]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / cddl / contrib / opensolaris / uts / common / dtrace / dtrace.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28
29 #pragma ident   "%Z%%M% %I%     %E% SMI"
30
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #include <sys/errno.h>
71 #if !defined(sun)
72 #include <sys/time.h>
73 #endif
74 #include <sys/stat.h>
75 #include <sys/modctl.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #if defined(sun)
79 #include <sys/ddi.h>
80 #include <sys/sunddi.h>
81 #endif
82 #include <sys/cpuvar.h>
83 #include <sys/kmem.h>
84 #if defined(sun)
85 #include <sys/strsubr.h>
86 #endif
87 #include <sys/sysmacros.h>
88 #include <sys/dtrace_impl.h>
89 #include <sys/atomic.h>
90 #include <sys/cmn_err.h>
91 #if defined(sun)
92 #include <sys/mutex_impl.h>
93 #include <sys/rwlock_impl.h>
94 #endif
95 #include <sys/ctf_api.h>
96 #if defined(sun)
97 #include <sys/panic.h>
98 #include <sys/priv_impl.h>
99 #endif
100 #include <sys/policy.h>
101 #if defined(sun)
102 #include <sys/cred_impl.h>
103 #include <sys/procfs_isa.h>
104 #endif
105 #include <sys/taskq.h>
106 #if defined(sun)
107 #include <sys/mkdev.h>
108 #include <sys/kdi.h>
109 #endif
110 #include <sys/zone.h>
111 #include <sys/socket.h>
112 #include <netinet/in.h>
113
114 /* FreeBSD includes: */
115 #if !defined(sun)
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/limits.h>
119 #include <sys/kdb.h>
120 #include <sys/kernel.h>
121 #include <sys/malloc.h>
122 #include <sys/sysctl.h>
123 #include <sys/lock.h>
124 #include <sys/mutex.h>
125 #include <sys/rwlock.h>
126 #include <sys/sx.h>
127 #include <sys/dtrace_bsd.h>
128 #include <netinet/in.h>
129 #include "dtrace_cddl.h"
130 #include "dtrace_debug.c"
131 #endif
132
133 /*
134  * DTrace Tunable Variables
135  *
136  * The following variables may be tuned by adding a line to /etc/system that
137  * includes both the name of the DTrace module ("dtrace") and the name of the
138  * variable.  For example:
139  *
140  *   set dtrace:dtrace_destructive_disallow = 1
141  *
142  * In general, the only variables that one should be tuning this way are those
143  * that affect system-wide DTrace behavior, and for which the default behavior
144  * is undesirable.  Most of these variables are tunable on a per-consumer
145  * basis using DTrace options, and need not be tuned on a system-wide basis.
146  * When tuning these variables, avoid pathological values; while some attempt
147  * is made to verify the integrity of these variables, they are not considered
148  * part of the supported interface to DTrace, and they are therefore not
149  * checked comprehensively.  Further, these variables should not be tuned
150  * dynamically via "mdb -kw" or other means; they should only be tuned via
151  * /etc/system.
152  */
153 int             dtrace_destructive_disallow = 0;
154 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155 size_t          dtrace_difo_maxsize = (256 * 1024);
156 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
157 size_t          dtrace_global_maxsize = (16 * 1024);
158 size_t          dtrace_actions_max = (16 * 1024);
159 size_t          dtrace_retain_max = 1024;
160 dtrace_optval_t dtrace_helper_actions_max = 128;
161 dtrace_optval_t dtrace_helper_providers_max = 32;
162 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
163 size_t          dtrace_strsize_default = 256;
164 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
165 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
166 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
167 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
168 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
169 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
170 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
171 dtrace_optval_t dtrace_nspec_default = 1;
172 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
173 dtrace_optval_t dtrace_stackframes_default = 20;
174 dtrace_optval_t dtrace_ustackframes_default = 20;
175 dtrace_optval_t dtrace_jstackframes_default = 50;
176 dtrace_optval_t dtrace_jstackstrsize_default = 512;
177 int             dtrace_msgdsize_max = 128;
178 hrtime_t        dtrace_chill_max = 500 * (NANOSEC / MILLISEC);  /* 500 ms */
179 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
180 int             dtrace_devdepth_max = 32;
181 int             dtrace_err_verbose;
182 hrtime_t        dtrace_deadman_interval = NANOSEC;
183 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
186
187 /*
188  * DTrace External Variables
189  *
190  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
191  * available to DTrace consumers via the backtick (`) syntax.  One of these,
192  * dtrace_zero, is made deliberately so:  it is provided as a source of
193  * well-known, zero-filled memory.  While this variable is not documented,
194  * it is used by some translators as an implementation detail.
195  */
196 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
197
198 /*
199  * DTrace Internal Variables
200  */
201 #if defined(sun)
202 static dev_info_t       *dtrace_devi;           /* device info */
203 #endif
204 #if defined(sun)
205 static vmem_t           *dtrace_arena;          /* probe ID arena */
206 static vmem_t           *dtrace_minor;          /* minor number arena */
207 #else
208 static taskq_t          *dtrace_taskq;          /* task queue */
209 static struct unrhdr    *dtrace_arena;          /* Probe ID number.     */
210 #endif
211 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
212 static int              dtrace_nprobes;         /* number of probes */
213 static dtrace_provider_t *dtrace_provider;      /* provider list */
214 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
215 static int              dtrace_opens;           /* number of opens */
216 static int              dtrace_helpers;         /* number of helpers */
217 #if defined(sun)
218 static void             *dtrace_softstate;      /* softstate pointer */
219 #endif
220 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
221 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
222 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
223 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
224 static int              dtrace_toxranges;       /* number of toxic ranges */
225 static int              dtrace_toxranges_max;   /* size of toxic range array */
226 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
227 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
228 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
229 static kthread_t        *dtrace_panicked;       /* panicking thread */
230 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
231 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
232 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
233 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
234 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
235 #if !defined(sun)
236 static struct mtx       dtrace_unr_mtx;
237 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
238 int             dtrace_in_probe;        /* non-zero if executing a probe */
239 #if defined(__i386__) || defined(__amd64__)
240 uintptr_t       dtrace_in_probe_addr;   /* Address of invop when already in probe */
241 #endif
242 #endif
243
244 /*
245  * DTrace Locking
246  * DTrace is protected by three (relatively coarse-grained) locks:
247  *
248  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
249  *     including enabling state, probes, ECBs, consumer state, helper state,
250  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
251  *     probe context is lock-free -- synchronization is handled via the
252  *     dtrace_sync() cross call mechanism.
253  *
254  * (2) dtrace_provider_lock is required when manipulating provider state, or
255  *     when provider state must be held constant.
256  *
257  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
258  *     when meta provider state must be held constant.
259  *
260  * The lock ordering between these three locks is dtrace_meta_lock before
261  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
262  * several places where dtrace_provider_lock is held by the framework as it
263  * calls into the providers -- which then call back into the framework,
264  * grabbing dtrace_lock.)
265  *
266  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
267  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
268  * role as a coarse-grained lock; it is acquired before both of these locks.
269  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
270  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
271  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
272  * acquired _between_ dtrace_provider_lock and dtrace_lock.
273  */
274 static kmutex_t         dtrace_lock;            /* probe state lock */
275 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
276 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
277
278 #if !defined(sun)
279 /* XXX FreeBSD hacks. */
280 static kmutex_t         mod_lock;
281
282 #define cr_suid         cr_svuid
283 #define cr_sgid         cr_svgid
284 #define ipaddr_t        in_addr_t
285 #define mod_modname     pathname
286 #define vuprintf        vprintf
287 #define ttoproc(_a)     ((_a)->td_proc)
288 #define crgetzoneid(_a) 0
289 #define NCPU            MAXCPU
290 #define SNOCD           0
291 #define CPU_ON_INTR(_a) 0
292
293 #define PRIV_EFFECTIVE          (1 << 0)
294 #define PRIV_DTRACE_KERNEL      (1 << 1)
295 #define PRIV_DTRACE_PROC        (1 << 2)
296 #define PRIV_DTRACE_USER        (1 << 3)
297 #define PRIV_PROC_OWNER         (1 << 4)
298 #define PRIV_PROC_ZONE          (1 << 5)
299 #define PRIV_ALL                ~0
300
301 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
302 #endif
303
304 #if defined(sun)
305 #define curcpu  CPU->cpu_id
306 #endif
307
308
309 /*
310  * DTrace Provider Variables
311  *
312  * These are the variables relating to DTrace as a provider (that is, the
313  * provider of the BEGIN, END, and ERROR probes).
314  */
315 static dtrace_pattr_t   dtrace_provider_attr = {
316 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
317 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
321 };
322
323 static void
324 dtrace_nullop(void)
325 {}
326
327 static dtrace_pops_t    dtrace_provider_ops = {
328         (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
329         (void (*)(void *, modctl_t *))dtrace_nullop,
330         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334         NULL,
335         NULL,
336         NULL,
337         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
338 };
339
340 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
341 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
342 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
343
344 /*
345  * DTrace Helper Tracing Variables
346  */
347 uint32_t dtrace_helptrace_next = 0;
348 uint32_t dtrace_helptrace_nlocals;
349 char    *dtrace_helptrace_buffer;
350 int     dtrace_helptrace_bufsize = 512 * 1024;
351
352 #ifdef DEBUG
353 int     dtrace_helptrace_enabled = 1;
354 #else
355 int     dtrace_helptrace_enabled = 0;
356 #endif
357
358 /*
359  * DTrace Error Hashing
360  *
361  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
362  * table.  This is very useful for checking coverage of tests that are
363  * expected to induce DIF or DOF processing errors, and may be useful for
364  * debugging problems in the DIF code generator or in DOF generation .  The
365  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
366  */
367 #ifdef DEBUG
368 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
369 static const char *dtrace_errlast;
370 static kthread_t *dtrace_errthread;
371 static kmutex_t dtrace_errlock;
372 #endif
373
374 /*
375  * DTrace Macros and Constants
376  *
377  * These are various macros that are useful in various spots in the
378  * implementation, along with a few random constants that have no meaning
379  * outside of the implementation.  There is no real structure to this cpp
380  * mishmash -- but is there ever?
381  */
382 #define DTRACE_HASHSTR(hash, probe)     \
383         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
384
385 #define DTRACE_HASHNEXT(hash, probe)    \
386         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
387
388 #define DTRACE_HASHPREV(hash, probe)    \
389         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
390
391 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
392         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
393             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
394
395 #define DTRACE_AGGHASHSIZE_SLEW         17
396
397 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
398
399 /*
400  * The key for a thread-local variable consists of the lower 61 bits of the
401  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
402  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
403  * equal to a variable identifier.  This is necessary (but not sufficient) to
404  * assure that global associative arrays never collide with thread-local
405  * variables.  To guarantee that they cannot collide, we must also define the
406  * order for keying dynamic variables.  That order is:
407  *
408  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
409  *
410  * Because the variable-key and the tls-key are in orthogonal spaces, there is
411  * no way for a global variable key signature to match a thread-local key
412  * signature.
413  */
414 #if defined(sun)
415 #define DTRACE_TLS_THRKEY(where) { \
416         uint_t intr = 0; \
417         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
418         for (; actv; actv >>= 1) \
419                 intr++; \
420         ASSERT(intr < (1 << 3)); \
421         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
422             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
423 }
424 #else
425 #define DTRACE_TLS_THRKEY(where) { \
426         solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
427         uint_t intr = 0; \
428         uint_t actv = _c->cpu_intr_actv; \
429         for (; actv; actv >>= 1) \
430                 intr++; \
431         ASSERT(intr < (1 << 3)); \
432         (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
433             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
434 }
435 #endif
436
437 #define DT_BSWAP_8(x)   ((x) & 0xff)
438 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
439 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
440 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
441
442 #define DT_MASK_LO 0x00000000FFFFFFFFULL
443
444 #define DTRACE_STORE(type, tomax, offset, what) \
445         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
446
447 #ifndef __x86
448 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
449         if (addr & (size - 1)) {                                        \
450                 *flags |= CPU_DTRACE_BADALIGN;                          \
451                 cpu_core[curcpu].cpuc_dtrace_illval = addr;     \
452                 return (0);                                             \
453         }
454 #else
455 #define DTRACE_ALIGNCHECK(addr, size, flags)
456 #endif
457
458 /*
459  * Test whether a range of memory starting at testaddr of size testsz falls
460  * within the range of memory described by addr, sz.  We take care to avoid
461  * problems with overflow and underflow of the unsigned quantities, and
462  * disallow all negative sizes.  Ranges of size 0 are allowed.
463  */
464 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
465         ((testaddr) - (baseaddr) < (basesz) && \
466         (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
467         (testaddr) + (testsz) >= (testaddr))
468
469 /*
470  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
471  * alloc_sz on the righthand side of the comparison in order to avoid overflow
472  * or underflow in the comparison with it.  This is simpler than the INRANGE
473  * check above, because we know that the dtms_scratch_ptr is valid in the
474  * range.  Allocations of size zero are allowed.
475  */
476 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
477         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
478         (mstate)->dtms_scratch_ptr >= (alloc_sz))
479
480 #define DTRACE_LOADFUNC(bits)                                           \
481 /*CSTYLED*/                                                             \
482 uint##bits##_t                                                          \
483 dtrace_load##bits(uintptr_t addr)                                       \
484 {                                                                       \
485         size_t size = bits / NBBY;                                      \
486         /*CSTYLED*/                                                     \
487         uint##bits##_t rval;                                            \
488         int i;                                                          \
489         volatile uint16_t *flags = (volatile uint16_t *)                \
490             &cpu_core[curcpu].cpuc_dtrace_flags;                        \
491                                                                         \
492         DTRACE_ALIGNCHECK(addr, size, flags);                           \
493                                                                         \
494         for (i = 0; i < dtrace_toxranges; i++) {                        \
495                 if (addr >= dtrace_toxrange[i].dtt_limit)               \
496                         continue;                                       \
497                                                                         \
498                 if (addr + size <= dtrace_toxrange[i].dtt_base)         \
499                         continue;                                       \
500                                                                         \
501                 /*                                                      \
502                  * This address falls within a toxic region; return 0.  \
503                  */                                                     \
504                 *flags |= CPU_DTRACE_BADADDR;                           \
505                 cpu_core[curcpu].cpuc_dtrace_illval = addr;             \
506                 return (0);                                             \
507         }                                                               \
508                                                                         \
509         *flags |= CPU_DTRACE_NOFAULT;                                   \
510         /*CSTYLED*/                                                     \
511         rval = *((volatile uint##bits##_t *)addr);                      \
512         *flags &= ~CPU_DTRACE_NOFAULT;                                  \
513                                                                         \
514         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);               \
515 }
516
517 #ifdef _LP64
518 #define dtrace_loadptr  dtrace_load64
519 #else
520 #define dtrace_loadptr  dtrace_load32
521 #endif
522
523 #define DTRACE_DYNHASH_FREE     0
524 #define DTRACE_DYNHASH_SINK     1
525 #define DTRACE_DYNHASH_VALID    2
526
527 #define DTRACE_MATCH_NEXT       0
528 #define DTRACE_MATCH_DONE       1
529 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
530 #define DTRACE_STATE_ALIGN      64
531
532 #define DTRACE_FLAGS2FLT(flags)                                         \
533         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :           \
534         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :                \
535         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :            \
536         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :                \
537         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :                \
538         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :         \
539         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :         \
540         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :       \
541         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :         \
542         DTRACEFLT_UNKNOWN)
543
544 #define DTRACEACT_ISSTRING(act)                                         \
545         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                        \
546         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
547
548 /* Function prototype definitions: */
549 static size_t dtrace_strlen(const char *, size_t);
550 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
551 static void dtrace_enabling_provide(dtrace_provider_t *);
552 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
553 static void dtrace_enabling_matchall(void);
554 static void dtrace_enabling_reap(void);
555 static dtrace_state_t *dtrace_anon_grab(void);
556 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
557     dtrace_state_t *, uint64_t, uint64_t);
558 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
559 static void dtrace_buffer_drop(dtrace_buffer_t *);
560 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
561 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
562     dtrace_state_t *, dtrace_mstate_t *);
563 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
564     dtrace_optval_t);
565 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
566 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
567 uint16_t dtrace_load16(uintptr_t);
568 uint32_t dtrace_load32(uintptr_t);
569 uint64_t dtrace_load64(uintptr_t);
570 uint8_t dtrace_load8(uintptr_t);
571 void dtrace_dynvar_clean(dtrace_dstate_t *);
572 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
573     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
574 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
575
576 /*
577  * DTrace Probe Context Functions
578  *
579  * These functions are called from probe context.  Because probe context is
580  * any context in which C may be called, arbitrarily locks may be held,
581  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
582  * As a result, functions called from probe context may only call other DTrace
583  * support functions -- they may not interact at all with the system at large.
584  * (Note that the ASSERT macro is made probe-context safe by redefining it in
585  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
586  * loads are to be performed from probe context, they _must_ be in terms of
587  * the safe dtrace_load*() variants.
588  *
589  * Some functions in this block are not actually called from probe context;
590  * for these functions, there will be a comment above the function reading
591  * "Note:  not called from probe context."
592  */
593 void
594 dtrace_panic(const char *format, ...)
595 {
596         va_list alist;
597
598         va_start(alist, format);
599         dtrace_vpanic(format, alist);
600         va_end(alist);
601 }
602
603 int
604 dtrace_assfail(const char *a, const char *f, int l)
605 {
606         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
607
608         /*
609          * We just need something here that even the most clever compiler
610          * cannot optimize away.
611          */
612         return (a[(uintptr_t)f]);
613 }
614
615 /*
616  * Atomically increment a specified error counter from probe context.
617  */
618 static void
619 dtrace_error(uint32_t *counter)
620 {
621         /*
622          * Most counters stored to in probe context are per-CPU counters.
623          * However, there are some error conditions that are sufficiently
624          * arcane that they don't merit per-CPU storage.  If these counters
625          * are incremented concurrently on different CPUs, scalability will be
626          * adversely affected -- but we don't expect them to be white-hot in a
627          * correctly constructed enabling...
628          */
629         uint32_t oval, nval;
630
631         do {
632                 oval = *counter;
633
634                 if ((nval = oval + 1) == 0) {
635                         /*
636                          * If the counter would wrap, set it to 1 -- assuring
637                          * that the counter is never zero when we have seen
638                          * errors.  (The counter must be 32-bits because we
639                          * aren't guaranteed a 64-bit compare&swap operation.)
640                          * To save this code both the infamy of being fingered
641                          * by a priggish news story and the indignity of being
642                          * the target of a neo-puritan witch trial, we're
643                          * carefully avoiding any colorful description of the
644                          * likelihood of this condition -- but suffice it to
645                          * say that it is only slightly more likely than the
646                          * overflow of predicate cache IDs, as discussed in
647                          * dtrace_predicate_create().
648                          */
649                         nval = 1;
650                 }
651         } while (dtrace_cas32(counter, oval, nval) != oval);
652 }
653
654 /*
655  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
656  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
657  */
658 DTRACE_LOADFUNC(8)
659 DTRACE_LOADFUNC(16)
660 DTRACE_LOADFUNC(32)
661 DTRACE_LOADFUNC(64)
662
663 static int
664 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
665 {
666         if (dest < mstate->dtms_scratch_base)
667                 return (0);
668
669         if (dest + size < dest)
670                 return (0);
671
672         if (dest + size > mstate->dtms_scratch_ptr)
673                 return (0);
674
675         return (1);
676 }
677
678 static int
679 dtrace_canstore_statvar(uint64_t addr, size_t sz,
680     dtrace_statvar_t **svars, int nsvars)
681 {
682         int i;
683
684         for (i = 0; i < nsvars; i++) {
685                 dtrace_statvar_t *svar = svars[i];
686
687                 if (svar == NULL || svar->dtsv_size == 0)
688                         continue;
689
690                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
691                         return (1);
692         }
693
694         return (0);
695 }
696
697 /*
698  * Check to see if the address is within a memory region to which a store may
699  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
700  * region.  The caller of dtrace_canstore() is responsible for performing any
701  * alignment checks that are needed before stores are actually executed.
702  */
703 static int
704 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
705     dtrace_vstate_t *vstate)
706 {
707         /*
708          * First, check to see if the address is in scratch space...
709          */
710         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
711             mstate->dtms_scratch_size))
712                 return (1);
713
714         /*
715          * Now check to see if it's a dynamic variable.  This check will pick
716          * up both thread-local variables and any global dynamically-allocated
717          * variables.
718          */
719         if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
720             vstate->dtvs_dynvars.dtds_size)) {
721                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
722                 uintptr_t base = (uintptr_t)dstate->dtds_base +
723                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
724                 uintptr_t chunkoffs;
725
726                 /*
727                  * Before we assume that we can store here, we need to make
728                  * sure that it isn't in our metadata -- storing to our
729                  * dynamic variable metadata would corrupt our state.  For
730                  * the range to not include any dynamic variable metadata,
731                  * it must:
732                  *
733                  *      (1) Start above the hash table that is at the base of
734                  *      the dynamic variable space
735                  *
736                  *      (2) Have a starting chunk offset that is beyond the
737                  *      dtrace_dynvar_t that is at the base of every chunk
738                  *
739                  *      (3) Not span a chunk boundary
740                  *
741                  */
742                 if (addr < base)
743                         return (0);
744
745                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
746
747                 if (chunkoffs < sizeof (dtrace_dynvar_t))
748                         return (0);
749
750                 if (chunkoffs + sz > dstate->dtds_chunksize)
751                         return (0);
752
753                 return (1);
754         }
755
756         /*
757          * Finally, check the static local and global variables.  These checks
758          * take the longest, so we perform them last.
