]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/llvm/tools/clang/lib/Sema/SemaInit.cpp
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / llvm / tools / clang / lib / Sema / SemaInit.cpp
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34
35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71
72     return 0;
73   }
74
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77
78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81
82   return IsStringInit(init, arrayType, Context);
83 }
84
85 /// Update the type of a string literal, including any surrounding parentheses,
86 /// to match the type of the object which it is initializing.
87 static void updateStringLiteralType(Expr *E, QualType Ty) {
88   while (true) {
89     E->setType(Ty);
90     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
91       break;
92     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
93       E = PE->getSubExpr();
94     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
95       E = UO->getSubExpr();
96     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
97       E = GSE->getResultExpr();
98     else
99       llvm_unreachable("unexpected expr in string literal init");
100   }
101 }
102
103 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
104                             Sema &S) {
105   // Get the length of the string as parsed.
106   uint64_t StrLength =
107     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
108
109
110   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
111     // C99 6.7.8p14. We have an array of character type with unknown size
112     // being initialized to a string literal.
113     llvm::APInt ConstVal(32, StrLength);
114     // Return a new array type (C99 6.7.8p22).
115     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
116                                            ConstVal,
117                                            ArrayType::Normal, 0);
118     updateStringLiteralType(Str, DeclT);
119     return;
120   }
121
122   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
123
124   // We have an array of character type with known size.  However,
125   // the size may be smaller or larger than the string we are initializing.
126   // FIXME: Avoid truncation for 64-bit length strings.
127   if (S.getLangOpts().CPlusPlus) {
128     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
129       // For Pascal strings it's OK to strip off the terminating null character,
130       // so the example below is valid:
131       //
132       // unsigned char a[2] = "\pa";
133       if (SL->isPascal())
134         StrLength--;
135     }
136   
137     // [dcl.init.string]p2
138     if (StrLength > CAT->getSize().getZExtValue())
139       S.Diag(Str->getLocStart(),
140              diag::err_initializer_string_for_char_array_too_long)
141         << Str->getSourceRange();
142   } else {
143     // C99 6.7.8p14.
144     if (StrLength-1 > CAT->getSize().getZExtValue())
145       S.Diag(Str->getLocStart(),
146              diag::warn_initializer_string_for_char_array_too_long)
147         << Str->getSourceRange();
148   }
149
150   // Set the type to the actual size that we are initializing.  If we have
151   // something like:
152   //   char x[1] = "foo";
153   // then this will set the string literal's type to char[1].
154   updateStringLiteralType(Str, DeclT);
155 }
156
157 //===----------------------------------------------------------------------===//
158 // Semantic checking for initializer lists.
159 //===----------------------------------------------------------------------===//
160
161 /// @brief Semantic checking for initializer lists.
162 ///
163 /// The InitListChecker class contains a set of routines that each
164 /// handle the initialization of a certain kind of entity, e.g.,
165 /// arrays, vectors, struct/union types, scalars, etc. The
166 /// InitListChecker itself performs a recursive walk of the subobject
167 /// structure of the type to be initialized, while stepping through
168 /// the initializer list one element at a time. The IList and Index
169 /// parameters to each of the Check* routines contain the active
170 /// (syntactic) initializer list and the index into that initializer
171 /// list that represents the current initializer. Each routine is
172 /// responsible for moving that Index forward as it consumes elements.
173 ///
174 /// Each Check* routine also has a StructuredList/StructuredIndex
175 /// arguments, which contains the current "structured" (semantic)
176 /// initializer list and the index into that initializer list where we
177 /// are copying initializers as we map them over to the semantic
178 /// list. Once we have completed our recursive walk of the subobject
179 /// structure, we will have constructed a full semantic initializer
180 /// list.
181 ///
182 /// C99 designators cause changes in the initializer list traversal,
183 /// because they make the initialization "jump" into a specific
184 /// subobject and then continue the initialization from that
185 /// point. CheckDesignatedInitializer() recursively steps into the
186 /// designated subobject and manages backing out the recursion to
187 /// initialize the subobjects after the one designated.
188 namespace {
189 class InitListChecker {
190   Sema &SemaRef;
191   bool hadError;
192   bool VerifyOnly; // no diagnostics, no structure building
193   bool AllowBraceElision;
194   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
195   InitListExpr *FullyStructuredList;
196
197   void CheckImplicitInitList(const InitializedEntity &Entity,
198                              InitListExpr *ParentIList, QualType T,
199                              unsigned &Index, InitListExpr *StructuredList,
200                              unsigned &StructuredIndex);
201   void CheckExplicitInitList(const InitializedEntity &Entity,
202                              InitListExpr *IList, QualType &T,
203                              unsigned &Index, InitListExpr *StructuredList,
204                              unsigned &StructuredIndex,
205                              bool TopLevelObject = false);
206   void CheckListElementTypes(const InitializedEntity &Entity,
207                              InitListExpr *IList, QualType &DeclType,
208                              bool SubobjectIsDesignatorContext,
209                              unsigned &Index,
210                              InitListExpr *StructuredList,
211                              unsigned &StructuredIndex,
212                              bool TopLevelObject = false);
213   void CheckSubElementType(const InitializedEntity &Entity,
214                            InitListExpr *IList, QualType ElemType,
215                            unsigned &Index,
216                            InitListExpr *StructuredList,
217                            unsigned &StructuredIndex);
218   void CheckComplexType(const InitializedEntity &Entity,
219                         InitListExpr *IList, QualType DeclType,
220                         unsigned &Index,
221                         InitListExpr *StructuredList,
222                         unsigned &StructuredIndex);
223   void CheckScalarType(const InitializedEntity &Entity,
224                        InitListExpr *IList, QualType DeclType,
225                        unsigned &Index,
226                        InitListExpr *StructuredList,
227                        unsigned &StructuredIndex);
228   void CheckReferenceType(const InitializedEntity &Entity,
229                           InitListExpr *IList, QualType DeclType,
230                           unsigned &Index,
231                           InitListExpr *StructuredList,
232                           unsigned &StructuredIndex);
233   void CheckVectorType(const InitializedEntity &Entity,
234                        InitListExpr *IList, QualType DeclType, unsigned &Index,
235                        InitListExpr *StructuredList,
236                        unsigned &StructuredIndex);
237   void CheckStructUnionTypes(const InitializedEntity &Entity,
238                              InitListExpr *IList, QualType DeclType,
239                              RecordDecl::field_iterator Field,
240                              bool SubobjectIsDesignatorContext, unsigned &Index,
241                              InitListExpr *StructuredList,
242                              unsigned &StructuredIndex,
243                              bool TopLevelObject = false);
244   void CheckArrayType(const InitializedEntity &Entity,
245                       InitListExpr *IList, QualType &DeclType,
246                       llvm::APSInt elementIndex,
247                       bool SubobjectIsDesignatorContext, unsigned &Index,
248                       InitListExpr *StructuredList,
249                       unsigned &StructuredIndex);
250   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
251                                   InitListExpr *IList, DesignatedInitExpr *DIE,
252                                   unsigned DesigIdx,
253                                   QualType &CurrentObjectType,
254                                   RecordDecl::field_iterator *NextField,
255                                   llvm::APSInt *NextElementIndex,
256                                   unsigned &Index,
257                                   InitListExpr *StructuredList,
258                                   unsigned &StructuredIndex,
259                                   bool FinishSubobjectInit,
260                                   bool TopLevelObject);
261   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
262                                            QualType CurrentObjectType,
263                                            InitListExpr *StructuredList,
264                                            unsigned StructuredIndex,
265                                            SourceRange InitRange);
266   void UpdateStructuredListElement(InitListExpr *StructuredList,
267                                    unsigned &StructuredIndex,
268                                    Expr *expr);
269   int numArrayElements(QualType DeclType);
270   int numStructUnionElements(QualType DeclType);
271
272   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
273                                const InitializedEntity &ParentEntity,
274                                InitListExpr *ILE, bool &RequiresSecondPass);
275   void FillInValueInitializations(const InitializedEntity &Entity,
276                                   InitListExpr *ILE, bool &RequiresSecondPass);
277   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
278                               Expr *InitExpr, FieldDecl *Field,
279                               bool TopLevelObject);
280   void CheckValueInitializable(const InitializedEntity &Entity);
281
282 public:
283   InitListChecker(Sema &S, const InitializedEntity &Entity,
284                   InitListExpr *IL, QualType &T, bool VerifyOnly,
285                   bool AllowBraceElision);
286   bool HadError() { return hadError; }
287
288   // @brief Retrieves the fully-structured initializer list used for
289   // semantic analysis and code generation.
290   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
291 };
292 } // end anonymous namespace
293
294 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
295   assert(VerifyOnly &&
296          "CheckValueInitializable is only inteded for verification mode.");
297
298   SourceLocation Loc;
299   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
300                                                             true);
301   InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
302   if (InitSeq.Failed())
303     hadError = true;
304 }
305
306 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
307                                         const InitializedEntity &ParentEntity,
308                                               InitListExpr *ILE,
309                                               bool &RequiresSecondPass) {
310   SourceLocation Loc = ILE->getLocStart();
311   unsigned NumInits = ILE->getNumInits();
312   InitializedEntity MemberEntity
313     = InitializedEntity::InitializeMember(Field, &ParentEntity);
314   if (Init >= NumInits || !ILE->getInit(Init)) {
315     // If there's no explicit initializer but we have a default initializer, use
316     // that. This only happens in C++1y, since classes with default
317     // initializers are not aggregates in C++11.
318     if (Field->hasInClassInitializer()) {
319       Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
320                                              ILE->getRBraceLoc(), Field);
321       if (Init < NumInits)
322         ILE->setInit(Init, DIE);
323       else {
324         ILE->updateInit(SemaRef.Context, Init, DIE);
325         RequiresSecondPass = true;
326       }
327       return;
328     }
329
330     // FIXME: We probably don't need to handle references
331     // specially here, since value-initialization of references is
332     // handled in InitializationSequence.
333     if (Field->getType()->isReferenceType()) {
334       // C++ [dcl.init.aggr]p9:
335       //   If an incomplete or empty initializer-list leaves a
336       //   member of reference type uninitialized, the program is
337       //   ill-formed.
338       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
339         << Field->getType()
340         << ILE->getSyntacticForm()->getSourceRange();
341       SemaRef.Diag(Field->getLocation(),
342                    diag::note_uninit_reference_member);
343       hadError = true;
344       return;
345     }
346
347     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
348                                                               true);
349     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
350     if (!InitSeq) {
351       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
352       hadError = true;
353       return;
354     }
355
356     ExprResult MemberInit
357       = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
358     if (MemberInit.isInvalid()) {
359       hadError = true;
360       return;
361     }
362
363     if (hadError) {
364       // Do nothing
365     } else if (Init < NumInits) {
366       ILE->setInit(Init, MemberInit.takeAs<Expr>());
367     } else if (InitSeq.isConstructorInitialization()) {
368       // Value-initialization requires a constructor call, so
369       // extend the initializer list to include the constructor
370       // call and make a note that we'll need to take another pass
371       // through the initializer list.
372       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
373       RequiresSecondPass = true;
374     }
375   } else if (InitListExpr *InnerILE
376                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
377     FillInValueInitializations(MemberEntity, InnerILE,
378                                RequiresSecondPass);
379 }
380
381 /// Recursively replaces NULL values within the given initializer list
382 /// with expressions that perform value-initialization of the
383 /// appropriate type.
384 void
385 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
386                                             InitListExpr *ILE,
387                                             bool &RequiresSecondPass) {
388   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
389          "Should not have void type");
390   SourceLocation Loc = ILE->getLocStart();
391   if (ILE->getSyntacticForm())
392     Loc = ILE->getSyntacticForm()->getLocStart();
393
394   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
395     const RecordDecl *RDecl = RType->getDecl();
396     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
397       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
398                               Entity, ILE, RequiresSecondPass);
399     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
400              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
401       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
402                                       FieldEnd = RDecl->field_end();
403            Field != FieldEnd; ++Field) {
404         if (Field->hasInClassInitializer()) {
405           FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
406           break;
407         }
408       }
409     } else {
410       unsigned Init = 0;
411       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
412                                       FieldEnd = RDecl->field_end();
413            Field != FieldEnd; ++Field) {
414         if (Field->isUnnamedBitfield())
415           continue;
416
417         if (hadError)
418           return;
419
420         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
421         if (hadError)
422           return;
423
424         ++Init;
425
426         // Only look at the first initialization of a union.
427         if (RDecl->isUnion())
428           break;
429       }
430     }
431
432     return;
433   }
434
435   QualType ElementType;
436
437   InitializedEntity ElementEntity = Entity;
438   unsigned NumInits = ILE->getNumInits();
439   unsigned NumElements = NumInits;
440   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
441     ElementType = AType->getElementType();
442     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
443       NumElements = CAType->getSize().getZExtValue();
444     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
445                                                          0, Entity);
446   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
447     ElementType = VType->getElementType();
448     NumElements = VType->getNumElements();
449     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
450                                                          0, Entity);
451   } else
452     ElementType = ILE->getType();
453
454
455   for (unsigned Init = 0; Init != NumElements; ++Init) {
456     if (hadError)
457       return;
458
459     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
460         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
461       ElementEntity.setElementIndex(Init);
462
463     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
464     if (!InitExpr && !ILE->hasArrayFiller()) {
465       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
466                                                                 true);
467       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
468       if (!InitSeq) {
469         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
470         hadError = true;
471         return;
472       }
473
474       ExprResult ElementInit
475         = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
476       if (ElementInit.isInvalid()) {
477         hadError = true;
478         return;
479       }
480
481       if (hadError) {
482         // Do nothing
483       } else if (Init < NumInits) {
484         // For arrays, just set the expression used for value-initialization
485         // of the "holes" in the array.
486         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
487           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
488         else
489           ILE->setInit(Init, ElementInit.takeAs<Expr>());
490       } else {
491         // For arrays, just set the expression used for value-initialization
492         // of the rest of elements and exit.
493         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
494           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
495           return;
496         }
497
498         if (InitSeq.isConstructorInitialization()) {
499           // Value-initialization requires a constructor call, so
500           // extend the initializer list to include the constructor
501           // call and make a note that we'll need to take another pass
502           // through the initializer list.
503           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
504           RequiresSecondPass = true;
505         }
506       }
507     } else if (InitListExpr *InnerILE
508                  = dyn_cast_or_null<InitListExpr>(InitExpr))
509       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
510   }
511 }
512
513
514 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
515                                  InitListExpr *IL, QualType &T,
516                                  bool VerifyOnly, bool AllowBraceElision)
517   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
518   hadError = false;
519
520   unsigned newIndex = 0;
521   unsigned newStructuredIndex = 0;
522   FullyStructuredList
523     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
524   CheckExplicitInitList(Entity, IL, T, newIndex,
525                         FullyStructuredList, newStructuredIndex,
526                         /*TopLevelObject=*/true);
527
528   if (!hadError && !VerifyOnly) {
529     bool RequiresSecondPass = false;
530     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
531     if (RequiresSecondPass && !hadError)
532       FillInValueInitializations(Entity, FullyStructuredList,
533                                  RequiresSecondPass);
534   }
535 }
536
537 int InitListChecker::numArrayElements(QualType DeclType) {
538   // FIXME: use a proper constant
539   int maxElements = 0x7FFFFFFF;
540   if (const ConstantArrayType *CAT =
541         SemaRef.Context.getAsConstantArrayType(DeclType)) {
542     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
543   }
544   return maxElements;
545 }
546
547 int InitListChecker::numStructUnionElements(QualType DeclType) {
548   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
549   int InitializableMembers = 0;
550   for (RecordDecl::field_iterator
551          Field = structDecl->field_begin(),
552          FieldEnd = structDecl->field_end();
553        Field != FieldEnd; ++Field) {
554     if (!Field->isUnnamedBitfield())
555       ++InitializableMembers;
556   }
557   if (structDecl->isUnion())
558     return std::min(InitializableMembers, 1);
559   return InitializableMembers - structDecl->hasFlexibleArrayMember();
560 }
561
562 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
563                                             InitListExpr *ParentIList,
564                                             QualType T, unsigned &Index,
565                                             InitListExpr *StructuredList,
566                                             unsigned &StructuredIndex) {
567   int maxElements = 0;
568
569   if (T->isArrayType())
570     maxElements = numArrayElements(T);
571   else if (T->isRecordType())
572     maxElements = numStructUnionElements(T);
573   else if (T->isVectorType())
574     maxElements = T->getAs<VectorType>()->getNumElements();
575   else
576     llvm_unreachable("CheckImplicitInitList(): Illegal type");
577
578   if (maxElements == 0) {
579     if (!VerifyOnly)
580       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
581                    diag::err_implicit_empty_initializer);
582     ++Index;
583     hadError = true;
584     return;
585   }
586
587   // Build a structured initializer list corresponding to this subobject.
588   InitListExpr *StructuredSubobjectInitList
589     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
590                                  StructuredIndex,
591           SourceRange(ParentIList->getInit(Index)->getLocStart(),
592                       ParentIList->getSourceRange().getEnd()));
593   unsigned StructuredSubobjectInitIndex = 0;
594
595   // Check the element types and build the structural subobject.
596   unsigned StartIndex = Index;
597   CheckListElementTypes(Entity, ParentIList, T,
598                         /*SubobjectIsDesignatorContext=*/false, Index,
599                         StructuredSubobjectInitList,
600                         StructuredSubobjectInitIndex);
601
602   if (VerifyOnly) {
603     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
604       hadError = true;
605   } else {
606     StructuredSubobjectInitList->setType(T);
607
608     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
609     // Update the structured sub-object initializer so that it's ending
610     // range corresponds with the end of the last initializer it used.
611     if (EndIndex < ParentIList->getNumInits()) {
612       SourceLocation EndLoc
613         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
614       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
615     }
616
617     // Complain about missing braces.
618     if (T->isArrayType() || T->isRecordType()) {
619       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
620                     AllowBraceElision ? diag::warn_missing_braces :
621                                         diag::err_missing_braces)
622         << StructuredSubobjectInitList->getSourceRange()
623         << FixItHint::CreateInsertion(
624               StructuredSubobjectInitList->getLocStart(), "{")
625         << FixItHint::CreateInsertion(
626               SemaRef.PP.getLocForEndOfToken(
627                                       StructuredSubobjectInitList->getLocEnd()),
628               "}");
629       if (!AllowBraceElision)
630         hadError = true;
631     }
632   }
633 }
634
635 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
636                                             InitListExpr *IList, QualType &T,
637                                             unsigned &Index,
638                                             InitListExpr *StructuredList,
639                                             unsigned &StructuredIndex,
640                                             bool TopLevelObject) {
641   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
642   if (!VerifyOnly) {
643     SyntacticToSemantic[IList] = StructuredList;
644     StructuredList->setSyntacticForm(IList);
645   }
646   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
647                         Index, StructuredList, StructuredIndex, TopLevelObject);
648   if (!VerifyOnly) {
649     QualType ExprTy = T;
650     if (!ExprTy->isArrayType())
651       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
652     IList->setType(ExprTy);
653     StructuredList->setType(ExprTy);
654   }
655   if (hadError)
656     return;
657
658   if (Index < IList->getNumInits()) {
659     // We have leftover initializers
660     if (VerifyOnly) {
661       if (SemaRef.getLangOpts().CPlusPlus ||
662           (SemaRef.getLangOpts().OpenCL &&
663            IList->getType()->isVectorType())) {
664         hadError = true;
665       }
666       return;
667     }
668
669     if (StructuredIndex == 1 &&
670         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
671       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
672       if (SemaRef.getLangOpts().CPlusPlus) {
673         DK = diag::err_excess_initializers_in_char_array_initializer;
674         hadError = true;
675       }
676       // Special-case
677       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
678         << IList->getInit(Index)->getSourceRange();
679     } else if (!T->isIncompleteType()) {
680       // Don't complain for incomplete types, since we'll get an error
681       // elsewhere
682       QualType CurrentObjectType = StructuredList->getType();
683       int initKind =
684         CurrentObjectType->isArrayType()? 0 :
685         CurrentObjectType->isVectorType()? 1 :
686         CurrentObjectType->isScalarType()? 2 :
687         CurrentObjectType->isUnionType()? 3 :
688         4;
689
690       unsigned DK = diag::warn_excess_initializers;
691       if (SemaRef.getLangOpts().CPlusPlus) {
692         DK = diag::err_excess_initializers;
693         hadError = true;
694       }
695       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
696         DK = diag::err_excess_initializers;
697         hadError = true;
698       }
699
700       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
701         << initKind << IList->getInit(Index)->getSourceRange();
702     }
703   }
704
705   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
706       !TopLevelObject)
707     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
708       << IList->getSourceRange()
709       << FixItHint::CreateRemoval(IList->getLocStart())
710       << FixItHint::CreateRemoval(IList->getLocEnd());
711 }
712
713 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
714                                             InitListExpr *IList,
715                                             QualType &DeclType,
716                                             bool SubobjectIsDesignatorContext,
717                                             unsigned &Index,
718                                             InitListExpr *StructuredList,
719                                             unsigned &StructuredIndex,
720                                             bool TopLevelObject) {
721   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
722     // Explicitly braced initializer for complex type can be real+imaginary
723     // parts.
724     CheckComplexType(Entity, IList, DeclType, Index,
725                      StructuredList, StructuredIndex);
726   } else if (DeclType->isScalarType()) {
727     CheckScalarType(Entity, IList, DeclType, Index,
728                     StructuredList, StructuredIndex);
729   } else if (DeclType->isVectorType()) {
730     CheckVectorType(Entity, IList, DeclType, Index,
731                     StructuredList, StructuredIndex);
732   } else if (DeclType->isRecordType()) {
733     assert(DeclType->isAggregateType() &&
734            "non-aggregate records should be handed in CheckSubElementType");
735     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
736     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
737                           SubobjectIsDesignatorContext, Index,
738                           StructuredList, StructuredIndex,
739                           TopLevelObject);
740   } else if (DeclType->isArrayType()) {
741     llvm::APSInt Zero(
742                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
743                     false);
744     CheckArrayType(Entity, IList, DeclType, Zero,
745                    SubobjectIsDesignatorContext, Index,
746                    StructuredList, StructuredIndex);
747   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
748     // This type is invalid, issue a diagnostic.
749     ++Index;
750     if (!VerifyOnly)
751       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
752         << DeclType;
753     hadError = true;
754   } else if (DeclType->isReferenceType()) {
755     CheckReferenceType(Entity, IList, DeclType, Index,
756                        StructuredList, StructuredIndex);
757   } else if (DeclType->isObjCObjectType()) {
758     if (!VerifyOnly)
759       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
760         << DeclType;
761     hadError = true;
762   } else {
763     if (!VerifyOnly)
764       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
765         << DeclType;
766     hadError = true;
767   }
768 }
769
770 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
771                                           InitListExpr *IList,
772                                           QualType ElemType,
773                                           unsigned &Index,
774                                           InitListExpr *StructuredList,
775                                           unsigned &StructuredIndex) {
776   Expr *expr = IList->getInit(Index);
777   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
778     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
779       unsigned newIndex = 0;
780       unsigned newStructuredIndex = 0;
781       InitListExpr *newStructuredList
782         = getStructuredSubobjectInit(IList, Index, ElemType,
783                                      StructuredList, StructuredIndex,
784                                      SubInitList->getSourceRange());
785       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
786                             newStructuredList, newStructuredIndex);
787       ++StructuredIndex;
788       ++Index;
789       return;
790     }
791     assert(SemaRef.getLangOpts().CPlusPlus &&
792            "non-aggregate records are only possible in C++");
793     // C++ initialization is handled later.
794   }
795
796   if (ElemType->isScalarType()) {
797     return CheckScalarType(Entity, IList, ElemType, Index,
798                            StructuredList, StructuredIndex);
799   } else if (ElemType->isReferenceType()) {
800     return CheckReferenceType(Entity, IList, ElemType, Index,
801                               StructuredList, StructuredIndex);
802   }
803
804   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
805     // arrayType can be incomplete if we're initializing a flexible
806     // array member.  There's nothing we can do with the completed
807     // type here, though.
808
809     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
810       if (!VerifyOnly) {
811         CheckStringInit(Str, ElemType, arrayType, SemaRef);
812         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
813       }
814       ++Index;
815       return;
816     }
817
818     // Fall through for subaggregate initialization.
819
820   } else if (SemaRef.getLangOpts().CPlusPlus) {
821     // C++ [dcl.init.aggr]p12:
822     //   All implicit type conversions (clause 4) are considered when
823     //   initializing the aggregate member with an initializer from
824     //   an initializer-list. If the initializer can initialize a
825     //   member, the member is initialized. [...]
826
827     // FIXME: Better EqualLoc?
828     InitializationKind Kind =
829       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
830     InitializationSequence Seq(SemaRef, Entity, Kind, expr);
831
832     if (Seq) {
833       if (!VerifyOnly) {
834         ExprResult Result =
835           Seq.Perform(SemaRef, Entity, Kind, expr);
836         if (Result.isInvalid())
837           hadError = true;
838
839         UpdateStructuredListElement(StructuredList, StructuredIndex,
840                                     Result.takeAs<Expr>());
841       }
842       ++Index;
843       return;
844     }
845
846     // Fall through for subaggregate initialization
847   } else {
848     // C99 6.7.8p13:
849     //
850     //   The initializer for a structure or union object that has
851     //   automatic storage duration shall be either an initializer
852     //   list as described below, or a single expression that has
853     //   compatible structure or union type. In the latter case, the
854     //   initial value of the object, including unnamed members, is
855     //   that of the expression.
856     ExprResult ExprRes = SemaRef.Owned(expr);
857     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
858         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
859                                                  !VerifyOnly)
860           == Sema::Compatible) {
861       if (ExprRes.isInvalid())
862         hadError = true;
863       else {
864         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
865           if (ExprRes.isInvalid())
866             hadError = true;
867       }
868       UpdateStructuredListElement(StructuredList, StructuredIndex,
869                                   ExprRes.takeAs<Expr>());
870       ++Index;
871       return;
872     }
873     ExprRes.release();
874     // Fall through for subaggregate initialization
875   }
876
877   // C++ [dcl.init.aggr]p12:
878   //
879   //   [...] Otherwise, if the member is itself a non-empty
880   //   subaggregate, brace elision is assumed and the initializer is
881   //   considered for the initialization of the first member of
882   //   the subaggregate.
883   if (!SemaRef.getLangOpts().OpenCL && 
884       (ElemType->isAggregateType() || ElemType->isVectorType())) {
885     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
886                           StructuredIndex);
887     ++StructuredIndex;
888   } else {
889     if (!VerifyOnly) {
890       // We cannot initialize this element, so let
891       // PerformCopyInitialization produce the appropriate diagnostic.
