]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/ntp/ntpd/refclock_heath.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / ntp / ntpd / refclock_heath.c
1 /*
2  * refclock_heath - clock driver for Heath GC-1000
3  * (but no longer the GC-1001 Model II, which apparently never worked)
4  */
5
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9
10 #if defined(REFCLOCK) && defined(CLOCK_HEATH)
11
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_stdlib.h"
16
17 #include <stdio.h>
18 #include <ctype.h>
19
20 #ifdef HAVE_SYS_IOCTL_H
21 # include <sys/ioctl.h>
22 #endif /* not HAVE_SYS_IOCTL_H */
23
24 /*
25  * This driver supports the Heath GC-1000 Most Accurate Clock, with
26  * RS232C Output Accessory. This is a WWV/WWVH receiver somewhat less
27  * robust than other supported receivers. Its claimed accuracy is 100 ms
28  * when actually synchronized to the broadcast signal, but this doesn't
29  * happen even most of the time, due to propagation conditions, ambient
30  * noise sources, etc. When not synchronized, the accuracy is at the
31  * whim of the internal clock oscillator, which can wander into the
32  * sunset without warning. Since the indicated precision is 100 ms,
33  * expect a host synchronized only to this thing to wander to and fro,
34  * occasionally being rudely stepped when the offset exceeds the default
35  * clock_max of 128 ms. 
36  *
37  * There were two GC-1000 versions supported by this driver. The original
38  * GC-1000 with RS-232 output first appeared in 1983, but dissapeared
39  * from the market a few years later. The GC-1001 II with RS-232 output
40  * first appeared circa 1990, but apparently is no longer manufactured.
41  * The two models differ considerably, both in interface and commands.
42  * The GC-1000 has a pseudo-bipolar timecode output triggered by a RTS
43  * transition. The timecode includes both the day of year and time of
44  * day. The GC-1001 II has a true bipolar output and a complement of
45  * single character commands. The timecode includes only the time of
46  * day.
47  *
48  * The GC-1001 II was apparently never tested and, based on a Coverity
49  * scan, apparently never worked [Bug 689].  Related code has been disabled.
50  *
51  * GC-1000
52  *
53  * The internal DIPswitches should be set to operate in MANUAL mode. The
54  * external DIPswitches should be set to GMT and 24-hour format.
55  *
56  * In MANUAL mode the clock responds to a rising edge of the request to
57  * send (RTS) modem control line by sending the timecode. Therefore, it
58  * is necessary that the operating system implement the TIOCMBIC and
59  * TIOCMBIS ioctl system calls and TIOCM_RTS control bit. Present
60  * restrictions require the use of a POSIX-compatible programming
61  * interface, although other interfaces may work as well.
62  *
63  * A simple hardware modification to the clock can be made which
64  * prevents the clock hearing the request to send (RTS) if the HI SPEC
65  * lamp is out. Route the HISPEC signal to the tone decoder board pin
66  * 19, from the display, pin 19. Isolate pin 19 of the decoder board
67  * first, but maintain connection with pin 10. Also isolate pin 38 of
68  * the CPU on the tone board, and use half an added 7400 to gate the
69  * original signal to pin 38 with that from pin 19.
70  *
71  * The clock message consists of 23 ASCII printing characters in the
72  * following format:
73  *
74  * hh:mm:ss.f AM  dd/mm/yr<cr>
75  *
76  *      hh:mm:ss.f = hours, minutes, seconds
77  *      f = deciseconds ('?' when out of spec)
78  *      AM/PM/bb = blank in 24-hour mode
79  *      dd/mm/yr = day, month, year
80  *
81  * The alarm condition is indicated by '?', rather than a digit, at f.
82  * Note that 0?:??:??.? is displayed before synchronization is first
83  * established and hh:mm:ss.? once synchronization is established and
84  * then lost again for about a day.
85  *
86  * GC-1001 II
87  *
88  * Commands consist of a single letter and are case sensitive. When
89  * enterred in lower case, a description of the action performed is
90  * displayed. When enterred in upper case the action is performed.
