }
1471
1472   // The 'continue' label needs to appear within the cleanup for the
1473   // collection object.
1474   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1475
1476   // Send it our message:
1477   CallArgList Args;
1478
1479   // The first argument is a temporary of the enumeration-state type.
1480   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1481
1482   // The second argument is a temporary array with space for NumItems
1483   // pointers.  We'll actually be loading elements from the array
1484   // pointer written into the control state; this buffer is so that
1485   // collections that *aren't* backed by arrays can still queue up
1486   // batches of elements.
1487   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1488
1489   // The third argument is the capacity of that temporary array.
1490   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1491   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1492   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1493
1494   // Start the enumeration.
1495   RValue CountRV =
1496     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1497                                              getContext().UnsignedLongTy,
1498                                              FastEnumSel,
1499                                              Collection, Args);
1500
1501   // The initial number of objects that were returned in the buffer.
1502   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1503
1504   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1505   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1506
1507   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1508
1509   // If the limit pointer was zero to begin with, the collection is
1510   // empty; skip all this.
1511   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1512                        EmptyBB, LoopInitBB);
1513
1514   // Otherwise, initialize the loop.
1515   EmitBlock(LoopInitBB);
1516
1517   // Save the initial mutations value.  This is the value at an
1518   // address that was written into the state object by
1519   // countByEnumeratingWithState:objects:count:.
1520   llvm::Value *StateMutationsPtrPtr =
1521     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1522   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1523                                                       "mutationsptr");
1524
1525   llvm::Value *initialMutations =
1526     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1527
1528   // Start looping.  This is the point we return to whenever we have a
1529   // fresh, non-empty batch of objects.
1530   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1531   EmitBlock(LoopBodyBB);
1532
1533   // The current index into the buffer.
1534   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1535   index->addIncoming(zero, LoopInitBB);
1536
1537   // The current buffer size.
1538   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1539   count->addIncoming(initialBufferLimit, LoopInitBB);
1540
1541   // Check whether the mutations value has changed from where it was
1542   // at start.  StateMutationsPtr should actually be invariant between
1543   // refreshes.
1544   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1545   llvm::Value *currentMutations
1546     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1547
1548   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1549   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1550
1551   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1552                        WasNotMutatedBB, WasMutatedBB);
1553
1554   // If so, call the enumeration-mutation function.
1555   EmitBlock(WasMutatedBB);
1556   llvm::Value *V =
1557     Builder.CreateBitCast(Collection,
1558                           ConvertType(getContext().getObjCIdType()));
1559   CallArgList Args2;
1560   Args2.add(RValue::get(V), getContext().getObjCIdType());
1561   // FIXME: We shouldn't need to get the function info here, the runtime already
1562   // should have computed it to build the function.
1563   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1564                                                   FunctionType::ExtInfo(),
1565                                                   RequiredArgs::All),
1566            EnumerationMutationFn, ReturnValueSlot(), Args2);
1567
1568   // Otherwise, or if the mutation function returns, just continue.
1569   EmitBlock(WasNotMutatedBB);
1570
1571   // Initialize the element variable.
1572   RunCleanupsScope elementVariableScope(*this);
1573   bool elementIsVariable;
1574   LValue elementLValue;
1575   QualType elementType;
1576   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1577     // Initialize the variable, in case it's a __block variable or something.
1578     EmitAutoVarInit(variable);
1579
1580     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1581     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1582                         VK_LValue, SourceLocation());
1583     elementLValue = EmitLValue(&tempDRE);
1584     elementType = D->getType();
1585     elementIsVariable = true;
1586
1587     if (D->isARCPseudoStrong())
1588       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1589   } else {
1590     elementLValue = LValue(); // suppress warning
1591     elementType = cast<Expr>(S.getElement())->getType();
1592     elementIsVariable = false;
1593   }
1594   llvm::Type *convertedElementType = ConvertType(elementType);
1595
1596   // Fetch the buffer out of the enumeration state.
1597   // TODO: this pointer should actually be invariant between
1598   // refreshes, which would help us do certain loop optimizations.
1599   llvm::Value *StateItemsPtr =
1600     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1601   llvm::Value *EnumStateItems =
1602     Builder.CreateLoad(StateItemsPtr, "stateitems");
1603
1604   // Fetch the value at the current index from the buffer.
1605   llvm::Value *CurrentItemPtr =
1606     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1607   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1608
1609   // Cast that value to the right type.
1610   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1611                                       "currentitem");
1612
1613   // Make sure we have an l-value.  Yes, this gets evaluated every
1614   // time through the loop.
1615   if (!elementIsVariable) {
1616     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1617     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1618   } else {
1619     EmitScalarInit(CurrentItem, elementLValue);
1620   }
1621
1622   // If we do have an element variable, this assignment is the end of
1623   // its initialization.
1624   if (elementIsVariable)
1625     EmitAutoVarCleanups(variable);
1626
1627   // Perform the loop body, setting up break and continue labels.
1628   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1629   {
1630     RunCleanupsScope Scope(*this);
1631     EmitStmt(S.getBody());
1632   }
1633   BreakContinueStack.pop_back();
1634
1635   // Destroy the element variable now.
1636   elementVariableScope.ForceCleanup();
1637
1638   // Check whether there are more elements.
1639   EmitBlock(AfterBody.getBlock());
1640
1641   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1642
1643   // First we check in the local buffer.
1644   llvm::Value *indexPlusOne
1645     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1646
1647   // If we haven't overrun the buffer yet, we can continue.
1648   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1649                        LoopBodyBB, FetchMoreBB);
1650
1651   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1652   count->addIncoming(count, AfterBody.getBlock());
1653
1654   // Otherwise, we have to fetch more elements.
1655   EmitBlock(FetchMoreBB);
1656
1657   CountRV =
1658     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1659                                              getContext().UnsignedLongTy,
1660                                              FastEnumSel,
1661                                              Collection, Args);
1662
1663   // If we got a zero count, we're done.