759          */
760         if (dtrace_canstore_statvar(addr, sz,
761             vstate->dtvs_locals, vstate->dtvs_nlocals))
762                 return (1);
763
764         if (dtrace_canstore_statvar(addr, sz,
765             vstate->dtvs_globals, vstate->dtvs_nglobals))
766                 return (1);
767
768         return (0);
769 }
770
771
772 /*
773  * Convenience routine to check to see if the address is within a memory
774  * region in which a load may be issued given the user's privilege level;
775  * if not, it sets the appropriate error flags and loads 'addr' into the
776  * illegal value slot.
777  *
778  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
779  * appropriate memory access protection.
780  */
781 static int
782 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
783     dtrace_vstate_t *vstate)
784 {
785         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
786
787         /*
788          * If we hold the privilege to read from kernel memory, then
789          * everything is readable.
790          */
791         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
792                 return (1);
793
794         /*
795          * You can obviously read that which you can store.
796          */
797         if (dtrace_canstore(addr, sz, mstate, vstate))
798                 return (1);
799
800         /*
801          * We're allowed to read from our own string table.
802          */
803         if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
804             mstate->dtms_difo->dtdo_strlen))
805                 return (1);
806
807         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
808         *illval = addr;
809         return (0);
810 }
811
812 /*
813  * Convenience routine to check to see if a given string is within a memory
814  * region in which a load may be issued given the user's privilege level;
815  * this exists so that we don't need to issue unnecessary dtrace_strlen()
816  * calls in the event that the user has all privileges.
817  */
818 static int
819 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
820     dtrace_vstate_t *vstate)
821 {
822         size_t strsz;
823
824         /*
825          * If we hold the privilege to read from kernel memory, then
826          * everything is readable.
827          */
828         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
829                 return (1);
830
831         strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
832         if (dtrace_canload(addr, strsz, mstate, vstate))
833                 return (1);
834
835         return (0);
836 }
837
838 /*
839  * Convenience routine to check to see if a given variable is within a memory
840  * region in which a load may be issued given the user's privilege level.
841  */
842 static int
843 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
844     dtrace_vstate_t *vstate)
845 {
846         size_t sz;
847         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
848
849         /*
850          * If we hold the privilege to read from kernel memory, then
851          * everything is readable.
852          */
853         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
854                 return (1);
855
856         if (type->dtdt_kind == DIF_TYPE_STRING)
857                 sz = dtrace_strlen(src,
858                     vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
859         else
860                 sz = type->dtdt_size;
861
862         return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
863 }
864
865 /*
866  * Compare two strings using safe loads.
867  */
868 static int
869 dtrace_strncmp(char *s1, char *s2, size_t limit)
870 {
871         uint8_t c1, c2;
872         volatile uint16_t *flags;
873
874         if (s1 == s2 || limit == 0)
875                 return (0);
876
877         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
878
879         do {
880                 if (s1 == NULL) {
881                         c1 = '\0';
882                 } else {
883                         c1 = dtrace_load8((uintptr_t)s1++);
884                 }
885
886                 if (s2 == NULL) {
887                         c2 = '\0';
888                 } else {
889                         c2 = dtrace_load8((uintptr_t)s2++);
890                 }
891
892                 if (c1 != c2)
893                         return (c1 - c2);
894         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
895
896         return (0);
897 }
898
899 /*
900  * Compute strlen(s) for a string using safe memory accesses.  The additional
901  * len parameter is used to specify a maximum length to ensure completion.
902  */
903 static size_t
904 dtrace_strlen(const char *s, size_t lim)
905 {
906         uint_t len;
907
908         for (len = 0; len != lim; len++) {
909                 if (dtrace_load8((uintptr_t)s++) == '\0')
910                         break;
911         }
912
913         return (len);
914 }
915
916 /*
917  * Check if an address falls within a toxic region.
918  */
919 static int
920 dtrace_istoxic(uintptr_t kaddr, size_t size)
921 {
922         uintptr_t taddr, tsize;
923         int i;
924
925         for (i = 0; i < dtrace_toxranges; i++) {
926                 taddr = dtrace_toxrange[i].dtt_base;
927                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
928
929                 if (kaddr - taddr < tsize) {
930                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
931                         cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
932                         return (1);
933                 }
934
935                 if (taddr - kaddr < size) {
936                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
937                         cpu_core[curcpu].cpuc_dtrace_illval = taddr;
938                         return (1);
939                 }
940         }
941
942         return (0);
943 }
944
945 /*
946  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
947  * memory specified by the DIF program.  The dst is assumed to be safe memory
948  * that we can store to directly because it is managed by DTrace.  As with
949  * standard bcopy, overlapping copies are handled properly.
950  */
951 static void
952 dtrace_bcopy(const void *src, void *dst, size_t len)
953 {
954         if (len != 0) {
955                 uint8_t *s1 = dst;
956                 const uint8_t *s2 = src;
957
958                 if (s1 <= s2) {
959                         do {
960                                 *s1++ = dtrace_load8((uintptr_t)s2++);
961                         } while (--len != 0);
962                 } else {
963                         s2 += len;
964                         s1 += len;
965
966                         do {
967                                 *--s1 = dtrace_load8((uintptr_t)--s2);
968                         } while (--len != 0);
969                 }
970         }
971 }
972
973 /*
974  * Copy src to dst using safe memory accesses, up to either the specified
975  * length, or the point that a nul byte is encountered.  The src is assumed to
976  * be unsafe memory specified by the DIF program.  The dst is assumed to be
977  * safe memory that we can store to directly because it is managed by DTrace.
978  * Unlike dtrace_bcopy(), overlapping regions are not handled.
979  */
980 static void
981 dtrace_strcpy(const void *src, void *dst, size_t len)
982 {
983         if (len != 0) {
984                 uint8_t *s1 = dst, c;
985                 const uint8_t *s2 = src;
986
987                 do {
988                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
989                 } while (--len != 0 && c != '\0');
990         }
991 }
992
993 /*
994  * Copy src to dst, deriving the size and type from the specified (BYREF)
995  * variable type.  The src is assumed to be unsafe memory specified by the DIF
996  * program.  The dst is assumed to be DTrace variable memory that is of the
997  * specified type; we assume that we can store to directly.
998  */
999 static void
1000 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1001 {
1002         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1003
1004         if (type->dtdt_kind == DIF_TYPE_STRING) {
1005                 dtrace_strcpy(src, dst, type->dtdt_size);
1006         } else {
1007                 dtrace_bcopy(src, dst, type->dtdt_size);
1008         }
1009 }
1010
1011 /*
1012  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1013  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1014  * safe memory that we can access directly because it is managed by DTrace.
1015  */
1016 static int
1017 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1018 {
1019         volatile uint16_t *flags;
1020
1021         flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1022
1023         if (s1 == s2)
1024                 return (0);
1025
1026         if (s1 == NULL || s2 == NULL)
1027                 return (1);
1028
1029         if (s1 != s2 && len != 0) {
1030                 const uint8_t *ps1 = s1;
1031                 const uint8_t *ps2 = s2;
1032
1033                 do {
1034                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1035                                 return (1);
1036                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1037         }
1038         return (0);
1039 }
1040
1041 /*
1042  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1043  * is for safe DTrace-managed memory only.
1044  */
1045 static void
1046 dtrace_bzero(void *dst, size_t len)
1047 {
1048         uchar_t *cp;
1049
1050         for (cp = dst; len != 0; len--)
1051                 *cp++ = 0;
1052 }
1053
1054 static void
1055 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1056 {
1057         uint64_t result[2];
1058
1059         result[0] = addend1[0] + addend2[0];
1060         result[1] = addend1[1] + addend2[1] +
1061             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1062
1063         sum[0] = result[0];
1064         sum[1] = result[1];
1065 }
1066
1067 /*
1068  * Shift the 128-bit value in a by b. If b is positive, shift left.
1069  * If b is negative, shift right.
1070  */
1071 static void
1072 dtrace_shift_128(uint64_t *a, int b)
1073 {
1074         uint64_t mask;
1075
1076         if (b == 0)
1077                 return;
1078
1079         if (b < 0) {
1080                 b = -b;
1081                 if (b >= 64) {
1082                         a[0] = a[1] >> (b - 64);
1083                         a[1] = 0;
1084                 } else {
1085                         a[0] >>= b;
1086                         mask = 1LL << (64 - b);
1087                         mask -= 1;
1088                         a[0] |= ((a[1] & mask) << (64 - b));
1089                         a[1] >>= b;
1090                 }
1091         } else {
1092                 if (b >= 64) {
1093                         a[1] = a[0] << (b - 64);
1094                         a[0] = 0;
1095                 } else {
1096                         a[1] <<= b;
1097                         mask = a[0] >> (64 - b);
1098                         a[1] |= mask;
1099                         a[0] <<= b;
1100                 }
1101         }
1102 }
1103
1104 /*
1105  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1106  * use native multiplication on those, and then re-combine into the
1107  * resulting 128-bit value.
1108  *
1109  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1110  *     hi1 * hi2 << 64 +
1111  *     hi1 * lo2 << 32 +
1112  *     hi2 * lo1 << 32 +
1113  *     lo1 * lo2
1114  */
1115 static void
1116 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1117 {
1118         uint64_t hi1, hi2, lo1, lo2;
1119         uint64_t tmp[2];
1120
1121         hi1 = factor1 >> 32;
1122         hi2 = factor2 >> 32;
1123
1124         lo1 = factor1 & DT_MASK_LO;
1125         lo2 = factor2 & DT_MASK_LO;
1126
1127         product[0] = lo1 * lo2;
1128         product[1] = hi1 * hi2;
1129
1130         tmp[0] = hi1 * lo2;
1131         tmp[1] = 0;
1132         dtrace_shift_128(tmp, 32);
1133         dtrace_add_128(product, tmp, product);
1134
1135         tmp[0] = hi2 * lo1;
1136         tmp[1] = 0;
1137         dtrace_shift_128(tmp, 32);
1138         dtrace_add_128(product, tmp, product);
1139 }
1140
1141 /*
1142  * This privilege check should be used by actions and subroutines to
1143  * verify that the user credentials of the process that enabled the
1144  * invoking ECB match the target credentials
1145  */
1146 static int
1147 dtrace_priv_proc_common_user(dtrace_state_t *state)
1148 {
1149         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1150
1151         /*
1152          * We should always have a non-NULL state cred here, since if cred
1153          * is null (anonymous tracing), we fast-path bypass this routine.
1154          */
1155         ASSERT(s_cr != NULL);
1156
1157         if ((cr = CRED()) != NULL &&
1158             s_cr->cr_uid == cr->cr_uid &&
1159             s_cr->cr_uid == cr->cr_ruid &&
1160             s_cr->cr_uid == cr->cr_suid &&
1161             s_cr->cr_gid == cr->cr_gid &&
1162             s_cr->cr_gid == cr->cr_rgid &&
1163             s_cr->cr_gid == cr->cr_sgid)
1164                 return (1);
1165
1166         return (0);
1167 }
1168
1169 /*
1170  * This privilege check should be used by actions and subroutines to
1171  * verify that the zone of the process that enabled the invoking ECB
1172  * matches the target credentials
1173  */
1174 static int
1175 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1176 {
1177 #if defined(sun)
1178         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1179
1180         /*
1181          * We should always have a non-NULL state cred here, since if cred
1182          * is null (anonymous tracing), we fast-path bypass this routine.
1183          */
1184         ASSERT(s_cr != NULL);
1185
1186         if ((cr = CRED()) != NULL &&
1187             s_cr->cr_zone == cr->cr_zone)
1188                 return (1);
1189
1190         return (0);
1191 #else
1192         return (1);
1193 #endif
1194 }
1195
1196 /*
1197  * This privilege check should be used by actions and subroutines to
1198  * verify that the process has not setuid or changed credentials.
1199  */
1200 static int
1201 dtrace_priv_proc_common_nocd(void)
1202 {
1203         proc_t *proc;
1204
1205         if ((proc = ttoproc(curthread)) != NULL &&
1206             !(proc->p_flag & SNOCD))
1207                 return (1);
1208
1209         return (0);
1210 }
1211
1212 static int
1213 dtrace_priv_proc_destructive(dtrace_state_t *state)
1214 {
1215         int action = state->dts_cred.dcr_action;
1216
1217         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1218             dtrace_priv_proc_common_zone(state) == 0)
1219                 goto bad;
1220
1221         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1222             dtrace_priv_proc_common_user(state) == 0)
1223                 goto bad;
1224
1225         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1226             dtrace_priv_proc_common_nocd() == 0)
1227                 goto bad;
1228
1229         return (1);
1230
1231 bad:
1232         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1233
1234         return (0);
1235 }
1236
1237 static int
1238 dtrace_priv_proc_control(dtrace_state_t *state)
1239 {
1240         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1241                 return (1);
1242
1243         if (dtrace_priv_proc_common_zone(state) &&
1244             dtrace_priv_proc_common_user(state) &&
1245             dtrace_priv_proc_common_nocd())
1246                 return (1);
1247
1248         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1249
1250         return (0);
1251 }
1252
1253 static int
1254 dtrace_priv_proc(dtrace_state_t *state)
1255 {
1256         if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1257                 return (1);
1258
1259         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1260
1261         return (0);
1262 }
1263
1264 static int
1265 dtrace_priv_kernel(dtrace_state_t *state)
1266 {
1267         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1268                 return (1);
1269
1270         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1271
1272         return (0);
1273 }
1274
1275 static int
1276 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1277 {
1278         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1279                 return (1);
1280
1281         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1282
1283         return (0);
1284 }
1285
1286 /*
1287  * Note:  not called from probe context.  This function is called
1288  * asynchronously (and at a regular interval) from outside of probe context to
1289  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1290  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1291  */
1292 void
1293 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1294 {
1295         dtrace_dynvar_t *dirty;
1296         dtrace_dstate_percpu_t *dcpu;
1297         int i, work = 0;
1298
1299         for (i = 0; i < NCPU; i++) {
1300                 dcpu = &dstate->dtds_percpu[i];
1301
1302                 ASSERT(dcpu->dtdsc_rinsing == NULL);
1303
1304                 /*
1305                  * If the dirty list is NULL, there is no dirty work to do.
1306                  */
1307                 if (dcpu->dtdsc_dirty == NULL)
1308                         continue;
1309
1310                 /*
1311                  * If the clean list is non-NULL, then we're not going to do
1312                  * any work for this CPU -- it means that there has not been
1313                  * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1314                  * since the last time we cleaned house.
1315                  */
1316                 if (dcpu->dtdsc_clean != NULL)
1317                         continue;
1318
1319                 work = 1;
1320
1321                 /*
1322                  * Atomically move the dirty list aside.
1323                  */
1324                 do {
1325                         dirty = dcpu->dtdsc_dirty;
1326
1327                         /*
1328                          * Before we zap the dirty list, set the rinsing list.
1329                          * (This allows for a potential assertion in
1330                          * dtrace_dynvar():  if a free dynamic variable appears
1331                          * on a hash chain, either the dirty list or the
1332                          * rinsing list for some CPU must be non-NULL.)
1333                          */
1334                         dcpu->dtdsc_rinsing = dirty;
1335                         dtrace_membar_producer();
1336                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1337                     dirty, NULL) != dirty);
1338         }
1339
1340         if (!work) {
1341                 /*
1342                  * We have no work to do; we can simply return.
1343                  */
1344                 return;
1345         }
1346
1347         dtrace_sync();
1348
1349         for (i = 0; i < NCPU; i++) {
1350                 dcpu = &dstate->dtds_percpu[i];
1351
1352                 if (dcpu->dtdsc_rinsing == NULL)
1353                         continue;
1354
1355                 /*
1356                  * We are now guaranteed that no hash chain contains a pointer
1357                  * into this dirty list; we can make it clean.
1358                  */
1359                 ASSERT(dcpu->dtdsc_clean == NULL);
1360                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1361                 dcpu->dtdsc_rinsing = NULL;
1362         }
1363
1364         /*
1365          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1366          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1367          * This prevents a race whereby a CPU incorrectly decides that
1368          * the state should be something other than DTRACE_DSTATE_CLEAN
1369          * after dtrace_dynvar_clean() has completed.
1370          */
1371         dtrace_sync();
1372
1373         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1374 }
1375
1376 /*
1377  * Depending on the value of the op parameter, this function looks-up,
1378  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1379  * allocation is requested, this function will return a pointer to a
1380  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1381  * variable can be allocated.  If NULL is returned, the appropriate counter
1382  * will be incremented.
1383  */
1384 dtrace_dynvar_t *
1385 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1386     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1387     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1388 {
1389         uint64_t hashval = DTRACE_DYNHASH_VALID;
1390         dtrace_dynhash_t *hash = dstate->dtds_hash;
1391         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1392         processorid_t me = curcpu, cpu = me;
1393         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1394         size_t bucket, ksize;
1395         size_t chunksize = dstate->dtds_chunksize;
1396         uintptr_t kdata, lock, nstate;
1397         uint_t i;
1398
1399         ASSERT(nkeys != 0);
1400
1401         /*
1402          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1403          * algorithm.  For the by-value portions, we perform the algorithm in
1404          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1405          * bit, and seems to have only a minute effect on distribution.  For
1406          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1407          * over each referenced byte.  It's painful to do this, but it's much
1408          * better than pathological hash distribution.  The efficacy of the
1409          * hashing algorithm (and a comparison with other algorithms) may be
1410          * found by running the ::dtrace_dynstat MDB dcmd.
1411          */
1412         for (i = 0; i < nkeys; i++) {
1413                 if (key[i].dttk_size == 0) {
1414                         uint64_t val = key[i].dttk_value;
1415
1416                         hashval += (val >> 48) & 0xffff;
1417                         hashval += (hashval << 10);
1418                         hashval ^= (hashval >> 6);
1419
1420                         hashval += (val >> 32) & 0xffff;
1421                         hashval += (hashval << 10);
1422                         hashval ^= (hashval >> 6);
1423
1424                         hashval += (val >> 16) & 0xffff;
1425                         hashval += (hashval << 10);
1426                         hashval ^= (hashval >> 6);
1427
1428                         hashval += val & 0xffff;
1429                         hashval += (hashval << 10);
1430                         hashval ^= (hashval >> 6);
1431                 } else {
1432                         /*
1433                          * This is incredibly painful, but it beats the hell
1434                          * out of the alternative.
1435                          */
1436                         uint64_t j, size = key[i].dttk_size;
1437                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1438
1439                         if (!dtrace_canload(base, size, mstate, vstate))
1440                                 break;
1441
1442                         for (j = 0; j < size; j++) {
1443                                 hashval += dtrace_load8(base + j);
1444                                 hashval += (hashval << 10);
1445                                 hashval ^= (hashval >> 6);
1446                         }
1447                 }
1448         }
1449
1450         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1451                 return (NULL);
1452
1453         hashval += (hashval << 3);
1454         hashval ^= (hashval >> 11);
1455         hashval += (hashval << 15);
1456
1457         /*
1458          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1459          * comes out to be one of our two sentinel hash values.  If this
1460          * actually happens, we set the hashval to be a value known to be a
1461          * non-sentinel value.
1462          */
1463         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1464                 hashval = DTRACE_DYNHASH_VALID;
1465
1466         /*
1467          * Yes, it's painful to do a divide here.  If the cycle count becomes
1468          * important here, tricks can be pulled to reduce it.  (However, it's
1469          * critical that hash collisions be kept to an absolute minimum;
1470          * they're much more painful than a divide.)  It's better to have a
1471          * solution that generates few collisions and still keeps things
1472          * relatively simple.
1473          */
1474         bucket = hashval % dstate->dtds_hashsize;
1475
1476         if (op == DTRACE_DYNVAR_DEALLOC) {
1477                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1478
1479                 for (;;) {
1480                         while ((lock = *lockp) & 1)
1481                                 continue;
1482
1483                         if (dtrace_casptr((volatile void *)lockp,
1484                             (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1485                                 break;
1486                 }
1487
1488                 dtrace_membar_producer();
1489         }
1490
1491 top:
1492         prev = NULL;
1493         lock = hash[bucket].dtdh_lock;
1494
1495         dtrace_membar_consumer();
1496
1497         start = hash[bucket].dtdh_chain;
1498         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1499             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1500             op != DTRACE_DYNVAR_DEALLOC));
1501
1502         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1503                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1504                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1505
1506                 if (dvar->dtdv_hashval != hashval) {
1507                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1508                                 /*
1509                                  * We've reached the sink, and therefore the
1510                                  * end of the hash chain; we can kick out of
1511                                  * the loop knowing that we have seen a valid
1512                                  * snapshot of state.
1513                                  */
1514                                 ASSERT(dvar->dtdv_next == NULL);
1515                                 ASSERT(dvar == &dtrace_dynhash_sink);
1516                                 break;
1517                         }
1518
1519                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1520                                 /*
1521                                  * We've gone off the rails:  somewhere along
1522                                  * the line, one of the members of this hash
1523                                  * chain was deleted.  Note that we could also
1524                                  * detect this by simply letting this loop run
1525                                  * to completion, as we would eventually hit
1526                                  * the end of the dirty list.  However, we
1527                                  * want to avoid running the length of the
1528                                  * dirty list unnecessarily (it might be quite
1529                                  * long), so we catch this as early as
1530                                  * possible by detecting the hash marker.  In
1531                                  * this case, we simply set dvar to NULL and
1532                                  * break; the conditional after the loop will
1533                                  * send us back to top.