892       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
893                                         SemaRef.Owned(expr),
894                                         /*TopLevelOfInitList=*/true);
895     }
896     hadError = true;
897     ++Index;
898     ++StructuredIndex;
899   }
900 }
901
902 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
903                                        InitListExpr *IList, QualType DeclType,
904                                        unsigned &Index,
905                                        InitListExpr *StructuredList,
906                                        unsigned &StructuredIndex) {
907   assert(Index == 0 && "Index in explicit init list must be zero");
908
909   // As an extension, clang supports complex initializers, which initialize
910   // a complex number component-wise.  When an explicit initializer list for
911   // a complex number contains two two initializers, this extension kicks in:
912   // it exepcts the initializer list to contain two elements convertible to
913   // the element type of the complex type. The first element initializes
914   // the real part, and the second element intitializes the imaginary part.
915
916   if (IList->getNumInits() != 2)
917     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
918                            StructuredIndex);
919
920   // This is an extension in C.  (The builtin _Complex type does not exist
921   // in the C++ standard.)
922   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
923     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
924       << IList->getSourceRange();
925
926   // Initialize the complex number.
927   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
928   InitializedEntity ElementEntity =
929     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
930
931   for (unsigned i = 0; i < 2; ++i) {
932     ElementEntity.setElementIndex(Index);
933     CheckSubElementType(ElementEntity, IList, elementType, Index,
934                         StructuredList, StructuredIndex);
935   }
936 }
937
938
939 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
940                                       InitListExpr *IList, QualType DeclType,
941                                       unsigned &Index,
942                                       InitListExpr *StructuredList,
943                                       unsigned &StructuredIndex) {
944   if (Index >= IList->getNumInits()) {
945     if (!VerifyOnly)
946       SemaRef.Diag(IList->getLocStart(),
947                    SemaRef.getLangOpts().CPlusPlus11 ?
948                      diag::warn_cxx98_compat_empty_scalar_initializer :
949                      diag::err_empty_scalar_initializer)
950         << IList->getSourceRange();
951     hadError = !SemaRef.getLangOpts().CPlusPlus11;
952     ++Index;
953     ++StructuredIndex;
954     return;
955   }
956
957   Expr *expr = IList->getInit(Index);
958   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
959     if (!VerifyOnly)
960       SemaRef.Diag(SubIList->getLocStart(),
961                    diag::warn_many_braces_around_scalar_init)
962         << SubIList->getSourceRange();
963
964     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
965                     StructuredIndex);
966     return;
967   } else if (isa<DesignatedInitExpr>(expr)) {
968     if (!VerifyOnly)
969       SemaRef.Diag(expr->getLocStart(),
970                    diag::err_designator_for_scalar_init)
971         << DeclType << expr->getSourceRange();
972     hadError = true;
973     ++Index;
974     ++StructuredIndex;
975     return;
976   }
977
978   if (VerifyOnly) {
979     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
980       hadError = true;
981     ++Index;
982     return;
983   }
984
985   ExprResult Result =
986     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
987                                       SemaRef.Owned(expr),
988                                       /*TopLevelOfInitList=*/true);
989
990   Expr *ResultExpr = 0;
991
992   if (Result.isInvalid())
993     hadError = true; // types weren't compatible.
994   else {
995     ResultExpr = Result.takeAs<Expr>();
996
997     if (ResultExpr != expr) {
998       // The type was promoted, update initializer list.
999       IList->setInit(Index, ResultExpr);
1000     }
1001   }
1002   if (hadError)
1003     ++StructuredIndex;
1004   else
1005     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1006   ++Index;
1007 }
1008
1009 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1010                                          InitListExpr *IList, QualType DeclType,
1011                                          unsigned &Index,
1012                                          InitListExpr *StructuredList,
1013                                          unsigned &StructuredIndex) {
1014   if (Index >= IList->getNumInits()) {
1015     // FIXME: It would be wonderful if we could point at the actual member. In
1016     // general, it would be useful to pass location information down the stack,
1017     // so that we know the location (or decl) of the "current object" being
1018     // initialized.
1019     if (!VerifyOnly)
1020       SemaRef.Diag(IList->getLocStart(),
1021                     diag::err_init_reference_member_uninitialized)
1022         << DeclType
1023         << IList->getSourceRange();
1024     hadError = true;
1025     ++Index;
1026     ++StructuredIndex;
1027     return;
1028   }
1029
1030   Expr *expr = IList->getInit(Index);
1031   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1032     if (!VerifyOnly)
1033       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1034         << DeclType << IList->getSourceRange();
1035     hadError = true;
1036     ++Index;
1037     ++StructuredIndex;
1038     return;
1039   }
1040
1041   if (VerifyOnly) {
1042     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1043       hadError = true;
1044     ++Index;
1045     return;
1046   }
1047
1048   ExprResult Result =
1049     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1050                                       SemaRef.Owned(expr),
1051                                       /*TopLevelOfInitList=*/true);
1052
1053   if (Result.isInvalid())
1054     hadError = true;
1055
1056   expr = Result.takeAs<Expr>();
1057   IList->setInit(Index, expr);
1058
1059   if (hadError)
1060     ++StructuredIndex;
1061   else
1062     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1063   ++Index;
1064 }
1065
1066 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1067                                       InitListExpr *IList, QualType DeclType,
1068                                       unsigned &Index,
1069                                       InitListExpr *StructuredList,
1070                                       unsigned &StructuredIndex) {
1071   const VectorType *VT = DeclType->getAs<VectorType>();
1072   unsigned maxElements = VT->getNumElements();
1073   unsigned numEltsInit = 0;
1074   QualType elementType = VT->getElementType();
1075
1076   if (Index >= IList->getNumInits()) {
1077     // Make sure the element type can be value-initialized.
1078     if (VerifyOnly)
1079       CheckValueInitializable(
1080           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1081     return;
1082   }
1083
1084   if (!SemaRef.getLangOpts().OpenCL) {
1085     // If the initializing element is a vector, try to copy-initialize
1086     // instead of breaking it apart (which is doomed to failure anyway).
1087     Expr *Init = IList->getInit(Index);
1088     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1089       if (VerifyOnly) {
1090         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1091           hadError = true;
1092         ++Index;
1093         return;
1094       }
1095
1096       ExprResult Result =
1097         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1098                                           SemaRef.Owned(Init),
1099                                           /*TopLevelOfInitList=*/true);
1100
1101       Expr *ResultExpr = 0;
1102       if (Result.isInvalid())
1103         hadError = true; // types weren't compatible.
1104       else {
1105         ResultExpr = Result.takeAs<Expr>();
1106
1107         if (ResultExpr != Init) {
1108           // The type was promoted, update initializer list.
1109           IList->setInit(Index, ResultExpr);
1110         }
1111       }
1112       if (hadError)
1113         ++StructuredIndex;
1114       else
1115         UpdateStructuredListElement(StructuredList, StructuredIndex,
1116                                     ResultExpr);
1117       ++Index;
1118       return;
1119     }
1120
1121     InitializedEntity ElementEntity =
1122       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1123
1124     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1125       // Don't attempt to go past the end of the init list
1126       if (Index >= IList->getNumInits()) {
1127         if (VerifyOnly)
1128           CheckValueInitializable(ElementEntity);
1129         break;
1130       }
1131
1132       ElementEntity.setElementIndex(Index);
1133       CheckSubElementType(ElementEntity, IList, elementType, Index,
1134                           StructuredList, StructuredIndex);
1135     }
1136     return;
1137   }
1138
1139   InitializedEntity ElementEntity =
1140     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1141
1142   // OpenCL initializers allows vectors to be constructed from vectors.
1143   for (unsigned i = 0; i < maxElements; ++i) {
1144     // Don't attempt to go past the end of the init list
1145     if (Index >= IList->getNumInits())
1146       break;
1147
1148     ElementEntity.setElementIndex(Index);
1149
1150     QualType IType = IList->getInit(Index)->getType();
1151     if (!IType->isVectorType()) {
1152       CheckSubElementType(ElementEntity, IList, elementType, Index,
1153                           StructuredList, StructuredIndex);
1154       ++numEltsInit;
1155     } else {
1156       QualType VecType;
1157       const VectorType *IVT = IType->getAs<VectorType>();
1158       unsigned numIElts = IVT->getNumElements();
1159
1160       if (IType->isExtVectorType())
1161         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1162       else
1163         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1164                                                 IVT->getVectorKind());
1165       CheckSubElementType(ElementEntity, IList, VecType, Index,
1166                           StructuredList, StructuredIndex);
1167       numEltsInit += numIElts;
1168     }
1169   }
1170
1171   // OpenCL requires all elements to be initialized.
1172   if (numEltsInit != maxElements) {
1173     if (!VerifyOnly)
1174       SemaRef.Diag(IList->getLocStart(),
1175                    diag::err_vector_incorrect_num_initializers)
1176         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1177     hadError = true;
1178   }
1179 }
1180
1181 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1182                                      InitListExpr *IList, QualType &DeclType,
1183                                      llvm::APSInt elementIndex,
1184                                      bool SubobjectIsDesignatorContext,
1185                                      unsigned &Index,
1186                                      InitListExpr *StructuredList,
1187                                      unsigned &StructuredIndex) {
1188   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1189
1190   // Check for the special-case of initializing an array with a string.
1191   if (Index < IList->getNumInits()) {
1192     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1193                                  SemaRef.Context)) {
1194       // We place the string literal directly into the resulting
1195       // initializer list. This is the only place where the structure
1196       // of the structured initializer list doesn't match exactly,
1197       // because doing so would involve allocating one character
1198       // constant for each string.
1199       if (!VerifyOnly) {
1200         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1201         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1202         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1203       }
1204       ++Index;
1205       return;
1206     }
1207   }
1208   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1209     // Check for VLAs; in standard C it would be possible to check this
1210     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1211     // them in all sorts of strange places).
1212     if (!VerifyOnly)
1213       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1214                     diag::err_variable_object_no_init)
1215         << VAT->getSizeExpr()->getSourceRange();
1216     hadError = true;
1217     ++Index;
1218     ++StructuredIndex;
1219     return;
1220   }
1221
1222   // We might know the maximum number of elements in advance.
1223   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1224                            elementIndex.isUnsigned());
1225   bool maxElementsKnown = false;
1226   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1227     maxElements = CAT->getSize();
1228     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1229     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1230     maxElementsKnown = true;
1231   }
1232
1233   QualType elementType = arrayType->getElementType();
1234   while (Index < IList->getNumInits()) {
1235     Expr *Init = IList->getInit(Index);
1236     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1237       // If we're not the subobject that matches up with the '{' for
1238       // the designator, we shouldn't be handling the
1239       // designator. Return immediately.
1240       if (!SubobjectIsDesignatorContext)
1241         return;
1242
1243       // Handle this designated initializer. elementIndex will be
1244       // updated to be the next array element we'll initialize.
1245       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1246                                      DeclType, 0, &elementIndex, Index,
1247                                      StructuredList, StructuredIndex, true,
1248                                      false)) {
1249         hadError = true;
1250         continue;
1251       }
1252
1253       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1254         maxElements = maxElements.extend(elementIndex.getBitWidth());
1255       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1256         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1257       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1258
1259       // If the array is of incomplete type, keep track of the number of
1260       // elements in the initializer.
1261       if (!maxElementsKnown && elementIndex > maxElements)
1262         maxElements = elementIndex;
1263
1264       continue;
1265     }
1266
1267     // If we know the maximum number of elements, and we've already
1268     // hit it, stop consuming elements in the initializer list.
1269     if (maxElementsKnown && elementIndex == maxElements)
1270       break;
1271
1272     InitializedEntity ElementEntity =
1273       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1274                                            Entity);
1275     // Check this element.
1276     CheckSubElementType(ElementEntity, IList, elementType, Index,
1277                         StructuredList, StructuredIndex);
1278     ++elementIndex;
1279
1280     // If the array is of incomplete type, keep track of the number of
1281     // elements in the initializer.
1282     if (!maxElementsKnown && elementIndex > maxElements)
1283       maxElements = elementIndex;
1284   }
1285   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1286     // If this is an incomplete array type, the actual type needs to
1287     // be calculated here.
1288     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1289     if (maxElements == Zero) {
1290       // Sizing an array implicitly to zero is not allowed by ISO C,
1291       // but is supported by GNU.
1292       SemaRef.Diag(IList->getLocStart(),
1293                     diag::ext_typecheck_zero_array_size);
1294     }
1295
1296     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1297                                                      ArrayType::Normal, 0);
1298   }
1299   if (!hadError && VerifyOnly) {
1300     // Check if there are any members of the array that get value-initialized.
1301     // If so, check if doing that is possible.
1302     // FIXME: This needs to detect holes left by designated initializers too.
1303     if (maxElementsKnown && elementIndex < maxElements)
1304       CheckValueInitializable(InitializedEntity::InitializeElement(
1305                                                   SemaRef.Context, 0, Entity));
1306   }
1307 }
1308
1309 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1310                                              Expr *InitExpr,
1311                                              FieldDecl *Field,
1312                                              bool TopLevelObject) {
1313   // Handle GNU flexible array initializers.
1314   unsigned FlexArrayDiag;
1315   if (isa<InitListExpr>(InitExpr) &&
1316       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1317     // Empty flexible array init always allowed as an extension
1318     FlexArrayDiag = diag::ext_flexible_array_init;
1319   } else if (SemaRef.getLangOpts().CPlusPlus) {
1320     // Disallow flexible array init in C++; it is not required for gcc
1321     // compatibility, and it needs work to IRGen correctly in general.
1322     FlexArrayDiag = diag::err_flexible_array_init;
1323   } else if (!TopLevelObject) {
1324     // Disallow flexible array init on non-top-level object
1325     FlexArrayDiag = diag::err_flexible_array_init;
1326   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1327     // Disallow flexible array init on anything which is not a variable.
1328     FlexArrayDiag = diag::err_flexible_array_init;
1329   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1330     // Disallow flexible array init on local variables.
1331     FlexArrayDiag = diag::err_flexible_array_init;
1332   } else {
1333     // Allow other cases.
1334     FlexArrayDiag = diag::ext_flexible_array_init;
1335   }
1336
1337   if (!VerifyOnly) {
1338     SemaRef.Diag(InitExpr->getLocStart(),
1339                  FlexArrayDiag)
1340       << InitExpr->getLocStart();
1341     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1342       << Field;
1343   }
1344
1345   return FlexArrayDiag != diag::ext_flexible_array_init;
1346 }
1347
1348 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1349                                             InitListExpr *IList,
1350                                             QualType DeclType,
1351                                             RecordDecl::field_iterator Field,
1352                                             bool SubobjectIsDesignatorContext,
1353                                             unsigned &Index,
1354                                             InitListExpr *StructuredList,
1355                                             unsigned &StructuredIndex,
1356                                             bool TopLevelObject) {
1357   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1358
1359   // If the record is invalid, some of it's members are invalid. To avoid
1360   // confusion, we forgo checking the intializer for the entire record.
1361   if (structDecl->isInvalidDecl()) {
1362     // Assume it was supposed to consume a single initializer.
1363     ++Index;
1364     hadError = true;
1365     return;
1366   }
1367
1368   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1369     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1370
1371     // If there's a default initializer, use it.
1372     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1373       if (VerifyOnly)
1374         return;
1375       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1376            Field != FieldEnd; ++Field) {
1377         if (Field->hasInClassInitializer()) {
1378           StructuredList->setInitializedFieldInUnion(*Field);
1379           // FIXME: Actually build a CXXDefaultInitExpr?
1380           return;
1381         }
1382       }
1383     }
1384
1385     // Value-initialize the first named member of the union.
1386     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1387          Field != FieldEnd; ++Field) {
1388       if (Field->getDeclName()) {
1389         if (VerifyOnly)
1390           CheckValueInitializable(
1391               InitializedEntity::InitializeMember(*Field, &Entity));
1392         else
1393           StructuredList->setInitializedFieldInUnion(*Field);
1394         break;
1395       }
1396     }
1397     return;
1398   }
1399
1400   // If structDecl is a forward declaration, this loop won't do
1401   // anything except look at designated initializers; That's okay,
1402   // because an error should get printed out elsewhere. It might be
1403   // worthwhile to skip over the rest of the initializer, though.
1404   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1405   RecordDecl::field_iterator FieldEnd = RD->field_end();
1406   bool InitializedSomething = false;
1407   bool CheckForMissingFields = true;
1408   while (Index < IList->getNumInits()) {
1409     Expr *Init = IList->getInit(Index);
1410
1411     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1412       // If we're not the subobject that matches up with the '{' for
1413       // the designator, we shouldn't be handling the
1414       // designator. Return immediately.
1415       if (!SubobjectIsDesignatorContext)
1416         return;
1417
1418       // Handle this designated initializer. Field will be updated to
1419       // the next field that we'll be initializing.
1420       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1421                                      DeclType, &Field, 0, Index,
1422                                      StructuredList, StructuredIndex,
1423                                      true, TopLevelObject))
1424         hadError = true;
1425
1426       InitializedSomething = true;
1427
1428       // Disable check for missing fields when designators are used.
1429       // This matches gcc behaviour.
1430       CheckForMissingFields = false;
1431       continue;
1432     }
1433
1434     if (Field == FieldEnd) {
1435       // We've run out of fields. We're done.
1436       break;
1437     }
1438
1439     // We've already initialized a member of a union. We're done.
1440     if (InitializedSomething && DeclType->isUnionType())
1441       break;
1442
1443     // If we've hit the flexible array member at the end, we're done.
1444     if (Field->getType()->isIncompleteArrayType())
1445       break;
1446
1447     if (Field->isUnnamedBitfield()) {
1448       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1449       ++Field;
1450       continue;
1451     }
1452
1453     // Make sure we can use this declaration.
1454     bool InvalidUse;
1455     if (VerifyOnly)
1456       InvalidUse = !SemaRef.CanUseDecl(*Field);
1457     else
1458       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1459                                           IList->getInit(Index)->getLocStart());
1460     if (InvalidUse) {
1461       ++Index;
1462       ++Field;
1463       hadError = true;
1464       continue;
1465     }
1466
1467     InitializedEntity MemberEntity =
1468       InitializedEntity::InitializeMember(*Field, &Entity);
1469     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1470                         StructuredList, StructuredIndex);
1471     InitializedSomething = true;
1472
1473     if (DeclType->isUnionType() && !VerifyOnly) {
1474       // Initialize the first field within the union.
1475       StructuredList->setInitializedFieldInUnion(*Field);
1476     }
1477
1478     ++Field;
1479   }
1480
1481   // Emit warnings for missing struct field initializers.
1482   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1483       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1484       !DeclType->isUnionType()) {
1485     // It is possible we have one or more unnamed bitfields remaining.
1486     // Find first (if any) named field and emit warning.
1487     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1488          it != end; ++it) {
1489       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1490         SemaRef.Diag(IList->getSourceRange().getEnd(),
1491                      diag::warn_missing_field_initializers) << it->getName();
1492         break;
1493       }
1494     }
1495   }
1496
1497   // Check that any remaining fields can be value-initialized.
1498   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1499       !Field->getType()->isIncompleteArrayType()) {
1500     // FIXME: Should check for holes left by designated initializers too.
1501     for (; Field != FieldEnd && !hadError; ++Field) {
1502       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1503         CheckValueInitializable(
1504             InitializedEntity::InitializeMember(*Field, &Entity));
1505     }
1506   }
1507
1508   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1509       Index >= IList->getNumInits())
1510     return;
1511
1512   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1513                              TopLevelObject)) {
1514     hadError = true;
1515     ++Index;
1516     return;
1517   }
1518
1519   InitializedEntity MemberEntity =
1520     InitializedEntity::InitializeMember(*Field, &Entity);
1521
1522   if (isa<InitListExpr>(IList->getInit(Index)))
1523     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1524                         StructuredList, StructuredIndex);
1525   else
1526     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1527                           StructuredList, StructuredIndex);
1528 }
1529
1530 /// \brief Expand a field designator that refers to a member of an
1531 /// anonymous struct or union into a series of field designators that
1532 /// refers to the field within the appropriate subobject.
1533 ///
1534 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1535                                            DesignatedInitExpr *DIE,
1536                                            unsigned DesigIdx,
1537                                            IndirectFieldDecl *IndirectField) {
1538   typedef DesignatedInitExpr::Designator Designator;
1539
1540   // Build the replacement designators.
1541   SmallVector<Designator, 4> Replacements;
1542   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1543        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1544     if (PI + 1 == PE)
1545       Replacements.push_back(Designator((IdentifierInfo *)0,
1546                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1547                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1548     else
1549       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1550                                         SourceLocation()));
1551     assert(isa<FieldDecl>(*PI));
1552     Replacements.back().setField(cast<FieldDecl>(*PI));
1553   }
1554
1555   // Expand the current designator into the set of replacement
1556   // designators, so we have a full subobject path down to where the
1557   // member of the anonymous struct/union is actually stored.
1558   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1559                         &Replacements[0] + Replacements.size());
1560 }
1561
1562 /// \brief Given an implicit anonymous field, search the IndirectField that
1563 ///  corresponds to FieldName.
1564 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1565                                                  IdentifierInfo *FieldName) {
1566   if (!FieldName)
1567     return 0;
1568
1569   assert(AnonField->isAnonymousStructOrUnion());
1570   Decl *NextDecl = AnonField->getNextDeclInContext();
1571   while (IndirectFieldDecl *IF = 
1572           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1573     if (FieldName == IF->getAnonField()->getIdentifier())
1574       return IF;
1575     NextDecl = NextDecl->getNextDeclInContext();
1576   }
1577   return 0;
1578 }
1579
1580 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1581                                                    DesignatedInitExpr *DIE) {
1582   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1583   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1584   for (unsigned I = 0; I < NumIndexExprs; ++I)
1585     IndexExprs[I] = DIE->getSubExpr(I + 1);
1586   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1587                                     DIE->size(), IndexExprs,
1588                                     DIE->getEqualOrColonLoc(),
1589                                     DIE->usesGNUSyntax(), DIE->getInit());
1590 }
1591
1592 namespace {
1593
1594 // Callback to only accept typo corrections that are for field members of
1595 // the given struct or union.
1596 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1597  public:
1598   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1599       : Record(RD) {}
1600
1601   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1602     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1603     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1604   }
1605
1606  private:
1607   RecordDecl *Record;
1608 };
1609
1610 }
1611
1612 /// @brief Check the well-formedness of a C99 designated initializer.
1613 ///
1614 /// Determines whether the designated initializer @p DIE, which
1615 /// resides at the given @p Index within the initializer list @p
1616 /// IList, is well-formed for a current object of type @p DeclType
1617 /// (C99 6.7.8). The actual subobject that this designator refers to
1618 /// within the current subobject is returned in either
1619 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1620 ///
1621 /// @param IList  The initializer list in which this designated
1622 /// initializer occurs.
1623 ///
1624 /// @param DIE The designated initializer expression.
1625 ///
1626 /// @param DesigIdx  The index of the current designator.
1627 ///
1628 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1629 /// into which the designation in @p DIE should refer.
1630 ///
1631 /// @param NextField  If non-NULL and the first designator in @p DIE is
1632 /// a field, this will be set to the field declaration corresponding
1633 /// to the field named by the designator.
1634 ///
1635 /// @param NextElementIndex  If non-NULL and the first designator in @p
1636 /// DIE is an array designator or GNU array-range designator, this
1637 /// will be set to the last index initialized by this designator.
1638 ///
1639 /// @param Index  Index into @p IList where the designated initializer
1640 /// @p DIE occurs.
1641 ///
1642 /// @param StructuredList  The initializer list expression that
1643 /// describes all of the subobject initializers in the order they'll
1644 /// actually be initialized.
1645 ///
1646 /// @returns true if there was an error, false otherwise.
1647 bool
1648 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1649                                             InitListExpr *IList,
1650                                             DesignatedInitExpr *DIE,
1651                                             unsigned DesigIdx,
1652                                             QualType &CurrentObjectType,
1653                                           RecordDecl::field_iterator *NextField,
1654                                             llvm::APSInt *NextElementIndex,
1655                                             unsigned &Index,
1656                                             InitListExpr *StructuredList,
1657                                             unsigned &StructuredIndex,
1658                                             bool FinishSubobjectInit,
1659                                             bool TopLevelObject) {
1660   if (DesigIdx == DIE->size()) {
1661     // Check the actual initialization for the designated object type.
1662     bool prevHadError = hadError;
1663
1664     // Temporarily remove the designator expression from the
1665     // initializer list that the child calls see, so that we don't try
1666     // to re-process the designator.
1667     unsigned OldIndex = Index;
1668     IList->setInit(OldIndex, DIE->getInit());
1669
1670     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1671                         StructuredList, StructuredIndex);
1672
1673     // Restore the designated initializer expression in the syntactic
1674     // form of the initializer list.
1675     if (IList->getInit(OldIndex) != DIE->getInit())
1676       DIE->setInit(IList->getInit(OldIndex));
1677     IList->setInit(OldIndex, DIE);
1678
1679     return hadError && !prevHadError;
1680   }
1681
1682   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1683   bool IsFirstDesignator = (DesigIdx == 0);
1684   if (!VerifyOnly) {
1685     assert((IsFirstDesignator || StructuredList) &&
1686            "Need a non-designated initializer list to start from");
1687
1688     // Determine the structural initializer list that corresponds to the
1689     // current subobject.
1690     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1691       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1692                                    StructuredList, StructuredIndex,
1693                                    SourceRange(D->getLocStart(),
1694                                                DIE->getLocEnd()));
1695     assert(StructuredList && "Expected a structured initializer list");
1696   }
1697
1698   if (D->isFieldDesignator()) {
1699     // C99 6.7.8p7:
1700     //
1701     //   If a designator has the form
1702     //
1703     //      . identifier
1704     //
1705     //   then the current object (defined below) shall have
1706     //   structure or union type and the identifier shall be the
1707     //   name of a member of that type.
1708     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1709     if (!RT) {
1710       SourceLocation Loc = D->getDotLoc();
1711       if (Loc.isInvalid())
1712         Loc = D->getFieldLoc();
1713       if (!VerifyOnly)
1714         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1715           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1716       ++Index;
1717       return true;
1718     }
1719
1720     // Note: we perform a linear search of the fields here, despite
1721     // the fact that we have a faster lookup method, because we always
1722     // need to compute the field's index.
1723     FieldDecl *KnownField = D->getField();
1724     IdentifierInfo *FieldName = D->getFieldName();
1725     unsigned FieldIndex = 0;
1726     RecordDecl::field_iterator
1727       Field = RT->getDecl()->field_begin(),
1728       FieldEnd = RT->getDecl()->field_end();
1729     for (; Field != FieldEnd; ++Field) {
1730       if (Field->isUnnamedBitfield())
1731         continue;
1732
1733       // If we find a field representing an anonymous field, look in the
1734       // IndirectFieldDecl that follow for the designated initializer.