1664   llvm::Value *refetchCount = CountRV.getScalarVal();
1665
1666   // (note that the message send might split FetchMoreBB)
1667   index->addIncoming(zero, Builder.GetInsertBlock());
1668   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1669
1670   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1671                        EmptyBB, LoopBodyBB);
1672
1673   // No more elements.
1674   EmitBlock(EmptyBB);
1675
1676   if (!elementIsVariable) {
1677     // If the element was not a declaration, set it to be null.
1678
1679     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1680     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1681     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1682   }
1683
1684   if (DI)
1685     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1686
1687   // Leave the cleanup we entered in ARC.
1688   if (getLangOpts().ObjCAutoRefCount)
1689     PopCleanupBlock();
1690
1691   EmitBlock(LoopEnd.getBlock());
1692 }
1693
1694 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1695   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1696 }
1697
1698 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1699   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1700 }
1701
1702 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1703                                               const ObjCAtSynchronizedStmt &S) {
1704   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1705 }
1706
1707 /// Produce the code for a CK_ARCProduceObject.  Just does a
1708 /// primitive retain.
1709 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1710                                                     llvm::Value *value) {
1711   return EmitARCRetain(type, value);
1712 }
1713
1714 namespace {
1715   struct CallObjCRelease : EHScopeStack::Cleanup {
1716     CallObjCRelease(llvm::Value *object) : object(object) {}
1717     llvm::Value *object;
1718
1719     void Emit(CodeGenFunction &CGF, Flags flags) {
1720       // Releases at the end of the full-expression are imprecise.
1721       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1722     }
1723   };
1724 }
1725
1726 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1727 /// release at the end of the full-expression.
1728 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1729                                                     llvm::Value *object) {
1730   // If we're in a conditional branch, we need to make the cleanup
1731   // conditional.
1732   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1733   return object;
1734 }
1735
1736 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1737                                                            llvm::Value *value) {
1738   return EmitARCRetainAutorelease(type, value);
1739 }
1740
1741 /// Given a number of pointers, inform the optimizer that they're
1742 /// being intrinsically used up until this point in the program.
1743 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1744   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1745   if (!fn) {
1746     llvm::FunctionType *fnType =
1747       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1748     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1749   }
1750
1751   // This isn't really a "runtime" function, but as an intrinsic it
1752   // doesn't really matter as long as we align things up.
1753   EmitNounwindRuntimeCall(fn, values);
1754 }
1755
1756
1757 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1758                                                 llvm::FunctionType *type,
1759                                                 StringRef fnName) {
1760   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1761
1762   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1763     // If the target runtime doesn't naturally support ARC, emit weak
1764     // references to the runtime support library.  We don't really
1765     // permit this to fail, but we need a particular relocation style.
1766     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1767       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1768     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1769       // If we have Native ARC, set nonlazybind attribute for these APIs for
1770       // performance.
1771       f->addFnAttr(llvm::Attribute::NonLazyBind);
1772     }
1773   }
1774
1775   return fn;
1776 }
1777
1778 /// Perform an operation having the signature
1779 ///   i8* (i8*)
1780 /// where a null input causes a no-op and returns null.
1781 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1782                                           llvm::Value *value,
1783                                           llvm::Constant *&fn,
1784                                           StringRef fnName,
1785                                           bool isTailCall = false) {
1786   if (isa<llvm::ConstantPointerNull>(value)) return value;
1787
1788   if (!fn) {
1789     llvm::FunctionType *fnType =
1790       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1791     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1792   }
1793
1794   // Cast the argument to 'id'.
1795   llvm::Type *origType = value->getType();
1796   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1797
1798   // Call the function.
1799   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1800   if (isTailCall)
1801     call->setTailCall();
1802
1803   // Cast the result back to the original type.
1804   return CGF.Builder.CreateBitCast(call, origType);
1805 }
1806
1807 /// Perform an operation having the following signature:
1808 ///   i8* (i8**)
1809 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1810                                          llvm::Value *addr,
1811                                          llvm::Constant *&fn,
1812                                          StringRef fnName) {
1813   if (!fn) {
1814     llvm::FunctionType *fnType =
1815       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1816     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1817   }
1818
1819   // Cast the argument to 'id*'.
1820   llvm::Type *origType = addr->getType();
1821   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1822
1823   // Call the function.
1824   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1825
1826   // Cast the result back to a dereference of the original type.
1827   if (origType != CGF.Int8PtrPtrTy)
1828     result = CGF.Builder.CreateBitCast(result,
1829                         cast<llvm::PointerType>(origType)->getElementType());
1830
1831   return result;
1832 }
1833
1834 /// Perform an operation having the following signature:
1835 ///   i8* (i8**, i8*)
1836 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1837                                           llvm::Value *addr,
1838                                           llvm::Value *value,
1839                                           llvm::Constant *&fn,
1840                                           StringRef fnName,
1841                                           bool ignored) {
1842   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1843            == value->getType());
1844
1845   if (!fn) {
1846     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1847
1848     llvm::FunctionType *fnType
1849       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1850     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1851   }
1852
1853   llvm::Type *origType = value->getType();
1854
1855   llvm::Value *args[] = {
1856     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1857     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1858   };
1859   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1860
1861   if (ignored) return 0;
1862
1863   return CGF.Builder.CreateBitCast(result, origType);
1864 }
1865
1866 /// Perform an operation having the following signature:
1867 ///   void (i8**, i8**)
1868 static void emitARCCopyOperation(CodeGenFunction &CGF,
1869                                  llvm::Value *dst,
1870                                  llvm::Value *src,
1871                                  llvm::Constant *&fn,
1872                                  StringRef fnName) {
1873   assert(dst->getType() == src->getType());
1874
1875   if (!fn) {
1876     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1877
1878     llvm::FunctionType *fnType
1879       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1880     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1881   }
1882
1883   llvm::Value *args[] = {
1884     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1885     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1886   };
1887   CGF.EmitNounwindRuntimeCall(fn, args);
1888 }
1889
1890 /// Produce the code to do a retain.  Based on the type, calls one of:
1891 ///   call i8* \@objc_retain(i8* %value)
1892 ///   call i8* \@objc_retainBlock(i8* %value)
1893 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1894   if (type->isBlockPointerType())
1895     return EmitARCRetainBlock(value, /*mandatory*/ false);
1896   else
1897     return EmitARCRetainNonBlock(value);
1898 }
1899
1900 /// Retain the given object, with normal retain semantics.