1534                                  */
1535                                 dvar = NULL;
1536                                 break;
1537                         }
1538
1539                         goto next;
1540                 }
1541
1542                 if (dtuple->dtt_nkeys != nkeys)
1543                         goto next;
1544
1545                 for (i = 0; i < nkeys; i++, dkey++) {
1546                         if (dkey->dttk_size != key[i].dttk_size)
1547                                 goto next; /* size or type mismatch */
1548
1549                         if (dkey->dttk_size != 0) {
1550                                 if (dtrace_bcmp(
1551                                     (void *)(uintptr_t)key[i].dttk_value,
1552                                     (void *)(uintptr_t)dkey->dttk_value,
1553                                     dkey->dttk_size))
1554                                         goto next;
1555                         } else {
1556                                 if (dkey->dttk_value != key[i].dttk_value)
1557                                         goto next;
1558                         }
1559                 }
1560
1561                 if (op != DTRACE_DYNVAR_DEALLOC)
1562                         return (dvar);
1563
1564                 ASSERT(dvar->dtdv_next == NULL ||
1565                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1566
1567                 if (prev != NULL) {
1568                         ASSERT(hash[bucket].dtdh_chain != dvar);
1569                         ASSERT(start != dvar);
1570                         ASSERT(prev->dtdv_next == dvar);
1571                         prev->dtdv_next = dvar->dtdv_next;
1572                 } else {
1573                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1574                             start, dvar->dtdv_next) != start) {
1575                                 /*
1576                                  * We have failed to atomically swing the
1577                                  * hash table head pointer, presumably because
1578                                  * of a conflicting allocation on another CPU.
1579                                  * We need to reread the hash chain and try
1580                                  * again.
1581                                  */
1582                                 goto top;
1583                         }
1584                 }
1585
1586                 dtrace_membar_producer();
1587
1588                 /*
1589                  * Now set the hash value to indicate that it's free.
1590                  */
1591                 ASSERT(hash[bucket].dtdh_chain != dvar);
1592                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1593
1594                 dtrace_membar_producer();
1595
1596                 /*
1597                  * Set the next pointer to point at the dirty list, and
1598                  * atomically swing the dirty pointer to the newly freed dvar.
1599                  */
1600                 do {
1601                         next = dcpu->dtdsc_dirty;
1602                         dvar->dtdv_next = next;
1603                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1604
1605                 /*
1606                  * Finally, unlock this hash bucket.
1607                  */
1608                 ASSERT(hash[bucket].dtdh_lock == lock);
1609                 ASSERT(lock & 1);
1610                 hash[bucket].dtdh_lock++;
1611
1612                 return (NULL);
1613 next:
1614                 prev = dvar;
1615                 continue;
1616         }
1617
1618         if (dvar == NULL) {
1619                 /*
1620                  * If dvar is NULL, it is because we went off the rails:
1621                  * one of the elements that we traversed in the hash chain
1622                  * was deleted while we were traversing it.  In this case,
1623                  * we assert that we aren't doing a dealloc (deallocs lock
1624                  * the hash bucket to prevent themselves from racing with
1625                  * one another), and retry the hash chain traversal.
1626                  */
1627                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1628                 goto top;
1629         }
1630
1631         if (op != DTRACE_DYNVAR_ALLOC) {
1632                 /*
1633                  * If we are not to allocate a new variable, we want to
1634                  * return NULL now.  Before we return, check that the value
1635                  * of the lock word hasn't changed.  If it has, we may have
1636                  * seen an inconsistent snapshot.
1637                  */
1638                 if (op == DTRACE_DYNVAR_NOALLOC) {
1639                         if (hash[bucket].dtdh_lock != lock)
1640                                 goto top;
1641                 } else {
1642                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1643                         ASSERT(hash[bucket].dtdh_lock == lock);
1644                         ASSERT(lock & 1);
1645                         hash[bucket].dtdh_lock++;
1646                 }
1647
1648                 return (NULL);
1649         }
1650
1651         /*
1652          * We need to allocate a new dynamic variable.  The size we need is the
1653          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1654          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1655          * the size of any referred-to data (dsize).  We then round the final
1656          * size up to the chunksize for allocation.
1657          */
1658         for (ksize = 0, i = 0; i < nkeys; i++)
1659                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1660
1661         /*
1662          * This should be pretty much impossible, but could happen if, say,
1663          * strange DIF specified the tuple.  Ideally, this should be an
1664          * assertion and not an error condition -- but that requires that the
1665          * chunksize calculation in dtrace_difo_chunksize() be absolutely
1666          * bullet-proof.  (That is, it must not be able to be fooled by
1667          * malicious DIF.)  Given the lack of backwards branches in DIF,
1668          * solving this would presumably not amount to solving the Halting
1669          * Problem -- but it still seems awfully hard.
1670          */
1671         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1672             ksize + dsize > chunksize) {
1673                 dcpu->dtdsc_drops++;
1674                 return (NULL);
1675         }
1676
1677         nstate = DTRACE_DSTATE_EMPTY;
1678
1679         do {
1680 retry:
1681                 free = dcpu->dtdsc_free;
1682
1683                 if (free == NULL) {
1684                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1685                         void *rval;
1686
1687                         if (clean == NULL) {
1688                                 /*
1689                                  * We're out of dynamic variable space on
1690                                  * this CPU.  Unless we have tried all CPUs,
1691                                  * we'll try to allocate from a different
1692                                  * CPU.
1693                                  */
1694                                 switch (dstate->dtds_state) {
1695                                 case DTRACE_DSTATE_CLEAN: {
1696                                         void *sp = &dstate->dtds_state;
1697
1698                                         if (++cpu >= NCPU)
1699                                                 cpu = 0;
1700
1701                                         if (dcpu->dtdsc_dirty != NULL &&
1702                                             nstate == DTRACE_DSTATE_EMPTY)
1703                                                 nstate = DTRACE_DSTATE_DIRTY;
1704
1705                                         if (dcpu->dtdsc_rinsing != NULL)
1706                                                 nstate = DTRACE_DSTATE_RINSING;
1707
1708                                         dcpu = &dstate->dtds_percpu[cpu];
1709
1710                                         if (cpu != me)
1711                                                 goto retry;
1712
1713                                         (void) dtrace_cas32(sp,
1714                                             DTRACE_DSTATE_CLEAN, nstate);
1715
1716                                         /*
1717                                          * To increment the correct bean
1718                                          * counter, take another lap.
1719                                          */
1720                                         goto retry;
1721                                 }
1722
1723                                 case DTRACE_DSTATE_DIRTY:
1724                                         dcpu->dtdsc_dirty_drops++;
1725                                         break;
1726
1727                                 case DTRACE_DSTATE_RINSING:
1728                                         dcpu->dtdsc_rinsing_drops++;
1729                                         break;
1730
1731                                 case DTRACE_DSTATE_EMPTY:
1732                                         dcpu->dtdsc_drops++;
1733                                         break;
1734                                 }
1735
1736                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1737                                 return (NULL);
1738                         }
1739
1740                         /*
1741                          * The clean list appears to be non-empty.  We want to
1742                          * move the clean list to the free list; we start by
1743                          * moving the clean pointer aside.
1744                          */
1745                         if (dtrace_casptr(&dcpu->dtdsc_clean,
1746                             clean, NULL) != clean) {
1747                                 /*
1748                                  * We are in one of two situations:
1749                                  *
1750                                  *  (a) The clean list was switched to the
1751                                  *      free list by another CPU.
1752                                  *
1753                                  *  (b) The clean list was added to by the
1754                                  *      cleansing cyclic.
1755                                  *
1756                                  * In either of these situations, we can
1757                                  * just reattempt the free list allocation.
1758                                  */
1759                                 goto retry;
1760                         }
1761
1762                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1763
1764                         /*
1765                          * Now we'll move the clean list to the free list.
1766                          * It's impossible for this to fail:  the only way
1767                          * the free list can be updated is through this
1768                          * code path, and only one CPU can own the clean list.
1769                          * Thus, it would only be possible for this to fail if
1770                          * this code were racing with dtrace_dynvar_clean().
1771                          * (That is, if dtrace_dynvar_clean() updated the clean
1772                          * list, and we ended up racing to update the free
1773                          * list.)  This race is prevented by the dtrace_sync()
1774                          * in dtrace_dynvar_clean() -- which flushes the
1775                          * owners of the clean lists out before resetting
1776                          * the clean lists.
1777                          */
1778                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1779                         ASSERT(rval == NULL);
1780                         goto retry;
1781                 }
1782
1783                 dvar = free;
1784                 new_free = dvar->dtdv_next;
1785         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1786
1787         /*
1788          * We have now allocated a new chunk.  We copy the tuple keys into the
1789          * tuple array and copy any referenced key data into the data space
1790          * following the tuple array.  As we do this, we relocate dttk_value
1791          * in the final tuple to point to the key data address in the chunk.
1792          */
1793         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1794         dvar->dtdv_data = (void *)(kdata + ksize);
1795         dvar->dtdv_tuple.dtt_nkeys = nkeys;
1796
1797         for (i = 0; i < nkeys; i++) {
1798                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1799                 size_t kesize = key[i].dttk_size;
1800
1801                 if (kesize != 0) {
1802                         dtrace_bcopy(
1803                             (const void *)(uintptr_t)key[i].dttk_value,
1804                             (void *)kdata, kesize);
1805                         dkey->dttk_value = kdata;
1806                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1807                 } else {
1808                         dkey->dttk_value = key[i].dttk_value;
1809                 }
1810
1811                 dkey->dttk_size = kesize;
1812         }
1813
1814         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1815         dvar->dtdv_hashval = hashval;
1816         dvar->dtdv_next = start;
1817
1818         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1819                 return (dvar);
1820
1821         /*
1822          * The cas has failed.  Either another CPU is adding an element to
1823          * this hash chain, or another CPU is deleting an element from this
1824          * hash chain.  The simplest way to deal with both of these cases
1825          * (though not necessarily the most efficient) is to free our
1826          * allocated block and tail-call ourselves.  Note that the free is
1827          * to the dirty list and _not_ to the free list.  This is to prevent
1828          * races with allocators, above.
1829          */
1830         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1831
1832         dtrace_membar_producer();
1833
1834         do {
1835                 free = dcpu->dtdsc_dirty;
1836                 dvar->dtdv_next = free;
1837         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1838
1839         return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1840 }
1841
1842 /*ARGSUSED*/
1843 static void
1844 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1845 {
1846         if ((int64_t)nval < (int64_t)*oval)
1847                 *oval = nval;
1848 }
1849
1850 /*ARGSUSED*/
1851 static void
1852 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1853 {
1854         if ((int64_t)nval > (int64_t)*oval)
1855                 *oval = nval;
1856 }
1857
1858 static void
1859 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1860 {
1861         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1862         int64_t val = (int64_t)nval;
1863
1864         if (val < 0) {
1865                 for (i = 0; i < zero; i++) {
1866                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1867                                 quanta[i] += incr;
1868                                 return;
1869                         }
1870                 }
1871         } else {
1872                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1873                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1874                                 quanta[i - 1] += incr;
1875                                 return;
1876                         }
1877                 }
1878
1879                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1880                 return;
1881         }
1882
1883         ASSERT(0);
1884 }
1885
1886 static void
1887 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1888 {
1889         uint64_t arg = *lquanta++;
1890         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1891         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1892         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1893         int32_t val = (int32_t)nval, level;
1894
1895         ASSERT(step != 0);
1896         ASSERT(levels != 0);
1897
1898         if (val < base) {
1899                 /*
1900                  * This is an underflow.
1901                  */
1902                 lquanta[0] += incr;
1903                 return;
1904         }
1905
1906         level = (val - base) / step;
1907
1908         if (level < levels) {
1909                 lquanta[level + 1] += incr;
1910                 return;
1911         }
1912
1913         /*
1914          * This is an overflow.
1915          */
1916         lquanta[levels + 1] += incr;
1917 }
1918
1919 static int
1920 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1921     uint16_t high, uint16_t nsteps, int64_t value)
1922 {
1923         int64_t this = 1, last, next;
1924         int base = 1, order;
1925
1926         ASSERT(factor <= nsteps);
1927         ASSERT(nsteps % factor == 0);
1928
1929         for (order = 0; order < low; order++)
1930                 this *= factor;
1931
1932         /*
1933          * If our value is less than our factor taken to the power of the
1934          * low order of magnitude, it goes into the zeroth bucket.
1935          */
1936         if (value < (last = this))
1937                 return (0);
1938
1939         for (this *= factor; order <= high; order++) {
1940                 int nbuckets = this > nsteps ? nsteps : this;
1941
1942                 if ((next = this * factor) < this) {
1943                         /*
1944                          * We should not generally get log/linear quantizations
1945                          * with a high magnitude that allows 64-bits to
1946                          * overflow, but we nonetheless protect against this
1947                          * by explicitly checking for overflow, and clamping
1948                          * our value accordingly.
1949                          */
1950                         value = this - 1;
1951                 }
1952
1953                 if (value < this) {
1954                         /*
1955                          * If our value lies within this order of magnitude,
1956                          * determine its position by taking the offset within
1957                          * the order of magnitude, dividing by the bucket
1958                          * width, and adding to our (accumulated) base.
1959                          */
1960                         return (base + (value - last) / (this / nbuckets));
1961                 }
1962
1963                 base += nbuckets - (nbuckets / factor);
1964                 last = this;
1965                 this = next;
1966         }
1967
1968         /*
1969          * Our value is greater than or equal to our factor taken to the
1970          * power of one plus the high magnitude -- return the top bucket.
1971          */
1972         return (base);
1973 }
1974
1975 static void
1976 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1977 {
1978         uint64_t arg = *llquanta++;
1979         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1980         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1981         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1982         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1983
1984         llquanta[dtrace_aggregate_llquantize_bucket(factor,
1985             low, high, nsteps, nval)] += incr;
1986 }
1987
1988 /*ARGSUSED*/
1989 static void
1990 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1991 {
1992         data[0]++;
1993         data[1] += nval;
1994 }
1995
1996 /*ARGSUSED*/
1997 static void
1998 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1999 {
2000         int64_t snval = (int64_t)nval;
2001         uint64_t tmp[2];
2002
2003         data[0]++;
2004         data[1] += nval;
2005
2006         /*
2007          * What we want to say here is:
2008          *
2009          * data[2] += nval * nval;
2010          *
2011          * But given that nval is 64-bit, we could easily overflow, so
2012          * we do this as 128-bit arithmetic.
2013          */
2014         if (snval < 0)
2015                 snval = -snval;
2016
2017         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2018         dtrace_add_128(data + 2, tmp, data + 2);
2019 }
2020
2021 /*ARGSUSED*/
2022 static void
2023 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2024 {
2025         *oval = *oval + 1;
2026 }
2027
2028 /*ARGSUSED*/
2029 static void
2030 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2031 {
2032         *oval += nval;
2033 }
2034
2035 /*
2036  * Aggregate given the tuple in the principal data buffer, and the aggregating
2037  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2038  * buffer is specified as the buf parameter.  This routine does not return
2039  * failure; if there is no space in the aggregation buffer, the data will be
2040  * dropped, and a corresponding counter incremented.
2041  */
2042 static void
2043 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2044     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2045 {
2046         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2047         uint32_t i, ndx, size, fsize;
2048         uint32_t align = sizeof (uint64_t) - 1;
2049         dtrace_aggbuffer_t *agb;
2050         dtrace_aggkey_t *key;
2051         uint32_t hashval = 0, limit, isstr;
2052         caddr_t tomax, data, kdata;
2053         dtrace_actkind_t action;
2054         dtrace_action_t *act;
2055         uintptr_t offs;
2056
2057         if (buf == NULL)
2058                 return;
2059
2060         if (!agg->dtag_hasarg) {
2061                 /*
2062                  * Currently, only quantize() and lquantize() take additional
2063                  * arguments, and they have the same semantics:  an increment
2064                  * value that defaults to 1 when not present.  If additional
2065                  * aggregating actions take arguments, the setting of the
2066                  * default argument value will presumably have to become more
2067                  * sophisticated...
2068                  */
2069                 arg = 1;
2070         }
2071
2072         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2073         size = rec->dtrd_offset - agg->dtag_base;
2074         fsize = size + rec->dtrd_size;
2075
2076         ASSERT(dbuf->dtb_tomax != NULL);
2077         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2078
2079         if ((tomax = buf->dtb_tomax) == NULL) {
2080                 dtrace_buffer_drop(buf);
2081                 return;
2082         }
2083
2084         /*
2085          * The metastructure is always at the bottom of the buffer.
2086          */
2087         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2088             sizeof (dtrace_aggbuffer_t));
2089
2090         if (buf->dtb_offset == 0) {
2091                 /*
2092                  * We just kludge up approximately 1/8th of the size to be
2093                  * buckets.  If this guess ends up being routinely
2094                  * off-the-mark, we may need to dynamically readjust this
2095                  * based on past performance.
2096                  */
2097                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2098
2099                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2100                     (uintptr_t)tomax || hashsize == 0) {
2101                         /*
2102                          * We've been given a ludicrously small buffer;
2103                          * increment our drop count and leave.
2104                          */
2105                         dtrace_buffer_drop(buf);
2106                         return;
2107                 }
2108
2109                 /*
2110                  * And now, a pathetic attempt to try to get a an odd (or
2111                  * perchance, a prime) hash size for better hash distribution.
2112                  */
2113                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2114                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2115
2116                 agb->dtagb_hashsize = hashsize;
2117                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2118                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2119                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2120
2121                 for (i = 0; i < agb->dtagb_hashsize; i++)
2122                         agb->dtagb_hash[i] = NULL;
2123         }
2124
2125         ASSERT(agg->dtag_first != NULL);
2126         ASSERT(agg->dtag_first->dta_intuple);
2127
2128         /*
2129          * Calculate the hash value based on the key.  Note that we _don't_
2130          * include the aggid in the hashing (but we will store it as part of
2131          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2132          * algorithm: a simple, quick algorithm that has no known funnels, and
2133          * gets good distribution in practice.  The efficacy of the hashing
2134          * algorithm (and a comparison with other algorithms) may be found by
2135          * running the ::dtrace_aggstat MDB dcmd.
2136          */
2137         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2138                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2139                 limit = i + act->dta_rec.dtrd_size;
2140                 ASSERT(limit <= size);
2141                 isstr = DTRACEACT_ISSTRING(act);
2142
2143                 for (; i < limit; i++) {
2144                         hashval += data[i];
2145                         hashval += (hashval << 10);
2146                         hashval ^= (hashval >> 6);
2147
2148                         if (isstr && data[i] == '\0')
2149                                 break;
2150                 }
2151         }
2152
2153         hashval += (hashval << 3);
2154         hashval ^= (hashval >> 11);
2155         hashval += (hashval << 15);
2156
2157         /*
2158          * Yes, the divide here is expensive -- but it's generally the least
2159          * of the performance issues given the amount of data that we iterate
2160          * over to compute hash values, compare data, etc.
2161          */
2162         ndx = hashval % agb->dtagb_hashsize;
2163
2164         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2165                 ASSERT((caddr_t)key >= tomax);
2166                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2167
2168                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2169                         continue;
2170
2171                 kdata = key->dtak_data;
2172                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2173
2174                 for (act = agg->dtag_first; act->dta_intuple;
2175                     act = act->dta_next) {
2176                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2177                         limit = i + act->dta_rec.dtrd_size;
2178                         ASSERT(limit <= size);
2179                         isstr = DTRACEACT_ISSTRING(act);
2180
2181                         for (; i < limit; i++) {
2182                                 if (kdata[i] != data[i])
2183                                         goto next;
2184
2185                                 if (isstr && data[i] == '\0')
2186                                         break;
2187                         }
2188                 }
2189
2190                 if (action != key->dtak_action) {
2191                         /*
2192                          * We are aggregating on the same value in the same
2193                          * aggregation with two different aggregating actions.
2194                          * (This should have been picked up in the compiler,
2195                          * so we may be dealing with errant or devious DIF.)
2196                          * This is an error condition; we indicate as much,
2197                          * and return.
2198                          */
2199                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2200                         return;
2201                 }
2202
2203                 /*
2204                  * This is a hit:  we need to apply the aggregator to
2205                  * the value at this key.
2206                  */
2207                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2208                 return;
2209 next:
2210                 continue;
2211         }
2212
2213         /*
2214          * We didn't find it.  We need to allocate some zero-filled space,
2215          * link it into the hash table appropriately, and apply the aggregator
2216          * to the (zero-filled) value.
2217          */
2218         offs = buf->dtb_offset;
2219         while (offs & (align - 1))
2220                 offs += sizeof (uint32_t);
2221
2222         /*
2223          * If we don't have enough room to both allocate a new key _and_
2224          * its associated data, increment the drop count and return.
2225          */
2226         if ((uintptr_t)tomax + offs + fsize >
2227             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2228                 dtrace_buffer_drop(buf);
2229                 return;
2230         }
2231
2232         /*CONSTCOND*/
2233         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2234         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2235         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2236
2237         key->dtak_data = kdata = tomax + offs;
2238         buf->dtb_offset = offs + fsize;
2239
2240         /*
2241          * Now copy the data across.
2242          */
2243         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2244
2245         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2246                 kdata[i] = data[i];
2247
2248         /*
2249          * Because strings are not zeroed out by default, we need to iterate
2250          * looking for actions that store strings, and we need to explicitly
2251          * pad these strings out with zeroes.
2252          */
2253         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2254                 int nul;
2255
2256                 if (!DTRACEACT_ISSTRING(act))
2257                         continue;
2258
2259                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2260                 limit = i + act->dta_rec.dtrd_size;
2261                 ASSERT(limit <= size);
2262
2263                 for (nul = 0; i < limit; i++) {
2264                         if (nul) {
2265                                 kdata[i] = '\0';
2266                                 continue;
2267                         }
2268
2269                         if (data[i] != '\0')
2270                                 continue;
2271
2272                         nul = 1;
2273                 }
2274         }
2275
2276         for (i = size; i < fsize; i++)
2277                 kdata[i] = 0;
2278
2279         key->dtak_hashval = hashval;
2280         key->dtak_size = size;
2281         key->dtak_action = action;
2282         key->dtak_next = agb->dtagb_hash[ndx];
2283         agb->dtagb_hash[ndx] = key;
2284
2285         /*
2286          * Finally, apply the aggregator.