1735       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1736         if (IndirectFieldDecl *IF =
1737             FindIndirectFieldDesignator(*Field, FieldName)) {
1738           // In verify mode, don't modify the original.
1739           if (VerifyOnly)
1740             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1741           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1742           D = DIE->getDesignator(DesigIdx);
1743           break;
1744         }
1745       }
1746       if (KnownField && KnownField == *Field)
1747         break;
1748       if (FieldName && FieldName == Field->getIdentifier())
1749         break;
1750
1751       ++FieldIndex;
1752     }
1753
1754     if (Field == FieldEnd) {
1755       if (VerifyOnly) {
1756         ++Index;
1757         return true; // No typo correction when just trying this out.
1758       }
1759
1760       // There was no normal field in the struct with the designated
1761       // name. Perform another lookup for this name, which may find
1762       // something that we can't designate (e.g., a member function),
1763       // may find nothing, or may find a member of an anonymous
1764       // struct/union.
1765       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1766       FieldDecl *ReplacementField = 0;
1767       if (Lookup.empty()) {
1768         // Name lookup didn't find anything. Determine whether this
1769         // was a typo for another field name.
1770         FieldInitializerValidatorCCC Validator(RT->getDecl());
1771         TypoCorrection Corrected = SemaRef.CorrectTypo(
1772             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1773             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1774             RT->getDecl());
1775         if (Corrected) {
1776           std::string CorrectedStr(
1777               Corrected.getAsString(SemaRef.getLangOpts()));
1778           std::string CorrectedQuotedStr(
1779               Corrected.getQuoted(SemaRef.getLangOpts()));
1780           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1781           SemaRef.Diag(D->getFieldLoc(),
1782                        diag::err_field_designator_unknown_suggest)
1783             << FieldName << CurrentObjectType << CorrectedQuotedStr
1784             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1785           SemaRef.Diag(ReplacementField->getLocation(),
1786                        diag::note_previous_decl) << CorrectedQuotedStr;
1787           hadError = true;
1788         } else {
1789           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1790             << FieldName << CurrentObjectType;
1791           ++Index;
1792           return true;
1793         }
1794       }
1795
1796       if (!ReplacementField) {
1797         // Name lookup found something, but it wasn't a field.
1798         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1799           << FieldName;
1800         SemaRef.Diag(Lookup.front()->getLocation(),
1801                       diag::note_field_designator_found);
1802         ++Index;
1803         return true;
1804       }
1805
1806       if (!KnownField) {
1807         // The replacement field comes from typo correction; find it
1808         // in the list of fields.
1809         FieldIndex = 0;
1810         Field = RT->getDecl()->field_begin();
1811         for (; Field != FieldEnd; ++Field) {
1812           if (Field->isUnnamedBitfield())
1813             continue;
1814
1815           if (ReplacementField == *Field ||
1816               Field->getIdentifier() == ReplacementField->getIdentifier())
1817             break;
1818
1819           ++FieldIndex;
1820         }
1821       }
1822     }
1823
1824     // All of the fields of a union are located at the same place in
1825     // the initializer list.
1826     if (RT->getDecl()->isUnion()) {
1827       FieldIndex = 0;
1828       if (!VerifyOnly)
1829         StructuredList->setInitializedFieldInUnion(*Field);
1830     }
1831
1832     // Make sure we can use this declaration.
1833     bool InvalidUse;
1834     if (VerifyOnly)
1835       InvalidUse = !SemaRef.CanUseDecl(*Field);
1836     else
1837       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1838     if (InvalidUse) {
1839       ++Index;
1840       return true;
1841     }
1842
1843     if (!VerifyOnly) {
1844       // Update the designator with the field declaration.
1845       D->setField(*Field);
1846
1847       // Make sure that our non-designated initializer list has space
1848       // for a subobject corresponding to this field.
1849       if (FieldIndex >= StructuredList->getNumInits())
1850         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1851     }
1852
1853     // This designator names a flexible array member.
1854     if (Field->getType()->isIncompleteArrayType()) {
1855       bool Invalid = false;
1856       if ((DesigIdx + 1) != DIE->size()) {
1857         // We can't designate an object within the flexible array
1858         // member (because GCC doesn't allow it).
1859         if (!VerifyOnly) {
1860           DesignatedInitExpr::Designator *NextD
1861             = DIE->getDesignator(DesigIdx + 1);
1862           SemaRef.Diag(NextD->getLocStart(),
1863                         diag::err_designator_into_flexible_array_member)
1864             << SourceRange(NextD->getLocStart(),
1865                            DIE->getLocEnd());
1866           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1867             << *Field;
1868         }
1869         Invalid = true;
1870       }
1871
1872       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1873           !isa<StringLiteral>(DIE->getInit())) {
1874         // The initializer is not an initializer list.
1875         if (!VerifyOnly) {
1876           SemaRef.Diag(DIE->getInit()->getLocStart(),
1877                         diag::err_flexible_array_init_needs_braces)
1878             << DIE->getInit()->getSourceRange();
1879           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1880             << *Field;
1881         }
1882         Invalid = true;
1883       }
1884
1885       // Check GNU flexible array initializer.
1886       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1887                                              TopLevelObject))
1888         Invalid = true;
1889
1890       if (Invalid) {
1891         ++Index;
1892         return true;
1893       }
1894
1895       // Initialize the array.
1896       bool prevHadError = hadError;
1897       unsigned newStructuredIndex = FieldIndex;
1898       unsigned OldIndex = Index;
1899       IList->setInit(Index, DIE->getInit());
1900
1901       InitializedEntity MemberEntity =
1902         InitializedEntity::InitializeMember(*Field, &Entity);
1903       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1904                           StructuredList, newStructuredIndex);
1905
1906       IList->setInit(OldIndex, DIE);
1907       if (hadError && !prevHadError) {
1908         ++Field;
1909         ++FieldIndex;
1910         if (NextField)
1911           *NextField = Field;
1912         StructuredIndex = FieldIndex;
1913         return true;
1914       }
1915     } else {
1916       // Recurse to check later designated subobjects.
1917       QualType FieldType = Field->getType();
1918       unsigned newStructuredIndex = FieldIndex;
1919
1920       InitializedEntity MemberEntity =
1921         InitializedEntity::InitializeMember(*Field, &Entity);
1922       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1923                                      FieldType, 0, 0, Index,
1924                                      StructuredList, newStructuredIndex,
1925                                      true, false))
1926         return true;
1927     }
1928
1929     // Find the position of the next field to be initialized in this
1930     // subobject.
1931     ++Field;
1932     ++FieldIndex;
1933
1934     // If this the first designator, our caller will continue checking
1935     // the rest of this struct/class/union subobject.
1936     if (IsFirstDesignator) {
1937       if (NextField)
1938         *NextField = Field;
1939       StructuredIndex = FieldIndex;
1940       return false;
1941     }
1942
1943     if (!FinishSubobjectInit)
1944       return false;
1945
1946     // We've already initialized something in the union; we're done.
1947     if (RT->getDecl()->isUnion())
1948       return hadError;
1949
1950     // Check the remaining fields within this class/struct/union subobject.
1951     bool prevHadError = hadError;
1952
1953     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1954                           StructuredList, FieldIndex);
1955     return hadError && !prevHadError;
1956   }
1957
1958   // C99 6.7.8p6:
1959   //
1960   //   If a designator has the form
1961   //
1962   //      [ constant-expression ]
1963   //
1964   //   then the current object (defined below) shall have array
1965   //   type and the expression shall be an integer constant
1966   //   expression. If the array is of unknown size, any
1967   //   nonnegative value is valid.
1968   //
1969   // Additionally, cope with the GNU extension that permits
1970   // designators of the form
1971   //
1972   //      [ constant-expression ... constant-expression ]
1973   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1974   if (!AT) {
1975     if (!VerifyOnly)
1976       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1977         << CurrentObjectType;
1978     ++Index;
1979     return true;
1980   }
1981
1982   Expr *IndexExpr = 0;
1983   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1984   if (D->isArrayDesignator()) {
1985     IndexExpr = DIE->getArrayIndex(*D);
1986     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1987     DesignatedEndIndex = DesignatedStartIndex;
1988   } else {
1989     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1990
1991     DesignatedStartIndex =
1992       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1993     DesignatedEndIndex =
1994       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1995     IndexExpr = DIE->getArrayRangeEnd(*D);
1996
1997     // Codegen can't handle evaluating array range designators that have side
1998     // effects, because we replicate the AST value for each initialized element.
1999     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2000     // elements with something that has a side effect, so codegen can emit an
2001     // "error unsupported" error instead of miscompiling the app.
2002     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2003         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2004       FullyStructuredList->sawArrayRangeDesignator();
2005   }
2006
2007   if (isa<ConstantArrayType>(AT)) {
2008     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2009     DesignatedStartIndex
2010       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2011     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2012     DesignatedEndIndex
2013       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2014     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2015     if (DesignatedEndIndex >= MaxElements) {
2016       if (!VerifyOnly)
2017         SemaRef.Diag(IndexExpr->getLocStart(),
2018                       diag::err_array_designator_too_large)
2019           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2020           << IndexExpr->getSourceRange();
2021       ++Index;
2022       return true;
2023     }
2024   } else {
2025     // Make sure the bit-widths and signedness match.
2026     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2027       DesignatedEndIndex
2028         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2029     else if (DesignatedStartIndex.getBitWidth() <
2030              DesignatedEndIndex.getBitWidth())
2031       DesignatedStartIndex
2032         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2033     DesignatedStartIndex.setIsUnsigned(true);
2034     DesignatedEndIndex.setIsUnsigned(true);
2035   }
2036
2037   // Make sure that our non-designated initializer list has space
2038   // for a subobject corresponding to this array element.
2039   if (!VerifyOnly &&
2040       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2041     StructuredList->resizeInits(SemaRef.Context,
2042                                 DesignatedEndIndex.getZExtValue() + 1);
2043
2044   // Repeatedly perform subobject initializations in the range
2045   // [DesignatedStartIndex, DesignatedEndIndex].
2046
2047   // Move to the next designator
2048   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2049   unsigned OldIndex = Index;
2050
2051   InitializedEntity ElementEntity =
2052     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2053
2054   while (DesignatedStartIndex <= DesignatedEndIndex) {
2055     // Recurse to check later designated subobjects.
2056     QualType ElementType = AT->getElementType();
2057     Index = OldIndex;
2058
2059     ElementEntity.setElementIndex(ElementIndex);
2060     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2061                                    ElementType, 0, 0, Index,
2062                                    StructuredList, ElementIndex,
2063                                    (DesignatedStartIndex == DesignatedEndIndex),
2064                                    false))
2065       return true;
2066
2067     // Move to the next index in the array that we'll be initializing.
2068     ++DesignatedStartIndex;
2069     ElementIndex = DesignatedStartIndex.getZExtValue();
2070   }
2071
2072   // If this the first designator, our caller will continue checking
2073   // the rest of this array subobject.
2074   if (IsFirstDesignator) {
2075     if (NextElementIndex)
2076       *NextElementIndex = DesignatedStartIndex;
2077     StructuredIndex = ElementIndex;
2078     return false;
2079   }
2080
2081   if (!FinishSubobjectInit)
2082     return false;
2083
2084   // Check the remaining elements within this array subobject.
2085   bool prevHadError = hadError;
2086   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2087                  /*SubobjectIsDesignatorContext=*/false, Index,
2088                  StructuredList, ElementIndex);
2089   return hadError && !prevHadError;
2090 }
2091
2092 // Get the structured initializer list for a subobject of type
2093 // @p CurrentObjectType.
2094 InitListExpr *
2095 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2096                                             QualType CurrentObjectType,
2097                                             InitListExpr *StructuredList,
2098                                             unsigned StructuredIndex,
2099                                             SourceRange InitRange) {
2100   if (VerifyOnly)
2101     return 0; // No structured list in verification-only mode.
2102   Expr *ExistingInit = 0;
2103   if (!StructuredList)
2104     ExistingInit = SyntacticToSemantic.lookup(IList);
2105   else if (StructuredIndex < StructuredList->getNumInits())
2106     ExistingInit = StructuredList->getInit(StructuredIndex);
2107
2108   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2109     return Result;
2110
2111   if (ExistingInit) {
2112     // We are creating an initializer list that initializes the
2113     // subobjects of the current object, but there was already an
2114     // initialization that completely initialized the current
2115     // subobject, e.g., by a compound literal:
2116     //
2117     // struct X { int a, b; };
2118     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2119     //
2120     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2121     // designated initializer re-initializes the whole
2122     // subobject [0], overwriting previous initializers.
2123     SemaRef.Diag(InitRange.getBegin(),
2124                  diag::warn_subobject_initializer_overrides)
2125       << InitRange;
2126     SemaRef.Diag(ExistingInit->getLocStart(),
2127                   diag::note_previous_initializer)
2128       << /*FIXME:has side effects=*/0
2129       << ExistingInit->getSourceRange();
2130   }
2131
2132   InitListExpr *Result
2133     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2134                                          InitRange.getBegin(), None,
2135                                          InitRange.getEnd());
2136
2137   QualType ResultType = CurrentObjectType;
2138   if (!ResultType->isArrayType())
2139     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2140   Result->setType(ResultType);
2141
2142   // Pre-allocate storage for the structured initializer list.
2143   unsigned NumElements = 0;
2144   unsigned NumInits = 0;
2145   bool GotNumInits = false;
2146   if (!StructuredList) {
2147     NumInits = IList->getNumInits();
2148     GotNumInits = true;
2149   } else if (Index < IList->getNumInits()) {
2150     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2151       NumInits = SubList->getNumInits();
2152       GotNumInits = true;
2153     }
2154   }
2155
2156   if (const ArrayType *AType
2157       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2158     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2159       NumElements = CAType->getSize().getZExtValue();
2160       // Simple heuristic so that we don't allocate a very large
2161       // initializer with many empty entries at the end.
2162       if (GotNumInits && NumElements > NumInits)
2163         NumElements = 0;
2164     }
2165   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2166     NumElements = VType->getNumElements();
2167   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2168     RecordDecl *RDecl = RType->getDecl();
2169     if (RDecl->isUnion())
2170       NumElements = 1;
2171     else
2172       NumElements = std::distance(RDecl->field_begin(),
2173                                   RDecl->field_end());
2174   }
2175
2176   Result->reserveInits(SemaRef.Context, NumElements);
2177
2178   // Link this new initializer list into the structured initializer
2179   // lists.
2180   if (StructuredList)
2181     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2182   else {
2183     Result->setSyntacticForm(IList);
2184     SyntacticToSemantic[IList] = Result;
2185   }
2186
2187   return Result;
2188 }
2189
2190 /// Update the initializer at index @p StructuredIndex within the
2191 /// structured initializer list to the value @p expr.
2192 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2193                                                   unsigned &StructuredIndex,
2194                                                   Expr *expr) {
2195   // No structured initializer list to update
2196   if (!StructuredList)
2197     return;
2198
2199   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2200                                                   StructuredIndex, expr)) {
2201     // This initializer overwrites a previous initializer. Warn.
2202     SemaRef.Diag(expr->getLocStart(),
2203                   diag::warn_initializer_overrides)
2204       << expr->getSourceRange();
2205     SemaRef.Diag(PrevInit->getLocStart(),
2206                   diag::note_previous_initializer)
2207       << /*FIXME:has side effects=*/0
2208       << PrevInit->getSourceRange();
2209   }
2210
2211   ++StructuredIndex;
2212 }
2213
2214 /// Check that the given Index expression is a valid array designator
2215 /// value. This is essentially just a wrapper around
2216 /// VerifyIntegerConstantExpression that also checks for negative values
2217 /// and produces a reasonable diagnostic if there is a
2218 /// failure. Returns the index expression, possibly with an implicit cast
2219 /// added, on success.  If everything went okay, Value will receive the
2220 /// value of the constant expression.
2221 static ExprResult
2222 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2223   SourceLocation Loc = Index->getLocStart();
2224
2225   // Make sure this is an integer constant expression.
2226   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2227   if (Result.isInvalid())
2228     return Result;
2229
2230   if (Value.isSigned() && Value.isNegative())
2231     return S.Diag(Loc, diag::err_array_designator_negative)
2232       << Value.toString(10) << Index->getSourceRange();
2233
2234   Value.setIsUnsigned(true);
2235   return Result;
2236 }
2237
2238 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2239                                             SourceLocation Loc,
2240                                             bool GNUSyntax,
2241                                             ExprResult Init) {
2242   typedef DesignatedInitExpr::Designator ASTDesignator;
2243
2244   bool Invalid = false;
2245   SmallVector<ASTDesignator, 32> Designators;
2246   SmallVector<Expr *, 32> InitExpressions;
2247
2248   // Build designators and check array designator expressions.
2249   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2250     const Designator &D = Desig.getDesignator(Idx);
2251     switch (D.getKind()) {
2252     case Designator::FieldDesignator:
2253       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2254                                           D.getFieldLoc()));
2255       break;
2256
2257     case Designator::ArrayDesignator: {
2258       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2259       llvm::APSInt IndexValue;
2260       if (!Index->isTypeDependent() && !Index->isValueDependent())
2261         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2262       if (!Index)
2263         Invalid = true;
2264       else {
2265         Designators.push_back(ASTDesignator(InitExpressions.size(),
2266                                             D.getLBracketLoc(),
2267                                             D.getRBracketLoc()));
2268         InitExpressions.push_back(Index);
2269       }
2270       break;
2271     }
2272
2273     case Designator::ArrayRangeDesignator: {
2274       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2275       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2276       llvm::APSInt StartValue;
2277       llvm::APSInt EndValue;
2278       bool StartDependent = StartIndex->isTypeDependent() ||
2279                             StartIndex->isValueDependent();
2280       bool EndDependent = EndIndex->isTypeDependent() ||
2281                           EndIndex->isValueDependent();
2282       if (!StartDependent)
2283         StartIndex =
2284             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2285       if (!EndDependent)
2286         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2287
2288       if (!StartIndex || !EndIndex)
2289         Invalid = true;
2290       else {
2291         // Make sure we're comparing values with the same bit width.
2292         if (StartDependent || EndDependent) {
2293           // Nothing to compute.
2294         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2295           EndValue = EndValue.extend(StartValue.getBitWidth());
2296         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2297           StartValue = StartValue.extend(EndValue.getBitWidth());
2298
2299         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2300           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2301             << StartValue.toString(10) << EndValue.toString(10)
2302             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2303           Invalid = true;
2304         } else {
2305           Designators.push_back(ASTDesignator(InitExpressions.size(),
2306                                               D.getLBracketLoc(),
2307                                               D.getEllipsisLoc(),
2308                                               D.getRBracketLoc()));
2309           InitExpressions.push_back(StartIndex);
2310           InitExpressions.push_back(EndIndex);
2311         }
2312       }
2313       break;
2314     }
2315     }
2316   }
2317
2318   if (Invalid || Init.isInvalid())
2319     return ExprError();
2320
2321   // Clear out the expressions within the designation.
2322   Desig.ClearExprs(*this);
2323
2324   DesignatedInitExpr *DIE
2325     = DesignatedInitExpr::Create(Context,
2326                                  Designators.data(), Designators.size(),
2327                                  InitExpressions, Loc, GNUSyntax,
2328                                  Init.takeAs<Expr>());
2329
2330   if (!getLangOpts().C99)
2331     Diag(DIE->getLocStart(), diag::ext_designated_init)
2332       << DIE->getSourceRange();
2333
2334   return Owned(DIE);
2335 }
2336
2337 //===----------------------------------------------------------------------===//
2338 // Initialization entity
2339 //===----------------------------------------------------------------------===//
2340
2341 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2342                                      const InitializedEntity &Parent)
2343   : Parent(&Parent), Index(Index)
2344 {
2345   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2346     Kind = EK_ArrayElement;
2347     Type = AT->getElementType();
2348   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2349     Kind = EK_VectorElement;
2350     Type = VT->getElementType();
2351   } else {
2352     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2353     assert(CT && "Unexpected type");
2354     Kind = EK_ComplexElement;
2355     Type = CT->getElementType();
2356   }
2357 }
2358
2359 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2360                                                     CXXBaseSpecifier *Base,
2361                                                     bool IsInheritedVirtualBase)
2362 {
2363   InitializedEntity Result;
2364   Result.Kind = EK_Base;
2365   Result.Base = reinterpret_cast<uintptr_t>(Base);
2366   if (IsInheritedVirtualBase)
2367     Result.Base |= 0x01;
2368
2369   Result.Type = Base->getType();
2370   return Result;
2371 }
2372
2373 DeclarationName InitializedEntity::getName() const {
2374   switch (getKind()) {
2375   case EK_Parameter: {
2376     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2377     return (D ? D->getDeclName() : DeclarationName());
2378   }
2379
2380   case EK_Variable:
2381   case EK_Member:
2382     return VariableOrMember->getDeclName();
2383
2384   case EK_LambdaCapture:
2385     return Capture.Var->getDeclName();
2386       
2387   case EK_Result:
2388   case EK_Exception:
2389   case EK_New:
2390   case EK_Temporary:
2391   case EK_Base:
2392   case EK_Delegating:
2393   case EK_ArrayElement:
2394   case EK_VectorElement:
2395   case EK_ComplexElement:
2396   case EK_BlockElement:
2397   case EK_CompoundLiteralInit:
2398     return DeclarationName();
2399   }
2400
2401   llvm_unreachable("Invalid EntityKind!");
2402 }
2403
2404 DeclaratorDecl *InitializedEntity::getDecl() const {
2405   switch (getKind()) {
2406   case EK_Variable:
2407   case EK_Member:
2408     return VariableOrMember;
2409
2410   case EK_Parameter:
2411     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2412
2413   case EK_Result:
2414   case EK_Exception:
2415   case EK_New:
2416   case EK_Temporary:
2417   case EK_Base:
2418   case EK_Delegating:
2419   case EK_ArrayElement:
2420   case EK_VectorElement:
2421   case EK_ComplexElement:
2422   case EK_BlockElement:
2423   case EK_LambdaCapture:
2424   case EK_CompoundLiteralInit:
2425     return 0;
2426   }
2427
2428   llvm_unreachable("Invalid EntityKind!");
2429 }
2430
2431 bool InitializedEntity::allowsNRVO() const {
2432   switch (getKind()) {
2433   case EK_Result:
2434   case EK_Exception:
2435     return LocAndNRVO.NRVO;
2436
2437   case EK_Variable:
2438   case EK_Parameter:
2439   case EK_Member:
2440   case EK_New:
2441   case EK_Temporary:
2442   case EK_CompoundLiteralInit:
2443   case EK_Base:
2444   case EK_Delegating:
2445   case EK_ArrayElement:
2446   case EK_VectorElement:
2447   case EK_ComplexElement:
2448   case EK_BlockElement:
2449   case EK_LambdaCapture:
2450     break;
2451   }
2452
2453   return false;
2454 }
2455
2456 //===----------------------------------------------------------------------===//
2457 // Initialization sequence
2458 //===----------------------------------------------------------------------===//
2459
2460 void InitializationSequence::Step::Destroy() {
2461   switch (Kind) {
2462   case SK_ResolveAddressOfOverloadedFunction:
2463   case SK_CastDerivedToBaseRValue:
2464   case SK_CastDerivedToBaseXValue:
2465   case SK_CastDerivedToBaseLValue:
2466   case SK_BindReference:
2467   case SK_BindReferenceToTemporary:
2468   case SK_ExtraneousCopyToTemporary:
2469   case SK_UserConversion:
2470   case SK_QualificationConversionRValue:
2471   case SK_QualificationConversionXValue:
2472   case SK_QualificationConversionLValue:
2473   case SK_LValueToRValue:
2474   case SK_ListInitialization:
2475   case SK_ListConstructorCall:
2476   case SK_UnwrapInitList:
2477   case SK_RewrapInitList:
2478   case SK_ConstructorInitialization:
2479   case SK_ZeroInitialization:
2480   case SK_CAssignment:
2481   case SK_StringInit:
2482   case SK_ObjCObjectConversion:
2483   case SK_ArrayInit:
2484   case SK_ParenthesizedArrayInit:
2485   case SK_PassByIndirectCopyRestore:
2486   case SK_PassByIndirectRestore:
2487   case SK_ProduceObjCObject:
2488   case SK_StdInitializerList:
2489   case SK_OCLSamplerInit:
2490   case SK_OCLZeroEvent:
2491     break;
2492
2493   case SK_ConversionSequence:
2494     delete ICS;
2495   }
2496 }
2497
2498 bool InitializationSequence::isDirectReferenceBinding() const {
2499   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2500 }
2501
2502 bool InitializationSequence::isAmbiguous() const {
2503   if (!Failed())
2504     return false;
2505
2506   switch (getFailureKind()) {
2507   case FK_TooManyInitsForReference:
2508   case FK_ArrayNeedsInitList:
2509   case FK_ArrayNeedsInitListOrStringLiteral:
2510   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2511   case FK_NonConstLValueReferenceBindingToTemporary:
2512   case FK_NonConstLValueReferenceBindingToUnrelated:
2513   case FK_RValueReferenceBindingToLValue:
2514   case FK_ReferenceInitDropsQualifiers:
2515   case FK_ReferenceInitFailed:
2516   case FK_ConversionFailed:
2517   case FK_ConversionFromPropertyFailed:
2518   case FK_TooManyInitsForScalar:
2519   case FK_ReferenceBindingToInitList:
2520   case FK_InitListBadDestinationType:
2521   case FK_DefaultInitOfConst:
2522   case FK_Incomplete:
2523   case FK_ArrayTypeMismatch:
2524   case FK_NonConstantArrayInit:
2525   case FK_ListInitializationFailed:
2526   case FK_VariableLengthArrayHasInitializer:
2527   case FK_PlaceholderType:
2528   case FK_InitListElementCopyFailure:
2529   case FK_ExplicitConstructor:
2530     return false;
2531
2532   case FK_ReferenceInitOverloadFailed:
2533   case FK_UserConversionOverloadFailed:
2534   case FK_ConstructorOverloadFailed:
2535   case FK_ListConstructorOverloadFailed:
2536     return FailedOverloadResult == OR_Ambiguous;
2537   }
2538
2539   llvm_unreachable("Invalid EntityKind!");
2540 }
2541
2542 bool InitializationSequence::isConstructorInitialization() const {
2543   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2544 }
2545
2546 void
2547 InitializationSequence
2548 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2549                                    DeclAccessPair Found,
2550                                    bool HadMultipleCandidates) {
2551   Step S;
2552   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2553   S.Type = Function->getType();
2554   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2555   S.Function.Function = Function;
2556   S.Function.FoundDecl = Found;
2557   Steps.push_back(S);
2558 }
2559
2560 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2561                                                       ExprValueKind VK) {
2562   Step S;
2563   switch (VK) {
2564   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2565   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2566   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2567   }
2568   S.Type = BaseType;
2569   Steps.push_back(S);
2570 }
2571
2572 void InitializationSequence::AddReferenceBindingStep(QualType T,
2573                                                      bool BindingTemporary) {
2574   Step S;
2575   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2576   S.Type = T;
2577   Steps.push_back(S);
2578 }
2579
2580 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2581   Step S;
2582   S.Kind = SK_ExtraneousCopyToTemporary;
2583   S.Type = T;
2584   Steps.push_back(S);
2585 }
2586
2587 void
2588 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2589                                               DeclAccessPair FoundDecl,
2590                                               QualType T,
2591                                               bool HadMultipleCandidates) {
2592   Step S;
2593   S.Kind = SK_UserConversion;
2594   S.Type = T;
2595   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2596   S.Function.Function = Function;
2597   S.Function.FoundDecl = FoundDecl;
2598   Steps.push_back(S);
2599 }
2600
2601 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2602                                                             ExprValueKind VK) {
2603   Step S;
2604   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2605   switch (VK) {
2606   case VK_RValue:
2607     S.Kind = SK_QualificationConversionRValue;
2608     break;
2609   case VK_XValue:
2610     S.Kind = SK_QualificationConversionXValue;
2611     break;
2612   case VK_LValue:
2613     S.Kind = SK_QualificationConversionLValue;
2614     break;
2615   }
2616   S.Type = Ty;
2617   Steps.push_back(S);
2618 }
2619
2620 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2621   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2622
2623   Step S;
2624   S.Kind = SK_LValueToRValue;
2625   S.Type = Ty;
2626   Steps.push_back(S);
2627 }
2628
2629 void InitializationSequence::AddConversionSequenceStep(
2630                                        const ImplicitConversionSequence &ICS,
2631                                                        QualType T) {
2632   Step S;
2633   S.Kind = SK_ConversionSequence;
2634   S.Type = T;
2635   S.ICS = new ImplicitConversionSequence(ICS);
2636   Steps.push_back(S);
2637 }
2638
2639 void InitializationSequence::AddListInitializationStep(QualType T) {
2640   Step S;
2641   S.Kind = SK_ListInitialization;
2642   S.Type = T;
2643   Steps.push_back(S);
2644 }
2645
2646 void
2647 InitializationSequence
2648 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2649                                    AccessSpecifier Access,
2650                                    QualType T,
2651                                    bool HadMultipleCandidates,
2652                                    bool FromInitList, bool AsInitList) {
2653   Step S;
2654   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2655                                        : SK_ConstructorInitialization;
2656   S.Type = T;
2657   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2658   S.Function.Function = Constructor;
2659   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2660   Steps.push_back(S);
2661 }
2662
2663 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2664   Step S;
2665   S.Kind = SK_ZeroInitialization;
2666   S.Type = T;
2667   Steps.push_back(S);
2668 }
2669
2670 void InitializationSequence::AddCAssignmentStep(QualType T) {
2671   Step S;
2672   S.Kind = SK_CAssignment;
2673   S.Type = T;
2674   Steps.push_back(S);
2675 }
2676
2677 void InitializationSequence::AddStringInitStep(QualType T) {
2678   Step S;
2679   S.Kind = SK_StringInit;
2680   S.Type = T;
2681   Steps.push_back(S);
2682 }
2683
2684 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2685   Step S;
2686   S.Kind = SK_ObjCObjectConversion;
2687   S.Type = T;
2688   Steps.push_back(S);
2689 }
2690
2691 void InitializationSequence::AddArrayInitStep(QualType T) {
2692   Step S;
2693   S.Kind = SK_ArrayInit;
2694   S.Type = T;
2695   Steps.push_back(S);
2696 }
2697
2698 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2699   Step S;
2700   S.Kind = SK_ParenthesizedArrayInit;
2701   S.Type = T;
2702   Steps.push_back(S);
2703 }
2704
2705 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2706                                                               bool shouldCopy) {
2707   Step s;
2708   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2709                        : SK_PassByIndirectRestore);
2710   s.Type = type;
2711   Steps.push_back(s);
2712 }
2713
2714 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2715   Step S;
2716   S.Kind = SK_ProduceObjCObject;
2717   S.Type = T;
2718   Steps.push_back(S);
2719 }
2720
2721 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2722   Step S;
2723   S.Kind = SK_StdInitializerList;
2724   S.Type = T;
2725   Steps.push_back(S);
2726 }
2727
2728 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2729   Step S;
2730   S.Kind = SK_OCLSamplerInit;
2731   S.Type = T;
2732   Steps.push_back(S);
2733 }
2734
2735 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2736   Step S;
2737   S.Kind = SK_OCLZeroEvent;
2738   S.Type = T;
2739   Steps.push_back(S);
2740 }
2741
2742 void InitializationSequence::RewrapReferenceInitList(QualType T,
2743                                                      InitListExpr *Syntactic) {
2744   assert(Syntactic->getNumInits() == 1 &&
2745          "Can only rewrap trivial init lists.");
2746   Step S;
2747   S.Kind = SK_UnwrapInitList;
2748   S.Type = Syntactic->getInit(0)->getType();
2749   Steps.insert(Steps.begin(), S);
2750
2751   S.Kind = SK_RewrapInitList;
2752   S.Type = T;
2753   S.WrappingSyntacticList = Syntactic;
2754   Steps.push_back(S);
2755 }
2756
2757 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2758                                                 OverloadingResult Result) {
2759   setSequenceKind(FailedSequence);
2760   this->Failure = Failure;
2761   this->FailedOverloadResult = Result;
2762 }
2763
2764 //===----------------------------------------------------------------------===//
2765 // Attempt initialization
2766 //===----------------------------------------------------------------------===//
2767
2768 static void MaybeProduceObjCObject(Sema &S,
2769                                    InitializationSequence &Sequence,
2770                                    const InitializedEntity &Entity) {
2771   if (!S.getLangOpts().ObjCAutoRefCount) return;
2772
2773   /// When initializing a parameter, produce the value if it's marked
2774   /// __attribute__((ns_consumed)).