1901 ///   call i8* \@objc_retain(i8* %value)
1902 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1903   return emitARCValueOperation(*this, value,
1904                                CGM.getARCEntrypoints().objc_retain,
1905                                "objc_retain");
1906 }
1907
1908 /// Retain the given block, with _Block_copy semantics.
1909 ///   call i8* \@objc_retainBlock(i8* %value)
1910 ///
1911 /// \param mandatory - If false, emit the call with metadata
1912 /// indicating that it's okay for the optimizer to eliminate this call
1913 /// if it can prove that the block never escapes except down the stack.
1914 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1915                                                  bool mandatory) {
1916   llvm::Value *result
1917     = emitARCValueOperation(*this, value,
1918                             CGM.getARCEntrypoints().objc_retainBlock,
1919                             "objc_retainBlock");
1920
1921   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1922   // tell the optimizer that it doesn't need to do this copy if the
1923   // block doesn't escape, where being passed as an argument doesn't
1924   // count as escaping.
1925   if (!mandatory && isa<llvm::Instruction>(result)) {
1926     llvm::CallInst *call
1927       = cast<llvm::CallInst>(result->stripPointerCasts());
1928     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1929
1930     SmallVector<llvm::Value*,1> args;
1931     call->setMetadata("clang.arc.copy_on_escape",
1932                       llvm::MDNode::get(Builder.getContext(), args));
1933   }
1934
1935   return result;
1936 }
1937
1938 /// Retain the given object which is the result of a function call.
1939 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1940 ///
1941 /// Yes, this function name is one character away from a different
1942 /// call with completely different semantics.
1943 llvm::Value *
1944 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1945   // Fetch the void(void) inline asm which marks that we're going to
1946   // retain the autoreleased return value.
1947   llvm::InlineAsm *&marker
1948     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1949   if (!marker) {
1950     StringRef assembly
1951       = CGM.getTargetCodeGenInfo()
1952            .getARCRetainAutoreleasedReturnValueMarker();
1953
1954     // If we have an empty assembly string, there's nothing to do.
1955     if (assembly.empty()) {
1956
1957     // Otherwise, at -O0, build an inline asm that we're going to call
1958     // in a moment.
1959     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1960       llvm::FunctionType *type =
1961         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1962       
1963       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1964
1965     // If we're at -O1 and above, we don't want to litter the code
1966     // with this marker yet, so leave a breadcrumb for the ARC
1967     // optimizer to pick up.
1968     } else {
1969       llvm::NamedMDNode *metadata =
1970         CGM.getModule().getOrInsertNamedMetadata(
1971                             "clang.arc.retainAutoreleasedReturnValueMarker");
1972       assert(metadata->getNumOperands() <= 1);
1973       if (metadata->getNumOperands() == 0) {
1974         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1975         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1976       }
1977     }
1978   }
1979
1980   // Call the marker asm if we made one, which we do only at -O0.
1981   if (marker) Builder.CreateCall(marker);
1982
1983   return emitARCValueOperation(*this, value,
1984                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1985                                "objc_retainAutoreleasedReturnValue");
1986 }
1987
1988 /// Release the given object.
1989 ///   call void \@objc_release(i8* %value)
1990 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1991                                      ARCPreciseLifetime_t precise) {
1992   if (isa<llvm::ConstantPointerNull>(value)) return;
1993
1994   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1995   if (!fn) {
1996     llvm::FunctionType *fnType =
1997       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
1998     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1999   }
2000
2001   // Cast the argument to 'id'.
2002   value = Builder.CreateBitCast(value, Int8PtrTy);
2003
2004   // Call objc_release.
2005   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2006
2007   if (precise == ARCImpreciseLifetime) {
2008     SmallVector<llvm::Value*,1> args;
2009     call->setMetadata("clang.imprecise_release",
2010                       llvm::MDNode::get(Builder.getContext(), args));
2011   }
2012 }
2013
2014 /// Destroy a __strong variable.
2015 ///
2016 /// At -O0, emit a call to store 'null' into the address;
2017 /// instrumenting tools prefer this because the address is exposed,
2018 /// but it's relatively cumbersome to optimize.
2019 ///
2020 /// At -O1 and above, just load and call objc_release.
2021 ///
2022 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2023 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2024                                            ARCPreciseLifetime_t precise) {
2025   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2026     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2027     llvm::Value *null = llvm::ConstantPointerNull::get(
2028                           cast<llvm::PointerType>(addrTy->getElementType()));
2029     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2030     return;
2031   }
2032
2033   llvm::Value *value = Builder.CreateLoad(addr);
2034   EmitARCRelease(value, precise);
2035 }
2036
2037 /// Store into a strong object.  Always calls this:
2038 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2039 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2040                                                      llvm::Value *value,
2041                                                      bool ignored) {
2042   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2043            == value->getType());
2044
2045   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2046   if (!fn) {
2047     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2048     llvm::FunctionType *fnType
2049       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2050     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2051   }
2052
2053   llvm::Value *args[] = {
2054     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2055     Builder.CreateBitCast(value, Int8PtrTy)
2056   };
2057   EmitNounwindRuntimeCall(fn, args);
2058
2059   if (ignored) return 0;
2060   return value;
2061 }
2062
2063 /// Store into a strong object.  Sometimes calls this:
2064 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2065 /// Other times, breaks it down into components.
2066 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2067                                                  llvm::Value *newValue,
2068                                                  bool ignored) {
2069   QualType type = dst.getType();
2070   bool isBlock = type->isBlockPointerType();
2071
2072   // Use a store barrier at -O0 unless this is a block type or the
2073   // lvalue is inadequately aligned.