2287          */
2288         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2289         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2290 }
2291
2292 /*
2293  * Given consumer state, this routine finds a speculation in the INACTIVE
2294  * state and transitions it into the ACTIVE state.  If there is no speculation
2295  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2296  * incremented -- it is up to the caller to take appropriate action.
2297  */
2298 static int
2299 dtrace_speculation(dtrace_state_t *state)
2300 {
2301         int i = 0;
2302         dtrace_speculation_state_t current;
2303         uint32_t *stat = &state->dts_speculations_unavail, count;
2304
2305         while (i < state->dts_nspeculations) {
2306                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2307
2308                 current = spec->dtsp_state;
2309
2310                 if (current != DTRACESPEC_INACTIVE) {
2311                         if (current == DTRACESPEC_COMMITTINGMANY ||
2312                             current == DTRACESPEC_COMMITTING ||
2313                             current == DTRACESPEC_DISCARDING)
2314                                 stat = &state->dts_speculations_busy;
2315                         i++;
2316                         continue;
2317                 }
2318
2319                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2320                     current, DTRACESPEC_ACTIVE) == current)
2321                         return (i + 1);
2322         }
2323
2324         /*
2325          * We couldn't find a speculation.  If we found as much as a single
2326          * busy speculation buffer, we'll attribute this failure as "busy"
2327          * instead of "unavail".
2328          */
2329         do {
2330                 count = *stat;
2331         } while (dtrace_cas32(stat, count, count + 1) != count);
2332
2333         return (0);
2334 }
2335
2336 /*
2337  * This routine commits an active speculation.  If the specified speculation
2338  * is not in a valid state to perform a commit(), this routine will silently do
2339  * nothing.  The state of the specified speculation is transitioned according
2340  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2341  */
2342 static void
2343 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2344     dtrace_specid_t which)
2345 {
2346         dtrace_speculation_t *spec;
2347         dtrace_buffer_t *src, *dest;
2348         uintptr_t daddr, saddr, dlimit;
2349         dtrace_speculation_state_t current, new = 0;
2350         intptr_t offs;
2351
2352         if (which == 0)
2353                 return;
2354
2355         if (which > state->dts_nspeculations) {
2356                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2357                 return;
2358         }
2359
2360         spec = &state->dts_speculations[which - 1];
2361         src = &spec->dtsp_buffer[cpu];
2362         dest = &state->dts_buffer[cpu];
2363
2364         do {
2365                 current = spec->dtsp_state;
2366
2367                 if (current == DTRACESPEC_COMMITTINGMANY)
2368                         break;
2369
2370                 switch (current) {
2371                 case DTRACESPEC_INACTIVE:
2372                 case DTRACESPEC_DISCARDING:
2373                         return;
2374
2375                 case DTRACESPEC_COMMITTING:
2376                         /*
2377                          * This is only possible if we are (a) commit()'ing
2378                          * without having done a prior speculate() on this CPU
2379                          * and (b) racing with another commit() on a different
2380                          * CPU.  There's nothing to do -- we just assert that
2381                          * our offset is 0.
2382                          */
2383                         ASSERT(src->dtb_offset == 0);
2384                         return;
2385
2386                 case DTRACESPEC_ACTIVE:
2387                         new = DTRACESPEC_COMMITTING;
2388                         break;
2389
2390                 case DTRACESPEC_ACTIVEONE:
2391                         /*
2392                          * This speculation is active on one CPU.  If our
2393                          * buffer offset is non-zero, we know that the one CPU
2394                          * must be us.  Otherwise, we are committing on a
2395                          * different CPU from the speculate(), and we must
2396                          * rely on being asynchronously cleaned.
2397                          */
2398                         if (src->dtb_offset != 0) {
2399                                 new = DTRACESPEC_COMMITTING;
2400                                 break;
2401                         }
2402                         /*FALLTHROUGH*/
2403
2404                 case DTRACESPEC_ACTIVEMANY:
2405                         new = DTRACESPEC_COMMITTINGMANY;
2406                         break;
2407
2408                 default:
2409                         ASSERT(0);
2410                 }
2411         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2412             current, new) != current);
2413
2414         /*
2415          * We have set the state to indicate that we are committing this
2416          * speculation.  Now reserve the necessary space in the destination
2417          * buffer.
2418          */
2419         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2420             sizeof (uint64_t), state, NULL)) < 0) {
2421                 dtrace_buffer_drop(dest);
2422                 goto out;
2423         }
2424
2425         /*
2426          * We have the space; copy the buffer across.  (Note that this is a
2427          * highly subobtimal bcopy(); in the unlikely event that this becomes
2428          * a serious performance issue, a high-performance DTrace-specific
2429          * bcopy() should obviously be invented.)
2430          */
2431         daddr = (uintptr_t)dest->dtb_tomax + offs;
2432         dlimit = daddr + src->dtb_offset;
2433         saddr = (uintptr_t)src->dtb_tomax;
2434
2435         /*
2436          * First, the aligned portion.
2437          */
2438         while (dlimit - daddr >= sizeof (uint64_t)) {
2439                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2440
2441                 daddr += sizeof (uint64_t);
2442                 saddr += sizeof (uint64_t);
2443         }
2444
2445         /*
2446          * Now any left-over bit...
2447          */
2448         while (dlimit - daddr)
2449                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2450
2451         /*
2452          * Finally, commit the reserved space in the destination buffer.
2453          */
2454         dest->dtb_offset = offs + src->dtb_offset;
2455
2456 out:
2457         /*
2458          * If we're lucky enough to be the only active CPU on this speculation
2459          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2460          */
2461         if (current == DTRACESPEC_ACTIVE ||
2462             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2463                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2464                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2465
2466                 ASSERT(rval == DTRACESPEC_COMMITTING);
2467         }
2468
2469         src->dtb_offset = 0;
2470         src->dtb_xamot_drops += src->dtb_drops;
2471         src->dtb_drops = 0;
2472 }
2473
2474 /*
2475  * This routine discards an active speculation.  If the specified speculation
2476  * is not in a valid state to perform a discard(), this routine will silently
2477  * do nothing.  The state of the specified speculation is transitioned
2478  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2479  */
2480 static void
2481 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2482     dtrace_specid_t which)
2483 {
2484         dtrace_speculation_t *spec;
2485         dtrace_speculation_state_t current, new = 0;
2486         dtrace_buffer_t *buf;
2487
2488         if (which == 0)
2489                 return;
2490
2491         if (which > state->dts_nspeculations) {
2492                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2493                 return;
2494         }
2495
2496         spec = &state->dts_speculations[which - 1];
2497         buf = &spec->dtsp_buffer[cpu];
2498
2499         do {
2500                 current = spec->dtsp_state;
2501
2502                 switch (current) {
2503                 case DTRACESPEC_INACTIVE:
2504                 case DTRACESPEC_COMMITTINGMANY:
2505                 case DTRACESPEC_COMMITTING:
2506                 case DTRACESPEC_DISCARDING:
2507                         return;
2508
2509                 case DTRACESPEC_ACTIVE:
2510                 case DTRACESPEC_ACTIVEMANY:
2511                         new = DTRACESPEC_DISCARDING;
2512                         break;
2513
2514                 case DTRACESPEC_ACTIVEONE:
2515                         if (buf->dtb_offset != 0) {
2516                                 new = DTRACESPEC_INACTIVE;
2517                         } else {
2518                                 new = DTRACESPEC_DISCARDING;
2519                         }
2520                         break;
2521
2522                 default:
2523                         ASSERT(0);
2524                 }
2525         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2526             current, new) != current);
2527
2528         buf->dtb_offset = 0;
2529         buf->dtb_drops = 0;
2530 }
2531
2532 /*
2533  * Note:  not called from probe context.  This function is called
2534  * asynchronously from cross call context to clean any speculations that are
2535  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2536  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2537  * speculation.
2538  */
2539 static void
2540 dtrace_speculation_clean_here(dtrace_state_t *state)
2541 {
2542         dtrace_icookie_t cookie;
2543         processorid_t cpu = curcpu;
2544         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2545         dtrace_specid_t i;
2546
2547         cookie = dtrace_interrupt_disable();
2548
2549         if (dest->dtb_tomax == NULL) {
2550                 dtrace_interrupt_enable(cookie);
2551                 return;
2552         }
2553
2554         for (i = 0; i < state->dts_nspeculations; i++) {
2555                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2556                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2557
2558                 if (src->dtb_tomax == NULL)
2559                         continue;
2560
2561                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2562                         src->dtb_offset = 0;
2563                         continue;
2564                 }
2565
2566                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2567                         continue;
2568
2569                 if (src->dtb_offset == 0)
2570                         continue;
2571
2572                 dtrace_speculation_commit(state, cpu, i + 1);
2573         }
2574
2575         dtrace_interrupt_enable(cookie);
2576 }
2577
2578 /*
2579  * Note:  not called from probe context.  This function is called
2580  * asynchronously (and at a regular interval) to clean any speculations that
2581  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2582  * is work to be done, it cross calls all CPUs to perform that work;
2583  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2584  * INACTIVE state until they have been cleaned by all CPUs.
2585  */
2586 static void
2587 dtrace_speculation_clean(dtrace_state_t *state)
2588 {
2589         int work = 0, rv;
2590         dtrace_specid_t i;
2591
2592         for (i = 0; i < state->dts_nspeculations; i++) {
2593                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2594
2595                 ASSERT(!spec->dtsp_cleaning);
2596
2597                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2598                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2599                         continue;
2600
2601                 work++;
2602                 spec->dtsp_cleaning = 1;
2603         }
2604
2605         if (!work)
2606                 return;
2607
2608         dtrace_xcall(DTRACE_CPUALL,
2609             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2610
2611         /*
2612          * We now know that all CPUs have committed or discarded their
2613          * speculation buffers, as appropriate.  We can now set the state
2614          * to inactive.
2615          */
2616         for (i = 0; i < state->dts_nspeculations; i++) {
2617                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2618                 dtrace_speculation_state_t current, new;
2619
2620                 if (!spec->dtsp_cleaning)
2621                         continue;
2622
2623                 current = spec->dtsp_state;
2624                 ASSERT(current == DTRACESPEC_DISCARDING ||
2625                     current == DTRACESPEC_COMMITTINGMANY);
2626
2627                 new = DTRACESPEC_INACTIVE;
2628
2629                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2630                 ASSERT(rv == current);
2631                 spec->dtsp_cleaning = 0;
2632         }
2633 }
2634
2635 /*
2636  * Called as part of a speculate() to get the speculative buffer associated
2637  * with a given speculation.  Returns NULL if the specified speculation is not
2638  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2639  * the active CPU is not the specified CPU -- the speculation will be
2640  * atomically transitioned into the ACTIVEMANY state.
2641  */
2642 static dtrace_buffer_t *
2643 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2644     dtrace_specid_t which)
2645 {
2646         dtrace_speculation_t *spec;
2647         dtrace_speculation_state_t current, new = 0;
2648         dtrace_buffer_t *buf;
2649
2650         if (which == 0)
2651                 return (NULL);
2652
2653         if (which > state->dts_nspeculations) {
2654                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2655                 return (NULL);
2656         }
2657
2658         spec = &state->dts_speculations[which - 1];
2659         buf = &spec->dtsp_buffer[cpuid];
2660
2661         do {
2662                 current = spec->dtsp_state;
2663
2664                 switch (current) {
2665                 case DTRACESPEC_INACTIVE:
2666                 case DTRACESPEC_COMMITTINGMANY:
2667                 case DTRACESPEC_DISCARDING:
2668                         return (NULL);
2669
2670                 case DTRACESPEC_COMMITTING:
2671                         ASSERT(buf->dtb_offset == 0);
2672                         return (NULL);
2673
2674                 case DTRACESPEC_ACTIVEONE:
2675                         /*
2676                          * This speculation is currently active on one CPU.
2677                          * Check the offset in the buffer; if it's non-zero,
2678                          * that CPU must be us (and we leave the state alone).
2679                          * If it's zero, assume that we're starting on a new
2680                          * CPU -- and change the state to indicate that the
2681                          * speculation is active on more than one CPU.
2682                          */
2683                         if (buf->dtb_offset != 0)
2684                                 return (buf);
2685
2686                         new = DTRACESPEC_ACTIVEMANY;
2687                         break;
2688
2689                 case DTRACESPEC_ACTIVEMANY:
2690                         return (buf);
2691
2692                 case DTRACESPEC_ACTIVE:
2693                         new = DTRACESPEC_ACTIVEONE;
2694                         break;
2695
2696                 default:
2697                         ASSERT(0);
2698                 }
2699         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2700             current, new) != current);
2701
2702         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2703         return (buf);
2704 }
2705
2706 /*
2707  * Return a string.  In the event that the user lacks the privilege to access
2708  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2709  * don't fail access checking.
2710  *
2711  * dtrace_dif_variable() uses this routine as a helper for various
2712  * builtin values such as 'execname' and 'probefunc.'
2713  */
2714 uintptr_t
2715 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2716     dtrace_mstate_t *mstate)
2717 {
2718         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2719         uintptr_t ret;
2720         size_t strsz;
2721
2722         /*
2723          * The easy case: this probe is allowed to read all of memory, so
2724          * we can just return this as a vanilla pointer.
2725          */
2726         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2727                 return (addr);
2728
2729         /*
2730          * This is the tougher case: we copy the string in question from
2731          * kernel memory into scratch memory and return it that way: this
2732          * ensures that we won't trip up when access checking tests the
2733          * BYREF return value.
2734          */
2735         strsz = dtrace_strlen((char *)addr, size) + 1;
2736
2737         if (mstate->dtms_scratch_ptr + strsz >
2738             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2739                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2740                 return (0);
2741         }
2742
2743         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2744             strsz);
2745         ret = mstate->dtms_scratch_ptr;
2746         mstate->dtms_scratch_ptr += strsz;
2747         return (ret);
2748 }
2749
2750 /*
2751  * Return a string from a memoy address which is known to have one or
2752  * more concatenated, individually zero terminated, sub-strings.
2753  * In the event that the user lacks the privilege to access
2754  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2755  * don't fail access checking.
2756  *
2757  * dtrace_dif_variable() uses this routine as a helper for various
2758  * builtin values such as 'execargs'.
2759  */
2760 static uintptr_t
2761 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2762     dtrace_mstate_t *mstate)
2763 {
2764         char *p;
2765         size_t i;
2766         uintptr_t ret;
2767
2768         if (mstate->dtms_scratch_ptr + strsz >
2769             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2770                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2771                 return (0);
2772         }
2773
2774         dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2775             strsz);
2776
2777         /* Replace sub-string termination characters with a space. */
2778         for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2779             p++, i++)
2780                 if (*p == '\0')
2781                         *p = ' ';
2782
2783         ret = mstate->dtms_scratch_ptr;
2784         mstate->dtms_scratch_ptr += strsz;
2785         return (ret);
2786 }
2787
2788 /*
2789  * This function implements the DIF emulator's variable lookups.  The emulator
2790  * passes a reserved variable identifier and optional built-in array index.
2791  */
2792 static uint64_t
2793 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2794     uint64_t ndx)
2795 {
2796         /*
2797          * If we're accessing one of the uncached arguments, we'll turn this
2798          * into a reference in the args array.
2799          */
2800         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2801                 ndx = v - DIF_VAR_ARG0;
2802                 v = DIF_VAR_ARGS;
2803         }
2804
2805         switch (v) {
2806         case DIF_VAR_ARGS:
2807                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2808                 if (ndx >= sizeof (mstate->dtms_arg) /
2809                     sizeof (mstate->dtms_arg[0])) {
2810                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2811                         dtrace_provider_t *pv;
2812                         uint64_t val;
2813
2814                         pv = mstate->dtms_probe->dtpr_provider;
2815                         if (pv->dtpv_pops.dtps_getargval != NULL)
2816                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2817                                     mstate->dtms_probe->dtpr_id,
2818                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
2819                         else
2820                                 val = dtrace_getarg(ndx, aframes);
2821
2822                         /*
2823                          * This is regrettably required to keep the compiler
2824                          * from tail-optimizing the call to dtrace_getarg().
2825                          * The condition always evaluates to true, but the
2826                          * compiler has no way of figuring that out a priori.
2827                          * (None of this would be necessary if the compiler
2828                          * could be relied upon to _always_ tail-optimize
2829                          * the call to dtrace_getarg() -- but it can't.)
2830                          */
2831                         if (mstate->dtms_probe != NULL)
2832                                 return (val);
2833
2834                         ASSERT(0);
2835                 }
2836
2837                 return (mstate->dtms_arg[ndx]);
2838
2839 #if defined(sun)
2840         case DIF_VAR_UREGS: {
2841                 klwp_t *lwp;
2842
2843                 if (!dtrace_priv_proc(state))
2844                         return (0);
2845
2846                 if ((lwp = curthread->t_lwp) == NULL) {
2847                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2848                         cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2849                         return (0);
2850                 }
2851
2852                 return (dtrace_getreg(lwp->lwp_regs, ndx));
2853                 return (0);
2854         }
2855 #else
2856         case DIF_VAR_UREGS: {
2857                 struct trapframe *tframe;
2858
2859                 if (!dtrace_priv_proc(state))
2860                         return (0);
2861
2862                 if ((tframe = curthread->td_frame) == NULL) {
2863                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2864                         cpu_core[curcpu].cpuc_dtrace_illval = 0;
2865                         return (0);
2866                 }
2867
2868                 return (dtrace_getreg(tframe, ndx));
2869         }
2870 #endif
2871
2872         case DIF_VAR_CURTHREAD:
2873                 if (!dtrace_priv_kernel(state))
2874                         return (0);
2875                 return ((uint64_t)(uintptr_t)curthread);
2876
2877         case DIF_VAR_TIMESTAMP:
2878                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2879                         mstate->dtms_timestamp = dtrace_gethrtime();
2880                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2881                 }
2882                 return (mstate->dtms_timestamp);
2883
2884         case DIF_VAR_VTIMESTAMP:
2885                 ASSERT(dtrace_vtime_references != 0);
2886                 return (curthread->t_dtrace_vtime);
2887
2888         case DIF_VAR_WALLTIMESTAMP:
2889                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2890                         mstate->dtms_walltimestamp = dtrace_gethrestime();
2891                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2892                 }
2893                 return (mstate->dtms_walltimestamp);
2894
2895 #if defined(sun)
2896         case DIF_VAR_IPL:
2897                 if (!dtrace_priv_kernel(state))
2898                         return (0);
2899                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2900                         mstate->dtms_ipl = dtrace_getipl();
2901                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
2902                 }
2903                 return (mstate->dtms_ipl);
2904 #endif
2905
2906         case DIF_VAR_EPID:
2907                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2908                 return (mstate->dtms_epid);
2909
2910         case DIF_VAR_ID:
2911                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2912                 return (mstate->dtms_probe->dtpr_id);
2913
2914         case DIF_VAR_STACKDEPTH:
2915                 if (!dtrace_priv_kernel(state))
2916                         return (0);
2917                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2918                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2919
2920                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2921                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2922                 }
2923                 return (mstate->dtms_stackdepth);
2924
2925         case DIF_VAR_USTACKDEPTH:
2926                 if (!dtrace_priv_proc(state))
2927                         return (0);
2928                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2929                         /*
2930                          * See comment in DIF_VAR_PID.
2931                          */
2932                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2933                             CPU_ON_INTR(CPU)) {
2934                                 mstate->dtms_ustackdepth = 0;
2935                         } else {
2936                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2937                                 mstate->dtms_ustackdepth =
2938                                     dtrace_getustackdepth();
2939                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2940                         }
2941                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2942                 }
2943                 return (mstate->dtms_ustackdepth);
2944
2945         case DIF_VAR_CALLER:
2946                 if (!dtrace_priv_kernel(state))
2947                         return (0);
2948                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2949                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2950
2951                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2952                                 /*
2953                                  * If this is an unanchored probe, we are
2954                                  * required to go through the slow path:
2955                                  * dtrace_caller() only guarantees correct
2956                                  * results for anchored probes.
2957                                  */
2958                                 pc_t caller[2] = {0, 0};
2959
2960                                 dtrace_getpcstack(caller, 2, aframes,
2961                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2962                                 mstate->dtms_caller = caller[1];
2963                         } else if ((mstate->dtms_caller =
2964                             dtrace_caller(aframes)) == -1) {
2965                                 /*
2966                                  * We have failed to do this the quick way;
2967                                  * we must resort to the slower approach of
2968                                  * calling dtrace_getpcstack().
2969                                  */
2970                                 pc_t caller = 0;
2971
2972                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
2973                                 mstate->dtms_caller = caller;
2974                         }
2975
2976                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2977                 }
2978                 return (mstate->dtms_caller);
2979
2980         case DIF_VAR_UCALLER:
2981                 if (!dtrace_priv_proc(state))
2982                         return (0);
2983
2984                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2985                         uint64_t ustack[3];
2986
2987                         /*
2988                          * dtrace_getupcstack() fills in the first uint64_t
2989                          * with the current PID.  The second uint64_t will
2990                          * be the program counter at user-level.  The third
2991                          * uint64_t will contain the caller, which is what
2992                          * we're after.