2775   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2776     if (!Entity.isParameterConsumed())
2777       return;
2778
2779     assert(Entity.getType()->isObjCRetainableType() &&
2780            "consuming an object of unretainable type?");
2781     Sequence.AddProduceObjCObjectStep(Entity.getType());
2782
2783   /// When initializing a return value, if the return type is a
2784   /// retainable type, then returns need to immediately retain the
2785   /// object.  If an autorelease is required, it will be done at the
2786   /// last instant.
2787   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2788     if (!Entity.getType()->isObjCRetainableType())
2789       return;
2790
2791     Sequence.AddProduceObjCObjectStep(Entity.getType());
2792   }
2793 }
2794
2795 /// \brief When initializing from init list via constructor, handle
2796 /// initialization of an object of type std::initializer_list<T>.
2797 ///
2798 /// \return true if we have handled initialization of an object of type
2799 /// std::initializer_list<T>, false otherwise.
2800 static bool TryInitializerListConstruction(Sema &S,
2801                                            InitListExpr *List,
2802                                            QualType DestType,
2803                                            InitializationSequence &Sequence) {
2804   QualType E;
2805   if (!S.isStdInitializerList(DestType, &E))
2806     return false;
2807
2808   // Check that each individual element can be copy-constructed. But since we
2809   // have no place to store further information, we'll recalculate everything
2810   // later.
2811   InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2812       S.Context.getConstantArrayType(E,
2813           llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2814                       List->getNumInits()),
2815           ArrayType::Normal, 0));
2816   InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2817       0, HiddenArray);
2818   for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2819     Element.setElementIndex(i);
2820     if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2821       Sequence.SetFailed(
2822           InitializationSequence::FK_InitListElementCopyFailure);
2823       return true;
2824     }
2825   }
2826   Sequence.AddStdInitializerListConstructionStep(DestType);
2827   return true;
2828 }
2829
2830 static OverloadingResult
2831 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2832                            MultiExprArg Args,
2833                            OverloadCandidateSet &CandidateSet,
2834                            ArrayRef<NamedDecl *> Ctors,
2835                            OverloadCandidateSet::iterator &Best,
2836                            bool CopyInitializing, bool AllowExplicit,
2837                            bool OnlyListConstructors, bool InitListSyntax) {
2838   CandidateSet.clear();
2839
2840   for (ArrayRef<NamedDecl *>::iterator
2841          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2842     NamedDecl *D = *Con;
2843     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2844     bool SuppressUserConversions = false;
2845
2846     // Find the constructor (which may be a template).
2847     CXXConstructorDecl *Constructor = 0;
2848     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2849     if (ConstructorTmpl)
2850       Constructor = cast<CXXConstructorDecl>(
2851                                            ConstructorTmpl->getTemplatedDecl());
2852     else {
2853       Constructor = cast<CXXConstructorDecl>(D);
2854
2855       // If we're performing copy initialization using a copy constructor, we
2856       // suppress user-defined conversions on the arguments. We do the same for
2857       // move constructors.
2858       if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
2859           Constructor->isCopyOrMoveConstructor())
2860         SuppressUserConversions = true;
2861     }
2862
2863     if (!Constructor->isInvalidDecl() &&
2864         (AllowExplicit || !Constructor->isExplicit()) &&
2865         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2866       if (ConstructorTmpl)
2867         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2868                                        /*ExplicitArgs*/ 0, Args,
2869                                        CandidateSet, SuppressUserConversions);
2870       else {
2871         // C++ [over.match.copy]p1:
2872         //   - When initializing a temporary to be bound to the first parameter 
2873         //     of a constructor that takes a reference to possibly cv-qualified 
2874         //     T as its first argument, called with a single argument in the 
2875         //     context of direct-initialization, explicit conversion functions
2876         //     are also considered.
2877         bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 
2878                                  Args.size() == 1 &&
2879                                  Constructor->isCopyOrMoveConstructor();
2880         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
2881                                SuppressUserConversions,
2882                                /*PartialOverloading=*/false,
2883                                /*AllowExplicit=*/AllowExplicitConv);
2884       }
2885     }
2886   }
2887
2888   // Perform overload resolution and return the result.
2889   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2890 }
2891
2892 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2893 /// enumerates the constructors of the initialized entity and performs overload
2894 /// resolution to select the best.
2895 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2896 /// class type.
2897 static void TryConstructorInitialization(Sema &S,
2898                                          const InitializedEntity &Entity,
2899                                          const InitializationKind &Kind,
2900                                          MultiExprArg Args, QualType DestType,
2901                                          InitializationSequence &Sequence,
2902                                          bool InitListSyntax = false) {
2903   assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
2904          "InitListSyntax must come with a single initializer list argument.");
2905
2906   // The type we're constructing needs to be complete.
2907   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2908     Sequence.setIncompleteTypeFailure(DestType);
2909     return;
2910   }
2911
2912   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2913   assert(DestRecordType && "Constructor initialization requires record type");
2914   CXXRecordDecl *DestRecordDecl
2915     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2916
2917   // Build the candidate set directly in the initialization sequence
2918   // structure, so that it will persist if we fail.
2919   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2920
2921   // Determine whether we are allowed to call explicit constructors or
2922   // explicit conversion operators.
2923   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2924   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2925
2926   //   - Otherwise, if T is a class type, constructors are considered. The
2927   //     applicable constructors are enumerated, and the best one is chosen
2928   //     through overload resolution.
2929   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
2930   // The container holding the constructors can under certain conditions
2931   // be changed while iterating (e.g. because of deserialization).
2932   // To be safe we copy the lookup results to a new container.
2933   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
2934
2935   OverloadingResult Result = OR_No_Viable_Function;
2936   OverloadCandidateSet::iterator Best;
2937   bool AsInitializerList = false;
2938
2939   // C++11 [over.match.list]p1:
2940   //   When objects of non-aggregate type T are list-initialized, overload
2941   //   resolution selects the constructor in two phases:
2942   //   - Initially, the candidate functions are the initializer-list
2943   //     constructors of the class T and the argument list consists of the
2944   //     initializer list as a single argument.
2945   if (InitListSyntax) {
2946     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2947     AsInitializerList = true;
2948
2949     // If the initializer list has no elements and T has a default constructor,
2950     // the first phase is omitted.
2951     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
2952       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
2953                                           CandidateSet, Ctors, Best,
2954                                           CopyInitialization, AllowExplicit,
2955                                           /*OnlyListConstructor=*/true,
2956                                           InitListSyntax);
2957
2958     // Time to unwrap the init list.
2959     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2960   }
2961
2962   // C++11 [over.match.list]p1:
2963   //   - If no viable initializer-list constructor is found, overload resolution
2964   //     is performed again, where the candidate functions are all the
2965   //     constructors of the class T and the argument list consists of the
2966   //     elements of the initializer list.
2967   if (Result == OR_No_Viable_Function) {
2968     AsInitializerList = false;
2969     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
2970                                         CandidateSet, Ctors, Best,
2971                                         CopyInitialization, AllowExplicit,
2972                                         /*OnlyListConstructors=*/false,
2973                                         InitListSyntax);
2974   }
2975   if (Result) {
2976     Sequence.SetOverloadFailure(InitListSyntax ?
2977                       InitializationSequence::FK_ListConstructorOverloadFailed :
2978                       InitializationSequence::FK_ConstructorOverloadFailed,
2979                                 Result);
2980     return;
2981   }
2982
2983   // C++11 [dcl.init]p6:
2984   //   If a program calls for the default initialization of an object
2985   //   of a const-qualified type T, T shall be a class type with a
2986   //   user-provided default constructor.
2987   if (Kind.getKind() == InitializationKind::IK_Default &&
2988       Entity.getType().isConstQualified() &&
2989       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2990     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2991     return;
2992   }
2993
2994   // C++11 [over.match.list]p1:
2995   //   In copy-list-initialization, if an explicit constructor is chosen, the
2996   //   initializer is ill-formed.
2997   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2998   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2999     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3000     return;
3001   }
3002
3003   // Add the constructor initialization step. Any cv-qualification conversion is
3004   // subsumed by the initialization.
3005   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3006   Sequence.AddConstructorInitializationStep(CtorDecl,
3007                                             Best->FoundDecl.getAccess(),
3008                                             DestType, HadMultipleCandidates,
3009                                             InitListSyntax, AsInitializerList);
3010 }
3011
3012 static bool
3013 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3014                                              Expr *Initializer,
3015                                              QualType &SourceType,
3016                                              QualType &UnqualifiedSourceType,
3017                                              QualType UnqualifiedTargetType,
3018                                              InitializationSequence &Sequence) {
3019   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3020         S.Context.OverloadTy) {
3021     DeclAccessPair Found;
3022     bool HadMultipleCandidates = false;
3023     if (FunctionDecl *Fn
3024         = S.ResolveAddressOfOverloadedFunction(Initializer,
3025                                                UnqualifiedTargetType,
3026                                                false, Found,
3027                                                &HadMultipleCandidates)) {
3028       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3029                                                 HadMultipleCandidates);
3030       SourceType = Fn->getType();
3031       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3032     } else if (!UnqualifiedTargetType->isRecordType()) {
3033       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3034       return true;
3035     }
3036   }
3037   return false;
3038 }
3039
3040 static void TryReferenceInitializationCore(Sema &S,
3041                                            const InitializedEntity &Entity,
3042                                            const InitializationKind &Kind,
3043                                            Expr *Initializer,
3044                                            QualType cv1T1, QualType T1,
3045                                            Qualifiers T1Quals,
3046                                            QualType cv2T2, QualType T2,
3047                                            Qualifiers T2Quals,
3048                                            InitializationSequence &Sequence);
3049
3050 static void TryValueInitialization(Sema &S,
3051                                    const InitializedEntity &Entity,
3052                                    const InitializationKind &Kind,
3053                                    InitializationSequence &Sequence,
3054                                    InitListExpr *InitList = 0);
3055
3056 static void TryListInitialization(Sema &S,
3057                                   const InitializedEntity &Entity,
3058                                   const InitializationKind &Kind,
3059                                   InitListExpr *InitList,
3060                                   InitializationSequence &Sequence);
3061
3062 /// \brief Attempt list initialization of a reference.
3063 static void TryReferenceListInitialization(Sema &S,
3064                                            const InitializedEntity &Entity,
3065                                            const InitializationKind &Kind,
3066                                            InitListExpr *InitList,
3067                                            InitializationSequence &Sequence)
3068 {
3069   // First, catch C++03 where this isn't possible.
3070   if (!S.getLangOpts().CPlusPlus11) {
3071     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3072     return;
3073   }
3074
3075   QualType DestType = Entity.getType();
3076   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3077   Qualifiers T1Quals;
3078   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3079
3080   // Reference initialization via an initializer list works thus:
3081   // If the initializer list consists of a single element that is
3082   // reference-related to the referenced type, bind directly to that element
3083   // (possibly creating temporaries).
3084   // Otherwise, initialize a temporary with the initializer list and
3085   // bind to that.
3086   if (InitList->getNumInits() == 1) {
3087     Expr *Initializer = InitList->getInit(0);
3088     QualType cv2T2 = Initializer->getType();
3089     Qualifiers T2Quals;
3090     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3091
3092     // If this fails, creating a temporary wouldn't work either.
3093     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3094                                                      T1, Sequence))
3095       return;
3096
3097     SourceLocation DeclLoc = Initializer->getLocStart();
3098     bool dummy1, dummy2, dummy3;
3099     Sema::ReferenceCompareResult RefRelationship
3100       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3101                                        dummy2, dummy3);
3102     if (RefRelationship >= Sema::Ref_Related) {
3103       // Try to bind the reference here.
3104       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3105                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3106       if (Sequence)
3107         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3108       return;
3109     }
3110
3111     // Update the initializer if we've resolved an overloaded function.
3112     if (Sequence.step_begin() != Sequence.step_end())
3113       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3114   }
3115
3116   // Not reference-related. Create a temporary and bind to that.
3117   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3118
3119   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3120   if (Sequence) {
3121     if (DestType->isRValueReferenceType() ||
3122         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3123       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3124     else
3125       Sequence.SetFailed(
3126           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3127   }
3128 }
3129
3130 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3131 static void TryListInitialization(Sema &S,
3132                                   const InitializedEntity &Entity,
3133                                   const InitializationKind &Kind,
3134                                   InitListExpr *InitList,
3135                                   InitializationSequence &Sequence) {
3136   QualType DestType = Entity.getType();
3137
3138   // C++ doesn't allow scalar initialization with more than one argument.
3139   // But C99 complex numbers are scalars and it makes sense there.
3140   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3141       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3142     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3143     return;
3144   }
3145   if (DestType->isReferenceType()) {
3146     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3147     return;
3148   }
3149   if (DestType->isRecordType()) {
3150     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3151       Sequence.setIncompleteTypeFailure(DestType);
3152       return;
3153     }
3154
3155     // C++11 [dcl.init.list]p3:
3156     //   - If T is an aggregate, aggregate initialization is performed.
3157     if (!DestType->isAggregateType()) {
3158       if (S.getLangOpts().CPlusPlus11) {
3159         //   - Otherwise, if the initializer list has no elements and T is a
3160         //     class type with a default constructor, the object is
3161         //     value-initialized.
3162         if (InitList->getNumInits() == 0) {
3163           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3164           if (RD->hasDefaultConstructor()) {
3165             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3166             return;
3167           }
3168         }
3169
3170         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3171         //     an initializer_list object constructed [...]
3172         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3173           return;
3174
3175         //   - Otherwise, if T is a class type, constructors are considered.
3176         Expr *InitListAsExpr = InitList;
3177         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3178                                      Sequence, /*InitListSyntax*/true);
3179       } else
3180         Sequence.SetFailed(
3181             InitializationSequence::FK_InitListBadDestinationType);
3182       return;
3183     }
3184   }
3185
3186   InitListChecker CheckInitList(S, Entity, InitList,
3187           DestType, /*VerifyOnly=*/true,
3188           Kind.getKind() != InitializationKind::IK_DirectList ||
3189             !S.getLangOpts().CPlusPlus11);
3190   if (CheckInitList.HadError()) {
3191     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3192     return;
3193   }
3194
3195   // Add the list initialization step with the built init list.
3196   Sequence.AddListInitializationStep(DestType);
3197 }
3198
3199 /// \brief Try a reference initialization that involves calling a conversion
3200 /// function.
3201 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3202                                              const InitializedEntity &Entity,
3203                                              const InitializationKind &Kind,
3204                                              Expr *Initializer,
3205                                              bool AllowRValues,
3206                                              InitializationSequence &Sequence) {
3207   QualType DestType = Entity.getType();
3208   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3209   QualType T1 = cv1T1.getUnqualifiedType();
3210   QualType cv2T2 = Initializer->getType();
3211   QualType T2 = cv2T2.getUnqualifiedType();
3212
3213   bool DerivedToBase;
3214   bool ObjCConversion;
3215   bool ObjCLifetimeConversion;
3216   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3217                                          T1, T2, DerivedToBase,
3218                                          ObjCConversion,
3219                                          ObjCLifetimeConversion) &&
3220          "Must have incompatible references when binding via conversion");
3221   (void)DerivedToBase;
3222   (void)ObjCConversion;
3223   (void)ObjCLifetimeConversion;
3224   
3225   // Build the candidate set directly in the initialization sequence
3226   // structure, so that it will persist if we fail.
3227   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3228   CandidateSet.clear();
3229
3230   // Determine whether we are allowed to call explicit constructors or
3231   // explicit conversion operators.
3232   bool AllowExplicit = Kind.AllowExplicit();
3233   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3234   
3235   const RecordType *T1RecordType = 0;
3236   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3237       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3238     // The type we're converting to is a class type. Enumerate its constructors
3239     // to see if there is a suitable conversion.
3240     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3241
3242     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3243     // The container holding the constructors can under certain conditions
3244     // be changed while iterating (e.g. because of deserialization).
3245     // To be safe we copy the lookup results to a new container.
3246     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3247     for (SmallVector<NamedDecl*, 16>::iterator
3248            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3249       NamedDecl *D = *CI;
3250       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3251
3252       // Find the constructor (which may be a template).
3253       CXXConstructorDecl *Constructor = 0;
3254       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3255       if (ConstructorTmpl)
3256         Constructor = cast<CXXConstructorDecl>(
3257                                          ConstructorTmpl->getTemplatedDecl());
3258       else
3259         Constructor = cast<CXXConstructorDecl>(D);
3260
3261       if (!Constructor->isInvalidDecl() &&
3262           Constructor->isConvertingConstructor(AllowExplicit)) {
3263         if (ConstructorTmpl)
3264           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3265                                          /*ExplicitArgs*/ 0,
3266                                          Initializer, CandidateSet,
3267                                          /*SuppressUserConversions=*/true);
3268         else
3269           S.AddOverloadCandidate(Constructor, FoundDecl,
3270                                  Initializer, CandidateSet,
3271                                  /*SuppressUserConversions=*/true);
3272       }
3273     }
3274   }
3275   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3276     return OR_No_Viable_Function;
3277
3278   const RecordType *T2RecordType = 0;
3279   if ((T2RecordType = T2->getAs<RecordType>()) &&
3280       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3281     // The type we're converting from is a class type, enumerate its conversion
3282     // functions.
3283     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3284
3285     std::pair<CXXRecordDecl::conversion_iterator,
3286               CXXRecordDecl::conversion_iterator>
3287       Conversions = T2RecordDecl->getVisibleConversionFunctions();
3288     for (CXXRecordDecl::conversion_iterator
3289            I = Conversions.first, E = Conversions.second; I != E; ++I) {
3290       NamedDecl *D = *I;
3291       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3292       if (isa<UsingShadowDecl>(D))
3293         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3294
3295       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3296       CXXConversionDecl *Conv;
3297       if (ConvTemplate)
3298         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3299       else
3300         Conv = cast<CXXConversionDecl>(D);
3301
3302       // If the conversion function doesn't return a reference type,
3303       // it can't be considered for this conversion unless we're allowed to
3304       // consider rvalues.
3305       // FIXME: Do we need to make sure that we only consider conversion
3306       // candidates with reference-compatible results? That might be needed to
3307       // break recursion.
3308       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3309           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3310         if (ConvTemplate)
3311           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3312                                            ActingDC, Initializer,
3313                                            DestType, CandidateSet);
3314         else
3315           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3316                                    Initializer, DestType, CandidateSet);
3317       }
3318     }
3319   }
3320   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3321     return OR_No_Viable_Function;
3322
3323   SourceLocation DeclLoc = Initializer->getLocStart();
3324
3325   // Perform overload resolution. If it fails, return the failed result.
3326   OverloadCandidateSet::iterator Best;
3327   if (OverloadingResult Result
3328         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3329     return Result;
3330
3331   FunctionDecl *Function = Best->Function;
3332   // This is the overload that will be used for this initialization step if we
3333   // use this initialization. Mark it as referenced.
3334   Function->setReferenced();
3335
3336   // Compute the returned type of the conversion.
3337   if (isa<CXXConversionDecl>(Function))
3338     T2 = Function->getResultType();
3339   else
3340     T2 = cv1T1;
3341
3342   // Add the user-defined conversion step.
3343   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3344   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3345                                  T2.getNonLValueExprType(S.Context),
3346                                  HadMultipleCandidates);
3347
3348   // Determine whether we need to perform derived-to-base or
3349   // cv-qualification adjustments.
3350   ExprValueKind VK = VK_RValue;
3351   if (T2->isLValueReferenceType())
3352     VK = VK_LValue;
3353   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3354     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3355
3356   bool NewDerivedToBase = false;
3357   bool NewObjCConversion = false;
3358   bool NewObjCLifetimeConversion = false;
3359   Sema::ReferenceCompareResult NewRefRelationship
3360     = S.CompareReferenceRelationship(DeclLoc, T1,
3361                                      T2.getNonLValueExprType(S.Context),
3362                                      NewDerivedToBase, NewObjCConversion,
3363                                      NewObjCLifetimeConversion);
3364   if (NewRefRelationship == Sema::Ref_Incompatible) {
3365     // If the type we've converted to is not reference-related to the
3366     // type we're looking for, then there is another conversion step
3367     // we need to perform to produce a temporary of the right type
3368     // that we'll be binding to.