2074   if (shouldUseFusedARCCalls() &&
2075       !isBlock &&
2076       (dst.getAlignment().isZero() ||
2077        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2078     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2079   }
2080
2081   // Otherwise, split it out.
2082
2083   // Retain the new value.
2084   newValue = EmitARCRetain(type, newValue);
2085
2086   // Read the old value.
2087   llvm::Value *oldValue = EmitLoadOfScalar(dst);
2088
2089   // Store.  We do this before the release so that any deallocs won't
2090   // see the old value.
2091   EmitStoreOfScalar(newValue, dst);
2092
2093   // Finally, release the old value.
2094   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2095
2096   return newValue;
2097 }
2098
2099 /// Autorelease the given object.
2100 ///   call i8* \@objc_autorelease(i8* %value)
2101 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2102   return emitARCValueOperation(*this, value,
2103                                CGM.getARCEntrypoints().objc_autorelease,
2104                                "objc_autorelease");
2105 }
2106
2107 /// Autorelease the given object.
2108 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2109 llvm::Value *
2110 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2111   return emitARCValueOperation(*this, value,
2112                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2113                                "objc_autoreleaseReturnValue",
2114                                /*isTailCall*/ true);
2115 }
2116
2117 /// Do a fused retain/autorelease of the given object.
2118 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2119 llvm::Value *
2120 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2121   return emitARCValueOperation(*this, value,
2122                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2123                                "objc_retainAutoreleaseReturnValue",
2124                                /*isTailCall*/ true);
2125 }
2126
2127 /// Do a fused retain/autorelease of the given object.
2128 ///   call i8* \@objc_retainAutorelease(i8* %value)
2129 /// or
2130 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2131 ///   call i8* \@objc_autorelease(i8* %retain)
2132 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2133                                                        llvm::Value *value) {
2134   if (!type->isBlockPointerType())
2135     return EmitARCRetainAutoreleaseNonBlock(value);
2136
2137   if (isa<llvm::ConstantPointerNull>(value)) return value;
2138
2139   llvm::Type *origType = value->getType();
2140   value = Builder.CreateBitCast(value, Int8PtrTy);
2141   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2142   value = EmitARCAutorelease(value);
2143   return Builder.CreateBitCast(value, origType);
2144 }
2145
2146 /// Do a fused retain/autorelease of the given object.
2147 ///   call i8* \@objc_retainAutorelease(i8* %value)
2148 llvm::Value *
2149 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2150   return emitARCValueOperation(*this, value,
2151                                CGM.getARCEntrypoints().objc_retainAutorelease,
2152                                "objc_retainAutorelease");
2153 }
2154
2155 /// i8* \@objc_loadWeak(i8** %addr)
2156 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2157 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2158   return emitARCLoadOperation(*this, addr,
2159                               CGM.getARCEntrypoints().objc_loadWeak,
2160                               "objc_loadWeak");
2161 }
2162
2163 /// i8* \@objc_loadWeakRetained(i8** %addr)
2164 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2165   return emitARCLoadOperation(*this, addr,
2166                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2167                               "objc_loadWeakRetained");
2168 }
2169
2170 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2171 /// Returns %value.
2172 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2173                                                llvm::Value *value,
2174                                                bool ignored) {
2175   return emitARCStoreOperation(*this, addr, value,
2176                                CGM.getARCEntrypoints().objc_storeWeak,
2177                                "objc_storeWeak", ignored);
2178 }
2179
2180 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2181 /// Returns %value.  %addr is known to not have a current weak entry.
2182 /// Essentially equivalent to:
2183 ///   *addr = nil; objc_storeWeak(addr, value);
2184 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2185   // If we're initializing to null, just write null to memory; no need
2186   // to get the runtime involved.  But don't do this if optimization
2187   // is enabled, because accounting for this would make the optimizer
2188   // much more complicated.
2189   if (isa<llvm::ConstantPointerNull>(value) &&
2190       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2191     Builder.CreateStore(value, addr);
2192     return;
2193   }
2194
2195   emitARCStoreOperation(*this, addr, value,
2196                         CGM.getARCEntrypoints().objc_initWeak,
2197                         "objc_initWeak", /*ignored*/ true);
2198 }
2199
2200 /// void \@objc_destroyWeak(i8** %addr)
2201 /// Essentially objc_storeWeak(addr, nil).
2202 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2203   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2204   if (!fn) {
2205     llvm::FunctionType *fnType =
2206       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2207     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2208   }
2209
2210   // Cast the argument to 'id*'.
2211   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2212
2213   EmitNounwindRuntimeCall(fn, addr);
2214 }
2215
2216 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2217 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2218 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2219 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2220   emitARCCopyOperation(*this, dst, src,
2221                        CGM.getARCEntrypoints().objc_moveWeak,
2222                        "objc_moveWeak");
2223 }
2224
2225 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2226 /// Disregards the current value in %dest.  Essentially
2227 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2228 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2229   emitARCCopyOperation(*this, dst, src,
2230                        CGM.getARCEntrypoints().objc_copyWeak,
2231                        "objc_copyWeak");
2232 }
2233
2234 /// Produce the code to do a objc_autoreleasepool_push.
2235 ///   call i8* \@objc_autoreleasePoolPush(void)
2236 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2237   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2238   if (!fn) {
2239     llvm::FunctionType *fnType =
2240       llvm::FunctionType::get(Int8PtrTy, false);
2241     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2242   }
2243
2244   return EmitNounwindRuntimeCall(fn);
2245 }
2246
2247 /// Produce the code to do a primitive release.
2248 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2249 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2250   assert(value->getType() == Int8PtrTy);
2251
2252   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2253   if (!fn) {
2254     llvm::FunctionType *fnType =
2255       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2256
2257     // We don't want to use a weak import here; instead we should not
2258     // fall into this path.
2259     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2260   }
2261
2262   // objc_autoreleasePoolPop can throw.