2993                          */
2994                         ustack[2] = 0;
2995                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2996                         dtrace_getupcstack(ustack, 3);
2997                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2998                         mstate->dtms_ucaller = ustack[2];
2999                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3000                 }
3001
3002                 return (mstate->dtms_ucaller);
3003
3004         case DIF_VAR_PROBEPROV:
3005                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3006                 return (dtrace_dif_varstr(
3007                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3008                     state, mstate));
3009
3010         case DIF_VAR_PROBEMOD:
3011                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3012                 return (dtrace_dif_varstr(
3013                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3014                     state, mstate));
3015
3016         case DIF_VAR_PROBEFUNC:
3017                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3018                 return (dtrace_dif_varstr(
3019                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3020                     state, mstate));
3021
3022         case DIF_VAR_PROBENAME:
3023                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3024                 return (dtrace_dif_varstr(
3025                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3026                     state, mstate));
3027
3028         case DIF_VAR_PID:
3029                 if (!dtrace_priv_proc(state))
3030                         return (0);
3031
3032 #if defined(sun)
3033                 /*
3034                  * Note that we are assuming that an unanchored probe is
3035                  * always due to a high-level interrupt.  (And we're assuming
3036                  * that there is only a single high level interrupt.)
3037                  */
3038                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3039                         return (pid0.pid_id);
3040
3041                 /*
3042                  * It is always safe to dereference one's own t_procp pointer:
3043                  * it always points to a valid, allocated proc structure.
3044                  * Further, it is always safe to dereference the p_pidp member
3045                  * of one's own proc structure.  (These are truisms becuase
3046                  * threads and processes don't clean up their own state --
3047                  * they leave that task to whomever reaps them.)
3048                  */
3049                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3050 #else
3051                 return ((uint64_t)curproc->p_pid);
3052 #endif
3053
3054         case DIF_VAR_PPID:
3055                 if (!dtrace_priv_proc(state))
3056                         return (0);
3057
3058 #if defined(sun)
3059                 /*
3060                  * See comment in DIF_VAR_PID.
3061                  */
3062                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3063                         return (pid0.pid_id);
3064
3065                 /*
3066                  * It is always safe to dereference one's own t_procp pointer:
3067                  * it always points to a valid, allocated proc structure.
3068                  * (This is true because threads don't clean up their own
3069                  * state -- they leave that task to whomever reaps them.)
3070                  */
3071                 return ((uint64_t)curthread->t_procp->p_ppid);
3072 #else
3073                 return ((uint64_t)curproc->p_pptr->p_pid);
3074 #endif
3075
3076         case DIF_VAR_TID:
3077 #if defined(sun)
3078                 /*
3079                  * See comment in DIF_VAR_PID.
3080                  */
3081                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3082                         return (0);
3083 #endif
3084
3085                 return ((uint64_t)curthread->t_tid);
3086
3087         case DIF_VAR_EXECARGS: {
3088                 struct pargs *p_args = curthread->td_proc->p_args;
3089
3090                 if (p_args == NULL)
3091                         return(0);
3092
3093                 return (dtrace_dif_varstrz(
3094                     (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3095         }
3096
3097         case DIF_VAR_EXECNAME:
3098 #if defined(sun)
3099                 if (!dtrace_priv_proc(state))
3100                         return (0);
3101
3102                 /*
3103                  * See comment in DIF_VAR_PID.
3104                  */
3105                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3106                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3107
3108                 /*
3109                  * It is always safe to dereference one's own t_procp pointer:
3110                  * it always points to a valid, allocated proc structure.
3111                  * (This is true because threads don't clean up their own
3112                  * state -- they leave that task to whomever reaps them.)
3113                  */
3114                 return (dtrace_dif_varstr(
3115                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3116                     state, mstate));
3117 #else
3118                 return (dtrace_dif_varstr(
3119                     (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3120 #endif
3121
3122         case DIF_VAR_ZONENAME:
3123 #if defined(sun)
3124                 if (!dtrace_priv_proc(state))
3125                         return (0);
3126
3127                 /*
3128                  * See comment in DIF_VAR_PID.
3129                  */
3130                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3131                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3132
3133                 /*
3134                  * It is always safe to dereference one's own t_procp pointer:
3135                  * it always points to a valid, allocated proc structure.
3136                  * (This is true because threads don't clean up their own
3137                  * state -- they leave that task to whomever reaps them.)
3138                  */
3139                 return (dtrace_dif_varstr(
3140                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3141                     state, mstate));
3142 #else
3143                 return (0);
3144 #endif
3145
3146         case DIF_VAR_UID:
3147                 if (!dtrace_priv_proc(state))
3148                         return (0);
3149
3150 #if defined(sun)
3151                 /*
3152                  * See comment in DIF_VAR_PID.
3153                  */
3154                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3155                         return ((uint64_t)p0.p_cred->cr_uid);
3156 #endif
3157
3158                 /*
3159                  * It is always safe to dereference one's own t_procp pointer:
3160                  * it always points to a valid, allocated proc structure.
3161                  * (This is true because threads don't clean up their own
3162                  * state -- they leave that task to whomever reaps them.)
3163                  *
3164                  * Additionally, it is safe to dereference one's own process
3165                  * credential, since this is never NULL after process birth.
3166                  */
3167                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3168
3169         case DIF_VAR_GID:
3170                 if (!dtrace_priv_proc(state))
3171                         return (0);
3172
3173 #if defined(sun)
3174                 /*
3175                  * See comment in DIF_VAR_PID.
3176                  */
3177                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3178                         return ((uint64_t)p0.p_cred->cr_gid);
3179 #endif
3180
3181                 /*
3182                  * It is always safe to dereference one's own t_procp pointer:
3183                  * it always points to a valid, allocated proc structure.
3184                  * (This is true because threads don't clean up their own
3185                  * state -- they leave that task to whomever reaps them.)
3186                  *
3187                  * Additionally, it is safe to dereference one's own process
3188                  * credential, since this is never NULL after process birth.
3189                  */
3190                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3191
3192         case DIF_VAR_ERRNO: {
3193 #if defined(sun)
3194                 klwp_t *lwp;
3195                 if (!dtrace_priv_proc(state))
3196                         return (0);
3197
3198                 /*
3199                  * See comment in DIF_VAR_PID.
3200                  */
3201                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3202                         return (0);
3203
3204                 /*
3205                  * It is always safe to dereference one's own t_lwp pointer in
3206                  * the event that this pointer is non-NULL.  (This is true
3207                  * because threads and lwps don't clean up their own state --
3208                  * they leave that task to whomever reaps them.)
3209                  */
3210                 if ((lwp = curthread->t_lwp) == NULL)
3211                         return (0);
3212
3213                 return ((uint64_t)lwp->lwp_errno);
3214 #else
3215                 return (curthread->td_errno);
3216 #endif
3217         }
3218 #if !defined(sun)
3219         case DIF_VAR_CPU: {
3220                 return curcpu;
3221         }
3222 #endif
3223         default:
3224                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3225                 return (0);
3226         }
3227 }
3228
3229 /*
3230  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3231  * Notice that we don't bother validating the proper number of arguments or
3232  * their types in the tuple stack.  This isn't needed because all argument
3233  * interpretation is safe because of our load safety -- the worst that can
3234  * happen is that a bogus program can obtain bogus results.
3235  */
3236 static void
3237 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3238     dtrace_key_t *tupregs, int nargs,
3239     dtrace_mstate_t *mstate, dtrace_state_t *state)
3240 {
3241         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3242         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3243         dtrace_vstate_t *vstate = &state->dts_vstate;
3244
3245 #if defined(sun)
3246         union {
3247                 mutex_impl_t mi;
3248                 uint64_t mx;
3249         } m;
3250
3251         union {
3252                 krwlock_t ri;
3253                 uintptr_t rw;
3254         } r;
3255 #else
3256         struct thread *lowner;
3257         union {
3258                 struct lock_object *li;
3259                 uintptr_t lx;
3260         } l;
3261 #endif
3262
3263         switch (subr) {
3264         case DIF_SUBR_RAND:
3265                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3266                 break;
3267
3268 #if defined(sun)
3269         case DIF_SUBR_MUTEX_OWNED:
3270                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3271                     mstate, vstate)) {
3272                         regs[rd] = 0;
3273                         break;
3274                 }
3275
3276                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3277                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3278                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3279                 else
3280                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3281                 break;
3282
3283         case DIF_SUBR_MUTEX_OWNER:
3284                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3285                     mstate, vstate)) {
3286                         regs[rd] = 0;
3287                         break;
3288                 }
3289
3290                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3291                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3292                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3293                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3294                 else
3295                         regs[rd] = 0;
3296                 break;
3297
3298         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3299                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3300                     mstate, vstate)) {
3301                         regs[rd] = 0;
3302                         break;
3303                 }
3304
3305                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3306                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3307                 break;
3308
3309         case DIF_SUBR_MUTEX_TYPE_SPIN:
3310                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3311                     mstate, vstate)) {
3312                         regs[rd] = 0;
3313                         break;
3314                 }
3315
3316                 m.mx = dtrace_load64(tupregs[0].dttk_value);
3317                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3318                 break;
3319
3320         case DIF_SUBR_RW_READ_HELD: {
3321                 uintptr_t tmp;
3322
3323                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3324                     mstate, vstate)) {
3325                         regs[rd] = 0;
3326                         break;
3327                 }
3328
3329                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3330                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3331                 break;
3332         }
3333
3334         case DIF_SUBR_RW_WRITE_HELD:
3335                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3336                     mstate, vstate)) {
3337                         regs[rd] = 0;
3338                         break;
3339                 }
3340
3341                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3342                 regs[rd] = _RW_WRITE_HELD(&r.ri);
3343                 break;
3344
3345         case DIF_SUBR_RW_ISWRITER:
3346                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3347                     mstate, vstate)) {
3348                         regs[rd] = 0;
3349                         break;
3350                 }
3351
3352                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3353                 regs[rd] = _RW_ISWRITER(&r.ri);
3354                 break;
3355
3356 #else
3357         case DIF_SUBR_MUTEX_OWNED:
3358                 if (!dtrace_canload(tupregs[0].dttk_value,
3359                         sizeof (struct lock_object), mstate, vstate)) {
3360                         regs[rd] = 0;
3361                         break;
3362                 }
3363                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3364                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3365                 break;
3366
3367         case DIF_SUBR_MUTEX_OWNER:
3368                 if (!dtrace_canload(tupregs[0].dttk_value,
3369                         sizeof (struct lock_object), mstate, vstate)) {
3370                         regs[rd] = 0;
3371                         break;
3372                 }
3373                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3374                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3375                 regs[rd] = (uintptr_t)lowner;
3376                 break;
3377
3378         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3379                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3380                     mstate, vstate)) {
3381                         regs[rd] = 0;
3382                         break;
3383                 }
3384                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3385                 /* XXX - should be only LC_SLEEPABLE? */
3386                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3387                     (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3388                 break;
3389
3390         case DIF_SUBR_MUTEX_TYPE_SPIN:
3391                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3392                     mstate, vstate)) {
3393                         regs[rd] = 0;
3394                         break;
3395                 }
3396                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3397                 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3398                 break;
3399
3400         case DIF_SUBR_RW_READ_HELD: 
3401         case DIF_SUBR_SX_SHARED_HELD: 
3402                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3403                     mstate, vstate)) {
3404                         regs[rd] = 0;
3405                         break;
3406                 }
3407                 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3408                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3409                     lowner == NULL;
3410                 break;
3411
3412         case DIF_SUBR_RW_WRITE_HELD:
3413         case DIF_SUBR_SX_EXCLUSIVE_HELD:
3414                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3415                     mstate, vstate)) {
3416                         regs[rd] = 0;
3417                         break;
3418                 }
3419                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3420                 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3421                 regs[rd] = (lowner == curthread);
3422                 break;
3423
3424         case DIF_SUBR_RW_ISWRITER:
3425         case DIF_SUBR_SX_ISEXCLUSIVE:
3426                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3427                     mstate, vstate)) {
3428                         regs[rd] = 0;
3429                         break;
3430                 }
3431                 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3432                 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3433                     lowner != NULL;
3434                 break;
3435 #endif /* ! defined(sun) */
3436
3437         case DIF_SUBR_BCOPY: {
3438                 /*
3439                  * We need to be sure that the destination is in the scratch
3440                  * region -- no other region is allowed.
3441                  */
3442                 uintptr_t src = tupregs[0].dttk_value;
3443                 uintptr_t dest = tupregs[1].dttk_value;
3444                 size_t size = tupregs[2].dttk_value;
3445
3446                 if (!dtrace_inscratch(dest, size, mstate)) {
3447                         *flags |= CPU_DTRACE_BADADDR;
3448                         *illval = regs[rd];
3449                         break;
3450                 }
3451
3452                 if (!dtrace_canload(src, size, mstate, vstate)) {
3453                         regs[rd] = 0;
3454                         break;
3455                 }
3456
3457                 dtrace_bcopy((void *)src, (void *)dest, size);
3458                 break;
3459         }
3460
3461         case DIF_SUBR_ALLOCA:
3462         case DIF_SUBR_COPYIN: {
3463                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3464                 uint64_t size =
3465                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3466                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3467
3468                 /*
3469                  * This action doesn't require any credential checks since
3470                  * probes will not activate in user contexts to which the
3471                  * enabling user does not have permissions.
3472                  */
3473
3474                 /*
3475                  * Rounding up the user allocation size could have overflowed
3476                  * a large, bogus allocation (like -1ULL) to 0.
3477                  */
3478                 if (scratch_size < size ||
3479                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
3480                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3481                         regs[rd] = 0;
3482                         break;
3483                 }
3484
3485                 if (subr == DIF_SUBR_COPYIN) {
3486                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3487                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3488                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3489                 }
3490
3491                 mstate->dtms_scratch_ptr += scratch_size;
3492                 regs[rd] = dest;
3493                 break;
3494         }
3495
3496         case DIF_SUBR_COPYINTO: {
3497                 uint64_t size = tupregs[1].dttk_value;
3498                 uintptr_t dest = tupregs[2].dttk_value;
3499
3500                 /*
3501                  * This action doesn't require any credential checks since
3502                  * probes will not activate in user contexts to which the
3503                  * enabling user does not have permissions.
3504                  */
3505                 if (!dtrace_inscratch(dest, size, mstate)) {
3506                         *flags |= CPU_DTRACE_BADADDR;
3507                         *illval = regs[rd];
3508                         break;
3509                 }
3510
3511                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3512                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3513                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3514                 break;
3515         }
3516
3517         case DIF_SUBR_COPYINSTR: {
3518                 uintptr_t dest = mstate->dtms_scratch_ptr;
3519                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3520
3521                 if (nargs > 1 && tupregs[1].dttk_value < size)
3522                         size = tupregs[1].dttk_value + 1;
3523
3524                 /*
3525                  * This action doesn't require any credential checks since
3526                  * probes will not activate in user contexts to which the
3527                  * enabling user does not have permissions.
3528                  */
3529                 if (!DTRACE_INSCRATCH(mstate, size)) {
3530                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3531                         regs[rd] = 0;
3532                         break;
3533                 }
3534
3535                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3536                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3537                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3538
3539                 ((char *)dest)[size - 1] = '\0';
3540                 mstate->dtms_scratch_ptr += size;
3541                 regs[rd] = dest;
3542                 break;
3543         }
3544
3545 #if defined(sun)
3546         case DIF_SUBR_MSGSIZE:
3547         case DIF_SUBR_MSGDSIZE: {
3548                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3549                 uintptr_t wptr, rptr;
3550                 size_t count = 0;
3551                 int cont = 0;
3552
3553                 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3554
3555                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3556                             vstate)) {
3557                                 regs[rd] = 0;
3558                                 break;
3559                         }
3560
3561                         wptr = dtrace_loadptr(baddr +
3562                             offsetof(mblk_t, b_wptr));
3563
3564                         rptr = dtrace_loadptr(baddr +
3565                             offsetof(mblk_t, b_rptr));
3566
3567                         if (wptr < rptr) {
3568                                 *flags |= CPU_DTRACE_BADADDR;
3569                                 *illval = tupregs[0].dttk_value;
3570                                 break;
3571                         }
3572
3573                         daddr = dtrace_loadptr(baddr +
3574                             offsetof(mblk_t, b_datap));
3575
3576                         baddr = dtrace_loadptr(baddr +
3577                             offsetof(mblk_t, b_cont));
3578
3579                         /*
3580                          * We want to prevent against denial-of-service here,
3581                          * so we're only going to search the list for
3582                          * dtrace_msgdsize_max mblks.
3583                          */
3584                         if (cont++ > dtrace_msgdsize_max) {
3585                                 *flags |= CPU_DTRACE_ILLOP;
3586                                 break;
3587                         }
3588
3589                         if (subr == DIF_SUBR_MSGDSIZE) {
3590                                 if (dtrace_load8(daddr +
3591                                     offsetof(dblk_t, db_type)) != M_DATA)
3592                                         continue;
3593                         }
3594
3595                         count += wptr - rptr;
3596                 }
3597
3598                 if (!(*flags & CPU_DTRACE_FAULT))
3599                         regs[rd] = count;
3600
3601                 break;
3602         }
3603 #endif
3604
3605         case DIF_SUBR_PROGENYOF: {
3606                 pid_t pid = tupregs[0].dttk_value;
3607                 proc_t *p;
3608                 int rval = 0;
3609
3610                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3611
3612                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3613 #if defined(sun)
3614                         if (p->p_pidp->pid_id == pid) {
3615 #else
3616                         if (p->p_pid == pid) {
3617 #endif
3618                                 rval = 1;
3619                                 break;
3620                         }
3621                 }
3622
3623                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3624
3625                 regs[rd] = rval;
3626                 break;
3627         }
3628
3629         case DIF_SUBR_SPECULATION:
3630                 regs[rd] = dtrace_speculation(state);
3631                 break;
3632
3633         case DIF_SUBR_COPYOUT: {
3634                 uintptr_t kaddr = tupregs[0].dttk_value;
3635                 uintptr_t uaddr = tupregs[1].dttk_value;
3636                 uint64_t size = tupregs[2].dttk_value;
3637
3638                 if (!dtrace_destructive_disallow &&
3639                     dtrace_priv_proc_control(state) &&
3640                     !dtrace_istoxic(kaddr, size)) {
3641                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3642                         dtrace_copyout(kaddr, uaddr, size, flags);
3643                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3644                 }
3645                 break;
3646         }
3647
3648         case DIF_SUBR_COPYOUTSTR: {
3649                 uintptr_t kaddr = tupregs[0].dttk_value;
3650                 uintptr_t uaddr = tupregs[1].dttk_value;
3651                 uint64_t size = tupregs[2].dttk_value;
3652
3653                 if (!dtrace_destructive_disallow &&
3654                     dtrace_priv_proc_control(state) &&
3655                     !dtrace_istoxic(kaddr, size)) {
3656                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3657                         dtrace_copyoutstr(kaddr, uaddr, size, flags);
3658                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3659                 }
3660                 break;
3661         }
3662
3663         case DIF_SUBR_STRLEN: {
3664                 size_t sz;
3665                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3666                 sz = dtrace_strlen((char *)addr,
3667                     state->dts_options[DTRACEOPT_STRSIZE]);
3668
3669                 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3670                         regs[rd] = 0;
3671                         break;
3672                 }
3673
3674                 regs[rd] = sz;
3675
3676                 break;
3677         }
3678
3679         case DIF_SUBR_STRCHR:
3680         case DIF_SUBR_STRRCHR: {
3681                 /*
3682                  * We're going to iterate over the string looking for the
3683                  * specified character.  We will iterate until we have reached
3684                  * the string length or we have found the character.  If this
3685                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3686                  * of the specified character instead of the first.
3687                  */
3688                 uintptr_t saddr = tupregs[0].dttk_value;
3689                 uintptr_t addr = tupregs[0].dttk_value;
3690                 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3691                 char c, target = (char)tupregs[1].dttk_value;
3692
3693                 for (regs[rd] = 0; addr < limit; addr++) {
3694                         if ((c = dtrace_load8(addr)) == target) {
3695                                 regs[rd] = addr;
3696
3697                                 if (subr == DIF_SUBR_STRCHR)
3698                                         break;
3699                         }
3700
3701                         if (c == '\0')
3702                                 break;
3703                 }
3704
3705                 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3706                         regs[rd] = 0;
3707                         break;
3708                 }
3709
3710                 break;
3711         }
3712
3713         case DIF_SUBR_STRSTR:
3714         case DIF_SUBR_INDEX:
3715         case DIF_SUBR_RINDEX: {
3716                 /*
3717                  * We're going to iterate over the string looking for the
3718                  * specified string.  We will iterate until we have reached
3719                  * the string length or we have found the string.  (Yes, this
3720                  * is done in the most naive way possible -- but considering
3721                  * that the string we're searching for is likely to be
3722                  * relatively short, the complexity of Rabin-Karp or similar
3723                  * hardly seems merited.)
3724                  */
3725                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3726                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3727                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3728                 size_t len = dtrace_strlen(addr, size);
3729                 size_t sublen = dtrace_strlen(substr, size);
3730                 char *limit = addr + len, *orig = addr;
3731                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3732                 int inc = 1;
3733
3734                 regs[rd] = notfound;
3735
3736                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3737                         regs[rd] = 0;
3738                         break;
3739                 }
3740
3741                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3742                     vstate)) {
3743                         regs[rd] = 0;
3744                         break;
3745                 }
3746
3747                 /*
3748                  * strstr() and index()/rindex() have similar semantics if
3749                  * both strings are the empty string: strstr() returns a
3750                  * pointer to the (empty) string, and index() and rindex()
3751                  * both return index 0 (regardless of any position argument).