91  * Following is a summary of descriptions as displayed by the clock:
92  *
93  * The clock responds with a command The 'A' command returns an ASCII
94  * local time string:  HH:MM:SS.T xx<CR>, where
95  *
96  *      HH = hours
97  *      MM = minutes
98  *      SS = seconds
99  *      T = tenths-of-seconds
100  *      xx = 'AM', 'PM', or '  '
101  *      <CR> = carriage return
102  *
103  * The 'D' command returns 24 pairs of bytes containing the variable
104  * divisor value at the end of each of the previous 24 hours. This
105  * allows the timebase trimming process to be observed.  UTC hour 00 is
106  * always returned first. The first byte of each pair is the high byte
107  * of (variable divisor * 16); the second byte is the low byte of
108  * (variable divisor * 16). For example, the byte pair 3C 10 would be
109  * returned for a divisor of 03C1 hex (961 decimal).
110  *
111  * The 'I' command returns:  | TH | TL | ER | DH | DL | U1 | I1 | I2 | ,
112  * where
113  *
114  *      TH = minutes since timebase last trimmed (high byte)
115  *      TL = minutes since timebase last trimmed (low byte)
116  *      ER = last accumulated error in 1.25 ms increments
117  *      DH = high byte of (current variable divisor * 16)
118  *      DL = low byte of (current variable divisor * 16)
119  *      U1 = UT1 offset (/.1 s):  | + | 4 | 2 | 1 | 0 | 0 | 0 | 0 |
120  *      I1 = information byte 1:  | W | C | D | I | U | T | Z | 1 | ,
121  *           where
122  *
123  *              W = set by WWV(H)
124  *              C = CAPTURE LED on
125  *              D = TRIM DN LED on
126  *              I = HI SPEC LED on
127  *              U = TRIM UP LED on
128  *              T = DST switch on
129  *              Z = UTC switch on
130  *              1 = UT1 switch on
131  *
132  *      I2 = information byte 2:  | 8 | 8 | 4 | 2 | 1 | D | d | S | ,
133  *           where
134  *
135  *              8, 8, 4, 2, 1 = TIME ZONE switch settings
136  *              D = DST bit (#55) in last-received frame
137  *              d = DST bit (#2) in last-received frame
138  *              S = clock is in simulation mode
139  *
140  * The 'P' command returns 24 bytes containing the number of frames
141  * received without error during UTC hours 00 through 23, providing an
142  * indication of hourly propagation.  These bytes are updated each hour
143  * to reflect the previous 24 hour period.  UTC hour 00 is always
144  * returned first.
145  *
146  * The 'T' command returns the UTC time:  | HH | MM | SS | T0 | , where
147  *      HH = tens-of-hours and hours (packed BCD)
148  *      MM = tens-of-minutes and minutes (packed BCD)
149  *      SS = tens-of-seconds and seconds (packed BCD)
150  *      T = tenths-of-seconds (BCD)
151  *
152  * Fudge Factors
153  *
154  * A fudge time1 value of .04 s appears to center the clock offset
155  * residuals. The fudge time2 parameter is the local time offset east of
156  * Greenwich, which depends on DST. Sorry about that, but the clock
157  * gives no hint on what the DIPswitches say.
158  */
159
160 /*
161  * Interface definitions
162  */
163 #define DEVICE          "/dev/heath%d" /* device name and unit */
164 #define PRECISION       (-4)    /* precision assumed (about 100 ms) */
165 #define REFID           "WWV\0" /* reference ID */
166 #define DESCRIPTION     "Heath GC-1000 Most Accurate Clock" /* WRU */
167
168 #define LENHEATH1       23      /* min timecode length */
169 #if 0   /* BUG 689 */
170 #define LENHEATH2       13      /* min timecode length */
171 #endif
172
173 /*
174  * Tables to compute the ddd of year form icky dd/mm timecode. Viva la
175  * leap.
176  */
177 static int day1tab[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
178 static int day2tab[] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
179
180 /*
181  * Baud rate table. The GC-1000 supports 1200, 2400 and 4800; the
182  * GC-1001 II supports only 9600.