3369     ImplicitConversionSequence ICS;
3370     ICS.setStandard();
3371     ICS.Standard = Best->FinalConversion;
3372     T2 = ICS.Standard.getToType(2);
3373     Sequence.AddConversionSequenceStep(ICS, T2);
3374   } else if (NewDerivedToBase)
3375     Sequence.AddDerivedToBaseCastStep(
3376                                 S.Context.getQualifiedType(T1,
3377                                   T2.getNonReferenceType().getQualifiers()),
3378                                       VK);
3379   else if (NewObjCConversion)
3380     Sequence.AddObjCObjectConversionStep(
3381                                 S.Context.getQualifiedType(T1,
3382                                   T2.getNonReferenceType().getQualifiers()));
3383
3384   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3385     Sequence.AddQualificationConversionStep(cv1T1, VK);
3386
3387   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3388   return OR_Success;
3389 }
3390
3391 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3392                                            const InitializedEntity &Entity,
3393                                            Expr *CurInitExpr);
3394
3395 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3396 static void TryReferenceInitialization(Sema &S,
3397                                        const InitializedEntity &Entity,
3398                                        const InitializationKind &Kind,
3399                                        Expr *Initializer,
3400                                        InitializationSequence &Sequence) {
3401   QualType DestType = Entity.getType();
3402   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3403   Qualifiers T1Quals;
3404   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3405   QualType cv2T2 = Initializer->getType();
3406   Qualifiers T2Quals;
3407   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3408
3409   // If the initializer is the address of an overloaded function, try
3410   // to resolve the overloaded function. If all goes well, T2 is the
3411   // type of the resulting function.
3412   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3413                                                    T1, Sequence))
3414     return;
3415
3416   // Delegate everything else to a subfunction.
3417   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3418                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3419 }
3420
3421 /// Converts the target of reference initialization so that it has the
3422 /// appropriate qualifiers and value kind.
3423 ///
3424 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3425 /// \code
3426 ///   int x;
3427 ///   const int &r = x;
3428 /// \endcode
3429 ///
3430 /// In this case the reference is binding to a bitfield lvalue, which isn't
3431 /// valid. Perform a load to create a lifetime-extended temporary instead.
3432 /// \code
3433 ///   const int &r = someStruct.bitfield;
3434 /// \endcode
3435 static ExprValueKind
3436 convertQualifiersAndValueKindIfNecessary(Sema &S,
3437                                          InitializationSequence &Sequence,
3438                                          Expr *Initializer,
3439                                          QualType cv1T1,
3440                                          Qualifiers T1Quals,
3441                                          Qualifiers T2Quals,
3442                                          bool IsLValueRef) {
3443   bool IsNonAddressableType = Initializer->refersToBitField() ||
3444                               Initializer->refersToVectorElement();
3445
3446   if (IsNonAddressableType) {
3447     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3448     // lvalue reference to a non-volatile const type, or the reference shall be
3449     // an rvalue reference.
3450     //
3451     // If not, we can't make a temporary and bind to that. Give up and allow the
3452     // error to be diagnosed later.
3453     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3454       assert(Initializer->isGLValue());
3455       return Initializer->getValueKind();
3456     }
3457
3458     // Force a load so we can materialize a temporary.
3459     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3460     return VK_RValue;
3461   }
3462
3463   if (T1Quals != T2Quals) {
3464     Sequence.AddQualificationConversionStep(cv1T1,
3465                                             Initializer->getValueKind());
3466   }
3467
3468   return Initializer->getValueKind();
3469 }
3470
3471
3472 /// \brief Reference initialization without resolving overloaded functions.
3473 static void TryReferenceInitializationCore(Sema &S,
3474                                            const InitializedEntity &Entity,
3475                                            const InitializationKind &Kind,
3476                                            Expr *Initializer,
3477                                            QualType cv1T1, QualType T1,
3478                                            Qualifiers T1Quals,
3479                                            QualType cv2T2, QualType T2,
3480                                            Qualifiers T2Quals,
3481                                            InitializationSequence &Sequence) {
3482   QualType DestType = Entity.getType();
3483   SourceLocation DeclLoc = Initializer->getLocStart();
3484   // Compute some basic properties of the types and the initializer.
3485   bool isLValueRef = DestType->isLValueReferenceType();
3486   bool isRValueRef = !isLValueRef;
3487   bool DerivedToBase = false;
3488   bool ObjCConversion = false;
3489   bool ObjCLifetimeConversion = false;
3490   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3491   Sema::ReferenceCompareResult RefRelationship
3492     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3493                                      ObjCConversion, ObjCLifetimeConversion);
3494
3495   // C++0x [dcl.init.ref]p5:
3496   //   A reference to type "cv1 T1" is initialized by an expression of type
3497   //   "cv2 T2" as follows:
3498   //
3499   //     - If the reference is an lvalue reference and the initializer
3500   //       expression
3501   // Note the analogous bullet points for rvlaue refs to functions. Because
3502   // there are no function rvalues in C++, rvalue refs to functions are treated
3503   // like lvalue refs.
3504   OverloadingResult ConvOvlResult = OR_Success;
3505   bool T1Function = T1->isFunctionType();
3506   if (isLValueRef || T1Function) {
3507     if (InitCategory.isLValue() &&
3508         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3509          (Kind.isCStyleOrFunctionalCast() &&
3510           RefRelationship == Sema::Ref_Related))) {
3511       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3512       //     reference-compatible with "cv2 T2," or
3513       //
3514       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3515       // bit-field when we're determining whether the reference initialization
3516       // can occur. However, we do pay attention to whether it is a bit-field
3517       // to decide whether we're actually binding to a temporary created from
3518       // the bit-field.
3519       if (DerivedToBase)
3520         Sequence.AddDerivedToBaseCastStep(
3521                          S.Context.getQualifiedType(T1, T2Quals),
3522                          VK_LValue);
3523       else if (ObjCConversion)
3524         Sequence.AddObjCObjectConversionStep(
3525                                      S.Context.getQualifiedType(T1, T2Quals));
3526
3527       ExprValueKind ValueKind =
3528         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3529                                                  cv1T1, T1Quals, T2Quals,
3530                                                  isLValueRef);
3531       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3532       return;
3533     }
3534
3535     //     - has a class type (i.e., T2 is a class type), where T1 is not
3536     //       reference-related to T2, and can be implicitly converted to an
3537     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3538     //       with "cv3 T3" (this conversion is selected by enumerating the
3539     //       applicable conversion functions (13.3.1.6) and choosing the best
3540     //       one through overload resolution (13.3)),
3541     // If we have an rvalue ref to function type here, the rhs must be
3542     // an rvalue.
3543     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3544         (isLValueRef || InitCategory.isRValue())) {
3545       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3546                                                        Initializer,
3547                                                    /*AllowRValues=*/isRValueRef,
3548                                                        Sequence);
3549       if (ConvOvlResult == OR_Success)
3550         return;
3551       if (ConvOvlResult != OR_No_Viable_Function) {
3552         Sequence.SetOverloadFailure(
3553                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3554                                     ConvOvlResult);
3555       }
3556     }
3557   }
3558
3559   //     - Otherwise, the reference shall be an lvalue reference to a
3560   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3561   //       shall be an rvalue reference.
3562   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3563     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3564       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3565     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3566       Sequence.SetOverloadFailure(
3567                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3568                                   ConvOvlResult);
3569     else
3570       Sequence.SetFailed(InitCategory.isLValue()
3571         ? (RefRelationship == Sema::Ref_Related
3572              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3573              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3574         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3575
3576     return;
3577   }
3578
3579   //    - If the initializer expression
3580   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3581   //        "cv1 T1" is reference-compatible with "cv2 T2"
3582   // Note: functions are handled below.
3583   if (!T1Function &&
3584       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3585        (Kind.isCStyleOrFunctionalCast() &&
3586         RefRelationship == Sema::Ref_Related)) &&
3587       (InitCategory.isXValue() ||
3588        (InitCategory.isPRValue() && T2->isRecordType()) ||
3589        (InitCategory.isPRValue() && T2->isArrayType()))) {
3590     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3591     if (InitCategory.isPRValue() && T2->isRecordType()) {
3592       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3593       // compiler the freedom to perform a copy here or bind to the
3594       // object, while C++0x requires that we bind directly to the
3595       // object. Hence, we always bind to the object without making an
3596       // extra copy. However, in C++03 requires that we check for the
3597       // presence of a suitable copy constructor:
3598       //
3599       //   The constructor that would be used to make the copy shall
3600       //   be callable whether or not the copy is actually done.
3601       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3602         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3603       else if (S.getLangOpts().CPlusPlus11)
3604         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3605     }
3606
3607     if (DerivedToBase)
3608       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3609                                         ValueKind);
3610     else if (ObjCConversion)
3611       Sequence.AddObjCObjectConversionStep(
3612                                        S.Context.getQualifiedType(T1, T2Quals));
3613
3614     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3615                                                          Initializer, cv1T1,
3616                                                          T1Quals, T2Quals,
3617                                                          isLValueRef);
3618
3619     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3620     return;
3621   }
3622
3623   //       - has a class type (i.e., T2 is a class type), where T1 is not
3624   //         reference-related to T2, and can be implicitly converted to an
3625   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3626   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3627   if (T2->isRecordType()) {
3628     if (RefRelationship == Sema::Ref_Incompatible) {
3629       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3630                                                        Kind, Initializer,
3631                                                        /*AllowRValues=*/true,
3632                                                        Sequence);
3633       if (ConvOvlResult)
3634         Sequence.SetOverloadFailure(
3635                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3636                                     ConvOvlResult);
3637
3638       return;
3639     }
3640
3641     if ((RefRelationship == Sema::Ref_Compatible ||
3642          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3643         isRValueRef && InitCategory.isLValue()) {
3644       Sequence.SetFailed(
3645         InitializationSequence::FK_RValueReferenceBindingToLValue);
3646       return;
3647     }
3648
3649     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3650     return;
3651   }
3652
3653   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3654   //        from the initializer expression using the rules for a non-reference
3655   //        copy initialization (8.5). The reference is then bound to the
3656   //        temporary. [...]
3657
3658   // Determine whether we are allowed to call explicit constructors or
3659   // explicit conversion operators.
3660   bool AllowExplicit = Kind.AllowExplicit();
3661
3662   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3663
3664   ImplicitConversionSequence ICS
3665     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3666                               /*SuppressUserConversions*/ false,
3667                               AllowExplicit,
3668                               /*FIXME:InOverloadResolution=*/false,
3669                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3670                               /*AllowObjCWritebackConversion=*/false);
3671   
3672   if (ICS.isBad()) {
3673     // FIXME: Use the conversion function set stored in ICS to turn
3674     // this into an overloading ambiguity diagnostic. However, we need
3675     // to keep that set as an OverloadCandidateSet rather than as some
3676     // other kind of set.
3677     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3678       Sequence.SetOverloadFailure(
3679                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3680                                   ConvOvlResult);
3681     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3682       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3683     else
3684       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3685     return;
3686   } else {
3687     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3688   }
3689
3690   //        [...] If T1 is reference-related to T2, cv1 must be the
3691   //        same cv-qualification as, or greater cv-qualification
3692   //        than, cv2; otherwise, the program is ill-formed.
3693   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3694   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3695   if (RefRelationship == Sema::Ref_Related &&
3696       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3697     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3698     return;
3699   }
3700
3701   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3702   //   reference, the initializer expression shall not be an lvalue.
3703   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3704       InitCategory.isLValue()) {
3705     Sequence.SetFailed(
3706                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3707     return;
3708   }
3709
3710   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3711   return;
3712 }
3713
3714 /// \brief Attempt character array initialization from a string literal
3715 /// (C++ [dcl.init.string], C99 6.7.8).
3716 static void TryStringLiteralInitialization(Sema &S,
3717                                            const InitializedEntity &Entity,
3718                                            const InitializationKind &Kind,
3719                                            Expr *Initializer,
3720                                        InitializationSequence &Sequence) {
3721   Sequence.AddStringInitStep(Entity.getType());
3722 }
3723
3724 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3725 static void TryValueInitialization(Sema &S,
3726                                    const InitializedEntity &Entity,
3727                                    const InitializationKind &Kind,
3728                                    InitializationSequence &Sequence,
3729                                    InitListExpr *InitList) {
3730   assert((!InitList || InitList->getNumInits() == 0) &&
3731          "Shouldn't use value-init for non-empty init lists");
3732
3733   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3734   //
3735   //   To value-initialize an object of type T means:
3736   QualType T = Entity.getType();
3737
3738   //     -- if T is an array type, then each element is value-initialized;
3739   T = S.Context.getBaseElementType(T);
3740
3741   if (const RecordType *RT = T->getAs<RecordType>()) {
3742     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3743       bool NeedZeroInitialization = true;
3744       if (!S.getLangOpts().CPlusPlus11) {
3745         // C++98:
3746         // -- if T is a class type (clause 9) with a user-declared constructor
3747         //    (12.1), then the default constructor for T is called (and the
3748         //    initialization is ill-formed if T has no accessible default
3749         //    constructor);
3750         if (ClassDecl->hasUserDeclaredConstructor())
3751           NeedZeroInitialization = false;
3752       } else {
3753         // C++11:
3754         // -- if T is a class type (clause 9) with either no default constructor
3755         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3756         //    or deleted, then the object is default-initialized;
3757         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3758         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3759           NeedZeroInitialization = false;
3760       }
3761
3762       // -- if T is a (possibly cv-qualified) non-union class type without a
3763       //    user-provided or deleted default constructor, then the object is
3764       //    zero-initialized and, if T has a non-trivial default constructor,
3765       //    default-initialized;
3766       // The 'non-union' here was removed by DR1502. The 'non-trivial default
3767       // constructor' part was removed by DR1507.
3768       if (NeedZeroInitialization)
3769         Sequence.AddZeroInitializationStep(Entity.getType());
3770
3771       // C++03:
3772       // -- if T is a non-union class type without a user-declared constructor,
3773       //    then every non-static data member and base class component of T is
3774       //    value-initialized;
3775       // [...] A program that calls for [...] value-initialization of an
3776       // entity of reference type is ill-formed.
3777       //
3778       // C++11 doesn't need this handling, because value-initialization does not
3779       // occur recursively there, and the implicit default constructor is
3780       // defined as deleted in the problematic cases.
3781       if (!S.getLangOpts().CPlusPlus11 &&
3782           ClassDecl->hasUninitializedReferenceMember()) {
3783         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3784         return;
3785       }
3786
3787       // If this is list-value-initialization, pass the empty init list on when
3788       // building the constructor call. This affects the semantics of a few
3789       // things (such as whether an explicit default constructor can be called).
3790       Expr *InitListAsExpr = InitList;
3791       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3792       bool InitListSyntax = InitList;
3793
3794       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3795                                           InitListSyntax);
3796     }
3797   }
3798
3799   Sequence.AddZeroInitializationStep(Entity.getType());
3800 }
3801
3802 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3803 static void TryDefaultInitialization(Sema &S,
3804                                      const InitializedEntity &Entity,
3805                                      const InitializationKind &Kind,
3806                                      InitializationSequence &Sequence) {
3807   assert(Kind.getKind() == InitializationKind::IK_Default);
3808
3809   // C++ [dcl.init]p6:
3810   //   To default-initialize an object of type T means:
3811   //     - if T is an array type, each element is default-initialized;
3812   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3813          
3814   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3815   //       constructor for T is called (and the initialization is ill-formed if
3816   //       T has no accessible default constructor);
3817   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3818     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
3819     return;
3820   }
3821
3822   //     - otherwise, no initialization is performed.
3823
3824   //   If a program calls for the default initialization of an object of
3825   //   a const-qualified type T, T shall be a class type with a user-provided
3826   //   default constructor.
3827   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3828     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3829     return;
3830   }
3831
3832   // If the destination type has a lifetime property, zero-initialize it.
3833   if (DestType.getQualifiers().hasObjCLifetime()) {
3834     Sequence.AddZeroInitializationStep(Entity.getType());
3835     return;
3836   }
3837 }
3838
3839 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3840 /// which enumerates all conversion functions and performs overload resolution
3841 /// to select the best.
3842 static void TryUserDefinedConversion(Sema &S,
3843                                      const InitializedEntity &Entity,
3844                                      const InitializationKind &Kind,
3845                                      Expr *Initializer,
3846                                      InitializationSequence &Sequence) {
3847   QualType DestType = Entity.getType();
3848   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3849   QualType SourceType = Initializer->getType();
3850   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3851          "Must have a class type to perform a user-defined conversion");
3852
3853   // Build the candidate set directly in the initialization sequence
3854   // structure, so that it will persist if we fail.
3855   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3856   CandidateSet.clear();
3857
3858   // Determine whether we are allowed to call explicit constructors or
3859   // explicit conversion operators.
3860   bool AllowExplicit = Kind.AllowExplicit();
3861
3862   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3863     // The type we're converting to is a class type. Enumerate its constructors
3864     // to see if there is a suitable conversion.
3865     CXXRecordDecl *DestRecordDecl
3866       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3867
3868     // Try to complete the type we're converting to.
3869     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3870       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3871       // The container holding the constructors can under certain conditions
3872       // be changed while iterating. To be safe we copy the lookup results
3873       // to a new container.
3874       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
3875       for (SmallVector<NamedDecl*, 8>::iterator
3876              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
3877            Con != ConEnd; ++Con) {
3878         NamedDecl *D = *Con;
3879         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3880
3881         // Find the constructor (which may be a template).
3882         CXXConstructorDecl *Constructor = 0;
3883         FunctionTemplateDecl *ConstructorTmpl
3884           = dyn_cast<FunctionTemplateDecl>(D);
3885         if (ConstructorTmpl)
3886           Constructor = cast<CXXConstructorDecl>(
3887                                            ConstructorTmpl->getTemplatedDecl());
3888         else
3889           Constructor = cast<CXXConstructorDecl>(D);
3890
3891         if (!Constructor->isInvalidDecl() &&
3892             Constructor->isConvertingConstructor(AllowExplicit)) {
3893           if (ConstructorTmpl)
3894             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3895                                            /*ExplicitArgs*/ 0,
3896                                            Initializer, CandidateSet,
3897                                            /*SuppressUserConversions=*/true);
3898           else
3899             S.AddOverloadCandidate(Constructor, FoundDecl,
3900                                    Initializer, CandidateSet,
3901                                    /*SuppressUserConversions=*/true);
3902         }
3903       }
3904     }
3905   }
3906
3907   SourceLocation DeclLoc = Initializer->getLocStart();
3908
3909   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3910     // The type we're converting from is a class type, enumerate its conversion
3911     // functions.
3912
3913     // We can only enumerate the conversion functions for a complete type; if
3914     // the type isn't complete, simply skip this step.
3915     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3916       CXXRecordDecl *SourceRecordDecl
3917         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3918
3919       std::pair<CXXRecordDecl::conversion_iterator,
3920                 CXXRecordDecl::conversion_iterator>
3921         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
3922       for (CXXRecordDecl::conversion_iterator
3923              I = Conversions.first, E = Conversions.second; I != E; ++I) {
3924         NamedDecl *D = *I;
3925         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3926         if (isa<UsingShadowDecl>(D))
3927           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3928
3929         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3930         CXXConversionDecl *Conv;
3931         if (ConvTemplate)
3932           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3933         else
3934           Conv = cast<CXXConversionDecl>(D);
3935
3936         if (AllowExplicit || !Conv->isExplicit()) {
3937           if (ConvTemplate)
3938             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3939                                              ActingDC, Initializer, DestType,
3940                                              CandidateSet);
3941           else
3942             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3943                                      Initializer, DestType, CandidateSet);
3944         }
3945       }
3946     }
3947   }
3948
3949   // Perform overload resolution. If it fails, return the failed result.
3950   OverloadCandidateSet::iterator Best;
3951   if (OverloadingResult Result
3952         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3953     Sequence.SetOverloadFailure(
3954                         InitializationSequence::FK_UserConversionOverloadFailed,
3955                                 Result);
3956     return;
3957   }
3958
3959   FunctionDecl *Function = Best->Function;
3960   Function->setReferenced();
3961   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3962
3963   if (isa<CXXConstructorDecl>(Function)) {
3964     // Add the user-defined conversion step. Any cv-qualification conversion is
3965     // subsumed by the initialization. Per DR5, the created temporary is of the
3966     // cv-unqualified type of the destination.
3967     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3968                                    DestType.getUnqualifiedType(),
3969                                    HadMultipleCandidates);
3970     return;
3971   }
3972
3973   // Add the user-defined conversion step that calls the conversion function.
3974   QualType ConvType = Function->getCallResultType();
3975   if (ConvType->getAs<RecordType>()) {
3976     // If we're converting to a class type, there may be an copy of
3977     // the resulting temporary object (possible to create an object of
3978     // a base class type). That copy is not a separate conversion, so
3979     // we just make a note of the actual destination type (possibly a
3980     // base class of the type returned by the conversion function) and
3981     // let the user-defined conversion step handle the conversion.
3982     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3983                                    HadMultipleCandidates);
3984     return;
3985   }
3986
3987   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3988                                  HadMultipleCandidates);
3989
3990   // If the conversion following the call to the conversion function
3991   // is interesting, add it as a separate step.
3992   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3993       Best->FinalConversion.Third) {
3994     ImplicitConversionSequence ICS;
3995     ICS.setStandard();
3996     ICS.Standard = Best->FinalConversion;
3997     Sequence.AddConversionSequenceStep(ICS, DestType);
3998   }
3999 }
4000
4001 /// The non-zero enum values here are indexes into diagnostic alternatives.
4002 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4003
4004 /// Determines whether this expression is an acceptable ICR source.
4005 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4006                                          bool isAddressOf, bool &isWeakAccess) {
4007   // Skip parens.
4008   e = e->IgnoreParens();
4009
4010   // Skip address-of nodes.
4011   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4012     if (op->getOpcode() == UO_AddrOf)
4013       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4014                                 isWeakAccess);
4015
4016   // Skip certain casts.
4017   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4018     switch (ce->getCastKind()) {
4019     case CK_Dependent:
4020     case CK_BitCast:
4021     case CK_LValueBitCast:
4022     case CK_NoOp:
4023       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4024
4025     case CK_ArrayToPointerDecay:
4026       return IIK_nonscalar;
4027
4028     case CK_NullToPointer:
4029       return IIK_okay;
4030
4031     default:
4032       break;
4033     }
4034
4035   // If we have a declaration reference, it had better be a local variable.
4036   } else if (isa<DeclRefExpr>(e)) {
4037     // set isWeakAccess to true, to mean that there will be an implicit 
4038     // load which requires a cleanup.
4039     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4040       isWeakAccess = true;
4041     
4042     if (!isAddressOf) return IIK_nonlocal;
4043
4044     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4045     if (!var) return IIK_nonlocal;
4046
4047     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4048
4049   // If we have a conditional operator, check both sides.
4050   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4051     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4052                                                 isWeakAccess))
4053       return iik;
4054
4055     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4056
4057   // These are never scalar.
4058   } else if (isa<ArraySubscriptExpr>(e)) {
4059     return IIK_nonscalar;
4060
4061   // Otherwise, it needs to be a null pointer constant.
4062   } else {
4063     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4064             ? IIK_okay : IIK_nonlocal);
4065   }
4066
4067   return IIK_nonlocal;
4068 }
4069
4070 /// Check whether the given expression is a valid operand for an
4071 /// indirect copy/restore.
4072 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4073   assert(src->isRValue());
4074   bool isWeakAccess = false;
4075   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4076   // If isWeakAccess to true, there will be an implicit 
4077   // load which requires a cleanup.
4078   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4079     S.ExprNeedsCleanups = true;
4080   
4081   if (iik == IIK_okay) return;
4082
4083   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4084     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4085     << src->getSourceRange();
4086 }
4087
4088 /// \brief Determine whether we have compatible array types for the
4089 /// purposes of GNU by-copy array initialization.
4090 static bool hasCompatibleArrayTypes(ASTContext &Context,
4091                                     const ArrayType *Dest, 
4092                                     const ArrayType *Source) {
4093   // If the source and destination array types are equivalent, we're
4094   // done.
4095   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4096     return true;
4097
4098   // Make sure that the element types are the same.
4099   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4100     return false;
4101
4102   // The only mismatch we allow is when the destination is an
4103   // incomplete array type and the source is a constant array type.
4104   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4105 }
4106
4107 static bool tryObjCWritebackConversion(Sema &S,
4108                                        InitializationSequence &Sequence,
4109                                        const InitializedEntity &Entity,
4110                                        Expr *Initializer) {
4111   bool ArrayDecay = false;
4112   QualType ArgType = Initializer->getType();
4113   QualType ArgPointee;
4114   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4115     ArrayDecay = true;
4116     ArgPointee = ArgArrayType->getElementType();
4117     ArgType = S.Context.getPointerType(ArgPointee);
4118   }
4119       
4120   // Handle write-back conversion.
4121   QualType ConvertedArgType;
4122   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4123                                    ConvertedArgType))
4124     return false;
4125
4126   // We should copy unless we're passing to an argument explicitly
4127   // marked 'out'.
4128   bool ShouldCopy = true;
4129   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4130     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4131
4132   // Do we need an lvalue conversion?
4133   if (ArrayDecay || Initializer->isGLValue()) {
4134     ImplicitConversionSequence ICS;
4135     ICS.setStandard();
4136     ICS.Standard.setAsIdentityConversion();
4137
4138     QualType ResultType;
4139     if (ArrayDecay) {
4140       ICS.Standard.First = ICK_Array_To_Pointer;
4141       ResultType = S.Context.getPointerType(ArgPointee);
4142     } else {
4143       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4144       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4145     }
4146           
4147     Sequence.AddConversionSequenceStep(ICS, ResultType);
4148   }
4149         
4150   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4151   return true;
4152 }
4153
4154 static bool TryOCLSamplerInitialization(Sema &S,
4155                                         InitializationSequence &Sequence,
4156                                         QualType DestType,
4157                                         Expr *Initializer) {
4158   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4159     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4160     return false;
4161
4162   Sequence.AddOCLSamplerInitStep(DestType);
4163   return true;
4164 }
4165
4166 //
4167 // OpenCL 1.2 spec, s6.12.10
4168 //
4169 // The event argument can also be used to associate the
4170 // async_work_group_copy with a previous async copy allowing
4171 // an event to be shared by multiple async copies; otherwise
4172 // event should be zero.
4173 //
4174 static bool TryOCLZeroEventInitialization(Sema &S,
4175                                           InitializationSequence &Sequence,
4176                                           QualType DestType,
4177                                           Expr *Initializer) {
4178   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4179       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4180       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4181     return false;
4182
4183   Sequence.AddOCLZeroEventStep(DestType);
4184   return true;
4185 }
4186
4187 InitializationSequence::InitializationSequence(Sema &S,
4188                                                const InitializedEntity &Entity,
4189                                                const InitializationKind &Kind,
4190                                                MultiExprArg Args)
4191     : FailedCandidateSet(Kind.getLocation()) {
4192   ASTContext &Context = S.Context;
4193
4194   // Eliminate non-overload placeholder types in the arguments.  We
4195   // need to do this before checking whether types are dependent
4196   // because lowering a pseudo-object expression might well give us
4197   // something of dependent type.