3752                  */
3753                 if (sublen == 0 && len == 0) {
3754                         if (subr == DIF_SUBR_STRSTR)
3755                                 regs[rd] = (uintptr_t)addr;
3756                         else
3757                                 regs[rd] = 0;
3758                         break;
3759                 }
3760
3761                 if (subr != DIF_SUBR_STRSTR) {
3762                         if (subr == DIF_SUBR_RINDEX) {
3763                                 limit = orig - 1;
3764                                 addr += len;
3765                                 inc = -1;
3766                         }
3767
3768                         /*
3769                          * Both index() and rindex() take an optional position
3770                          * argument that denotes the starting position.
3771                          */
3772                         if (nargs == 3) {
3773                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
3774
3775                                 /*
3776                                  * If the position argument to index() is
3777                                  * negative, Perl implicitly clamps it at
3778                                  * zero.  This semantic is a little surprising
3779                                  * given the special meaning of negative
3780                                  * positions to similar Perl functions like
3781                                  * substr(), but it appears to reflect a
3782                                  * notion that index() can start from a
3783                                  * negative index and increment its way up to
3784                                  * the string.  Given this notion, Perl's
3785                                  * rindex() is at least self-consistent in
3786                                  * that it implicitly clamps positions greater
3787                                  * than the string length to be the string
3788                                  * length.  Where Perl completely loses
3789                                  * coherence, however, is when the specified
3790                                  * substring is the empty string ("").  In
3791                                  * this case, even if the position is
3792                                  * negative, rindex() returns 0 -- and even if
3793                                  * the position is greater than the length,
3794                                  * index() returns the string length.  These
3795                                  * semantics violate the notion that index()
3796                                  * should never return a value less than the
3797                                  * specified position and that rindex() should
3798                                  * never return a value greater than the
3799                                  * specified position.  (One assumes that
3800                                  * these semantics are artifacts of Perl's
3801                                  * implementation and not the results of
3802                                  * deliberate design -- it beggars belief that
3803                                  * even Larry Wall could desire such oddness.)
3804                                  * While in the abstract one would wish for
3805                                  * consistent position semantics across
3806                                  * substr(), index() and rindex() -- or at the
3807                                  * very least self-consistent position
3808                                  * semantics for index() and rindex() -- we
3809                                  * instead opt to keep with the extant Perl
3810                                  * semantics, in all their broken glory.  (Do
3811                                  * we have more desire to maintain Perl's
3812                                  * semantics than Perl does?  Probably.)
3813                                  */
3814                                 if (subr == DIF_SUBR_RINDEX) {
3815                                         if (pos < 0) {
3816                                                 if (sublen == 0)
3817                                                         regs[rd] = 0;
3818                                                 break;
3819                                         }
3820
3821                                         if (pos > len)
3822                                                 pos = len;
3823                                 } else {
3824                                         if (pos < 0)
3825                                                 pos = 0;
3826
3827                                         if (pos >= len) {
3828                                                 if (sublen == 0)
3829                                                         regs[rd] = len;
3830                                                 break;
3831                                         }
3832                                 }
3833
3834                                 addr = orig + pos;
3835                         }
3836                 }
3837
3838                 for (regs[rd] = notfound; addr != limit; addr += inc) {
3839                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
3840                                 if (subr != DIF_SUBR_STRSTR) {
3841                                         /*
3842                                          * As D index() and rindex() are
3843                                          * modeled on Perl (and not on awk),
3844                                          * we return a zero-based (and not a
3845                                          * one-based) index.  (For you Perl
3846                                          * weenies: no, we're not going to add
3847                                          * $[ -- and shouldn't you be at a con
3848                                          * or something?)
3849                                          */
3850                                         regs[rd] = (uintptr_t)(addr - orig);
3851                                         break;
3852                                 }
3853
3854                                 ASSERT(subr == DIF_SUBR_STRSTR);
3855                                 regs[rd] = (uintptr_t)addr;
3856                                 break;
3857                         }
3858                 }
3859
3860                 break;
3861         }
3862
3863         case DIF_SUBR_STRTOK: {
3864                 uintptr_t addr = tupregs[0].dttk_value;
3865                 uintptr_t tokaddr = tupregs[1].dttk_value;
3866                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3867                 uintptr_t limit, toklimit = tokaddr + size;
3868                 uint8_t c = 0, tokmap[32];       /* 256 / 8 */
3869                 char *dest = (char *)mstate->dtms_scratch_ptr;
3870                 int i;
3871
3872                 /*
3873                  * Check both the token buffer and (later) the input buffer,
3874                  * since both could be non-scratch addresses.
3875                  */
3876                 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3877                         regs[rd] = 0;
3878                         break;
3879                 }
3880
3881                 if (!DTRACE_INSCRATCH(mstate, size)) {
3882                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3883                         regs[rd] = 0;
3884                         break;
3885                 }
3886
3887                 if (addr == 0) {
3888                         /*
3889                          * If the address specified is NULL, we use our saved
3890                          * strtok pointer from the mstate.  Note that this
3891                          * means that the saved strtok pointer is _only_
3892                          * valid within multiple enablings of the same probe --
3893                          * it behaves like an implicit clause-local variable.
3894                          */
3895                         addr = mstate->dtms_strtok;
3896                 } else {
3897                         /*
3898                          * If the user-specified address is non-NULL we must
3899                          * access check it.  This is the only time we have
3900                          * a chance to do so, since this address may reside
3901                          * in the string table of this clause-- future calls
3902                          * (when we fetch addr from mstate->dtms_strtok)
3903                          * would fail this access check.
3904                          */
3905                         if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3906                                 regs[rd] = 0;
3907                                 break;
3908                         }
3909                 }
3910
3911                 /*
3912                  * First, zero the token map, and then process the token
3913                  * string -- setting a bit in the map for every character
3914                  * found in the token string.
3915                  */
3916                 for (i = 0; i < sizeof (tokmap); i++)
3917                         tokmap[i] = 0;
3918
3919                 for (; tokaddr < toklimit; tokaddr++) {
3920                         if ((c = dtrace_load8(tokaddr)) == '\0')
3921                                 break;
3922
3923                         ASSERT((c >> 3) < sizeof (tokmap));
3924                         tokmap[c >> 3] |= (1 << (c & 0x7));
3925                 }
3926
3927                 for (limit = addr + size; addr < limit; addr++) {
3928                         /*
3929                          * We're looking for a character that is _not_ contained
3930                          * in the token string.
3931                          */
3932                         if ((c = dtrace_load8(addr)) == '\0')
3933                                 break;
3934
3935                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3936                                 break;
3937                 }
3938
3939                 if (c == '\0') {
3940                         /*
3941                          * We reached the end of the string without finding
3942                          * any character that was not in the token string.
3943                          * We return NULL in this case, and we set the saved
3944                          * address to NULL as well.
3945                          */
3946                         regs[rd] = 0;
3947                         mstate->dtms_strtok = 0;
3948                         break;
3949                 }
3950
3951                 /*
3952                  * From here on, we're copying into the destination string.
3953                  */
3954                 for (i = 0; addr < limit && i < size - 1; addr++) {
3955                         if ((c = dtrace_load8(addr)) == '\0')
3956                                 break;
3957
3958                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
3959                                 break;
3960
3961                         ASSERT(i < size);
3962                         dest[i++] = c;
3963                 }
3964
3965                 ASSERT(i < size);
3966                 dest[i] = '\0';
3967                 regs[rd] = (uintptr_t)dest;
3968                 mstate->dtms_scratch_ptr += size;
3969                 mstate->dtms_strtok = addr;
3970                 break;
3971         }
3972
3973         case DIF_SUBR_SUBSTR: {
3974                 uintptr_t s = tupregs[0].dttk_value;
3975                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3976                 char *d = (char *)mstate->dtms_scratch_ptr;
3977                 int64_t index = (int64_t)tupregs[1].dttk_value;
3978                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
3979                 size_t len = dtrace_strlen((char *)s, size);
3980                 int64_t i = 0;
3981
3982                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3983                         regs[rd] = 0;
3984                         break;
3985                 }
3986
3987                 if (!DTRACE_INSCRATCH(mstate, size)) {
3988                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3989                         regs[rd] = 0;
3990                         break;
3991                 }
3992
3993                 if (nargs <= 2)
3994                         remaining = (int64_t)size;
3995
3996                 if (index < 0) {
3997                         index += len;
3998
3999                         if (index < 0 && index + remaining > 0) {
4000                                 remaining += index;
4001                                 index = 0;
4002                         }
4003                 }
4004
4005                 if (index >= len || index < 0) {
4006                         remaining = 0;
4007                 } else if (remaining < 0) {
4008                         remaining += len - index;
4009                 } else if (index + remaining > size) {
4010                         remaining = size - index;
4011                 }
4012
4013                 for (i = 0; i < remaining; i++) {
4014                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4015                                 break;
4016                 }
4017
4018                 d[i] = '\0';
4019
4020                 mstate->dtms_scratch_ptr += size;
4021                 regs[rd] = (uintptr_t)d;
4022                 break;
4023         }
4024
4025         case DIF_SUBR_TOUPPER:
4026         case DIF_SUBR_TOLOWER: {
4027                 uintptr_t s = tupregs[0].dttk_value;
4028                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4029                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4030                 size_t len = dtrace_strlen((char *)s, size);
4031                 char lower, upper, convert;
4032                 int64_t i;
4033
4034                 if (subr == DIF_SUBR_TOUPPER) {
4035                         lower = 'a';
4036                         upper = 'z';
4037                         convert = 'A';
4038                 } else {
4039                         lower = 'A';
4040                         upper = 'Z';
4041                         convert = 'a';
4042                 }
4043
4044                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4045                         regs[rd] = 0;
4046                         break;
4047                 }
4048
4049                 if (!DTRACE_INSCRATCH(mstate, size)) {
4050                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4051                         regs[rd] = 0;
4052                         break;
4053                 }
4054
4055                 for (i = 0; i < size - 1; i++) {
4056                         if ((c = dtrace_load8(s + i)) == '\0')
4057                                 break;
4058
4059                         if (c >= lower && c <= upper)
4060                                 c = convert + (c - lower);
4061
4062                         dest[i] = c;
4063                 }
4064
4065                 ASSERT(i < size);
4066                 dest[i] = '\0';
4067                 regs[rd] = (uintptr_t)dest;
4068                 mstate->dtms_scratch_ptr += size;
4069                 break;
4070         }
4071
4072 #if defined(sun)
4073         case DIF_SUBR_GETMAJOR:
4074 #ifdef _LP64
4075                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4076 #else
4077                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4078 #endif
4079                 break;
4080
4081         case DIF_SUBR_GETMINOR:
4082 #ifdef _LP64
4083                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4084 #else
4085                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4086 #endif
4087                 break;
4088
4089         case DIF_SUBR_DDI_PATHNAME: {
4090                 /*
4091                  * This one is a galactic mess.  We are going to roughly
4092                  * emulate ddi_pathname(), but it's made more complicated
4093                  * by the fact that we (a) want to include the minor name and
4094                  * (b) must proceed iteratively instead of recursively.
4095                  */
4096                 uintptr_t dest = mstate->dtms_scratch_ptr;
4097                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4098                 char *start = (char *)dest, *end = start + size - 1;
4099                 uintptr_t daddr = tupregs[0].dttk_value;
4100                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4101                 char *s;
4102                 int i, len, depth = 0;
4103
4104                 /*
4105                  * Due to all the pointer jumping we do and context we must
4106                  * rely upon, we just mandate that the user must have kernel
4107                  * read privileges to use this routine.
4108                  */
4109                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4110                         *flags |= CPU_DTRACE_KPRIV;
4111                         *illval = daddr;
4112                         regs[rd] = 0;
4113                 }
4114
4115                 if (!DTRACE_INSCRATCH(mstate, size)) {
4116                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4117                         regs[rd] = 0;
4118                         break;
4119                 }
4120
4121                 *end = '\0';
4122
4123                 /*
4124                  * We want to have a name for the minor.  In order to do this,
4125                  * we need to walk the minor list from the devinfo.  We want
4126                  * to be sure that we don't infinitely walk a circular list,
4127                  * so we check for circularity by sending a scout pointer
4128                  * ahead two elements for every element that we iterate over;
4129                  * if the list is circular, these will ultimately point to the
4130                  * same element.  You may recognize this little trick as the
4131                  * answer to a stupid interview question -- one that always
4132                  * seems to be asked by those who had to have it laboriously
4133                  * explained to them, and who can't even concisely describe
4134                  * the conditions under which one would be forced to resort to
4135                  * this technique.  Needless to say, those conditions are
4136                  * found here -- and probably only here.  Is this the only use
4137                  * of this infamous trick in shipping, production code?  If it
4138                  * isn't, it probably should be...
4139                  */
4140                 if (minor != -1) {
4141                         uintptr_t maddr = dtrace_loadptr(daddr +
4142                             offsetof(struct dev_info, devi_minor));
4143
4144                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4145                         uintptr_t name = offsetof(struct ddi_minor_data,
4146                             d_minor) + offsetof(struct ddi_minor, name);
4147                         uintptr_t dev = offsetof(struct ddi_minor_data,
4148                             d_minor) + offsetof(struct ddi_minor, dev);
4149                         uintptr_t scout;
4150
4151                         if (maddr != NULL)
4152                                 scout = dtrace_loadptr(maddr + next);
4153
4154                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4155                                 uint64_t m;
4156 #ifdef _LP64
4157                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4158 #else
4159                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4160 #endif
4161                                 if (m != minor) {
4162                                         maddr = dtrace_loadptr(maddr + next);
4163
4164                                         if (scout == NULL)
4165                                                 continue;
4166
4167                                         scout = dtrace_loadptr(scout + next);
4168
4169                                         if (scout == NULL)
4170                                                 continue;
4171
4172                                         scout = dtrace_loadptr(scout + next);
4173
4174                                         if (scout == NULL)
4175                                                 continue;
4176
4177                                         if (scout == maddr) {
4178                                                 *flags |= CPU_DTRACE_ILLOP;
4179                                                 break;
4180                                         }
4181
4182                                         continue;
4183                                 }
4184
4185                                 /*
4186                                  * We have the minor data.  Now we need to
4187                                  * copy the minor's name into the end of the
4188                                  * pathname.
4189                                  */
4190                                 s = (char *)dtrace_loadptr(maddr + name);
4191                                 len = dtrace_strlen(s, size);
4192
4193                                 if (*flags & CPU_DTRACE_FAULT)
4194                                         break;
4195
4196                                 if (len != 0) {
4197                                         if ((end -= (len + 1)) < start)
4198                                                 break;
4199
4200                                         *end = ':';
4201                                 }
4202
4203                                 for (i = 1; i <= len; i++)
4204                                         end[i] = dtrace_load8((uintptr_t)s++);
4205                                 break;
4206                         }
4207                 }
4208
4209                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4210                         ddi_node_state_t devi_state;
4211
4212                         devi_state = dtrace_load32(daddr +
4213                             offsetof(struct dev_info, devi_node_state));
4214
4215                         if (*flags & CPU_DTRACE_FAULT)
4216                                 break;
4217
4218                         if (devi_state >= DS_INITIALIZED) {
4219                                 s = (char *)dtrace_loadptr(daddr +
4220                                     offsetof(struct dev_info, devi_addr));
4221                                 len = dtrace_strlen(s, size);
4222
4223                                 if (*flags & CPU_DTRACE_FAULT)
4224                                         break;
4225
4226                                 if (len != 0) {
4227                                         if ((end -= (len + 1)) < start)
4228                                                 break;
4229
4230                                         *end = '@';
4231                                 }
4232
4233                                 for (i = 1; i <= len; i++)
4234                                         end[i] = dtrace_load8((uintptr_t)s++);
4235                         }
4236
4237                         /*
4238                          * Now for the node name...
4239                          */
4240                         s = (char *)dtrace_loadptr(daddr +
4241                             offsetof(struct dev_info, devi_node_name));
4242
4243                         daddr = dtrace_loadptr(daddr +
4244                             offsetof(struct dev_info, devi_parent));
4245
4246                         /*
4247                          * If our parent is NULL (that is, if we're the root
4248                          * node), we're going to use the special path
4249                          * "devices".
4250                          */
4251                         if (daddr == 0)
4252                                 s = "devices";
4253
4254                         len = dtrace_strlen(s, size);
4255                         if (*flags & CPU_DTRACE_FAULT)
4256                                 break;
4257
4258                         if ((end -= (len + 1)) < start)
4259                                 break;
4260
4261                         for (i = 1; i <= len; i++)
4262                                 end[i] = dtrace_load8((uintptr_t)s++);
4263                         *end = '/';
4264
4265                         if (depth++ > dtrace_devdepth_max) {
4266                                 *flags |= CPU_DTRACE_ILLOP;
4267                                 break;
4268                         }
4269                 }
4270
4271                 if (end < start)
4272                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4273
4274                 if (daddr == 0) {
4275                         regs[rd] = (uintptr_t)end;
4276                         mstate->dtms_scratch_ptr += size;
4277                 }
4278
4279                 break;
4280         }
4281 #endif
4282
4283         case DIF_SUBR_STRJOIN: {
4284                 char *d = (char *)mstate->dtms_scratch_ptr;
4285                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4286                 uintptr_t s1 = tupregs[0].dttk_value;
4287                 uintptr_t s2 = tupregs[1].dttk_value;
4288                 int i = 0;
4289
4290                 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4291                     !dtrace_strcanload(s2, size, mstate, vstate)) {
4292                         regs[rd] = 0;
4293                         break;
4294                 }
4295
4296                 if (!DTRACE_INSCRATCH(mstate, size)) {
4297                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4298                         regs[rd] = 0;
4299                         break;
4300                 }
4301
4302                 for (;;) {
4303                         if (i >= size) {
4304                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4305                                 regs[rd] = 0;
4306                                 break;
4307                         }
4308
4309                         if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4310                                 i--;
4311                                 break;
4312                         }
4313                 }
4314
4315                 for (;;) {
4316                         if (i >= size) {
4317                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4318                                 regs[rd] = 0;
4319                                 break;
4320                         }
4321
4322                         if ((d[i++] = dtrace_load8(s2++)) == '\0')
4323                                 break;
4324                 }
4325
4326                 if (i < size) {
4327                         mstate->dtms_scratch_ptr += i;
4328                         regs[rd] = (uintptr_t)d;
4329                 }
4330
4331                 break;
4332         }
4333
4334         case DIF_SUBR_LLTOSTR: {
4335                 int64_t i = (int64_t)tupregs[0].dttk_value;
4336                 uint64_t val, digit;
4337                 uint64_t size = 65;     /* enough room for 2^64 in binary */
4338                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4339                 int base = 10;
4340
4341                 if (nargs > 1) {
4342                         if ((base = tupregs[1].dttk_value) <= 1 ||
4343                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4344                                 *flags |= CPU_DTRACE_ILLOP;
4345                                 break;
4346                         }
4347                 }
4348
4349                 val = (base == 10 && i < 0) ? i * -1 : i;
4350
4351                 if (!DTRACE_INSCRATCH(mstate, size)) {
4352                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4353                         regs[rd] = 0;
4354                         break;
4355                 }
4356
4357                 for (*end-- = '\0'; val; val /= base) {
4358                         if ((digit = val % base) <= '9' - '0') {
4359                                 *end-- = '0' + digit;
4360                         } else {
4361                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
4362                         }
4363                 }
4364
4365                 if (i == 0 && base == 16)
4366                         *end-- = '0';
4367
4368                 if (base == 16)
4369                         *end-- = 'x';
4370
4371                 if (i == 0 || base == 8 || base == 16)
4372                         *end-- = '0';
4373
4374                 if (i < 0 && base == 10)
4375                         *end-- = '-';
4376
4377                 regs[rd] = (uintptr_t)end + 1;
4378                 mstate->dtms_scratch_ptr += size;
4379                 break;
4380         }
4381
4382         case DIF_SUBR_HTONS:
4383         case DIF_SUBR_NTOHS:
4384 #if BYTE_ORDER == BIG_ENDIAN
4385                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4386 #else
4387                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4388 #endif
4389                 break;
4390
4391
4392         case DIF_SUBR_HTONL:
4393         case DIF_SUBR_NTOHL:
4394 #if BYTE_ORDER == BIG_ENDIAN
4395                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4396 #else
4397                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4398 #endif
4399                 break;
4400
4401
4402         case DIF_SUBR_HTONLL:
4403         case DIF_SUBR_NTOHLL:
4404 #if BYTE_ORDER == BIG_ENDIAN
4405                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4406 #else
4407                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4408 #endif
4409                 break;
4410
4411
4412         case DIF_SUBR_DIRNAME:
4413         case DIF_SUBR_BASENAME: {
4414                 char *dest = (char *)mstate->dtms_scratch_ptr;
4415                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4416                 uintptr_t src = tupregs[0].dttk_value;
4417                 int i, j, len = dtrace_strlen((char *)src, size);
4418                 int lastbase = -1, firstbase = -1, lastdir = -1;
4419                 int start, end;
4420
4421                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4422                         regs[rd] = 0;
4423                         break;
4424                 }
4425
4426                 if (!DTRACE_INSCRATCH(mstate, size)) {
4427                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4428                         regs[rd] = 0;
4429                         break;
4430                 }
4431
4432                 /*
4433                  * The basename and dirname for a zero-length string is
4434                  * defined to be "."
4435                  */
4436                 if (len == 0) {
4437                         len = 1;
4438                         src = (uintptr_t)".";
4439                 }
4440
4441                 /*
4442                  * Start from the back of the string, moving back toward the
4443                  * front until we see a character that isn't a slash.  That
4444                  * character is the last character in the basename.
