]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - contrib/xz/src/liblzma/check/sha256.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / contrib / xz / src / liblzma / check / sha256.c
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       sha256.c
4 /// \brief      SHA-256
5 ///
6 /// \todo       Crypto++ has x86 ASM optimizations. They use SSE so if they
7 ///             are imported to liblzma, SSE instructions need to be used
8 ///             conditionally to keep the code working on older boxes.
9 ///             We could also support using some external libary for SHA-256.
10 //
11 //  This code is based on the code found from 7-Zip, which has a modified
12 //  version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
13 //  The code was modified a little to fit into liblzma.
14 //
15 //  Authors:    Kevin Springle
16 //              Wei Dai
17 //              Igor Pavlov
18 //              Lasse Collin
19 //
20 //  This file has been put into the public domain.
21 //  You can do whatever you want with this file.
22 //
23 ///////////////////////////////////////////////////////////////////////////////
24
25 // Avoid bogus warnings in transform().
26 #if (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) || __GNUC__ > 4
27 #       pragma GCC diagnostic ignored "-Wuninitialized"
28 #endif
29
30 #include "check.h"
31
32 // At least on x86, GCC is able to optimize this to a rotate instruction.
33 #define rotr_32(num, amount) ((num) >> (amount) | (num) << (32 - (amount)))
34
35 #define blk0(i) (W[i] = data[i])
36 #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
37                 + s0(W[(i - 15) & 15]))
38
39 #define Ch(x, y, z) (z ^ (x & (y ^ z)))
40 #define Maj(x, y, z) ((x & y) | (z & (x | y)))
41
42 #define a(i) T[(0 - i) & 7]
43 #define b(i) T[(1 - i) & 7]
44 #define c(i) T[(2 - i) & 7]
45 #define d(i) T[(3 - i) & 7]
46 #define e(i) T[(4 - i) & 7]
47 #define f(i) T[(5 - i) & 7]
48 #define g(i) T[(6 - i) & 7]
49 #define h(i) T[(7 - i) & 7]
50
51 #define R(i) \
52         h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] \
53                 + (j ? blk2(i) : blk0(i)); \
54         d(i) += h(i); \
55         h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
56
57 #define S0(x) (rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22))
58 #define S1(x) (rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25))
59 #define s0(x) (rotr_32(x, 7) ^ rotr_32(x, 18) ^ (x >> 3))
60 #define s1(x) (rotr_32(x, 17) ^ rotr_32(x, 19) ^ (x >> 10))
61
62
63 static const uint32_t SHA256_K[64] = {
64         0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
65         0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
66         0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
67         0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
68         0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
69         0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
70         0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
71         0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
72         0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
73         0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
74         0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
75         0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
76         0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
77         0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
78         0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
79         0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
80 };
81
82
83 static void
84 transform(uint32_t state[static 8], const uint32_t data[static 16])
85 {
86         uint32_t W[16];
87         uint32_t T[8];
88
89         // Copy state[] to working vars.
90         memcpy(T, state, sizeof(T));
91
92         // 64 operations, partially loop unrolled
93         for (unsigned int j = 0; j < 64; j += 16) {
94                 R( 0); R( 1); R( 2); R( 3);
95                 R( 4); R( 5); R( 6); R( 7);
96                 R( 8); R( 9); R(10); R(11);
97                 R(12); R(13); R(14); R(15);
98         }
99
100         // Add the working vars back into state[].
101         state[0] += a(0);
102         state[1] += b(0);
103         state[2] += c(0);
104         state[3] += d(0);
105         state[4] += e(0);
106         state[5] += f(0);
107         state[6] += g(0);
108         state[7] += h(0);
109 }
110
111
112 static void
113 process(lzma_check_state *check)
114 {
115 #ifdef WORDS_BIGENDIAN
116         transform(check->state.sha256.state, check->buffer.u32);
117
118 #else
119         uint32_t data[16];
120
121         for (size_t i = 0; i < 16; ++i)
122                 data[i] = bswap32(check->buffer.u32[i]);
123
124         transform(check->state.sha256.state, data);
125 #endif
126
127         return;
128 }
129
130
131 extern void
132 lzma_sha256_init(lzma_check_state *check)
133 {
134         static const uint32_t s[8] = {
135                 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
136                 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
137         };
138
139         memcpy(check->state.sha256.state, s, sizeof(s));
140         check->state.sha256.size = 0;
141
142         return;
143 }
144
145
146 extern void
147 lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
148 {
149         // Copy the input data into a properly aligned temporary buffer.
150         // This way we can be called with arbitrarily sized buffers
151         // (no need to be multiple of 64 bytes), and the code works also
152         // on architectures that don't allow unaligned memory access.
153         while (size > 0) {
154                 const size_t copy_start = check->state.sha256.size & 0x3F;
155                 size_t copy_size = 64 - copy_start;
156                 if (copy_size > size)
157                         copy_size = size;
158
159                 memcpy(check->buffer.u8 + copy_start, buf, copy_size);
160
161                 buf += copy_size;
162                 size -= copy_size;
163                 check->state.sha256.size += copy_size;
164
165                 if ((check->state.sha256.size & 0x3F) == 0)
166                         process(check);
167         }
168
169         return;
170 }
171
172
173 extern void
174 lzma_sha256_finish(lzma_check_state *check)
175 {
176         // Add padding as described in RFC 3174 (it describes SHA-1 but
177         // the same padding style is used for SHA-256 too).
178         size_t pos = check->state.sha256.size & 0x3F;
179         check->buffer.u8[pos++] = 0x80;
180
181         while (pos != 64 - 8) {
182                 if (pos == 64) {
183                         process(check);
184                         pos = 0;
185                 }
186
187                 check->buffer.u8[pos++] = 0x00;
188         }
189
190         // Convert the message size from bytes to bits.
191         check->state.sha256.size *= 8;
192
193         check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
194
195         process(check);
196
197         for (size_t i = 0; i < 8; ++i)
198                 check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
199
200         return;
201 }