4198   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4199     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4200       // FIXME: should we be doing this here?
4201       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4202       if (result.isInvalid()) {
4203         SetFailed(FK_PlaceholderType);
4204         return;
4205       }
4206       Args[I] = result.take();
4207     }
4208
4209   // C++0x [dcl.init]p16:
4210   //   The semantics of initializers are as follows. The destination type is
4211   //   the type of the object or reference being initialized and the source
4212   //   type is the type of the initializer expression. The source type is not
4213   //   defined when the initializer is a braced-init-list or when it is a
4214   //   parenthesized list of expressions.
4215   QualType DestType = Entity.getType();
4216
4217   if (DestType->isDependentType() ||
4218       Expr::hasAnyTypeDependentArguments(Args)) {
4219     SequenceKind = DependentSequence;
4220     return;
4221   }
4222
4223   // Almost everything is a normal sequence.
4224   setSequenceKind(NormalSequence);
4225
4226   QualType SourceType;
4227   Expr *Initializer = 0;
4228   if (Args.size() == 1) {
4229     Initializer = Args[0];
4230     if (!isa<InitListExpr>(Initializer))
4231       SourceType = Initializer->getType();
4232   }
4233
4234   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4235   //       object is list-initialized (8.5.4).
4236   if (Kind.getKind() != InitializationKind::IK_Direct) {
4237     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4238       TryListInitialization(S, Entity, Kind, InitList, *this);
4239       return;
4240     }
4241   }
4242
4243   //     - If the destination type is a reference type, see 8.5.3.
4244   if (DestType->isReferenceType()) {
4245     // C++0x [dcl.init.ref]p1:
4246     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4247     //   (8.3.2), shall be initialized by an object, or function, of type T or
4248     //   by an object that can be converted into a T.
4249     // (Therefore, multiple arguments are not permitted.)
4250     if (Args.size() != 1)
4251       SetFailed(FK_TooManyInitsForReference);
4252     else
4253       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4254     return;
4255   }
4256
4257   //     - If the initializer is (), the object is value-initialized.
4258   if (Kind.getKind() == InitializationKind::IK_Value ||
4259       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4260     TryValueInitialization(S, Entity, Kind, *this);
4261     return;
4262   }
4263
4264   // Handle default initialization.
4265   if (Kind.getKind() == InitializationKind::IK_Default) {
4266     TryDefaultInitialization(S, Entity, Kind, *this);
4267     return;
4268   }
4269
4270   //     - If the destination type is an array of characters, an array of
4271   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4272   //       initializer is a string literal, see 8.5.2.
4273   //     - Otherwise, if the destination type is an array, the program is
4274   //       ill-formed.
4275   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4276     if (Initializer && isa<VariableArrayType>(DestAT)) {
4277       SetFailed(FK_VariableLengthArrayHasInitializer);
4278       return;
4279     }
4280
4281     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4282       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4283       return;
4284     }
4285
4286     // Note: as an GNU C extension, we allow initialization of an
4287     // array from a compound literal that creates an array of the same
4288     // type, so long as the initializer has no side effects.
4289     if (!S.getLangOpts().CPlusPlus && Initializer &&
4290         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4291         Initializer->getType()->isArrayType()) {
4292       const ArrayType *SourceAT
4293         = Context.getAsArrayType(Initializer->getType());
4294       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4295         SetFailed(FK_ArrayTypeMismatch);
4296       else if (Initializer->HasSideEffects(S.Context))
4297         SetFailed(FK_NonConstantArrayInit);
4298       else {
4299         AddArrayInitStep(DestType);
4300       }
4301     }
4302     // Note: as a GNU C++ extension, we allow list-initialization of a
4303     // class member of array type from a parenthesized initializer list.
4304     else if (S.getLangOpts().CPlusPlus &&
4305              Entity.getKind() == InitializedEntity::EK_Member &&
4306              Initializer && isa<InitListExpr>(Initializer)) {
4307       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4308                             *this);
4309       AddParenthesizedArrayInitStep(DestType);
4310     } else if (DestAT->getElementType()->isAnyCharacterType())
4311       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4312     else
4313       SetFailed(FK_ArrayNeedsInitList);
4314
4315     return;
4316   }
4317
4318   // Determine whether we should consider writeback conversions for 
4319   // Objective-C ARC.
4320   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4321     Entity.getKind() == InitializedEntity::EK_Parameter;
4322
4323   // We're at the end of the line for C: it's either a write-back conversion
4324   // or it's a C assignment. There's no need to check anything else.
4325   if (!S.getLangOpts().CPlusPlus) {
4326     // If allowed, check whether this is an Objective-C writeback conversion.
4327     if (allowObjCWritebackConversion &&
4328         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4329       return;
4330     }
4331
4332     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4333       return;
4334
4335     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4336       return;
4337
4338     // Handle initialization in C
4339     AddCAssignmentStep(DestType);
4340     MaybeProduceObjCObject(S, *this, Entity);
4341     return;
4342   }
4343
4344   assert(S.getLangOpts().CPlusPlus);
4345       
4346   //     - If the destination type is a (possibly cv-qualified) class type:
4347   if (DestType->isRecordType()) {
4348     //     - If the initialization is direct-initialization, or if it is
4349     //       copy-initialization where the cv-unqualified version of the
4350     //       source type is the same class as, or a derived class of, the
4351     //       class of the destination, constructors are considered. [...]
4352     if (Kind.getKind() == InitializationKind::IK_Direct ||
4353         (Kind.getKind() == InitializationKind::IK_Copy &&
4354          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4355           S.IsDerivedFrom(SourceType, DestType))))
4356       TryConstructorInitialization(S, Entity, Kind, Args,
4357                                    Entity.getType(), *this);
4358     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4359     //       user-defined conversion sequences that can convert from the source
4360     //       type to the destination type or (when a conversion function is
4361     //       used) to a derived class thereof are enumerated as described in
4362     //       13.3.1.4, and the best one is chosen through overload resolution
4363     //       (13.3).
4364     else
4365       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4366     return;
4367   }
4368
4369   if (Args.size() > 1) {
4370     SetFailed(FK_TooManyInitsForScalar);
4371     return;
4372   }
4373   assert(Args.size() == 1 && "Zero-argument case handled above");
4374
4375   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4376   //      type, conversion functions are considered.
4377   if (!SourceType.isNull() && SourceType->isRecordType()) {
4378     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4379     MaybeProduceObjCObject(S, *this, Entity);
4380     return;
4381   }
4382
4383   //    - Otherwise, the initial value of the object being initialized is the
4384   //      (possibly converted) value of the initializer expression. Standard
4385   //      conversions (Clause 4) will be used, if necessary, to convert the
4386   //      initializer expression to the cv-unqualified version of the
4387   //      destination type; no user-defined conversions are considered.
4388       
4389   ImplicitConversionSequence ICS
4390     = S.TryImplicitConversion(Initializer, Entity.getType(),
4391                               /*SuppressUserConversions*/true,
4392                               /*AllowExplicitConversions*/ false,
4393                               /*InOverloadResolution*/ false,
4394                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4395                               allowObjCWritebackConversion);
4396       
4397   if (ICS.isStandard() && 
4398       ICS.Standard.Second == ICK_Writeback_Conversion) {
4399     // Objective-C ARC writeback conversion.
4400     
4401     // We should copy unless we're passing to an argument explicitly
4402     // marked 'out'.
4403     bool ShouldCopy = true;
4404     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4405       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4406     
4407     // If there was an lvalue adjustment, add it as a separate conversion.
4408     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4409         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4410       ImplicitConversionSequence LvalueICS;
4411       LvalueICS.setStandard();
4412       LvalueICS.Standard.setAsIdentityConversion();
4413       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4414       LvalueICS.Standard.First = ICS.Standard.First;
4415       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4416     }
4417     
4418     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4419   } else if (ICS.isBad()) {
4420     DeclAccessPair dap;
4421     if (Initializer->getType() == Context.OverloadTy && 
4422           !S.ResolveAddressOfOverloadedFunction(Initializer
4423                       , DestType, false, dap))
4424       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4425     else
4426       SetFailed(InitializationSequence::FK_ConversionFailed);
4427   } else {
4428     AddConversionSequenceStep(ICS, Entity.getType());
4429
4430     MaybeProduceObjCObject(S, *this, Entity);
4431   }
4432 }
4433
4434 InitializationSequence::~InitializationSequence() {
4435   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4436                                           StepEnd = Steps.end();
4437        Step != StepEnd; ++Step)
4438     Step->Destroy();
4439 }
4440
4441 //===----------------------------------------------------------------------===//
4442 // Perform initialization
4443 //===----------------------------------------------------------------------===//
4444 static Sema::AssignmentAction
4445 getAssignmentAction(const InitializedEntity &Entity) {
4446   switch(Entity.getKind()) {
4447   case InitializedEntity::EK_Variable:
4448   case InitializedEntity::EK_New:
4449   case InitializedEntity::EK_Exception:
4450   case InitializedEntity::EK_Base:
4451   case InitializedEntity::EK_Delegating:
4452     return Sema::AA_Initializing;
4453
4454   case InitializedEntity::EK_Parameter:
4455     if (Entity.getDecl() &&
4456         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4457       return Sema::AA_Sending;
4458
4459     return Sema::AA_Passing;
4460
4461   case InitializedEntity::EK_Result:
4462     return Sema::AA_Returning;
4463
4464   case InitializedEntity::EK_Temporary:
4465     // FIXME: Can we tell apart casting vs. converting?
4466     return Sema::AA_Casting;
4467
4468   case InitializedEntity::EK_Member:
4469   case InitializedEntity::EK_ArrayElement:
4470   case InitializedEntity::EK_VectorElement:
4471   case InitializedEntity::EK_ComplexElement:
4472   case InitializedEntity::EK_BlockElement:
4473   case InitializedEntity::EK_LambdaCapture:
4474   case InitializedEntity::EK_CompoundLiteralInit:
4475     return Sema::AA_Initializing;
4476   }
4477
4478   llvm_unreachable("Invalid EntityKind!");
4479 }
4480
4481 /// \brief Whether we should bind a created object as a temporary when
4482 /// initializing the given entity.
4483 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4484   switch (Entity.getKind()) {
4485   case InitializedEntity::EK_ArrayElement:
4486   case InitializedEntity::EK_Member:
4487   case InitializedEntity::EK_Result:
4488   case InitializedEntity::EK_New:
4489   case InitializedEntity::EK_Variable:
4490   case InitializedEntity::EK_Base:
4491   case InitializedEntity::EK_Delegating:
4492   case InitializedEntity::EK_VectorElement:
4493   case InitializedEntity::EK_ComplexElement:
4494   case InitializedEntity::EK_Exception:
4495   case InitializedEntity::EK_BlockElement:
4496   case InitializedEntity::EK_LambdaCapture:
4497   case InitializedEntity::EK_CompoundLiteralInit:
4498     return false;
4499
4500   case InitializedEntity::EK_Parameter:
4501   case InitializedEntity::EK_Temporary:
4502     return true;
4503   }
4504
4505   llvm_unreachable("missed an InitializedEntity kind?");
4506 }
4507
4508 /// \brief Whether the given entity, when initialized with an object
4509 /// created for that initialization, requires destruction.
4510 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4511   switch (Entity.getKind()) {
4512     case InitializedEntity::EK_Result:
4513     case InitializedEntity::EK_New:
4514     case InitializedEntity::EK_Base:
4515     case InitializedEntity::EK_Delegating:
4516     case InitializedEntity::EK_VectorElement:
4517     case InitializedEntity::EK_ComplexElement:
4518     case InitializedEntity::EK_BlockElement:
4519     case InitializedEntity::EK_LambdaCapture:
4520       return false;
4521
4522     case InitializedEntity::EK_Member:
4523     case InitializedEntity::EK_Variable:
4524     case InitializedEntity::EK_Parameter:
4525     case InitializedEntity::EK_Temporary:
4526     case InitializedEntity::EK_ArrayElement:
4527     case InitializedEntity::EK_Exception:
4528     case InitializedEntity::EK_CompoundLiteralInit:
4529       return true;
4530   }
4531
4532   llvm_unreachable("missed an InitializedEntity kind?");
4533 }
4534
4535 /// \brief Look for copy and move constructors and constructor templates, for
4536 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4537 static void LookupCopyAndMoveConstructors(Sema &S,
4538                                           OverloadCandidateSet &CandidateSet,
4539                                           CXXRecordDecl *Class,
4540                                           Expr *CurInitExpr) {
4541   DeclContext::lookup_result R = S.LookupConstructors(Class);
4542   // The container holding the constructors can under certain conditions
4543   // be changed while iterating (e.g. because of deserialization).
4544   // To be safe we copy the lookup results to a new container.
4545   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4546   for (SmallVector<NamedDecl*, 16>::iterator
4547          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4548     NamedDecl *D = *CI;
4549     CXXConstructorDecl *Constructor = 0;
4550
4551     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4552       // Handle copy/moveconstructors, only.
4553       if (!Constructor || Constructor->isInvalidDecl() ||
4554           !Constructor->isCopyOrMoveConstructor() ||
4555           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4556         continue;
4557
4558       DeclAccessPair FoundDecl
4559         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4560       S.AddOverloadCandidate(Constructor, FoundDecl,
4561                              CurInitExpr, CandidateSet);
4562       continue;
4563     }
4564
4565     // Handle constructor templates.
4566     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4567     if (ConstructorTmpl->isInvalidDecl())
4568       continue;
4569
4570     Constructor = cast<CXXConstructorDecl>(
4571                                          ConstructorTmpl->getTemplatedDecl());
4572     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4573       continue;
4574
4575     // FIXME: Do we need to limit this to copy-constructor-like
4576     // candidates?
4577     DeclAccessPair FoundDecl
4578       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4579     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4580                                    CurInitExpr, CandidateSet, true);
4581   }
4582 }
4583
4584 /// \brief Get the location at which initialization diagnostics should appear.
4585 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4586                                            Expr *Initializer) {
4587   switch (Entity.getKind()) {
4588   case InitializedEntity::EK_Result:
4589     return Entity.getReturnLoc();
4590
4591   case InitializedEntity::EK_Exception:
4592     return Entity.getThrowLoc();
4593
4594   case InitializedEntity::EK_Variable:
4595     return Entity.getDecl()->getLocation();
4596
4597   case InitializedEntity::EK_LambdaCapture:
4598     return Entity.getCaptureLoc();
4599       
4600   case InitializedEntity::EK_ArrayElement:
4601   case InitializedEntity::EK_Member:
4602   case InitializedEntity::EK_Parameter:
4603   case InitializedEntity::EK_Temporary:
4604   case InitializedEntity::EK_New:
4605   case InitializedEntity::EK_Base:
4606   case InitializedEntity::EK_Delegating:
4607   case InitializedEntity::EK_VectorElement:
4608   case InitializedEntity::EK_ComplexElement:
4609   case InitializedEntity::EK_BlockElement:
4610   case InitializedEntity::EK_CompoundLiteralInit:
4611     return Initializer->getLocStart();
4612   }
4613   llvm_unreachable("missed an InitializedEntity kind?");
4614 }
4615
4616 /// \brief Make a (potentially elidable) temporary copy of the object
4617 /// provided by the given initializer by calling the appropriate copy
4618 /// constructor.
4619 ///
4620 /// \param S The Sema object used for type-checking.
4621 ///
4622 /// \param T The type of the temporary object, which must either be
4623 /// the type of the initializer expression or a superclass thereof.
4624 ///
4625 /// \param Entity The entity being initialized.
4626 ///
4627 /// \param CurInit The initializer expression.
4628 ///
4629 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4630 /// is permitted in C++03 (but not C++0x) when binding a reference to
4631 /// an rvalue.
4632 ///
4633 /// \returns An expression that copies the initializer expression into
4634 /// a temporary object, or an error expression if a copy could not be
4635 /// created.
4636 static ExprResult CopyObject(Sema &S,
4637                              QualType T,
4638                              const InitializedEntity &Entity,
4639                              ExprResult CurInit,
4640                              bool IsExtraneousCopy) {
4641   // Determine which class type we're copying to.
4642   Expr *CurInitExpr = (Expr *)CurInit.get();
4643   CXXRecordDecl *Class = 0;
4644   if (const RecordType *Record = T->getAs<RecordType>())
4645     Class = cast<CXXRecordDecl>(Record->getDecl());
4646   if (!Class)
4647     return CurInit;
4648
4649   // C++0x [class.copy]p32:
4650   //   When certain criteria are met, an implementation is allowed to
4651   //   omit the copy/move construction of a class object, even if the
4652   //   copy/move constructor and/or destructor for the object have
4653   //   side effects. [...]
4654   //     - when a temporary class object that has not been bound to a
4655   //       reference (12.2) would be copied/moved to a class object
4656   //       with the same cv-unqualified type, the copy/move operation
4657   //       can be omitted by constructing the temporary object
4658   //       directly into the target of the omitted copy/move
4659   //
4660   // Note that the other three bullets are handled elsewhere. Copy
4661   // elision for return statements and throw expressions are handled as part
4662   // of constructor initialization, while copy elision for exception handlers
4663   // is handled by the run-time.
4664   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4665   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4666
4667   // Make sure that the type we are copying is complete.
4668   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4669     return CurInit;
4670
4671   // Perform overload resolution using the class's copy/move constructors.
4672   // Only consider constructors and constructor templates. Per
4673   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4674   // is direct-initialization.
4675   OverloadCandidateSet CandidateSet(Loc);
4676   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4677
4678   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4679
4680   OverloadCandidateSet::iterator Best;
4681   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4682   case OR_Success:
4683     break;
4684
4685   case OR_No_Viable_Function:
4686     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4687            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4688            : diag::err_temp_copy_no_viable)
4689       << (int)Entity.getKind() << CurInitExpr->getType()
4690       << CurInitExpr->getSourceRange();
4691     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4692     if (!IsExtraneousCopy || S.isSFINAEContext())
4693       return ExprError();
4694     return CurInit;
4695
4696   case OR_Ambiguous:
4697     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4698       << (int)Entity.getKind() << CurInitExpr->getType()
4699       << CurInitExpr->getSourceRange();
4700     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4701     return ExprError();
4702
4703   case OR_Deleted:
4704     S.Diag(Loc, diag::err_temp_copy_deleted)
4705       << (int)Entity.getKind() << CurInitExpr->getType()
4706       << CurInitExpr->getSourceRange();
4707     S.NoteDeletedFunction(Best->Function);
4708     return ExprError();
4709   }
4710
4711   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4712   SmallVector<Expr*, 8> ConstructorArgs;
4713   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4714
4715   S.CheckConstructorAccess(Loc, Constructor, Entity,
4716                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4717
4718   if (IsExtraneousCopy) {
4719     // If this is a totally extraneous copy for C++03 reference
4720     // binding purposes, just return the original initialization
4721     // expression. We don't generate an (elided) copy operation here
4722     // because doing so would require us to pass down a flag to avoid
4723     // infinite recursion, where each step adds another extraneous,
4724     // elidable copy.
4725
4726     // Instantiate the default arguments of any extra parameters in
4727     // the selected copy constructor, as if we were going to create a
4728     // proper call to the copy constructor.
4729     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4730       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4731       if (S.RequireCompleteType(Loc, Parm->getType(),
4732                                 diag::err_call_incomplete_argument))
4733         break;
4734
4735       // Build the default argument expression; we don't actually care
4736       // if this succeeds or not, because this routine will complain
4737       // if there was a problem.
4738       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4739     }
4740
4741     return S.Owned(CurInitExpr);
4742   }
4743
4744   // Determine the arguments required to actually perform the
4745   // constructor call (we might have derived-to-base conversions, or
4746   // the copy constructor may have default arguments).
4747   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4748     return ExprError();
4749
4750   // Actually perform the constructor call.
4751   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4752                                     ConstructorArgs,
4753                                     HadMultipleCandidates,
4754                                     /*ListInit*/ false,
4755                                     /*ZeroInit*/ false,
4756                                     CXXConstructExpr::CK_Complete,
4757                                     SourceRange());
4758
4759   // If we're supposed to bind temporaries, do so.
4760   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4761     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4762   return CurInit;
4763 }
4764
4765 /// \brief Check whether elidable copy construction for binding a reference to
4766 /// a temporary would have succeeded if we were building in C++98 mode, for
4767 /// -Wc++98-compat.
4768 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4769                                            const InitializedEntity &Entity,
4770                                            Expr *CurInitExpr) {
4771   assert(S.getLangOpts().CPlusPlus11);
4772
4773   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4774   if (!Record)
4775     return;
4776
4777   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4778   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4779         == DiagnosticsEngine::Ignored)
4780     return;
4781
4782   // Find constructors which would have been considered.
4783   OverloadCandidateSet CandidateSet(Loc);
4784   LookupCopyAndMoveConstructors(
4785       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4786
4787   // Perform overload resolution.
4788   OverloadCandidateSet::iterator Best;
4789   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4790
4791   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4792     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4793     << CurInitExpr->getSourceRange();
4794
4795   switch (OR) {
4796   case OR_Success:
4797     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4798                              Entity, Best->FoundDecl.getAccess(), Diag);
4799     // FIXME: Check default arguments as far as that's possible.
4800     break;
4801
4802   case OR_No_Viable_Function:
4803     S.Diag(Loc, Diag);
4804     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4805     break;
4806
4807   case OR_Ambiguous:
4808     S.Diag(Loc, Diag);
4809     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4810     break;
4811
4812   case OR_Deleted:
4813     S.Diag(Loc, Diag);
4814     S.NoteDeletedFunction(Best->Function);
4815     break;
4816   }
4817 }
4818
4819 void InitializationSequence::PrintInitLocationNote(Sema &S,
4820                                               const InitializedEntity &Entity) {
4821   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4822     if (Entity.getDecl()->getLocation().isInvalid())
4823       return;
4824
4825     if (Entity.getDecl()->getDeclName())
4826       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4827         << Entity.getDecl()->getDeclName();
4828     else
4829       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4830   }
4831 }
4832
4833 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4834   return s.Kind == InitializationSequence::SK_BindReference ||
4835          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4836 }
4837
4838 /// Returns true if the parameters describe a constructor initialization of
4839 /// an explicit temporary object, e.g. "Point(x, y)".
4840 static bool isExplicitTemporary(const InitializedEntity &Entity,
4841                                 const InitializationKind &Kind,
4842                                 unsigned NumArgs) {
4843   switch (Entity.getKind()) {
4844   case InitializedEntity::EK_Temporary:
4845   case InitializedEntity::EK_CompoundLiteralInit:
4846     break;
4847   default:
4848     return false;
4849   }
4850
4851   switch (Kind.getKind()) {
4852   case InitializationKind::IK_DirectList:
4853     return true;
4854   // FIXME: Hack to work around cast weirdness.
4855   case InitializationKind::IK_Direct:
4856   case InitializationKind::IK_Value:
4857     return NumArgs != 1;
4858   default:
4859     return false;
4860   }
4861 }
4862
4863 static ExprResult
4864 PerformConstructorInitialization(Sema &S,
4865                                  const InitializedEntity &Entity,
4866                                  const InitializationKind &Kind,
4867                                  MultiExprArg Args,
4868                                  const InitializationSequence::Step& Step,
4869                                  bool &ConstructorInitRequiresZeroInit,
4870                                  bool IsListInitialization) {
4871   unsigned NumArgs = Args.size();
4872   CXXConstructorDecl *Constructor
4873     = cast<CXXConstructorDecl>(Step.Function.Function);
4874   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4875
4876   // Build a call to the selected constructor.
4877   SmallVector<Expr*, 8> ConstructorArgs;
4878   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4879                          ? Kind.getEqualLoc()
4880                          : Kind.getLocation();
4881
4882   if (Kind.getKind() == InitializationKind::IK_Default) {
4883     // Force even a trivial, implicit default constructor to be
4884     // semantically checked. We do this explicitly because we don't build
4885     // the definition for completely trivial constructors.
4886     assert(Constructor->getParent() && "No parent class for constructor.");
4887     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4888         Constructor->isTrivial() && !Constructor->isUsed(false))
4889       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4890   }
4891
4892   ExprResult CurInit = S.Owned((Expr *)0);
4893
4894   // C++ [over.match.copy]p1:
4895   //   - When initializing a temporary to be bound to the first parameter 
4896   //     of a constructor that takes a reference to possibly cv-qualified 
4897   //     T as its first argument, called with a single argument in the 
4898   //     context of direct-initialization, explicit conversion functions
4899   //     are also considered.
4900   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4901                            Args.size() == 1 && 
4902                            Constructor->isCopyOrMoveConstructor();
4903
4904   // Determine the arguments required to actually perform the constructor
4905   // call.
4906   if (S.CompleteConstructorCall(Constructor, Args,
4907                                 Loc, ConstructorArgs,
4908                                 AllowExplicitConv,
4909                                 IsListInitialization))
4910     return ExprError();
4911
4912
4913   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
4914     // An explicitly-constructed temporary, e.g., X(1, 2).
4915     S.MarkFunctionReferenced(Loc, Constructor);
4916     if (S.DiagnoseUseOfDecl(Constructor, Loc))
4917       return ExprError();
4918
4919     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4920     if (!TSInfo)
4921       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4922     SourceRange ParenRange;
4923     if (Kind.getKind() != InitializationKind::IK_DirectList)
4924       ParenRange = Kind.getParenRange();
4925
4926     CurInit = S.Owned(
4927       new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
4928                                              TSInfo, ConstructorArgs,
4929                                              ParenRange, IsListInitialization,
4930                                              HadMultipleCandidates,
4931                                              ConstructorInitRequiresZeroInit));
4932   } else {
4933     CXXConstructExpr::ConstructionKind ConstructKind =
4934       CXXConstructExpr::CK_Complete;
4935
4936     if (Entity.getKind() == InitializedEntity::EK_Base) {
4937       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4938         CXXConstructExpr::CK_VirtualBase :
4939         CXXConstructExpr::CK_NonVirtualBase;
4940     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4941       ConstructKind = CXXConstructExpr::CK_Delegating;
4942     }
4943
4944     // Only get the parenthesis range if it is a direct construction.
4945     SourceRange parenRange =
4946         Kind.getKind() == InitializationKind::IK_Direct ?
4947         Kind.getParenRange() : SourceRange();
4948
4949     // If the entity allows NRVO, mark the construction as elidable
4950     // unconditionally.
4951     if (Entity.allowsNRVO())
4952       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4953                                         Constructor, /*Elidable=*/true,
4954                                         ConstructorArgs,
4955                                         HadMultipleCandidates,
4956                                         IsListInitialization,
4957                                         ConstructorInitRequiresZeroInit,
4958                                         ConstructKind,
4959                                         parenRange);
4960     else
4961       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4962                                         Constructor,
4963                                         ConstructorArgs,
4964                                         HadMultipleCandidates,
4965                                         IsListInitialization,
4966                                         ConstructorInitRequiresZeroInit,
4967                                         ConstructKind,
4968                                         parenRange);
4969   }
4970   if (CurInit.isInvalid())
4971     return ExprError();
4972
4973   // Only check access if all of that succeeded.