4445                  */
4446                 for (i = len - 1; i >= 0; i--) {
4447                         if (dtrace_load8(src + i) != '/')
4448                                 break;
4449                 }
4450
4451                 if (i >= 0)
4452                         lastbase = i;
4453
4454                 /*
4455                  * Starting from the last character in the basename, move
4456                  * towards the front until we find a slash.  The character
4457                  * that we processed immediately before that is the first
4458                  * character in the basename.
4459                  */
4460                 for (; i >= 0; i--) {
4461                         if (dtrace_load8(src + i) == '/')
4462                                 break;
4463                 }
4464
4465                 if (i >= 0)
4466                         firstbase = i + 1;
4467
4468                 /*
4469                  * Now keep going until we find a non-slash character.  That
4470                  * character is the last character in the dirname.
4471                  */
4472                 for (; i >= 0; i--) {
4473                         if (dtrace_load8(src + i) != '/')
4474                                 break;
4475                 }
4476
4477                 if (i >= 0)
4478                         lastdir = i;
4479
4480                 ASSERT(!(lastbase == -1 && firstbase != -1));
4481                 ASSERT(!(firstbase == -1 && lastdir != -1));
4482
4483                 if (lastbase == -1) {
4484                         /*
4485                          * We didn't find a non-slash character.  We know that
4486                          * the length is non-zero, so the whole string must be
4487                          * slashes.  In either the dirname or the basename
4488                          * case, we return '/'.
4489                          */
4490                         ASSERT(firstbase == -1);
4491                         firstbase = lastbase = lastdir = 0;
4492                 }
4493
4494                 if (firstbase == -1) {
4495                         /*
4496                          * The entire string consists only of a basename
4497                          * component.  If we're looking for dirname, we need
4498                          * to change our string to be just "."; if we're
4499                          * looking for a basename, we'll just set the first
4500                          * character of the basename to be 0.
4501                          */
4502                         if (subr == DIF_SUBR_DIRNAME) {
4503                                 ASSERT(lastdir == -1);
4504                                 src = (uintptr_t)".";
4505                                 lastdir = 0;
4506                         } else {
4507                                 firstbase = 0;
4508                         }
4509                 }
4510
4511                 if (subr == DIF_SUBR_DIRNAME) {
4512                         if (lastdir == -1) {
4513                                 /*
4514                                  * We know that we have a slash in the name --
4515                                  * or lastdir would be set to 0, above.  And
4516                                  * because lastdir is -1, we know that this
4517                                  * slash must be the first character.  (That
4518                                  * is, the full string must be of the form
4519                                  * "/basename".)  In this case, the last
4520                                  * character of the directory name is 0.
4521                                  */
4522                                 lastdir = 0;
4523                         }
4524
4525                         start = 0;
4526                         end = lastdir;
4527                 } else {
4528                         ASSERT(subr == DIF_SUBR_BASENAME);
4529                         ASSERT(firstbase != -1 && lastbase != -1);
4530                         start = firstbase;
4531                         end = lastbase;
4532                 }
4533
4534                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4535                         dest[j] = dtrace_load8(src + i);
4536
4537                 dest[j] = '\0';
4538                 regs[rd] = (uintptr_t)dest;
4539                 mstate->dtms_scratch_ptr += size;
4540                 break;
4541         }
4542
4543         case DIF_SUBR_CLEANPATH: {
4544                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4545                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4546                 uintptr_t src = tupregs[0].dttk_value;
4547                 int i = 0, j = 0;
4548
4549                 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4550                         regs[rd] = 0;
4551                         break;
4552                 }
4553
4554                 if (!DTRACE_INSCRATCH(mstate, size)) {
4555                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4556                         regs[rd] = 0;
4557                         break;
4558                 }
4559
4560                 /*
4561                  * Move forward, loading each character.
4562                  */
4563                 do {
4564                         c = dtrace_load8(src + i++);
4565 next:
4566                         if (j + 5 >= size)      /* 5 = strlen("/..c\0") */
4567                                 break;
4568
4569                         if (c != '/') {
4570                                 dest[j++] = c;
4571                                 continue;
4572                         }
4573
4574                         c = dtrace_load8(src + i++);
4575
4576                         if (c == '/') {
4577                                 /*
4578                                  * We have two slashes -- we can just advance
4579                                  * to the next character.
4580                                  */
4581                                 goto next;
4582                         }
4583
4584                         if (c != '.') {
4585                                 /*
4586                                  * This is not "." and it's not ".." -- we can
4587                                  * just store the "/" and this character and
4588                                  * drive on.
4589                                  */
4590                                 dest[j++] = '/';
4591                                 dest[j++] = c;
4592                                 continue;
4593                         }
4594
4595                         c = dtrace_load8(src + i++);
4596
4597                         if (c == '/') {
4598                                 /*
4599                                  * This is a "/./" component.  We're not going
4600                                  * to store anything in the destination buffer;
4601                                  * we're just going to go to the next component.
4602                                  */
4603                                 goto next;
4604                         }
4605
4606                         if (c != '.') {
4607                                 /*
4608                                  * This is not ".." -- we can just store the
4609                                  * "/." and this character and continue
4610                                  * processing.
4611                                  */
4612                                 dest[j++] = '/';
4613                                 dest[j++] = '.';
4614                                 dest[j++] = c;
4615                                 continue;
4616                         }
4617
4618                         c = dtrace_load8(src + i++);
4619
4620                         if (c != '/' && c != '\0') {
4621                                 /*
4622                                  * This is not ".." -- it's "..[mumble]".
4623                                  * We'll store the "/.." and this character
4624                                  * and continue processing.
4625                                  */
4626                                 dest[j++] = '/';
4627                                 dest[j++] = '.';
4628                                 dest[j++] = '.';
4629                                 dest[j++] = c;
4630                                 continue;
4631                         }
4632
4633                         /*
4634                          * This is "/../" or "/..\0".  We need to back up
4635                          * our destination pointer until we find a "/".
4636                          */
4637                         i--;
4638                         while (j != 0 && dest[--j] != '/')
4639                                 continue;
4640
4641                         if (c == '\0')
4642                                 dest[++j] = '/';
4643                 } while (c != '\0');
4644
4645                 dest[j] = '\0';
4646                 regs[rd] = (uintptr_t)dest;
4647                 mstate->dtms_scratch_ptr += size;
4648                 break;
4649         }
4650
4651         case DIF_SUBR_INET_NTOA:
4652         case DIF_SUBR_INET_NTOA6:
4653         case DIF_SUBR_INET_NTOP: {
4654                 size_t size;
4655                 int af, argi, i;
4656                 char *base, *end;
4657
4658                 if (subr == DIF_SUBR_INET_NTOP) {
4659                         af = (int)tupregs[0].dttk_value;
4660                         argi = 1;
4661                 } else {
4662                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4663                         argi = 0;
4664                 }
4665
4666                 if (af == AF_INET) {
4667                         ipaddr_t ip4;
4668                         uint8_t *ptr8, val;
4669
4670                         /*
4671                          * Safely load the IPv4 address.
4672                          */
4673                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
4674
4675                         /*
4676                          * Check an IPv4 string will fit in scratch.
4677                          */
4678                         size = INET_ADDRSTRLEN;
4679                         if (!DTRACE_INSCRATCH(mstate, size)) {
4680                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4681                                 regs[rd] = 0;
4682                                 break;
4683                         }
4684                         base = (char *)mstate->dtms_scratch_ptr;
4685                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4686
4687                         /*
4688                          * Stringify as a dotted decimal quad.
4689                          */
4690                         *end-- = '\0';
4691                         ptr8 = (uint8_t *)&ip4;
4692                         for (i = 3; i >= 0; i--) {
4693                                 val = ptr8[i];
4694
4695                                 if (val == 0) {
4696                                         *end-- = '0';
4697                                 } else {
4698                                         for (; val; val /= 10) {
4699                                                 *end-- = '0' + (val % 10);
4700                                         }
4701                                 }
4702
4703                                 if (i > 0)
4704                                         *end-- = '.';
4705                         }
4706                         ASSERT(end + 1 >= base);
4707
4708                 } else if (af == AF_INET6) {
4709                         struct in6_addr ip6;
4710                         int firstzero, tryzero, numzero, v6end;
4711                         uint16_t val;
4712                         const char digits[] = "0123456789abcdef";
4713
4714                         /*
4715                          * Stringify using RFC 1884 convention 2 - 16 bit
4716                          * hexadecimal values with a zero-run compression.
4717                          * Lower case hexadecimal digits are used.
4718                          *      eg, fe80::214:4fff:fe0b:76c8.
4719                          * The IPv4 embedded form is returned for inet_ntop,
4720                          * just the IPv4 string is returned for inet_ntoa6.
4721                          */
4722
4723                         /*
4724                          * Safely load the IPv6 address.
4725                          */
4726                         dtrace_bcopy(
4727                             (void *)(uintptr_t)tupregs[argi].dttk_value,
4728                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4729
4730                         /*
4731                          * Check an IPv6 string will fit in scratch.
4732                          */
4733                         size = INET6_ADDRSTRLEN;
4734                         if (!DTRACE_INSCRATCH(mstate, size)) {
4735                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4736                                 regs[rd] = 0;
4737                                 break;
4738                         }
4739                         base = (char *)mstate->dtms_scratch_ptr;
4740                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
4741                         *end-- = '\0';
4742
4743                         /*
4744                          * Find the longest run of 16 bit zero values
4745                          * for the single allowed zero compression - "::".
4746                          */
4747                         firstzero = -1;
4748                         tryzero = -1;
4749                         numzero = 1;
4750                         for (i = 0; i < sizeof (struct in6_addr); i++) {
4751 #if defined(sun)
4752                                 if (ip6._S6_un._S6_u8[i] == 0 &&
4753 #else
4754                                 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4755 #endif
4756                                     tryzero == -1 && i % 2 == 0) {
4757                                         tryzero = i;
4758                                         continue;
4759                                 }
4760
4761                                 if (tryzero != -1 &&
4762 #if defined(sun)
4763                                     (ip6._S6_un._S6_u8[i] != 0 ||
4764 #else
4765                                     (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4766 #endif
4767                                     i == sizeof (struct in6_addr) - 1)) {
4768
4769                                         if (i - tryzero <= numzero) {
4770                                                 tryzero = -1;
4771                                                 continue;
4772                                         }
4773
4774                                         firstzero = tryzero;
4775                                         numzero = i - i % 2 - tryzero;
4776                                         tryzero = -1;
4777
4778 #if defined(sun)
4779                                         if (ip6._S6_un._S6_u8[i] == 0 &&
4780 #else
4781                                         if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4782 #endif
4783                                             i == sizeof (struct in6_addr) - 1)
4784                                                 numzero += 2;
4785                                 }
4786                         }
4787                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4788
4789                         /*
4790                          * Check for an IPv4 embedded address.
4791                          */
4792                         v6end = sizeof (struct in6_addr) - 2;
4793                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4794                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
4795                                 for (i = sizeof (struct in6_addr) - 1;
4796                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
4797                                         ASSERT(end >= base);
4798
4799 #if defined(sun)
4800                                         val = ip6._S6_un._S6_u8[i];
4801 #else
4802                                         val = ip6.__u6_addr.__u6_addr8[i];
4803 #endif
4804
4805                                         if (val == 0) {
4806                                                 *end-- = '0';
4807                                         } else {
4808                                                 for (; val; val /= 10) {
4809                                                         *end-- = '0' + val % 10;
4810                                                 }
4811                                         }
4812
4813                                         if (i > DTRACE_V4MAPPED_OFFSET)
4814                                                 *end-- = '.';
4815                                 }
4816
4817                                 if (subr == DIF_SUBR_INET_NTOA6)
4818                                         goto inetout;
4819
4820                                 /*
4821                                  * Set v6end to skip the IPv4 address that
4822                                  * we have already stringified.
4823                                  */
4824                                 v6end = 10;
4825                         }
4826
4827                         /*
4828                          * Build the IPv6 string by working through the
4829                          * address in reverse.
4830                          */
4831                         for (i = v6end; i >= 0; i -= 2) {
4832                                 ASSERT(end >= base);
4833
4834                                 if (i == firstzero + numzero - 2) {
4835                                         *end-- = ':';
4836                                         *end-- = ':';
4837                                         i -= numzero - 2;
4838                                         continue;
4839                                 }
4840
4841                                 if (i < 14 && i != firstzero - 2)
4842                                         *end-- = ':';
4843
4844 #if defined(sun)
4845                                 val = (ip6._S6_un._S6_u8[i] << 8) +
4846                                     ip6._S6_un._S6_u8[i + 1];
4847 #else
4848                                 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4849                                     ip6.__u6_addr.__u6_addr8[i + 1];
4850 #endif
4851
4852                                 if (val == 0) {
4853                                         *end-- = '0';
4854                                 } else {
4855                                         for (; val; val /= 16) {
4856                                                 *end-- = digits[val % 16];
4857                                         }
4858                                 }
4859                         }
4860                         ASSERT(end + 1 >= base);
4861
4862                 } else {
4863                         /*
4864                          * The user didn't use AH_INET or AH_INET6.
4865                          */
4866                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4867                         regs[rd] = 0;
4868                         break;
4869                 }
4870
4871 inetout:        regs[rd] = (uintptr_t)end + 1;
4872                 mstate->dtms_scratch_ptr += size;
4873                 break;
4874         }
4875
4876         case DIF_SUBR_MEMREF: {
4877                 uintptr_t size = 2 * sizeof(uintptr_t);
4878                 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4879                 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4880
4881                 /* address and length */
4882                 memref[0] = tupregs[0].dttk_value;
4883                 memref[1] = tupregs[1].dttk_value;
4884
4885                 regs[rd] = (uintptr_t) memref;
4886                 mstate->dtms_scratch_ptr += scratch_size;
4887                 break;
4888         }
4889
4890         case DIF_SUBR_TYPEREF: {
4891                 uintptr_t size = 4 * sizeof(uintptr_t);
4892                 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4893                 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4894
4895                 /* address, num_elements, type_str, type_len */
4896                 typeref[0] = tupregs[0].dttk_value;
4897                 typeref[1] = tupregs[1].dttk_value;
4898                 typeref[2] = tupregs[2].dttk_value;
4899                 typeref[3] = tupregs[3].dttk_value;
4900
4901                 regs[rd] = (uintptr_t) typeref;
4902                 mstate->dtms_scratch_ptr += scratch_size;
4903                 break;
4904         }
4905         }
4906 }
4907
4908 /*
4909  * Emulate the execution of DTrace IR instructions specified by the given
4910  * DIF object.  This function is deliberately void of assertions as all of
4911  * the necessary checks are handled by a call to dtrace_difo_validate().
4912  */
4913 static uint64_t
4914 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4915     dtrace_vstate_t *vstate, dtrace_state_t *state)
4916 {
4917         const dif_instr_t *text = difo->dtdo_buf;
4918         const uint_t textlen = difo->dtdo_len;
4919         const char *strtab = difo->dtdo_strtab;
4920         const uint64_t *inttab = difo->dtdo_inttab;
4921
4922         uint64_t rval = 0;
4923         dtrace_statvar_t *svar;
4924         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4925         dtrace_difv_t *v;
4926         volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4927         volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4928
4929         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4930         uint64_t regs[DIF_DIR_NREGS];
4931         uint64_t *tmp;
4932
4933         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4934         int64_t cc_r;
4935         uint_t pc = 0, id, opc = 0;
4936         uint8_t ttop = 0;
4937         dif_instr_t instr;
4938         uint_t r1, r2, rd;
4939
4940         /*
4941          * We stash the current DIF object into the machine state: we need it
4942          * for subsequent access checking.
4943          */
4944         mstate->dtms_difo = difo;
4945
4946         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
4947
4948         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4949                 opc = pc;
4950
4951                 instr = text[pc++];
4952                 r1 = DIF_INSTR_R1(instr);
4953                 r2 = DIF_INSTR_R2(instr);
4954                 rd = DIF_INSTR_RD(instr);
4955
4956                 switch (DIF_INSTR_OP(instr)) {
4957                 case DIF_OP_OR:
4958                         regs[rd] = regs[r1] | regs[r2];
4959                         break;
4960                 case DIF_OP_XOR:
4961                         regs[rd] = regs[r1] ^ regs[r2];
4962                         break;
4963                 case DIF_OP_AND:
4964                         regs[rd] = regs[r1] & regs[r2];
4965                         break;
4966                 case DIF_OP_SLL:
4967                         regs[rd] = regs[r1] << regs[r2];
4968                         break;
4969                 case DIF_OP_SRL:
4970                         regs[rd] = regs[r1] >> regs[r2];
4971                         break;
4972                 case DIF_OP_SUB:
4973                         regs[rd] = regs[r1] - regs[r2];
4974                         break;
4975                 case DIF_OP_ADD:
4976                         regs[rd] = regs[r1] + regs[r2];
4977                         break;
4978                 case DIF_OP_MUL:
4979                         regs[rd] = regs[r1] * regs[r2];
4980                         break;
4981                 case DIF_OP_SDIV:
4982                         if (regs[r2] == 0) {
4983                                 regs[rd] = 0;
4984                                 *flags |= CPU_DTRACE_DIVZERO;
4985                         } else {
4986                                 regs[rd] = (int64_t)regs[r1] /
4987                                     (int64_t)regs[r2];
4988                         }
4989                         break;
4990
4991                 case DIF_OP_UDIV:
4992                         if (regs[r2] == 0) {
4993                                 regs[rd] = 0;
4994                                 *flags |= CPU_DTRACE_DIVZERO;
4995                         } else {
4996                                 regs[rd] = regs[r1] / regs[r2];
4997                         }
4998                         break;
4999
5000                 case DIF_OP_SREM:
5001                         if (regs[r2] == 0) {
5002                                 regs[rd] = 0;
5003                                 *flags |= CPU_DTRACE_DIVZERO;
5004                         } else {
5005                                 regs[rd] = (int64_t)regs[r1] %
5006                                     (int64_t)regs[r2];
5007                         }
5008                         break;
5009
5010                 case DIF_OP_UREM:
5011                         if (regs[r2] == 0) {
5012                                 regs[rd] = 0;
5013                                 *flags |= CPU_DTRACE_DIVZERO;
5014                         } else {
5015                                 regs[rd] = regs[r1] % regs[r2];
5016                         }
5017                         break;
5018
5019                 case DIF_OP_NOT:
5020                         regs[rd] = ~regs[r1];
5021                         break;
5022                 case DIF_OP_MOV:
5023                         regs[rd] = regs[r1];
5024                         break;
5025                 case DIF_OP_CMP:
5026                         cc_r = regs[r1] - regs[r2];
5027                         cc_n = cc_r < 0;
5028                         cc_z = cc_r == 0;
5029                         cc_v = 0;
5030                         cc_c = regs[r1] < regs[r2];
5031                         break;
5032                 case DIF_OP_TST:
5033                         cc_n = cc_v = cc_c = 0;
5034                         cc_z = regs[r1] == 0;
5035                         break;
5036                 case DIF_OP_BA:
5037                         pc = DIF_INSTR_LABEL(instr);
5038                         break;
5039                 case DIF_OP_BE:
5040                         if (cc_z)
5041                                 pc = DIF_INSTR_LABEL(instr);
5042                         break;
5043                 case DIF_OP_BNE:
5044                         if (cc_z == 0)
5045                                 pc = DIF_INSTR_LABEL(instr);
5046                         break;
5047                 case DIF_OP_BG:
5048                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5049                                 pc = DIF_INSTR_LABEL(instr);
5050                         break;
5051                 case DIF_OP_BGU:
5052                         if ((cc_c | cc_z) == 0)
5053                                 pc = DIF_INSTR_LABEL(instr);
5054                         break;
5055                 case DIF_OP_BGE:
5056                         if ((cc_n ^ cc_v) == 0)
5057                                 pc = DIF_INSTR_LABEL(instr);
5058                         break;
5059                 case DIF_OP_BGEU:
5060                         if (cc_c == 0)
5061                                 pc = DIF_INSTR_LABEL(instr);
5062                         break;
5063                 case DIF_OP_BL:
5064                         if (cc_n ^ cc_v)
5065                                 pc = DIF_INSTR_LABEL(instr);
5066                         break;
5067                 case DIF_OP_BLU:
5068                         if (cc_c)
5069                                 pc = DIF_INSTR_LABEL(instr);
5070                         break;
5071                 case DIF_OP_BLE:
5072                         if (cc_z | (cc_n ^ cc_v))
5073                                 pc = DIF_INSTR_LABEL(instr);
5074                         break;
5075                 case DIF_OP_BLEU:
5076                         if (cc_c | cc_z)
5077                                 pc = DIF_INSTR_LABEL(instr);
5078                         break;
5079                 case DIF_OP_RLDSB:
5080                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5081                                 *flags |= CPU_DTRACE_KPRIV;
5082                                 *illval = regs[r1];
5083                                 break;
5084                         }
5085                         /*FALLTHROUGH*/
5086                 case DIF_OP_LDSB:
5087                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5088                         break;
5089                 case DIF_OP_RLDSH:
5090                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5091                                 *flags |= CPU_DTRACE_KPRIV;
5092                                 *illval = regs[r1];
5093                                 break;
5094                         }
5095                         /*FALLTHROUGH*/
5096                 case DIF_OP_LDSH:
5097                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5098                         break;
5099                 case DIF_OP_RLDSW:
5100                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5101                                 *flags |= CPU_DTRACE_KPRIV;
5102                                 *illval = regs[r1];
5103                                 break;
5104                         }
5105                         /*FALLTHROUGH*/
5106                 case DIF_OP_LDSW:
5107                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5108                         break;
5109                 case DIF_OP_RLDUB:
5110                         if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5111                                 *flags |= CPU_DTRACE_KPRIV;
5112                                 *illval = regs[r1];
5113                                 break;
5114                         }
5115                         /*FALLTHROUGH*/
5116                 case DIF_OP_LDUB:
5117                         regs[rd] = dtrace_load8(regs[r1]);
5118                         break;
5119                 case DIF_OP_RLDUH:
5120                         if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5121                                 *flags |= CPU_DTRACE_KPRIV;
5122                                 *illval = regs[r1];
5123                                 break;
5124                         }
5125                         /*FALLTHROUGH*/
5126                 case DIF_OP_LDUH:
5127                         regs[rd] = dtrace_load16(regs[r1]);
5128                         break;
5129                 case DIF_OP_RLDUW:
5130                         if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5131                                 *flags |= CPU_DTRACE_KPRIV;
5132                                 *illval = regs[r1];
5133                                 break;
5134                         }
5135                         /*FALLTHROUGH*/
5136                 case DIF_OP_LDUW:
5137                         regs[rd] = dtrace_load32(regs[r1]);
5138                         break;
5139                 case DIF_OP_RLDX:
5140                         if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5141                                 *flags |= CPU_DTRACE_KPRIV;
5142                                 *illval = regs[r1];
5143                                 break;
5144                         }
5145                         /*FALLTHROUGH*/
5146                 case DIF_OP_LDX:
5147                         regs[rd] = dtrace_load64(regs[r1]);
5148                         break;
5149                 case DIF_OP_ULDSB:
5150                         regs[rd] = (int8_t)
5151                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5152                         break;
5153                 case DIF_OP_ULDSH:
5154                         regs[rd] = (int16_t)
5155                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5156                         break;
5157                 case DIF_OP_ULDSW:
5158                         regs[rd] = (int32_t)
5159                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5160                         break;
5161                 case DIF_OP_ULDUB:
5162                         regs[rd] =
5163                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5164                         break;
5165                 case DIF_OP_ULDUH:
5166                         regs[rd] =
5167                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5168                         break;
5169                 case DIF_OP_ULDUW:
5170                         regs[rd] =
5171                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5172                         break;
5173                 case DIF_OP_ULDX:
5174                         regs[rd] =
5175                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5176                         break;
5177                 case DIF_OP_RET:
5178                         rval = regs[rd];
5179                         pc = textlen;
5180                         break;
5181                 case DIF_OP_NOP:
5182                         break;
5183                 case DIF_OP_SETX:
5184                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5185                         break;
5186                 case DIF_OP_SETS:
5187                         regs[rd] = (uint64_t)(uintptr_t)
5188                             (strtab + DIF_INSTR_STRING(instr));
5189                         break;
5190                 case DIF_OP_SCMP: {
5191                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5192                         uintptr_t s1 = regs[r1];
5193                         uintptr_t s2 = regs[r2];
5194
5195                         if (s1 != 0 &&
5196                             !dtrace_strcanload(s1, sz, mstate, vstate))
5197                                 break;
5198                         if (s2 != 0 &&
5199                             !dtrace_strcanload(s2, sz, mstate, vstate))
5200                                 break;
5201
5202                         cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5203
5204                         cc_n = cc_r < 0;
5205                         cc_z = cc_r == 0;
5206                         cc_v = cc_c = 0;
5207                         break;
5208                 }
5209                 case DIF_OP_LDGA:
5210                         regs[rd] = dtrace_dif_variable(mstate, state,
5211                             r1, regs[r2]);
5212                         break;
5213                 case DIF_OP_LDGS:
5214                         id = DIF_INSTR_VAR(instr);
5215
5216                         if (id >= DIF_VAR_OTHER_UBASE) {
5217                                 uintptr_t a;
5218
5219                                 id -= DIF_VAR_OTHER_UBASE;
5220                                 svar = vstate->dtvs_globals[id];
5221                                 ASSERT(svar != NULL);
5222                                 v = &svar->dtsv_var;
5223
5224                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5225                                         regs[rd] = svar->dtsv_data;
5226                                         break;
5227                                 }
5228
5229                                 a = (uintptr_t)svar->dtsv_data;
5230
5231                                 if (*(uint8_t *)a == UINT8_MAX) {
5232                                         /*
5233                                          * If the 0th byte is set to UINT8_MAX
5234                                          * then this is to be treated as a
5235                                          * reference to a NULL variable.