2263   EmitRuntimeCallOrInvoke(fn, value);
2264 }
2265
2266 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2267 /// Which is: [[NSAutoreleasePool alloc] init];
2268 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2269 /// init is declared as: - (id) init; in its NSObject super class.
2270 ///
2271 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2272   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2273   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2274   // [NSAutoreleasePool alloc]
2275   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2276   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2277   CallArgList Args;
2278   RValue AllocRV =  
2279     Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 
2280                                 getContext().getObjCIdType(),
2281                                 AllocSel, Receiver, Args); 
2282
2283   // [Receiver init]
2284   Receiver = AllocRV.getScalarVal();
2285   II = &CGM.getContext().Idents.get("init");
2286   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2287   RValue InitRV =
2288     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2289                                 getContext().getObjCIdType(),
2290                                 InitSel, Receiver, Args); 
2291   return InitRV.getScalarVal();
2292 }
2293
2294 /// Produce the code to do a primitive release.
2295 /// [tmp drain];
2296 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2297   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2298   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2299   CallArgList Args;
2300   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2301                               getContext().VoidTy, DrainSel, Arg, Args); 
2302 }
2303
2304 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2305                                               llvm::Value *addr,
2306                                               QualType type) {
2307   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2308 }
2309
2310 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2311                                                 llvm::Value *addr,
2312                                                 QualType type) {
2313   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2314 }
2315
2316 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2317                                      llvm::Value *addr,
2318                                      QualType type) {
2319   CGF.EmitARCDestroyWeak(addr);
2320 }
2321
2322 namespace {
2323   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2324     llvm::Value *Token;
2325
2326     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2327
2328     void Emit(CodeGenFunction &CGF, Flags flags) {
2329       CGF.EmitObjCAutoreleasePoolPop(Token);
2330     }
2331   };
2332   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2333     llvm::Value *Token;
2334
2335     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2336
2337     void Emit(CodeGenFunction &CGF, Flags flags) {
2338       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2339     }
2340   };
2341 }
2342
2343 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2344   if (CGM.getLangOpts().ObjCAutoRefCount)
2345     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2346   else
2347     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2348 }
2349
2350 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2351                                                   LValue lvalue,
2352                                                   QualType type) {
2353   switch (type.getObjCLifetime()) {
2354   case Qualifiers::OCL_None:
2355   case Qualifiers::OCL_ExplicitNone:
2356   case Qualifiers::OCL_Strong:
2357   case Qualifiers::OCL_Autoreleasing:
2358     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2359                          false);
2360
2361   case Qualifiers::OCL_Weak:
2362     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2363                          true);
2364   }
2365
2366   llvm_unreachable("impossible lifetime!");
2367 }
2368
2369 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2370                                                   const Expr *e) {
2371   e = e->IgnoreParens();
2372   QualType type = e->getType();
2373
2374   // If we're loading retained from a __strong xvalue, we can avoid 
2375   // an extra retain/release pair by zeroing out the source of this
2376   // "move" operation.
2377   if (e->isXValue() &&
2378       !type.isConstQualified() &&
2379       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2380     // Emit the lvalue.
2381     LValue lv = CGF.EmitLValue(e);
2382     
2383     // Load the object pointer.
2384     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2385     
2386     // Set the source pointer to NULL.
2387     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2388     
2389     return TryEmitResult(result, true);
2390   }
2391
2392   // As a very special optimization, in ARC++, if the l-value is the
2393   // result of a non-volatile assignment, do a simple retain of the
2394   // result of the call to objc_storeWeak instead of reloading.
2395   if (CGF.getLangOpts().CPlusPlus &&
2396       !type.isVolatileQualified() &&
2397       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2398       isa<BinaryOperator>(e) &&
2399       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2400     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2401
2402   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2403 }
2404
2405 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2406                                            llvm::Value *value);
2407
2408 /// Given that the given expression is some sort of call (which does
2409 /// not return retained), emit a retain following it.
2410 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2411   llvm::Value *value = CGF.EmitScalarExpr(e);
2412   return emitARCRetainAfterCall(CGF, value);
2413 }
2414
2415 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2416                                            llvm::Value *value) {
2417   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2418     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2419
2420     // Place the retain immediately following the call.
2421     CGF.Builder.SetInsertPoint(call->getParent(),
2422                                ++llvm::BasicBlock::iterator(call));
2423     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2424
2425     CGF.Builder.restoreIP(ip);
2426     return value;
2427   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2428     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2429
2430     // Place the retain at the beginning of the normal destination block.
2431     llvm::BasicBlock *BB = invoke->getNormalDest();
2432     CGF.Builder.SetInsertPoint(BB, BB->begin());
2433     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2434
2435     CGF.Builder.restoreIP(ip);
2436     return value;
2437
2438   // Bitcasts can arise because of related-result returns.  Rewrite
2439   // the operand.
2440   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2441     llvm::Value *operand = bitcast->getOperand(0);
2442     operand = emitARCRetainAfterCall(CGF, operand);
2443     bitcast->setOperand(0, operand);
2444     return bitcast;
2445
2446   // Generic fall-back case.
2447   } else {
2448     // Retain using the non-block variant: we never need to do a copy
2449     // of a block that's been returned to us.
2450     return CGF.EmitARCRetainNonBlock(value);
2451   }
2452 }
2453
2454 /// Determine whether it might be important to emit a separate
2455 /// objc_retain_block on the result of the given expression, or
2456 /// whether it's okay to just emit it in a +1 context.
2457 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2458   assert(e->getType()->isBlockPointerType());
2459   e = e->IgnoreParens();
2460
2461   // For future goodness, emit block expressions directly in +1
2462   // contexts if we can.
2463   if (isa<BlockExpr>(e))
2464     return false;
2465
2466   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2467     switch (cast->getCastKind()) {
2468     // Emitting these operations in +1 contexts is goodness.
2469     case CK_LValueToRValue:
2470     case CK_ARCReclaimReturnedObject:
2471     case CK_ARCConsumeObject:
2472     case CK_ARCProduceObject:
2473       return false;
2474
2475     // These operations preserve a block type.