183  */
184 static int speed[] = {B1200, B2400, B4800, B9600};
185
186 /*
187  * Function prototypes
188  */
189 static  int     heath_start     P((int, struct peer *));
190 static  void    heath_shutdown  P((int, struct peer *));
191 static  void    heath_receive   P((struct recvbuf *));
192 static  void    heath_poll      P((int, struct peer *));
193
194 /*
195  * Transfer vector
196  */
197 struct  refclock refclock_heath = {
198         heath_start,            /* start up driver */
199         heath_shutdown,         /* shut down driver */
200         heath_poll,             /* transmit poll message */
201         noentry,                /* not used (old heath_control) */
202         noentry,                /* initialize driver */
203         noentry,                /* not used (old heath_buginfo) */
204         NOFLAGS                 /* not used */
205 };
206
207
208 /*
209  * heath_start - open the devices and initialize data for processing
210  */
211 static int
212 heath_start(
213         int unit,
214         struct peer *peer
215         )
216 {
217         struct refclockproc *pp;
218         int fd;
219         char device[20];
220
221         /*
222          * Open serial port
223          */
224         sprintf(device, DEVICE, unit);
225         if (!(fd = refclock_open(device, speed[peer->ttl & 0x3],
226             LDISC_REMOTE)))
227                 return (0);
228         pp = peer->procptr;
229         pp->io.clock_recv = heath_receive;
230         pp->io.srcclock = (caddr_t)peer;
231         pp->io.datalen = 0;
232         pp->io.fd = fd;
233         if (!io_addclock(&pp->io)) {
234                 (void) close(fd);
235                 return (0);
236         }
237
238         /*
239          * Initialize miscellaneous variables
240          */
241         peer->precision = PRECISION;
242         peer->burst = NSTAGE;
243         pp->clockdesc = DESCRIPTION;
244         memcpy((char *)&pp->refid, REFID, 4);
245         return (1);
246 }
247
248
249 /*
250  * heath_shutdown - shut down the clock
251  */
252 static void
253 heath_shutdown(
254         int unit,
255         struct peer *peer
256         )
257 {
258         struct refclockproc *pp;
259
260         pp = peer->procptr;
261         io_closeclock(&pp->io);
262 }
263
264
265 /*
266  * heath_receive - receive data from the serial interface
267  */
268 static void
269 heath_receive(
270         struct recvbuf *rbufp
271         )
272 {
273         struct refclockproc *pp;
274         struct peer *peer;
275         l_fp trtmp;
276         int month, day;
277         int i;
278         char dsec, a[5];
279
280         /*
281          * Initialize pointers and read the timecode and timestamp
282          */
283         peer = (struct peer *)rbufp->recv_srcclock;
284         pp = peer->procptr;
285         pp->lencode = refclock_gtlin(rbufp, pp->a_lastcode, BMAX,
286             &trtmp);
287
288         /*
289          * We get down to business, check the timecode format and decode
290          * its contents. If the timecode has invalid length or is not in
291          * proper format, we declare bad format and exit.
292          */
293         switch (pp->lencode) {
294
295         /*
296          * GC-1000 timecode format: "hh:mm:ss.f AM  mm/dd/yy"
297          * GC-1001 II timecode format: "hh:mm:ss.f   "
298          */
299         case LENHEATH1:
300                 if (sscanf(pp->a_lastcode,
301                     "%2d:%2d:%2d.%c%5c%2d/%2d/%2d", &pp->hour,
302                     &pp->minute, &pp->second, &dsec, a, &month, &day,
303                     &pp->year) != 8) {
304                         refclock_report(peer, CEVNT_BADREPLY);
305                         return;
306                 }
307                 break;
308
309 #if 0   /* BUG 689 */
310         /*
311          * GC-1001 II timecode format: "hh:mm:ss.f   "
312          */
313         case LENHEATH2:
314                 if (sscanf(pp->a_lastcode, "%2d:%2d:%2d.%c", &pp->hour,
315                     &pp->minute, &pp->second, &dsec) != 4) {
316                         refclock_report(peer, CEVNT_BADREPLY);
317                         return;
318                 } else {
319                         struct tm *tm_time_p;
320                         time_t     now;
321
322                         time(&now);     /* we should grab 'now' earlier */
323                         tm_time_p = gmtime(&now);
324                         /*
325                          * There is a window of time around midnight
326                          * where this will Do The Wrong Thing.