4974   S.CheckConstructorAccess(Loc, Constructor, Entity,
4975                            Step.Function.FoundDecl.getAccess());
4976   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
4977     return ExprError();
4978
4979   if (shouldBindAsTemporary(Entity))
4980     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4981
4982   return CurInit;
4983 }
4984
4985 /// Determine whether the specified InitializedEntity definitely has a lifetime
4986 /// longer than the current full-expression. Conservatively returns false if
4987 /// it's unclear.
4988 static bool
4989 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4990   const InitializedEntity *Top = &Entity;
4991   while (Top->getParent())
4992     Top = Top->getParent();
4993
4994   switch (Top->getKind()) {
4995   case InitializedEntity::EK_Variable:
4996   case InitializedEntity::EK_Result:
4997   case InitializedEntity::EK_Exception:
4998   case InitializedEntity::EK_Member:
4999   case InitializedEntity::EK_New:
5000   case InitializedEntity::EK_Base:
5001   case InitializedEntity::EK_Delegating:
5002     return true;
5003
5004   case InitializedEntity::EK_ArrayElement:
5005   case InitializedEntity::EK_VectorElement:
5006   case InitializedEntity::EK_BlockElement:
5007   case InitializedEntity::EK_ComplexElement:
5008     // Could not determine what the full initialization is. Assume it might not
5009     // outlive the full-expression.
5010     return false;
5011
5012   case InitializedEntity::EK_Parameter:
5013   case InitializedEntity::EK_Temporary:
5014   case InitializedEntity::EK_LambdaCapture:
5015   case InitializedEntity::EK_CompoundLiteralInit:
5016     // The entity being initialized might not outlive the full-expression.
5017     return false;
5018   }
5019
5020   llvm_unreachable("unknown entity kind");
5021 }
5022
5023 ExprResult
5024 InitializationSequence::Perform(Sema &S,
5025                                 const InitializedEntity &Entity,
5026                                 const InitializationKind &Kind,
5027                                 MultiExprArg Args,
5028                                 QualType *ResultType) {
5029   if (Failed()) {
5030     Diagnose(S, Entity, Kind, Args);
5031     return ExprError();
5032   }
5033
5034   if (getKind() == DependentSequence) {
5035     // If the declaration is a non-dependent, incomplete array type
5036     // that has an initializer, then its type will be completed once
5037     // the initializer is instantiated.
5038     if (ResultType && !Entity.getType()->isDependentType() &&
5039         Args.size() == 1) {
5040       QualType DeclType = Entity.getType();
5041       if (const IncompleteArrayType *ArrayT
5042                            = S.Context.getAsIncompleteArrayType(DeclType)) {
5043         // FIXME: We don't currently have the ability to accurately
5044         // compute the length of an initializer list without
5045         // performing full type-checking of the initializer list
5046         // (since we have to determine where braces are implicitly
5047         // introduced and such).  So, we fall back to making the array
5048         // type a dependently-sized array type with no specified
5049         // bound.
5050         if (isa<InitListExpr>((Expr *)Args[0])) {
5051           SourceRange Brackets;
5052
5053           // Scavange the location of the brackets from the entity, if we can.
5054           if (DeclaratorDecl *DD = Entity.getDecl()) {
5055             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5056               TypeLoc TL = TInfo->getTypeLoc();
5057               if (IncompleteArrayTypeLoc ArrayLoc =
5058                       TL.getAs<IncompleteArrayTypeLoc>())
5059                 Brackets = ArrayLoc.getBracketsRange();
5060             }
5061           }
5062
5063           *ResultType
5064             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5065                                                    /*NumElts=*/0,
5066                                                    ArrayT->getSizeModifier(),
5067                                        ArrayT->getIndexTypeCVRQualifiers(),
5068                                                    Brackets);
5069         }
5070
5071       }
5072     }
5073     if (Kind.getKind() == InitializationKind::IK_Direct &&
5074         !Kind.isExplicitCast()) {
5075       // Rebuild the ParenListExpr.
5076       SourceRange ParenRange = Kind.getParenRange();
5077       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5078                                   Args);
5079     }
5080     assert(Kind.getKind() == InitializationKind::IK_Copy ||
5081            Kind.isExplicitCast() || 
5082            Kind.getKind() == InitializationKind::IK_DirectList);
5083     return ExprResult(Args[0]);
5084   }
5085
5086   // No steps means no initialization.
5087   if (Steps.empty())
5088     return S.Owned((Expr *)0);
5089
5090   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5091       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5092       Entity.getKind() != InitializedEntity::EK_Parameter) {
5093     // Produce a C++98 compatibility warning if we are initializing a reference
5094     // from an initializer list. For parameters, we produce a better warning
5095     // elsewhere.
5096     Expr *Init = Args[0];
5097     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5098       << Init->getSourceRange();
5099   }
5100
5101   // Diagnose cases where we initialize a pointer to an array temporary, and the
5102   // pointer obviously outlives the temporary.
5103   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5104       Entity.getType()->isPointerType() &&
5105       InitializedEntityOutlivesFullExpression(Entity)) {
5106     Expr *Init = Args[0];
5107     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5108     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5109       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5110         << Init->getSourceRange();
5111   }
5112
5113   QualType DestType = Entity.getType().getNonReferenceType();
5114   // FIXME: Ugly hack around the fact that Entity.getType() is not
5115   // the same as Entity.getDecl()->getType() in cases involving type merging,
5116   //  and we want latter when it makes sense.
5117   if (ResultType)
5118     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5119                                      Entity.getType();
5120
5121   ExprResult CurInit = S.Owned((Expr *)0);
5122
5123   // For initialization steps that start with a single initializer,
5124   // grab the only argument out the Args and place it into the "current"
5125   // initializer.
5126   switch (Steps.front().Kind) {
5127   case SK_ResolveAddressOfOverloadedFunction:
5128   case SK_CastDerivedToBaseRValue:
5129   case SK_CastDerivedToBaseXValue:
5130   case SK_CastDerivedToBaseLValue:
5131   case SK_BindReference:
5132   case SK_BindReferenceToTemporary:
5133   case SK_ExtraneousCopyToTemporary:
5134   case SK_UserConversion:
5135   case SK_QualificationConversionLValue:
5136   case SK_QualificationConversionXValue:
5137   case SK_QualificationConversionRValue:
5138   case SK_LValueToRValue:
5139   case SK_ConversionSequence:
5140   case SK_ListInitialization:
5141   case SK_UnwrapInitList:
5142   case SK_RewrapInitList:
5143   case SK_CAssignment:
5144   case SK_StringInit:
5145   case SK_ObjCObjectConversion:
5146   case SK_ArrayInit:
5147   case SK_ParenthesizedArrayInit:
5148   case SK_PassByIndirectCopyRestore:
5149   case SK_PassByIndirectRestore:
5150   case SK_ProduceObjCObject:
5151   case SK_StdInitializerList:
5152   case SK_OCLSamplerInit:
5153   case SK_OCLZeroEvent: {
5154     assert(Args.size() == 1);
5155     CurInit = Args[0];
5156     if (!CurInit.get()) return ExprError();
5157     break;
5158   }
5159
5160   case SK_ConstructorInitialization:
5161   case SK_ListConstructorCall:
5162   case SK_ZeroInitialization:
5163     break;
5164   }
5165
5166   // Walk through the computed steps for the initialization sequence,
5167   // performing the specified conversions along the way.
5168   bool ConstructorInitRequiresZeroInit = false;
5169   for (step_iterator Step = step_begin(), StepEnd = step_end();
5170        Step != StepEnd; ++Step) {
5171     if (CurInit.isInvalid())
5172       return ExprError();
5173
5174     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5175
5176     switch (Step->Kind) {
5177     case SK_ResolveAddressOfOverloadedFunction:
5178       // Overload resolution determined which function invoke; update the
5179       // initializer to reflect that choice.
5180       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5181       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5182         return ExprError();
5183       CurInit = S.FixOverloadedFunctionReference(CurInit,
5184                                                  Step->Function.FoundDecl,
5185                                                  Step->Function.Function);
5186       break;
5187
5188     case SK_CastDerivedToBaseRValue:
5189     case SK_CastDerivedToBaseXValue:
5190     case SK_CastDerivedToBaseLValue: {
5191       // We have a derived-to-base cast that produces either an rvalue or an
5192       // lvalue. Perform that cast.
5193
5194       CXXCastPath BasePath;
5195
5196       // Casts to inaccessible base classes are allowed with C-style casts.
5197       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5198       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5199                                          CurInit.get()->getLocStart(),
5200                                          CurInit.get()->getSourceRange(),
5201                                          &BasePath, IgnoreBaseAccess))
5202         return ExprError();
5203
5204       if (S.BasePathInvolvesVirtualBase(BasePath)) {
5205         QualType T = SourceType;
5206         if (const PointerType *Pointer = T->getAs<PointerType>())
5207           T = Pointer->getPointeeType();
5208         if (const RecordType *RecordTy = T->getAs<RecordType>())
5209           S.MarkVTableUsed(CurInit.get()->getLocStart(),
5210                            cast<CXXRecordDecl>(RecordTy->getDecl()));
5211       }
5212
5213       ExprValueKind VK =
5214           Step->Kind == SK_CastDerivedToBaseLValue ?
5215               VK_LValue :
5216               (Step->Kind == SK_CastDerivedToBaseXValue ?
5217                    VK_XValue :
5218                    VK_RValue);
5219       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5220                                                  Step->Type,
5221                                                  CK_DerivedToBase,
5222                                                  CurInit.get(),
5223                                                  &BasePath, VK));
5224       break;
5225     }
5226
5227     case SK_BindReference:
5228       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5229       if (CurInit.get()->refersToBitField()) {
5230         // We don't necessarily have an unambiguous source bit-field.
5231         FieldDecl *BitField = CurInit.get()->getSourceBitField();
5232         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5233           << Entity.getType().isVolatileQualified()
5234           << (BitField ? BitField->getDeclName() : DeclarationName())
5235           << (BitField != NULL)
5236           << CurInit.get()->getSourceRange();
5237         if (BitField)
5238           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5239
5240         return ExprError();
5241       }
5242
5243       if (CurInit.get()->refersToVectorElement()) {
5244         // References cannot bind to vector elements.
5245         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5246           << Entity.getType().isVolatileQualified()
5247           << CurInit.get()->getSourceRange();
5248         PrintInitLocationNote(S, Entity);
5249         return ExprError();
5250       }
5251
5252       // Reference binding does not have any corresponding ASTs.
5253
5254       // Check exception specifications
5255       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5256         return ExprError();
5257
5258       break;
5259
5260     case SK_BindReferenceToTemporary:
5261       // Make sure the "temporary" is actually an rvalue.
5262       assert(CurInit.get()->isRValue() && "not a temporary");
5263
5264       // Check exception specifications
5265       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5266         return ExprError();
5267
5268       // Materialize the temporary into memory.
5269       CurInit = new (S.Context) MaterializeTemporaryExpr(
5270                                          Entity.getType().getNonReferenceType(),
5271                                                          CurInit.get(),
5272                                      Entity.getType()->isLValueReferenceType());
5273
5274       // If we're binding to an Objective-C object that has lifetime, we
5275       // need cleanups.
5276       if (S.getLangOpts().ObjCAutoRefCount &&
5277           CurInit.get()->getType()->isObjCLifetimeType())
5278         S.ExprNeedsCleanups = true;
5279             
5280       break;
5281
5282     case SK_ExtraneousCopyToTemporary:
5283       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5284                            /*IsExtraneousCopy=*/true);
5285       break;
5286
5287     case SK_UserConversion: {
5288       // We have a user-defined conversion that invokes either a constructor
5289       // or a conversion function.
5290       CastKind CastKind;
5291       bool IsCopy = false;
5292       FunctionDecl *Fn = Step->Function.Function;
5293       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5294       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5295       bool CreatedObject = false;
5296       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5297         // Build a call to the selected constructor.
5298         SmallVector<Expr*, 8> ConstructorArgs;
5299         SourceLocation Loc = CurInit.get()->getLocStart();
5300         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5301
5302         // Determine the arguments required to actually perform the constructor
5303         // call.
5304         Expr *Arg = CurInit.get();
5305         if (S.CompleteConstructorCall(Constructor,
5306                                       MultiExprArg(&Arg, 1),
5307                                       Loc, ConstructorArgs))
5308           return ExprError();
5309
5310         // Build an expression that constructs a temporary.
5311         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5312                                           ConstructorArgs,
5313                                           HadMultipleCandidates,
5314                                           /*ListInit*/ false,
5315                                           /*ZeroInit*/ false,
5316                                           CXXConstructExpr::CK_Complete,
5317                                           SourceRange());
5318         if (CurInit.isInvalid())
5319           return ExprError();
5320
5321         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5322                                  FoundFn.getAccess());
5323         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5324           return ExprError();
5325
5326         CastKind = CK_ConstructorConversion;
5327         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5328         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5329             S.IsDerivedFrom(SourceType, Class))
5330           IsCopy = true;
5331
5332         CreatedObject = true;
5333       } else {
5334         // Build a call to the conversion function.
5335         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5336         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5337                                     FoundFn);
5338         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5339           return ExprError();
5340
5341         // FIXME: Should we move this initialization into a separate
5342         // derived-to-base conversion? I believe the answer is "no", because
5343         // we don't want to turn off access control here for c-style casts.
5344         ExprResult CurInitExprRes =
5345           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5346                                                 FoundFn, Conversion);
5347         if(CurInitExprRes.isInvalid())
5348           return ExprError();
5349         CurInit = CurInitExprRes;
5350
5351         // Build the actual call to the conversion function.
5352         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5353                                            HadMultipleCandidates);
5354         if (CurInit.isInvalid() || !CurInit.get())
5355           return ExprError();
5356
5357         CastKind = CK_UserDefinedConversion;
5358
5359         CreatedObject = Conversion->getResultType()->isRecordType();
5360       }
5361
5362       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5363       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5364
5365       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5366         QualType T = CurInit.get()->getType();
5367         if (const RecordType *Record = T->getAs<RecordType>()) {
5368           CXXDestructorDecl *Destructor
5369             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5370           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5371                                   S.PDiag(diag::err_access_dtor_temp) << T);
5372           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5373           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5374             return ExprError();
5375         }
5376       }
5377
5378       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5379                                                  CurInit.get()->getType(),
5380                                                  CastKind, CurInit.get(), 0,
5381                                                 CurInit.get()->getValueKind()));
5382       if (MaybeBindToTemp)
5383         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5384       if (RequiresCopy)
5385         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5386                              CurInit, /*IsExtraneousCopy=*/false);
5387       break;
5388     }
5389
5390     case SK_QualificationConversionLValue:
5391     case SK_QualificationConversionXValue:
5392     case SK_QualificationConversionRValue: {
5393       // Perform a qualification conversion; these can never go wrong.
5394       ExprValueKind VK =
5395           Step->Kind == SK_QualificationConversionLValue ?
5396               VK_LValue :
5397               (Step->Kind == SK_QualificationConversionXValue ?
5398                    VK_XValue :
5399                    VK_RValue);
5400       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5401       break;
5402     }
5403
5404     case SK_LValueToRValue: {
5405       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5406       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5407                                                  CK_LValueToRValue,
5408                                                  CurInit.take(),
5409                                                  /*BasePath=*/0,
5410                                                  VK_RValue));
5411       break;
5412     }
5413
5414     case SK_ConversionSequence: {
5415       Sema::CheckedConversionKind CCK 
5416         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5417         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5418         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5419         : Sema::CCK_ImplicitConversion;
5420       ExprResult CurInitExprRes =
5421         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5422                                     getAssignmentAction(Entity), CCK);
5423       if (CurInitExprRes.isInvalid())
5424         return ExprError();
5425       CurInit = CurInitExprRes;
5426       break;
5427     }
5428
5429     case SK_ListInitialization: {
5430       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5431       // Hack: We must pass *ResultType if available in order to set the type
5432       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5433       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5434       // temporary, not a reference, so we should pass Ty.
5435       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5436       // Since this step is never used for a reference directly, we explicitly
5437       // unwrap references here and rewrap them afterwards.
5438       // We also need to create a InitializeTemporary entity for this.
5439       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5440       bool IsTemporary = Entity.getType()->isReferenceType();
5441       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5442       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5443       InitListChecker PerformInitList(S, InitEntity,
5444           InitList, Ty, /*VerifyOnly=*/false,
5445           Kind.getKind() != InitializationKind::IK_DirectList ||
5446             !S.getLangOpts().CPlusPlus11);
5447       if (PerformInitList.HadError())
5448         return ExprError();
5449
5450       if (ResultType) {
5451         if ((*ResultType)->isRValueReferenceType())
5452           Ty = S.Context.getRValueReferenceType(Ty);
5453         else if ((*ResultType)->isLValueReferenceType())
5454           Ty = S.Context.getLValueReferenceType(Ty,
5455             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5456         *ResultType = Ty;
5457       }
5458
5459       InitListExpr *StructuredInitList =
5460           PerformInitList.getFullyStructuredList();
5461       CurInit.release();
5462       CurInit = shouldBindAsTemporary(InitEntity)
5463           ? S.MaybeBindToTemporary(StructuredInitList)
5464           : S.Owned(StructuredInitList);
5465       break;
5466     }
5467
5468     case SK_ListConstructorCall: {
5469       // When an initializer list is passed for a parameter of type "reference
5470       // to object", we don't get an EK_Temporary entity, but instead an
5471       // EK_Parameter entity with reference type.
5472       // FIXME: This is a hack. What we really should do is create a user
5473       // conversion step for this case, but this makes it considerably more
5474       // complicated. For now, this will do.
5475       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5476                                         Entity.getType().getNonReferenceType());
5477       bool UseTemporary = Entity.getType()->isReferenceType();
5478       assert(Args.size() == 1 && "expected a single argument for list init");
5479       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5480       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5481         << InitList->getSourceRange();
5482       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5483       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5484                                                                    Entity,
5485                                                  Kind, Arg, *Step,
5486                                                ConstructorInitRequiresZeroInit,
5487                                                /*IsListInitialization*/ true);
5488       break;
5489     }
5490
5491     case SK_UnwrapInitList:
5492       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5493       break;
5494
5495     case SK_RewrapInitList: {
5496       Expr *E = CurInit.take();
5497       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5498       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5499           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5500       ILE->setSyntacticForm(Syntactic);
5501       ILE->setType(E->getType());
5502       ILE->setValueKind(E->getValueKind());
5503       CurInit = S.Owned(ILE);
5504       break;
5505     }
5506
5507     case SK_ConstructorInitialization: {
5508       // When an initializer list is passed for a parameter of type "reference
5509       // to object", we don't get an EK_Temporary entity, but instead an
5510       // EK_Parameter entity with reference type.
5511       // FIXME: This is a hack. What we really should do is create a user
5512       // conversion step for this case, but this makes it considerably more
5513       // complicated. For now, this will do.
5514       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5515                                         Entity.getType().getNonReferenceType());
5516       bool UseTemporary = Entity.getType()->isReferenceType();
5517       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5518                                                                  : Entity,
5519                                                  Kind, Args, *Step,
5520                                                ConstructorInitRequiresZeroInit,
5521                                                /*IsListInitialization*/ false);
5522       break;
5523     }
5524
5525     case SK_ZeroInitialization: {
5526       step_iterator NextStep = Step;
5527       ++NextStep;
5528       if (NextStep != StepEnd &&
5529           (NextStep->Kind == SK_ConstructorInitialization ||
5530            NextStep->Kind == SK_ListConstructorCall)) {
5531         // The need for zero-initialization is recorded directly into
5532         // the call to the object's constructor within the next step.
5533         ConstructorInitRequiresZeroInit = true;
5534       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5535                  S.getLangOpts().CPlusPlus &&
5536                  !Kind.isImplicitValueInit()) {
5537         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5538         if (!TSInfo)
5539           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5540                                                     Kind.getRange().getBegin());
5541
5542         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5543                               TSInfo->getType().getNonLValueExprType(S.Context),
5544                                                                  TSInfo,
5545                                                     Kind.getRange().getEnd()));
5546       } else {
5547         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5548       }
5549       break;
5550     }
5551
5552     case SK_CAssignment: {
5553       QualType SourceType = CurInit.get()->getType();
5554       ExprResult Result = CurInit;
5555       Sema::AssignConvertType ConvTy =
5556         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5557       if (Result.isInvalid())
5558         return ExprError();
5559       CurInit = Result;
5560
5561       // If this is a call, allow conversion to a transparent union.
5562       ExprResult CurInitExprRes = CurInit;
5563       if (ConvTy != Sema::Compatible &&
5564           Entity.getKind() == InitializedEntity::EK_Parameter &&
5565           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5566             == Sema::Compatible)
5567         ConvTy = Sema::Compatible;
5568       if (CurInitExprRes.isInvalid())
5569         return ExprError();
5570       CurInit = CurInitExprRes;
5571
5572       bool Complained;
5573       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5574                                      Step->Type, SourceType,
5575                                      CurInit.get(),
5576                                      getAssignmentAction(Entity),
5577                                      &Complained)) {
5578         PrintInitLocationNote(S, Entity);
5579         return ExprError();
5580       } else if (Complained)
5581         PrintInitLocationNote(S, Entity);
5582       break;
5583     }
5584
5585     case SK_StringInit: {
5586       QualType Ty = Step->Type;
5587       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5588                       S.Context.getAsArrayType(Ty), S);
5589       break;
5590     }
5591
5592     case SK_ObjCObjectConversion:
5593       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5594                           CK_ObjCObjectLValueCast,
5595                           CurInit.get()->getValueKind());
5596       break;
5597
5598     case SK_ArrayInit:
5599       // Okay: we checked everything before creating this step. Note that
5600       // this is a GNU extension.
5601       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5602         << Step->Type << CurInit.get()->getType()
5603         << CurInit.get()->getSourceRange();
5604
5605       // If the destination type is an incomplete array type, update the
5606       // type accordingly.
5607       if (ResultType) {
5608         if (const IncompleteArrayType *IncompleteDest
5609                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5610           if (const ConstantArrayType *ConstantSource
5611                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5612             *ResultType = S.Context.getConstantArrayType(
5613                                              IncompleteDest->getElementType(),
5614                                              ConstantSource->getSize(),
5615                                              ArrayType::Normal, 0);
5616           }
5617         }
5618       }
5619       break;
5620
5621     case SK_ParenthesizedArrayInit:
5622       // Okay: we checked everything before creating this step. Note that
5623       // this is a GNU extension.
5624       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5625         << CurInit.get()->getSourceRange();
5626       break;
5627
5628     case SK_PassByIndirectCopyRestore:
5629     case SK_PassByIndirectRestore:
5630       checkIndirectCopyRestoreSource(S, CurInit.get());
5631       CurInit = S.Owned(new (S.Context)
5632                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5633                                 Step->Kind == SK_PassByIndirectCopyRestore));
5634       break;
5635
5636     case SK_ProduceObjCObject:
5637       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5638                                                  CK_ARCProduceObject,
5639                                                  CurInit.take(), 0, VK_RValue));
5640       break;
5641
5642     case SK_StdInitializerList: {
5643       QualType Dest = Step->Type;
5644       QualType E;
5645       bool Success = S.isStdInitializerList(Dest.getNonReferenceType(), &E);
5646       (void)Success;
5647       assert(Success && "Destination type changed?");
5648
5649       // If the element type has a destructor, check it.
5650       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5651         if (!RD->hasIrrelevantDestructor()) {
5652           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5653             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5654             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5655                                     S.PDiag(diag::err_access_dtor_temp) << E);
5656             if (S.DiagnoseUseOfDecl(Destructor, Kind.getLocation()))
5657               return ExprError();
5658           }
5659         }
5660       }
5661
5662       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5663       S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5664         << ILE->getSourceRange();
5665       unsigned NumInits = ILE->getNumInits();
5666       SmallVector<Expr*, 16> Converted(NumInits);
5667       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5668           S.Context.getConstantArrayType(E,
5669               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5670                           NumInits),
5671               ArrayType::Normal, 0));
5672       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5673           0, HiddenArray);
5674       for (unsigned i = 0; i < NumInits; ++i) {
5675         Element.setElementIndex(i);
5676         ExprResult Init = S.Owned(ILE->getInit(i));
5677         ExprResult Res = S.PerformCopyInitialization(
5678                              Element, Init.get()->getExprLoc(), Init,
5679                              /*TopLevelOfInitList=*/ true);
5680         assert(!Res.isInvalid() && "Result changed since try phase.");
5681         Converted[i] = Res.take();
5682       }
5683       InitListExpr *Semantic = new (S.Context)
5684           InitListExpr(S.Context, ILE->getLBraceLoc(),
5685                        Converted, ILE->getRBraceLoc());
5686       Semantic->setSyntacticForm(ILE);
5687       Semantic->setType(Dest);
5688       Semantic->setInitializesStdInitializerList();
5689       CurInit = S.Owned(Semantic);
5690       break;
5691     }
5692     case SK_OCLSamplerInit: {
5693       assert(Step->Type->isSamplerT() && 
5694              "Sampler initialization on non sampler type.");
5695
5696       QualType SourceType = CurInit.get()->getType();
5697       InitializedEntity::EntityKind EntityKind = Entity.getKind();
5698
5699       if (EntityKind == InitializedEntity::EK_Parameter) {
5700         if (!SourceType->isSamplerT())
5701           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
5702             << SourceType;
5703       } else if (EntityKind != InitializedEntity::EK_Variable) {
5704         llvm_unreachable("Invalid EntityKind!");
5705       }
5706
5707       break;
5708     }
5709     case SK_OCLZeroEvent: {
5710       assert(Step->Type->isEventT() && 
5711              "Event initialization on non event type.");
5712
5713       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5714                                     CK_ZeroToOCLEvent,
5715                                     CurInit.get()->getValueKind());
5716       break;
5717     }
5718     }
5719   }
5720
5721   // Diagnose non-fatal problems with the completed initialization.
5722   if (Entity.getKind() == InitializedEntity::EK_Member &&
5723       cast<FieldDecl>(Entity.getDecl())->isBitField())
5724     S.CheckBitFieldInitialization(Kind.getLocation(),
5725                                   cast<FieldDecl>(Entity.getDecl()),
5726                                   CurInit.get());
5727
5728   return CurInit;
5729 }
5730
5731 /// Somewhere within T there is an uninitialized reference subobject.
5732 /// Dig it out and diagnose it.