2476     case CK_NoOp:
2477     case CK_BitCast:
2478       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2479
2480     // These operations are known to be bad (or haven't been considered).
2481     case CK_AnyPointerToBlockPointerCast:
2482     default:
2483       return true;
2484     }
2485   }
2486
2487   return true;
2488 }
2489
2490 /// Try to emit a PseudoObjectExpr at +1.
2491 ///
2492 /// This massively duplicates emitPseudoObjectRValue.
2493 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2494                                                   const PseudoObjectExpr *E) {
2495   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2496
2497   // Find the result expression.
2498   const Expr *resultExpr = E->getResultExpr();
2499   assert(resultExpr);
2500   TryEmitResult result;
2501
2502   for (PseudoObjectExpr::const_semantics_iterator
2503          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2504     const Expr *semantic = *i;
2505
2506     // If this semantic expression is an opaque value, bind it
2507     // to the result of its source expression.
2508     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2509       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2510       OVMA opaqueData;
2511
2512       // If this semantic is the result of the pseudo-object
2513       // expression, try to evaluate the source as +1.
2514       if (ov == resultExpr) {
2515         assert(!OVMA::shouldBindAsLValue(ov));
2516         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2517         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2518
2519       // Otherwise, just bind it.
2520       } else {
2521         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2522       }
2523       opaques.push_back(opaqueData);
2524
2525     // Otherwise, if the expression is the result, evaluate it
2526     // and remember the result.
2527     } else if (semantic == resultExpr) {
2528       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2529
2530     // Otherwise, evaluate the expression in an ignored context.
2531     } else {
2532       CGF.EmitIgnoredExpr(semantic);
2533     }
2534   }
2535
2536   // Unbind all the opaques now.
2537   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2538     opaques[i].unbind(CGF);
2539
2540   return result;
2541 }
2542
2543 static TryEmitResult
2544 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2545   // We should *never* see a nested full-expression here, because if
2546   // we fail to emit at +1, our caller must not retain after we close
2547   // out the full-expression.
2548   assert(!isa<ExprWithCleanups>(e));
2549
2550   // The desired result type, if it differs from the type of the
2551   // ultimate opaque expression.
2552   llvm::Type *resultType = 0;
2553
2554   while (true) {
2555     e = e->IgnoreParens();
2556
2557     // There's a break at the end of this if-chain;  anything
2558     // that wants to keep looping has to explicitly continue.
2559     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2560       switch (ce->getCastKind()) {
2561       // No-op casts don't change the type, so we just ignore them.
2562       case CK_NoOp:
2563         e = ce->getSubExpr();
2564         continue;
2565
2566       case CK_LValueToRValue: {
2567         TryEmitResult loadResult
2568           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2569         if (resultType) {
2570           llvm::Value *value = loadResult.getPointer();
2571           value = CGF.Builder.CreateBitCast(value, resultType);
2572           loadResult.setPointer(value);
2573         }
2574         return loadResult;
2575       }
2576
2577       // These casts can change the type, so remember that and
2578       // soldier on.  We only need to remember the outermost such
2579       // cast, though.
2580       case CK_CPointerToObjCPointerCast:
2581       case CK_BlockPointerToObjCPointerCast:
2582       case CK_AnyPointerToBlockPointerCast:
2583       case CK_BitCast:
2584         if (!resultType)
2585           resultType = CGF.ConvertType(ce->getType());
2586         e = ce->getSubExpr();
2587         assert(e->getType()->hasPointerRepresentation());
2588         continue;
2589
2590       // For consumptions, just emit the subexpression and thus elide
2591       // the retain/release pair.
2592       case CK_ARCConsumeObject: {
2593         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2594         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2595         return TryEmitResult(result, true);
2596       }
2597
2598       // Block extends are net +0.  Naively, we could just recurse on
2599       // the subexpression, but actually we need to ensure that the
2600       // value is copied as a block, so there's a little filter here.
2601       case CK_ARCExtendBlockObject: {
2602         llvm::Value *result; // will be a +0 value
2603
2604         // If we can't safely assume the sub-expression will produce a
2605         // block-copied value, emit the sub-expression at +0.
2606         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2607           result = CGF.EmitScalarExpr(ce->getSubExpr());
2608
2609         // Otherwise, try to emit the sub-expression at +1 recursively.
2610         } else {
2611           TryEmitResult subresult
2612             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2613           result = subresult.getPointer();
2614
2615           // If that produced a retained value, just use that,
2616           // possibly casting down.
2617           if (subresult.getInt()) {
2618             if (resultType)
2619               result = CGF.Builder.CreateBitCast(result, resultType);
2620             return TryEmitResult(result, true);
2621           }
2622
2623           // Otherwise it's +0.
2624         }
2625
2626         // Retain the object as a block, then cast down.
2627         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2628         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2629         return TryEmitResult(result, true);
2630       }
2631
2632       // For reclaims, emit the subexpression as a retained call and
2633       // skip the consumption.
2634       case CK_ARCReclaimReturnedObject: {
2635         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2636         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637         return TryEmitResult(result, true);
2638       }
2639
2640       default:
2641         break;
2642       }
2643
2644     // Skip __extension__.
2645     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2646       if (op->getOpcode() == UO_Extension) {
2647         e = op->getSubExpr();
2648         continue;
2649       }
2650
2651     // For calls and message sends, use the retained-call logic.
2652     // Delegate inits are a special case in that they're the only
2653     // returns-retained expression that *isn't* surrounded by
2654     // a consume.
2655     } else if (isa<CallExpr>(e) ||
2656                (isa<ObjCMessageExpr>(e) &&
2657                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2658       llvm::Value *result = emitARCRetainCall(CGF, e);
2659       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2660       return TryEmitResult(result, true);
2661
2662     // Look through pseudo-object expressions.