327                          */
328                         if (tm_time_p) {
329                                 month = tm_time_p->tm_mon + 1;
330                                 day = tm_time_p->tm_mday;
331                         } else {
332                                 refclock_report(peer, CEVNT_FAULT);
333                                 return;
334                         }
335                 }
336                 break;
337 #endif
338
339         default:
340                 refclock_report(peer, CEVNT_BADREPLY);
341                 return;
342         }
343
344         /*
345          * We determine the day of the year from the DIPswitches. This
346          * should be fixed, since somebody might forget to set them.
347          * Someday this hazard will be fixed by a fiendish scheme that
348          * looks at the timecode and year the radio shows, then computes
349          * the residue of the seconds mod the seconds in a leap cycle.
350          * If in the third year of that cycle and the third and later
351          * months of that year, add one to the day. Then, correct the
352          * timecode accordingly. Icky pooh. This bit of nonsense could
353          * be avoided if the engineers had been required to write a
354          * device driver before finalizing the timecode format.
355          */
356         if (month < 1 || month > 12 || day < 1) {
357                 refclock_report(peer, CEVNT_BADTIME);
358                 return;
359         }
360         if (pp->year % 4) {
361                 if (day > day1tab[month - 1]) {
362                         refclock_report(peer, CEVNT_BADTIME);
363                         return;
364                 }
365                 for (i = 0; i < month - 1; i++)
366                     day += day1tab[i];
367         } else {
368                 if (day > day2tab[month - 1]) {
369                         refclock_report(peer, CEVNT_BADTIME);
370                         return;
371                 }
372                 for (i = 0; i < month - 1; i++)
373                     day += day2tab[i];
374         }
375         pp->day = day;
376
377         /*
378          * Determine synchronization and last update
379          */
380         if (!isdigit((int)dsec))
381                 pp->leap = LEAP_NOTINSYNC;
382         else {
383                 pp->nsec = (dsec - '0') * 100000000;
384                 pp->leap = LEAP_NOWARNING;
385         }
386         if (!refclock_process(pp))
387                 refclock_report(peer, CEVNT_BADTIME);
388 }
389
390
391 /*
392  * heath_poll - called by the transmit procedure
393  */
394 static void
395 heath_poll(
396         int unit,
397         struct peer *peer
398         )
399 {
400         struct refclockproc *pp;
401         int bits = TIOCM_RTS;
402
403         /*
404          * At each poll we check for timeout and toggle the RTS modem
405          * control line, then take a timestamp. Presumably, this is the
406          * event the radio captures to generate the timecode.
407          * Apparently, the radio takes about a second to make up its
408          * mind to send a timecode, so the receive timestamp is
409          * worthless.
410          */
411         pp = peer->procptr;
412
413         /*
414          * We toggle the RTS modem control lead (GC-1000) and sent a T
415          * (GC-1001 II) to kick a timecode loose from the radio. This
416          * code works only for POSIX and SYSV interfaces. With bsd you
417          * are on your own. We take a timestamp between the up and down
418          * edges to lengthen the pulse, which should be about 50 usec on
419          * a Sun IPC. With hotshot CPUs, the pulse might get too short.
420          * Later.
421          *
422          * Bug 689: Even though we no longer support the GC-1001 II,
423          * I'm leaving the 'T' write in for timing purposes.
424          */
425         if (ioctl(pp->io.fd, TIOCMBIC, (char *)&bits) < 0)
426                 refclock_report(peer, CEVNT_FAULT);
427         get_systime(&pp->lastrec);
428         if (write(pp->io.fd, "T", 1) != 1)
429                 refclock_report(peer, CEVNT_FAULT);
430         ioctl(pp->io.fd, TIOCMBIS, (char *)&bits);
431         if (peer->burst > 0)
432                 return;
433         if (pp->coderecv == pp->codeproc) {
434                 refclock_report(peer, CEVNT_TIMEOUT);
435                 return;
436         }
437         pp->lastref = pp->lastrec;
438         refclock_receive(peer);
439         record_clock_stats(&peer->srcadr, pp->a_lastcode);
440 #ifdef DEBUG
441         if (debug)
442             printf("heath: timecode %d %s\n", pp->lencode,
443                    pp->a_lastcode);
444 #endif
445         peer->burst = MAXSTAGE;
446         pp->polls++;
447 }
448
449 #else
450 int refclock_heath_bs;
451 #endif /* REFCLOCK */