5733 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
5734                                            QualType T) {
5735   if (T->isReferenceType()) {
5736     S.Diag(Loc, diag::err_reference_without_init)
5737       << T.getNonReferenceType();
5738     return true;
5739   }
5740
5741   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5742   if (!RD || !RD->hasUninitializedReferenceMember())
5743     return false;
5744
5745   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5746                                      FE = RD->field_end(); FI != FE; ++FI) {
5747     if (FI->isUnnamedBitfield())
5748       continue;
5749
5750     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
5751       S.Diag(Loc, diag::note_value_initialization_here) << RD;
5752       return true;
5753     }
5754   }
5755
5756   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5757                                           BE = RD->bases_end();
5758        BI != BE; ++BI) {
5759     if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
5760       S.Diag(Loc, diag::note_value_initialization_here) << RD;
5761       return true;
5762     }
5763   }
5764
5765   return false;
5766 }
5767
5768
5769 //===----------------------------------------------------------------------===//
5770 // Diagnose initialization failures
5771 //===----------------------------------------------------------------------===//
5772
5773 /// Emit notes associated with an initialization that failed due to a
5774 /// "simple" conversion failure.
5775 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
5776                                    Expr *op) {
5777   QualType destType = entity.getType();
5778   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
5779       op->getType()->isObjCObjectPointerType()) {
5780
5781     // Emit a possible note about the conversion failing because the
5782     // operand is a message send with a related result type.
5783     S.EmitRelatedResultTypeNote(op);
5784
5785     // Emit a possible note about a return failing because we're
5786     // expecting a related result type.
5787     if (entity.getKind() == InitializedEntity::EK_Result)
5788       S.EmitRelatedResultTypeNoteForReturn(destType);
5789   }
5790 }
5791
5792 bool InitializationSequence::Diagnose(Sema &S,
5793                                       const InitializedEntity &Entity,
5794                                       const InitializationKind &Kind,
5795                                       ArrayRef<Expr *> Args) {
5796   if (!Failed())
5797     return false;
5798
5799   QualType DestType = Entity.getType();
5800   switch (Failure) {
5801   case FK_TooManyInitsForReference:
5802     // FIXME: Customize for the initialized entity?
5803     if (Args.empty()) {
5804       // Dig out the reference subobject which is uninitialized and diagnose it.
5805       // If this is value-initialization, this could be nested some way within
5806       // the target type.
5807       assert(Kind.getKind() == InitializationKind::IK_Value ||
5808              DestType->isReferenceType());
5809       bool Diagnosed =
5810         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
5811       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
5812       (void)Diagnosed;
5813     } else  // FIXME: diagnostic below could be better!
5814       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5815         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
5816     break;
5817
5818   case FK_ArrayNeedsInitList:
5819   case FK_ArrayNeedsInitListOrStringLiteral:
5820     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5821       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5822     break;
5823
5824   case FK_ArrayTypeMismatch:
5825   case FK_NonConstantArrayInit:
5826     S.Diag(Kind.getLocation(), 
5827            (Failure == FK_ArrayTypeMismatch
5828               ? diag::err_array_init_different_type
5829               : diag::err_array_init_non_constant_array))
5830       << DestType.getNonReferenceType()
5831       << Args[0]->getType()
5832       << Args[0]->getSourceRange();
5833     break;
5834
5835   case FK_VariableLengthArrayHasInitializer:
5836     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5837       << Args[0]->getSourceRange();
5838     break;
5839
5840   case FK_AddressOfOverloadFailed: {
5841     DeclAccessPair Found;
5842     S.ResolveAddressOfOverloadedFunction(Args[0],
5843                                          DestType.getNonReferenceType(),
5844                                          true,
5845                                          Found);
5846     break;
5847   }
5848
5849   case FK_ReferenceInitOverloadFailed:
5850   case FK_UserConversionOverloadFailed:
5851     switch (FailedOverloadResult) {
5852     case OR_Ambiguous:
5853       if (Failure == FK_UserConversionOverloadFailed)
5854         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5855           << Args[0]->getType() << DestType
5856           << Args[0]->getSourceRange();
5857       else
5858         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5859           << DestType << Args[0]->getType()
5860           << Args[0]->getSourceRange();
5861
5862       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
5863       break;
5864
5865     case OR_No_Viable_Function:
5866       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5867         << Args[0]->getType() << DestType.getNonReferenceType()
5868         << Args[0]->getSourceRange();
5869       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
5870       break;
5871
5872     case OR_Deleted: {
5873       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5874         << Args[0]->getType() << DestType.getNonReferenceType()
5875         << Args[0]->getSourceRange();
5876       OverloadCandidateSet::iterator Best;
5877       OverloadingResult Ovl
5878         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5879                                                 true);
5880       if (Ovl == OR_Deleted) {
5881         S.NoteDeletedFunction(Best->Function);
5882       } else {
5883         llvm_unreachable("Inconsistent overload resolution?");
5884       }
5885       break;
5886     }
5887
5888     case OR_Success:
5889       llvm_unreachable("Conversion did not fail!");
5890     }
5891     break;
5892
5893   case FK_NonConstLValueReferenceBindingToTemporary:
5894     if (isa<InitListExpr>(Args[0])) {
5895       S.Diag(Kind.getLocation(),
5896              diag::err_lvalue_reference_bind_to_initlist)
5897       << DestType.getNonReferenceType().isVolatileQualified()
5898       << DestType.getNonReferenceType()
5899       << Args[0]->getSourceRange();
5900       break;
5901     }
5902     // Intentional fallthrough
5903
5904   case FK_NonConstLValueReferenceBindingToUnrelated:
5905     S.Diag(Kind.getLocation(),
5906            Failure == FK_NonConstLValueReferenceBindingToTemporary
5907              ? diag::err_lvalue_reference_bind_to_temporary
5908              : diag::err_lvalue_reference_bind_to_unrelated)
5909       << DestType.getNonReferenceType().isVolatileQualified()
5910       << DestType.getNonReferenceType()
5911       << Args[0]->getType()
5912       << Args[0]->getSourceRange();
5913     break;
5914
5915   case FK_RValueReferenceBindingToLValue:
5916     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5917       << DestType.getNonReferenceType() << Args[0]->getType()
5918       << Args[0]->getSourceRange();
5919     break;
5920
5921   case FK_ReferenceInitDropsQualifiers:
5922     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5923       << DestType.getNonReferenceType()
5924       << Args[0]->getType()
5925       << Args[0]->getSourceRange();
5926     break;
5927
5928   case FK_ReferenceInitFailed:
5929     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5930       << DestType.getNonReferenceType()
5931       << Args[0]->isLValue()
5932       << Args[0]->getType()
5933       << Args[0]->getSourceRange();
5934     emitBadConversionNotes(S, Entity, Args[0]);
5935     break;
5936
5937   case FK_ConversionFailed: {
5938     QualType FromType = Args[0]->getType();
5939     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5940       << (int)Entity.getKind()
5941       << DestType
5942       << Args[0]->isLValue()
5943       << FromType
5944       << Args[0]->getSourceRange();
5945     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5946     S.Diag(Kind.getLocation(), PDiag);
5947     emitBadConversionNotes(S, Entity, Args[0]);
5948     break;
5949   }
5950
5951   case FK_ConversionFromPropertyFailed:
5952     // No-op. This error has already been reported.
5953     break;
5954
5955   case FK_TooManyInitsForScalar: {
5956     SourceRange R;
5957
5958     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5959       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5960                       InitList->getLocEnd());
5961     else
5962       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
5963
5964     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5965     if (Kind.isCStyleOrFunctionalCast())
5966       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5967         << R;
5968     else
5969       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5970         << /*scalar=*/2 << R;
5971     break;
5972   }
5973
5974   case FK_ReferenceBindingToInitList:
5975     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5976       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5977     break;
5978
5979   case FK_InitListBadDestinationType:
5980     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5981       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5982     break;
5983
5984   case FK_ListConstructorOverloadFailed:
5985   case FK_ConstructorOverloadFailed: {
5986     SourceRange ArgsRange;
5987     if (Args.size())
5988       ArgsRange = SourceRange(Args.front()->getLocStart(),
5989                               Args.back()->getLocEnd());
5990
5991     if (Failure == FK_ListConstructorOverloadFailed) {
5992       assert(Args.size() == 1 && "List construction from other than 1 argument.");
5993       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5994       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
5995     }
5996
5997     // FIXME: Using "DestType" for the entity we're printing is probably
5998     // bad.
5999     switch (FailedOverloadResult) {
6000       case OR_Ambiguous:
6001         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6002           << DestType << ArgsRange;
6003         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6004         break;
6005
6006       case OR_No_Viable_Function:
6007         if (Kind.getKind() == InitializationKind::IK_Default &&
6008             (Entity.getKind() == InitializedEntity::EK_Base ||
6009              Entity.getKind() == InitializedEntity::EK_Member) &&
6010             isa<CXXConstructorDecl>(S.CurContext)) {
6011           // This is implicit default initialization of a member or
6012           // base within a constructor. If no viable function was
6013           // found, notify the user that she needs to explicitly
6014           // initialize this base/member.
6015           CXXConstructorDecl *Constructor
6016             = cast<CXXConstructorDecl>(S.CurContext);
6017           if (Entity.getKind() == InitializedEntity::EK_Base) {
6018             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6019               << (Constructor->getInheritedConstructor() ? 2 :
6020                   Constructor->isImplicit() ? 1 : 0)
6021               << S.Context.getTypeDeclType(Constructor->getParent())
6022               << /*base=*/0
6023               << Entity.getType();
6024
6025             RecordDecl *BaseDecl
6026               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6027                                                                   ->getDecl();
6028             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6029               << S.Context.getTagDeclType(BaseDecl);
6030           } else {
6031             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6032               << (Constructor->getInheritedConstructor() ? 2 :
6033                   Constructor->isImplicit() ? 1 : 0)
6034               << S.Context.getTypeDeclType(Constructor->getParent())
6035               << /*member=*/1
6036               << Entity.getName();
6037             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6038
6039             if (const RecordType *Record
6040                                  = Entity.getType()->getAs<RecordType>())
6041               S.Diag(Record->getDecl()->getLocation(),
6042                      diag::note_previous_decl)
6043                 << S.Context.getTagDeclType(Record->getDecl());
6044           }
6045           break;
6046         }
6047
6048         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6049           << DestType << ArgsRange;
6050         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6051         break;
6052
6053       case OR_Deleted: {
6054         OverloadCandidateSet::iterator Best;
6055         OverloadingResult Ovl
6056           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6057         if (Ovl != OR_Deleted) {
6058           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6059             << true << DestType << ArgsRange;
6060           llvm_unreachable("Inconsistent overload resolution?");
6061           break;
6062         }
6063        
6064         // If this is a defaulted or implicitly-declared function, then
6065         // it was implicitly deleted. Make it clear that the deletion was
6066         // implicit.
6067         if (S.isImplicitlyDeleted(Best->Function))
6068           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6069             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6070             << DestType << ArgsRange;
6071         else
6072           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6073             << true << DestType << ArgsRange;
6074
6075         S.NoteDeletedFunction(Best->Function);
6076         break;
6077       }
6078
6079       case OR_Success:
6080         llvm_unreachable("Conversion did not fail!");
6081     }
6082   }
6083   break;
6084
6085   case FK_DefaultInitOfConst:
6086     if (Entity.getKind() == InitializedEntity::EK_Member &&
6087         isa<CXXConstructorDecl>(S.CurContext)) {
6088       // This is implicit default-initialization of a const member in
6089       // a constructor. Complain that it needs to be explicitly
6090       // initialized.
6091       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6092       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6093         << (Constructor->getInheritedConstructor() ? 2 :
6094             Constructor->isImplicit() ? 1 : 0)
6095         << S.Context.getTypeDeclType(Constructor->getParent())
6096         << /*const=*/1
6097         << Entity.getName();
6098       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6099         << Entity.getName();
6100     } else {
6101       S.Diag(Kind.getLocation(), diag::err_default_init_const)
6102         << DestType << (bool)DestType->getAs<RecordType>();
6103     }
6104     break;
6105
6106   case FK_Incomplete:
6107     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6108                           diag::err_init_incomplete_type);
6109     break;
6110
6111   case FK_ListInitializationFailed: {
6112     // Run the init list checker again to emit diagnostics.
6113     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6114     QualType DestType = Entity.getType();
6115     InitListChecker DiagnoseInitList(S, Entity, InitList,
6116             DestType, /*VerifyOnly=*/false,
6117             Kind.getKind() != InitializationKind::IK_DirectList ||
6118               !S.getLangOpts().CPlusPlus11);
6119     assert(DiagnoseInitList.HadError() &&
6120            "Inconsistent init list check result.");
6121     break;
6122   }
6123
6124   case FK_PlaceholderType: {
6125     // FIXME: Already diagnosed!
6126     break;
6127   }
6128
6129   case FK_InitListElementCopyFailure: {
6130     // Try to perform all copies again.
6131     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6132     unsigned NumInits = InitList->getNumInits();
6133     QualType DestType = Entity.getType();
6134     QualType E;
6135     bool Success = S.isStdInitializerList(DestType.getNonReferenceType(), &E);
6136     (void)Success;
6137     assert(Success && "Where did the std::initializer_list go?");
6138     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
6139         S.Context.getConstantArrayType(E,
6140             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6141                         NumInits),
6142             ArrayType::Normal, 0));
6143     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
6144         0, HiddenArray);
6145     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
6146     // where the init list type is wrong, e.g.
6147     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
6148     // FIXME: Emit a note if we hit the limit?
6149     int ErrorCount = 0;
6150     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
6151       Element.setElementIndex(i);
6152       ExprResult Init = S.Owned(InitList->getInit(i));
6153       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
6154            .isInvalid())
6155         ++ErrorCount;
6156     }
6157     break;
6158   }
6159
6160   case FK_ExplicitConstructor: {
6161     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6162       << Args[0]->getSourceRange();
6163     OverloadCandidateSet::iterator Best;
6164     OverloadingResult Ovl
6165       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6166     (void)Ovl;
6167     assert(Ovl == OR_Success && "Inconsistent overload resolution");
6168     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6169     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6170     break;
6171   }
6172   }
6173
6174   PrintInitLocationNote(S, Entity);
6175   return true;
6176 }
6177
6178 void InitializationSequence::dump(raw_ostream &OS) const {
6179   switch (SequenceKind) {
6180   case FailedSequence: {
6181     OS << "Failed sequence: ";
6182     switch (Failure) {
6183     case FK_TooManyInitsForReference:
6184       OS << "too many initializers for reference";
6185       break;
6186
6187     case FK_ArrayNeedsInitList:
6188       OS << "array requires initializer list";
6189       break;
6190
6191     case FK_ArrayNeedsInitListOrStringLiteral:
6192       OS << "array requires initializer list or string literal";
6193       break;
6194
6195     case FK_ArrayTypeMismatch:
6196       OS << "array type mismatch";
6197       break;
6198
6199     case FK_NonConstantArrayInit:
6200       OS << "non-constant array initializer";
6201       break;
6202
6203     case FK_AddressOfOverloadFailed:
6204       OS << "address of overloaded function failed";
6205       break;
6206
6207     case FK_ReferenceInitOverloadFailed:
6208       OS << "overload resolution for reference initialization failed";
6209       break;
6210
6211     case FK_NonConstLValueReferenceBindingToTemporary:
6212       OS << "non-const lvalue reference bound to temporary";
6213       break;
6214
6215     case FK_NonConstLValueReferenceBindingToUnrelated:
6216       OS << "non-const lvalue reference bound to unrelated type";
6217       break;
6218
6219     case FK_RValueReferenceBindingToLValue:
6220       OS << "rvalue reference bound to an lvalue";
6221       break;
6222
6223     case FK_ReferenceInitDropsQualifiers:
6224       OS << "reference initialization drops qualifiers";
6225       break;
6226
6227     case FK_ReferenceInitFailed:
6228       OS << "reference initialization failed";
6229       break;
6230
6231     case FK_ConversionFailed:
6232       OS << "conversion failed";
6233       break;
6234
6235     case FK_ConversionFromPropertyFailed:
6236       OS << "conversion from property failed";
6237       break;
6238
6239     case FK_TooManyInitsForScalar:
6240       OS << "too many initializers for scalar";
6241       break;
6242
6243     case FK_ReferenceBindingToInitList:
6244       OS << "referencing binding to initializer list";
6245       break;
6246
6247     case FK_InitListBadDestinationType:
6248       OS << "initializer list for non-aggregate, non-scalar type";
6249       break;
6250
6251     case FK_UserConversionOverloadFailed:
6252       OS << "overloading failed for user-defined conversion";
6253       break;
6254
6255     case FK_ConstructorOverloadFailed:
6256       OS << "constructor overloading failed";
6257       break;
6258
6259     case FK_DefaultInitOfConst:
6260       OS << "default initialization of a const variable";
6261       break;
6262
6263     case FK_Incomplete:
6264       OS << "initialization of incomplete type";
6265       break;
6266
6267     case FK_ListInitializationFailed:
6268       OS << "list initialization checker failure";
6269       break;
6270
6271     case FK_VariableLengthArrayHasInitializer:
6272       OS << "variable length array has an initializer";
6273       break;
6274
6275     case FK_PlaceholderType:
6276       OS << "initializer expression isn't contextually valid";
6277       break;
6278
6279     case FK_ListConstructorOverloadFailed:
6280       OS << "list constructor overloading failed";
6281       break;
6282
6283     case FK_InitListElementCopyFailure:
6284       OS << "copy construction of initializer list element failed";
6285       break;
6286
6287     case FK_ExplicitConstructor:
6288       OS << "list copy initialization chose explicit constructor";
6289       break;
6290     }
6291     OS << '\n';
6292     return;
6293   }
6294
6295   case DependentSequence:
6296     OS << "Dependent sequence\n";
6297     return;
6298
6299   case NormalSequence:
6300     OS << "Normal sequence: ";
6301     break;
6302   }
6303
6304   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6305     if (S != step_begin()) {
6306       OS << " -> ";
6307     }
6308
6309     switch (S->Kind) {
6310     case SK_ResolveAddressOfOverloadedFunction:
6311       OS << "resolve address of overloaded function";
6312       break;
6313
6314     case SK_CastDerivedToBaseRValue:
6315       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6316       break;
6317
6318     case SK_CastDerivedToBaseXValue:
6319       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6320       break;
6321
6322     case SK_CastDerivedToBaseLValue:
6323       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6324       break;
6325
6326     case SK_BindReference:
6327       OS << "bind reference to lvalue";
6328       break;
6329
6330     case SK_BindReferenceToTemporary:
6331       OS << "bind reference to a temporary";
6332       break;
6333
6334     case SK_ExtraneousCopyToTemporary:
6335       OS << "extraneous C++03 copy to temporary";
6336       break;
6337
6338     case SK_UserConversion:
6339       OS << "user-defined conversion via " << *S->Function.Function;
6340       break;
6341
6342     case SK_QualificationConversionRValue:
6343       OS << "qualification conversion (rvalue)";
6344       break;
6345
6346     case SK_QualificationConversionXValue:
6347       OS << "qualification conversion (xvalue)";
6348       break;
6349
6350     case SK_QualificationConversionLValue:
6351       OS << "qualification conversion (lvalue)";
6352       break;
6353
6354     case SK_LValueToRValue:
6355       OS << "load (lvalue to rvalue)";
6356       break;
6357
6358     case SK_ConversionSequence:
6359       OS << "implicit conversion sequence (";
6360       S->ICS->DebugPrint(); // FIXME: use OS
6361       OS << ")";
6362       break;
6363
6364     case SK_ListInitialization:
6365       OS << "list aggregate initialization";
6366       break;
6367
6368     case SK_ListConstructorCall:
6369       OS << "list initialization via constructor";
6370       break;
6371
6372     case SK_UnwrapInitList:
6373       OS << "unwrap reference initializer list";
6374       break;
6375
6376     case SK_RewrapInitList:
6377       OS << "rewrap reference initializer list";
6378       break;
6379
6380     case SK_ConstructorInitialization:
6381       OS << "constructor initialization";
6382       break;
6383
6384     case SK_ZeroInitialization:
6385       OS << "zero initialization";
6386       break;
6387
6388     case SK_CAssignment:
6389       OS << "C assignment";
6390       break;
6391
6392     case SK_StringInit:
6393       OS << "string initialization";
6394       break;
6395
6396     case SK_ObjCObjectConversion:
6397       OS << "Objective-C object conversion";
6398       break;
6399
6400     case SK_ArrayInit:
6401       OS << "array initialization";
6402       break;
6403
6404     case SK_ParenthesizedArrayInit:
6405       OS << "parenthesized array initialization";
6406       break;
6407
6408     case SK_PassByIndirectCopyRestore:
6409       OS << "pass by indirect copy and restore";
6410       break;
6411
6412     case SK_PassByIndirectRestore:
6413       OS << "pass by indirect restore";
6414       break;
6415
6416     case SK_ProduceObjCObject:
6417       OS << "Objective-C object retension";
6418       break;
6419
6420     case SK_StdInitializerList:
6421       OS << "std::initializer_list from initializer list";
6422       break;
6423
6424     case SK_OCLSamplerInit:
6425       OS << "OpenCL sampler_t from integer constant";
6426       break;
6427
6428     case SK_OCLZeroEvent:
6429       OS << "OpenCL event_t from zero";
6430       break;
6431     }
6432
6433     OS << " [" << S->Type.getAsString() << ']';
6434   }
6435
6436   OS << '\n';
6437 }
6438
6439 void InitializationSequence::dump() const {
6440   dump(llvm::errs());
6441 }
6442
6443 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6444                                         QualType EntityType,
6445                                         const Expr *PreInit,
6446                                         const Expr *PostInit) {
6447   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6448     return;
6449
6450   // A narrowing conversion can only appear as the final implicit conversion in
6451   // an initialization sequence.
6452   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6453   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6454     return;
6455
6456   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6457   const StandardConversionSequence *SCS = 0;
6458   switch (ICS.getKind()) {
6459   case ImplicitConversionSequence::StandardConversion:
6460     SCS = &ICS.Standard;
6461     break;
6462   case ImplicitConversionSequence::UserDefinedConversion:
6463     SCS = &ICS.UserDefined.After;
6464     break;
6465   case ImplicitConversionSequence::AmbiguousConversion:
6466   case ImplicitConversionSequence::EllipsisConversion:
6467   case ImplicitConversionSequence::BadConversion:
6468     return;
6469   }
6470
6471   // Determine the type prior to the narrowing conversion. If a conversion
6472   // operator was used, this may be different from both the type of the entity
6473   // and of the pre-initialization expression.
6474   QualType PreNarrowingType = PreInit->getType();
6475   if (Seq.step_begin() + 1 != Seq.step_end())
6476     PreNarrowingType = Seq.step_end()[-2].Type;
6477
6478   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6479   APValue ConstantValue;
6480   QualType ConstantType;
6481   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6482                                 ConstantType)) {
6483   case NK_Not_Narrowing:
6484     // No narrowing occurred.
6485     return;
6486
6487   case NK_Type_Narrowing:
6488     // This was a floating-to-integer conversion, which is always considered a
6489     // narrowing conversion even if the value is a constant and can be
6490     // represented exactly as an integer.
6491     S.Diag(PostInit->getLocStart(),
6492            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? 
6493              diag::warn_init_list_type_narrowing
6494            : S.isSFINAEContext()?
6495              diag::err_init_list_type_narrowing_sfinae
6496            : diag::err_init_list_type_narrowing)
6497       << PostInit->getSourceRange()
6498       << PreNarrowingType.getLocalUnqualifiedType()
6499       << EntityType.getLocalUnqualifiedType();
6500     break;
6501
6502   case NK_Constant_Narrowing:
6503     // A constant value was narrowed.
6504     S.Diag(PostInit->getLocStart(),
6505            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? 
6506              diag::warn_init_list_constant_narrowing
6507            : S.isSFINAEContext()?
6508              diag::err_init_list_constant_narrowing_sfinae
6509            : diag::err_init_list_constant_narrowing)
6510       << PostInit->getSourceRange()
6511       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6512       << EntityType.getLocalUnqualifiedType();
6513     break;
6514
6515   case NK_Variable_Narrowing:
6516     // A variable's value may have been narrowed.
6517     S.Diag(PostInit->getLocStart(),
6518            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? 
6519              diag::warn_init_list_variable_narrowing
6520            : S.isSFINAEContext()?
6521              diag::err_init_list_variable_narrowing_sfinae
6522            : diag::err_init_list_variable_narrowing)
6523       << PostInit->getSourceRange()
6524       << PreNarrowingType.getLocalUnqualifiedType()
6525       << EntityType.getLocalUnqualifiedType();
6526     break;
6527   }
6528
6529   SmallString<128> StaticCast;
6530   llvm::raw_svector_ostream OS(StaticCast);
6531   OS << "static_cast<";
6532   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6533     // It's important to use the typedef's name if there is one so that the
6534     // fixit doesn't break code using types like int64_t.
6535     //
6536     // FIXME: This will break if the typedef requires qualification.  But
6537     // getQualifiedNameAsString() includes non-machine-parsable components.
6538     OS << *TT->getDecl();
6539   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6540     OS << BT->getName(S.getLangOpts());
6541   else {
6542     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6543     // with a broken cast.
6544     return;
6545   }
6546   OS << ">(";
6547   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6548     << PostInit->getSourceRange()
6549     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6550     << FixItHint::CreateInsertion(
6551       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6552 }
6553
6554 //===----------------------------------------------------------------------===//
6555 // Initialization helper functions
6556 //===----------------------------------------------------------------------===//
6557 bool
6558 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6559                                    ExprResult Init) {
6560   if (Init.isInvalid())
6561     return false;
6562
6563   Expr *InitE = Init.get();
6564   assert(InitE && "No initialization expression");
6565
6566   InitializationKind Kind
6567     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6568   InitializationSequence Seq(*this, Entity, Kind, InitE);
6569   return !Seq.Failed();
6570 }
6571
6572 ExprResult
6573 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6574                                 SourceLocation EqualLoc,
6575                                 ExprResult Init,
6576                                 bool TopLevelOfInitList,
6577                                 bool AllowExplicit) {
6578   if (Init.isInvalid())
6579     return ExprError();
6580
6581   Expr *InitE = Init.get();
6582   assert(InitE && "No initialization expression?");
6583
6584   if (EqualLoc.isInvalid())
6585     EqualLoc = InitE->getLocStart();
6586
6587   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6588                                                            EqualLoc,
6589                                                            AllowExplicit);
6590   InitializationSequence Seq(*this, Entity, Kind, InitE);
6591   Init.release();
6592
6593   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
6594
6595   if (!Result.isInvalid() && TopLevelOfInitList)
6596     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6597                                 InitE, Result.get());
6598
6599   return Result;
6600 }