2663     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2664       TryEmitResult result
2665         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2666       if (resultType) {
2667         llvm::Value *value = result.getPointer();
2668         value = CGF.Builder.CreateBitCast(value, resultType);
2669         result.setPointer(value);
2670       }
2671       return result;
2672     }
2673
2674     // Conservatively halt the search at any other expression kind.
2675     break;
2676   }
2677
2678   // We didn't find an obvious production, so emit what we've got and
2679   // tell the caller that we didn't manage to retain.
2680   llvm::Value *result = CGF.EmitScalarExpr(e);
2681   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2682   return TryEmitResult(result, false);
2683 }
2684
2685 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2686                                                 LValue lvalue,
2687                                                 QualType type) {
2688   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2689   llvm::Value *value = result.getPointer();
2690   if (!result.getInt())
2691     value = CGF.EmitARCRetain(type, value);
2692   return value;
2693 }
2694
2695 /// EmitARCRetainScalarExpr - Semantically equivalent to
2696 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2697 /// best-effort attempt to peephole expressions that naturally produce
2698 /// retained objects.
2699 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2700   // The retain needs to happen within the full-expression.
2701   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2702     enterFullExpression(cleanups);
2703     RunCleanupsScope scope(*this);
2704     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2705   }
2706
2707   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2708   llvm::Value *value = result.getPointer();
2709   if (!result.getInt())
2710     value = EmitARCRetain(e->getType(), value);
2711   return value;
2712 }
2713
2714 llvm::Value *
2715 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2716   // The retain needs to happen within the full-expression.
2717   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2718     enterFullExpression(cleanups);
2719     RunCleanupsScope scope(*this);
2720     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2721   }
2722
2723   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2724   llvm::Value *value = result.getPointer();
2725   if (result.getInt())
2726     value = EmitARCAutorelease(value);
2727   else
2728     value = EmitARCRetainAutorelease(e->getType(), value);
2729   return value;
2730 }
2731
2732 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2733   llvm::Value *result;
2734   bool doRetain;
2735
2736   if (shouldEmitSeparateBlockRetain(e)) {
2737     result = EmitScalarExpr(e);
2738     doRetain = true;
2739   } else {
2740     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2741     result = subresult.getPointer();
2742     doRetain = !subresult.getInt();
2743   }
2744
2745   if (doRetain)
2746     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2747   return EmitObjCConsumeObject(e->getType(), result);
2748 }
2749
2750 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2751   // In ARC, retain and autorelease the expression.
2752   if (getLangOpts().ObjCAutoRefCount) {
2753     // Do so before running any cleanups for the full-expression.
2754     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2755     return EmitARCRetainAutoreleaseScalarExpr(expr);
2756   }
2757
2758   // Otherwise, use the normal scalar-expression emission.  The
2759   // exception machinery doesn't do anything special with the
2760   // exception like retaining it, so there's no safety associated with
2761   // only running cleanups after the throw has started, and when it
2762   // matters it tends to be substantially inferior code.
2763   return EmitScalarExpr(expr);
2764 }
2765
2766 std::pair<LValue,llvm::Value*>
2767 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2768                                     bool ignored) {
2769   // Evaluate the RHS first.
2770   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2771   llvm::Value *value = result.getPointer();
2772
2773   bool hasImmediateRetain = result.getInt();
2774
2775   // If we didn't emit a retained object, and the l-value is of block
2776   // type, then we need to emit the block-retain immediately in case
2777   // it invalidates the l-value.
2778   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2779     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2780     hasImmediateRetain = true;
2781   }
2782
2783   LValue lvalue = EmitLValue(e->getLHS());
2784
2785   // If the RHS was emitted retained, expand this.
2786   if (hasImmediateRetain) {
2787     llvm::Value *oldValue =
2788       EmitLoadOfScalar(lvalue);
2789     EmitStoreOfScalar(value, lvalue);
2790     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2791   } else {
2792     value = EmitARCStoreStrong(lvalue, value, ignored);
2793   }
2794
2795   return std::pair<LValue,llvm::Value*>(lvalue, value);
2796 }
2797
2798 std::pair<LValue,llvm::Value*>
2799 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2800   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2801   LValue lvalue = EmitLValue(e->getLHS());
2802
2803   EmitStoreOfScalar(value, lvalue);
2804
2805   return std::pair<LValue,llvm::Value*>(lvalue, value);
2806 }
2807
2808 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2809                                           const ObjCAutoreleasePoolStmt &ARPS) {
2810   const Stmt *subStmt = ARPS.getSubStmt();
2811   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2812
2813   CGDebugInfo *DI = getDebugInfo();
2814   if (DI)
2815     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2816
2817   // Keep track of the current cleanup stack depth.
2818   RunCleanupsScope Scope(*this);
2819   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2820     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2821     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2822   } else {
2823     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2824     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2825   }
2826
2827   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2828        E = S.body_end(); I != E; ++I)
2829     EmitStmt(*I);
2830
2831   if (DI)
2832     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2833 }
2834
2835 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2836 /// make sure it survives garbage collection until this point.
2837 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2838   // We just use an inline assembly.
2839   llvm::FunctionType *extenderType
2840     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2841   llvm::Value *extender
2842     = llvm::InlineAsm::get(extenderType,
2843                            /* assembly */ "",
2844                            /* constraints */ "r",
2845                            /* side effects */ true);
2846
2847   object = Builder.CreateBitCast(object, VoidPtrTy);
2848   EmitNounwindRuntimeCall(extender, object);
2849 }
2850
2851 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2852 /// non-trivial copy assignment function, produce following helper function.
2853 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2854 ///
2855 llvm::Constant *
2856 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2857                                         const ObjCPropertyImplDecl *PID) {
2858   if (!getLangOpts().CPlusPlus ||
2859       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2860     return 0;
2861   QualType Ty = PID->getPropertyIvarDecl()->getType();
2862   if (!Ty->isRecordType())
2863     return 0;
2864   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2865   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2866     return 0;
2867   llvm::Constant * HelperFn = 0;
2868   if (hasTrivialSetExpr(PID))
2869     return 0;
2870   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2871   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2872     return HelperFn;
2873   
2874   ASTContext &C = getContext();
2875   IdentifierInfo *II
2876     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2877   FunctionDecl *FD = FunctionDecl::Create(C,
2878                                           C.getTranslationUnitDecl(),
2879                                           SourceLocation(),
2880                                           SourceLocation(), II, C.VoidTy, 0,
2881                                           SC_Static,
2882                                           false,
2883                                           false);
2884   
2885   QualType DestTy = C.getPointerType(Ty);
2886   QualType SrcTy = Ty;
2887   SrcTy.addConst();
2888   SrcTy = C.getPointerType(SrcTy);
2889   
2890   FunctionArgList args;
2891   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2892   args.push_back(&dstDecl);
2893   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2894   args.push_back(&srcDecl);
2895   
2896   const CGFunctionInfo &FI =
2897     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2898                                               FunctionType::ExtInfo(),
2899                                               RequiredArgs::All);
2900   
2901   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2902   
2903   llvm::Function *Fn =
2904     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2905                            "__assign_helper_atomic_property_",
2906                            &CGM.getModule());
2907   
2908   // Initialize debug info if needed.
2909   maybeInitializeDebugInfo();
2910   
2911   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2912   
2913   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2914                       VK_RValue, SourceLocation());
2915   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2916                     VK_LValue, OK_Ordinary, SourceLocation());
2917   
2918   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2919                       VK_RValue, SourceLocation());
2920   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2921                     VK_LValue, OK_Ordinary, SourceLocation());
2922   
2923   Expr *Args[2] = { &DST, &SRC };
2924   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2925   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2926                               Args, DestTy->getPointeeType(),
2927                               VK_LValue, SourceLocation(), false);
2928   
2929   EmitStmt(&TheCall);
2930
2931   FinishFunction();
2932   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2933   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2934   return HelperFn;
2935 }
2936
2937 llvm::Constant *
2938 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2939                                             const ObjCPropertyImplDecl *PID) {
2940   if (!getLangOpts().CPlusPlus ||
2941       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2942     return 0;
2943   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2944   QualType Ty = PD->getType();
2945   if (!Ty->isRecordType())
2946     return 0;
2947   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2948     return 0;
2949   llvm::Constant * HelperFn = 0;
2950   
2951   if (hasTrivialGetExpr(PID))
2952     return 0;
2953   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2954   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2955     return HelperFn;
2956   
2957   
2958   ASTContext &C = getContext();
2959   IdentifierInfo *II
2960   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2961   FunctionDecl *FD = FunctionDecl::Create(C,
2962                                           C.getTranslationUnitDecl(),
2963                                           SourceLocation(),
2964                                           SourceLocation(), II, C.VoidTy, 0,
2965                                           SC_Static,
2966                                           false,
2967                                           false);
2968   
2969   QualType DestTy = C.getPointerType(Ty);
2970   QualType SrcTy = Ty;
2971   SrcTy.addConst();
2972   SrcTy = C.getPointerType(SrcTy);
2973   
2974   FunctionArgList args;
2975   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2976   args.push_back(&dstDecl);
2977   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2978   args.push_back(&srcDecl);
2979   
2980   const CGFunctionInfo &FI =
2981   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2982                                             FunctionType::ExtInfo(),
2983                                             RequiredArgs::All);
2984   
2985   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2986   
2987   llvm::Function *Fn =
2988   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2989                          "__copy_helper_atomic_property_", &CGM.getModule());
2990   
2991   // Initialize debug info if needed.
2992   maybeInitializeDebugInfo();
2993   
2994   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2995   
2996   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2997                       VK_RValue, SourceLocation());
2998   
2999   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3000                     VK_LValue, OK_Ordinary, SourceLocation());
3001   
3002   CXXConstructExpr *CXXConstExpr = 
3003     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3004   
3005   SmallVector<Expr*, 4> ConstructorArgs;
3006   ConstructorArgs.push_back(&SRC);
3007   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3008   ++A;
3009   
3010   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3011        A != AEnd; ++A)
3012     ConstructorArgs.push_back(*A);
3013   
3014   CXXConstructExpr *TheCXXConstructExpr =
3015     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3016                              CXXConstExpr->getConstructor(),
3017                              CXXConstExpr->isElidable(),
3018                              ConstructorArgs,
3019                              CXXConstExpr->hadMultipleCandidates(),
3020                              CXXConstExpr->isListInitialization(),
3021                              CXXConstExpr->requiresZeroInitialization(),
3022                              CXXConstExpr->getConstructionKind(),
3023                              SourceRange());
3024   
3025   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3026                       VK_RValue, SourceLocation());
3027   
3028   RValue DV = EmitAnyExpr(&DstExpr);
3029   CharUnits Alignment
3030     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3031   EmitAggExpr(TheCXXConstructExpr, 
3032               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3033                                     AggValueSlot::IsDestructed,
3034                                     AggValueSlot::DoesNotNeedGCBarriers,
3035                                     AggValueSlot::IsNotAliased));
3036   
3037   FinishFunction();
3038   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3039   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3040   return HelperFn;
3041 }
3042
3043 llvm::Value *
3044 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3045   // Get selectors for retain/autorelease.
3046   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3047   Selector CopySelector =
3048       getContext().Selectors.getNullarySelector(CopyID);
3049   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3050   Selector AutoreleaseSelector =
3051       getContext().Selectors.getNullarySelector(AutoreleaseID);
3052
3053   // Emit calls to retain/autorelease.
3054   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3055   llvm::Value *Val = Block;
3056   RValue Result;
3057   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3058                                        Ty, CopySelector,
3059                                        Val, CallArgList(), 0, 0);
3060   Val = Result.getScalarVal();
3061   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3062                                        Ty, AutoreleaseSelector,
3063                                        Val, CallArgList(), 0, 0);
3064   Val = Result.getScalarVal();
3065   return Val;
3066 }
3067
3068
3069 CGObjCRuntime::~CGObjCRuntime() {}