5236                                          */
5237                                         regs[rd] = 0;
5238                                 } else {
5239                                         regs[rd] = a + sizeof (uint64_t);
5240                                 }
5241
5242                                 break;
5243                         }
5244
5245                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5246                         break;
5247
5248                 case DIF_OP_STGS:
5249                         id = DIF_INSTR_VAR(instr);
5250
5251                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5252                         id -= DIF_VAR_OTHER_UBASE;
5253
5254                         svar = vstate->dtvs_globals[id];
5255                         ASSERT(svar != NULL);
5256                         v = &svar->dtsv_var;
5257
5258                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5259                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5260
5261                                 ASSERT(a != 0);
5262                                 ASSERT(svar->dtsv_size != 0);
5263
5264                                 if (regs[rd] == 0) {
5265                                         *(uint8_t *)a = UINT8_MAX;
5266                                         break;
5267                                 } else {
5268                                         *(uint8_t *)a = 0;
5269                                         a += sizeof (uint64_t);
5270                                 }
5271                                 if (!dtrace_vcanload(
5272                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5273                                     mstate, vstate))
5274                                         break;
5275
5276                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5277                                     (void *)a, &v->dtdv_type);
5278                                 break;
5279                         }
5280
5281                         svar->dtsv_data = regs[rd];
5282                         break;
5283
5284                 case DIF_OP_LDTA:
5285                         /*
5286                          * There are no DTrace built-in thread-local arrays at
5287                          * present.  This opcode is saved for future work.
5288                          */
5289                         *flags |= CPU_DTRACE_ILLOP;
5290                         regs[rd] = 0;
5291                         break;
5292
5293                 case DIF_OP_LDLS:
5294                         id = DIF_INSTR_VAR(instr);
5295
5296                         if (id < DIF_VAR_OTHER_UBASE) {
5297                                 /*
5298                                  * For now, this has no meaning.
5299                                  */
5300                                 regs[rd] = 0;
5301                                 break;
5302                         }
5303
5304                         id -= DIF_VAR_OTHER_UBASE;
5305
5306                         ASSERT(id < vstate->dtvs_nlocals);
5307                         ASSERT(vstate->dtvs_locals != NULL);
5308
5309                         svar = vstate->dtvs_locals[id];
5310                         ASSERT(svar != NULL);
5311                         v = &svar->dtsv_var;
5312
5313                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5314                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5315                                 size_t sz = v->dtdv_type.dtdt_size;
5316
5317                                 sz += sizeof (uint64_t);
5318                                 ASSERT(svar->dtsv_size == NCPU * sz);
5319                                 a += curcpu * sz;
5320
5321                                 if (*(uint8_t *)a == UINT8_MAX) {
5322                                         /*
5323                                          * If the 0th byte is set to UINT8_MAX
5324                                          * then this is to be treated as a
5325                                          * reference to a NULL variable.
5326                                          */
5327                                         regs[rd] = 0;
5328                                 } else {
5329                                         regs[rd] = a + sizeof (uint64_t);
5330                                 }
5331
5332                                 break;
5333                         }
5334
5335                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5336                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5337                         regs[rd] = tmp[curcpu];
5338                         break;
5339
5340                 case DIF_OP_STLS:
5341                         id = DIF_INSTR_VAR(instr);
5342
5343                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5344                         id -= DIF_VAR_OTHER_UBASE;
5345                         ASSERT(id < vstate->dtvs_nlocals);
5346
5347                         ASSERT(vstate->dtvs_locals != NULL);
5348                         svar = vstate->dtvs_locals[id];
5349                         ASSERT(svar != NULL);
5350                         v = &svar->dtsv_var;
5351
5352                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5353                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
5354                                 size_t sz = v->dtdv_type.dtdt_size;
5355
5356                                 sz += sizeof (uint64_t);
5357                                 ASSERT(svar->dtsv_size == NCPU * sz);
5358                                 a += curcpu * sz;
5359
5360                                 if (regs[rd] == 0) {
5361                                         *(uint8_t *)a = UINT8_MAX;
5362                                         break;
5363                                 } else {
5364                                         *(uint8_t *)a = 0;
5365                                         a += sizeof (uint64_t);
5366                                 }
5367
5368                                 if (!dtrace_vcanload(
5369                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5370                                     mstate, vstate))
5371                                         break;
5372
5373                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5374                                     (void *)a, &v->dtdv_type);
5375                                 break;
5376                         }
5377
5378                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5379                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5380                         tmp[curcpu] = regs[rd];
5381                         break;
5382
5383                 case DIF_OP_LDTS: {
5384                         dtrace_dynvar_t *dvar;
5385                         dtrace_key_t *key;
5386
5387                         id = DIF_INSTR_VAR(instr);
5388                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5389                         id -= DIF_VAR_OTHER_UBASE;
5390                         v = &vstate->dtvs_tlocals[id];
5391
5392                         key = &tupregs[DIF_DTR_NREGS];
5393                         key[0].dttk_value = (uint64_t)id;
5394                         key[0].dttk_size = 0;
5395                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5396                         key[1].dttk_size = 0;
5397
5398                         dvar = dtrace_dynvar(dstate, 2, key,
5399                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5400                             mstate, vstate);
5401
5402                         if (dvar == NULL) {
5403                                 regs[rd] = 0;
5404                                 break;
5405                         }
5406
5407                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5408                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5409                         } else {
5410                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5411                         }
5412
5413                         break;
5414                 }
5415
5416                 case DIF_OP_STTS: {
5417                         dtrace_dynvar_t *dvar;
5418                         dtrace_key_t *key;
5419
5420                         id = DIF_INSTR_VAR(instr);
5421                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5422                         id -= DIF_VAR_OTHER_UBASE;
5423
5424                         key = &tupregs[DIF_DTR_NREGS];
5425                         key[0].dttk_value = (uint64_t)id;
5426                         key[0].dttk_size = 0;
5427                         DTRACE_TLS_THRKEY(key[1].dttk_value);
5428                         key[1].dttk_size = 0;
5429                         v = &vstate->dtvs_tlocals[id];
5430
5431                         dvar = dtrace_dynvar(dstate, 2, key,
5432                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5433                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5434                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5435                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5436
5437                         /*
5438                          * Given that we're storing to thread-local data,
5439                          * we need to flush our predicate cache.
5440                          */
5441                         curthread->t_predcache = 0;
5442
5443                         if (dvar == NULL)
5444                                 break;
5445
5446                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5447                                 if (!dtrace_vcanload(
5448                                     (void *)(uintptr_t)regs[rd],
5449                                     &v->dtdv_type, mstate, vstate))
5450                                         break;
5451
5452                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5453                                     dvar->dtdv_data, &v->dtdv_type);
5454                         } else {
5455                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5456                         }
5457
5458                         break;
5459                 }
5460
5461                 case DIF_OP_SRA:
5462                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
5463                         break;
5464
5465                 case DIF_OP_CALL:
5466                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5467                             regs, tupregs, ttop, mstate, state);
5468                         break;
5469
5470                 case DIF_OP_PUSHTR:
5471                         if (ttop == DIF_DTR_NREGS) {
5472                                 *flags |= CPU_DTRACE_TUPOFLOW;
5473                                 break;
5474                         }
5475
5476                         if (r1 == DIF_TYPE_STRING) {
5477                                 /*
5478                                  * If this is a string type and the size is 0,
5479                                  * we'll use the system-wide default string
5480                                  * size.  Note that we are _not_ looking at
5481                                  * the value of the DTRACEOPT_STRSIZE option;
5482                                  * had this been set, we would expect to have
5483                                  * a non-zero size value in the "pushtr".
5484                                  */
5485                                 tupregs[ttop].dttk_size =
5486                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
5487                                     regs[r2] ? regs[r2] :
5488                                     dtrace_strsize_default) + 1;
5489                         } else {
5490                                 tupregs[ttop].dttk_size = regs[r2];
5491                         }
5492
5493                         tupregs[ttop++].dttk_value = regs[rd];
5494                         break;
5495
5496                 case DIF_OP_PUSHTV:
5497                         if (ttop == DIF_DTR_NREGS) {
5498                                 *flags |= CPU_DTRACE_TUPOFLOW;
5499                                 break;
5500                         }
5501
5502                         tupregs[ttop].dttk_value = regs[rd];
5503                         tupregs[ttop++].dttk_size = 0;
5504                         break;
5505
5506                 case DIF_OP_POPTS:
5507                         if (ttop != 0)
5508                                 ttop--;
5509                         break;
5510
5511                 case DIF_OP_FLUSHTS:
5512                         ttop = 0;
5513                         break;
5514
5515                 case DIF_OP_LDGAA:
5516                 case DIF_OP_LDTAA: {
5517                         dtrace_dynvar_t *dvar;
5518                         dtrace_key_t *key = tupregs;
5519                         uint_t nkeys = ttop;
5520
5521                         id = DIF_INSTR_VAR(instr);
5522                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5523                         id -= DIF_VAR_OTHER_UBASE;
5524
5525                         key[nkeys].dttk_value = (uint64_t)id;
5526                         key[nkeys++].dttk_size = 0;
5527
5528                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5529                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5530                                 key[nkeys++].dttk_size = 0;
5531                                 v = &vstate->dtvs_tlocals[id];
5532                         } else {
5533                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5534                         }
5535
5536                         dvar = dtrace_dynvar(dstate, nkeys, key,
5537                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5538                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5539                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5540
5541                         if (dvar == NULL) {
5542                                 regs[rd] = 0;
5543                                 break;
5544                         }
5545
5546                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5547                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5548                         } else {
5549                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5550                         }
5551
5552                         break;
5553                 }
5554
5555                 case DIF_OP_STGAA:
5556                 case DIF_OP_STTAA: {
5557                         dtrace_dynvar_t *dvar;
5558                         dtrace_key_t *key = tupregs;
5559                         uint_t nkeys = ttop;
5560
5561                         id = DIF_INSTR_VAR(instr);
5562                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
5563                         id -= DIF_VAR_OTHER_UBASE;
5564
5565                         key[nkeys].dttk_value = (uint64_t)id;
5566                         key[nkeys++].dttk_size = 0;
5567
5568                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5569                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5570                                 key[nkeys++].dttk_size = 0;
5571                                 v = &vstate->dtvs_tlocals[id];
5572                         } else {
5573                                 v = &vstate->dtvs_globals[id]->dtsv_var;
5574                         }
5575
5576                         dvar = dtrace_dynvar(dstate, nkeys, key,
5577                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5578                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
5579                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
5580                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5581
5582                         if (dvar == NULL)
5583                                 break;
5584
5585                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5586                                 if (!dtrace_vcanload(
5587                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5588                                     mstate, vstate))
5589                                         break;
5590
5591                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5592                                     dvar->dtdv_data, &v->dtdv_type);
5593                         } else {
5594                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5595                         }
5596
5597                         break;
5598                 }
5599
5600                 case DIF_OP_ALLOCS: {
5601                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5602                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5603
5604                         /*
5605                          * Rounding up the user allocation size could have
5606                          * overflowed large, bogus allocations (like -1ULL) to
5607                          * 0.
5608                          */
5609                         if (size < regs[r1] ||
5610                             !DTRACE_INSCRATCH(mstate, size)) {
5611                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5612                                 regs[rd] = 0;
5613                                 break;
5614                         }
5615
5616                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5617                         mstate->dtms_scratch_ptr += size;
5618                         regs[rd] = ptr;
5619                         break;
5620                 }
5621
5622                 case DIF_OP_COPYS:
5623                         if (!dtrace_canstore(regs[rd], regs[r2],
5624                             mstate, vstate)) {
5625                                 *flags |= CPU_DTRACE_BADADDR;
5626                                 *illval = regs[rd];
5627                                 break;
5628                         }
5629
5630                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5631                                 break;
5632
5633                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
5634                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5635                         break;
5636
5637                 case DIF_OP_STB:
5638                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5639                                 *flags |= CPU_DTRACE_BADADDR;
5640                                 *illval = regs[rd];
5641                                 break;
5642                         }
5643                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5644                         break;
5645
5646                 case DIF_OP_STH:
5647                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5648                                 *flags |= CPU_DTRACE_BADADDR;
5649                                 *illval = regs[rd];
5650                                 break;
5651                         }
5652                         if (regs[rd] & 1) {
5653                                 *flags |= CPU_DTRACE_BADALIGN;
5654                                 *illval = regs[rd];
5655                                 break;
5656                         }
5657                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5658                         break;
5659
5660                 case DIF_OP_STW:
5661                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5662                                 *flags |= CPU_DTRACE_BADADDR;
5663                                 *illval = regs[rd];
5664                                 break;
5665                         }
5666                         if (regs[rd] & 3) {
5667                                 *flags |= CPU_DTRACE_BADALIGN;
5668                                 *illval = regs[rd];
5669                                 break;
5670                         }
5671                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5672                         break;
5673
5674                 case DIF_OP_STX:
5675                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5676                                 *flags |= CPU_DTRACE_BADADDR;
5677                                 *illval = regs[rd];
5678                                 break;
5679                         }
5680                         if (regs[rd] & 7) {
5681                                 *flags |= CPU_DTRACE_BADALIGN;
5682                                 *illval = regs[rd];
5683                                 break;
5684                         }
5685                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5686                         break;
5687                 }
5688         }
5689
5690         if (!(*flags & CPU_DTRACE_FAULT))
5691                 return (rval);
5692
5693         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5694         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5695
5696         return (0);
5697 }
5698
5699 static void
5700 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5701 {
5702         dtrace_probe_t *probe = ecb->dte_probe;
5703         dtrace_provider_t *prov = probe->dtpr_provider;
5704         char c[DTRACE_FULLNAMELEN + 80], *str;
5705         char *msg = "dtrace: breakpoint action at probe ";
5706         char *ecbmsg = " (ecb ";
5707         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5708         uintptr_t val = (uintptr_t)ecb;
5709         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5710
5711         if (dtrace_destructive_disallow)
5712                 return;
5713
5714         /*
5715          * It's impossible to be taking action on the NULL probe.
5716          */
5717         ASSERT(probe != NULL);
5718
5719         /*
5720          * This is a poor man's (destitute man's?) sprintf():  we want to
5721          * print the provider name, module name, function name and name of
5722          * the probe, along with the hex address of the ECB with the breakpoint
5723          * action -- all of which we must place in the character buffer by
5724          * hand.
5725          */
5726         while (*msg != '\0')
5727                 c[i++] = *msg++;
5728
5729         for (str = prov->dtpv_name; *str != '\0'; str++)
5730                 c[i++] = *str;
5731         c[i++] = ':';
5732
5733         for (str = probe->dtpr_mod; *str != '\0'; str++)
5734                 c[i++] = *str;
5735         c[i++] = ':';
5736
5737         for (str = probe->dtpr_func; *str != '\0'; str++)
5738                 c[i++] = *str;
5739         c[i++] = ':';
5740
5741         for (str = probe->dtpr_name; *str != '\0'; str++)
5742                 c[i++] = *str;
5743
5744         while (*ecbmsg != '\0')
5745                 c[i++] = *ecbmsg++;
5746
5747         while (shift >= 0) {
5748                 mask = (uintptr_t)0xf << shift;
5749
5750                 if (val >= ((uintptr_t)1 << shift))
5751                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5752                 shift -= 4;
5753         }
5754
5755         c[i++] = ')';
5756         c[i] = '\0';
5757
5758 #if defined(sun)
5759         debug_enter(c);
5760 #else
5761         kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5762 #endif
5763 }
5764
5765 static void
5766 dtrace_action_panic(dtrace_ecb_t *ecb)
5767 {
5768         dtrace_probe_t *probe = ecb->dte_probe;
5769
5770         /*
5771          * It's impossible to be taking action on the NULL probe.
5772          */
5773         ASSERT(probe != NULL);
5774
5775         if (dtrace_destructive_disallow)
5776                 return;
5777
5778         if (dtrace_panicked != NULL)
5779                 return;
5780
5781         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5782                 return;
5783
5784         /*
5785          * We won the right to panic.  (We want to be sure that only one
5786          * thread calls panic() from dtrace_probe(), and that panic() is
5787          * called exactly once.)
5788          */
5789         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5790             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5791             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5792 }
5793
5794 static void
5795 dtrace_action_raise(uint64_t sig)
5796 {
5797         if (dtrace_destructive_disallow)
5798                 return;
5799
5800         if (sig >= NSIG) {
5801                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5802                 return;
5803         }
5804
5805 #if defined(sun)
5806         /*
5807          * raise() has a queue depth of 1 -- we ignore all subsequent
5808          * invocations of the raise() action.
5809          */
5810         if (curthread->t_dtrace_sig == 0)
5811                 curthread->t_dtrace_sig = (uint8_t)sig;
5812
5813         curthread->t_sig_check = 1;
5814         aston(curthread);
5815 #else
5816         struct proc *p = curproc;
5817         PROC_LOCK(p);
5818         kern_psignal(p, sig);
5819         PROC_UNLOCK(p);
5820 #endif
5821 }
5822
5823 static void
5824 dtrace_action_stop(void)
5825 {
5826         if (dtrace_destructive_disallow)
5827                 return;
5828
5829 #if defined(sun)
5830         if (!curthread->t_dtrace_stop) {
5831                 curthread->t_dtrace_stop = 1;
5832                 curthread->t_sig_check = 1;
5833                 aston(curthread);
5834         }
5835 #else
5836         struct proc *p = curproc;
5837         PROC_LOCK(p);
5838         kern_psignal(p, SIGSTOP);
5839         PROC_UNLOCK(p);
5840 #endif
5841 }
5842
5843 static void
5844 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5845 {
5846         hrtime_t now;
5847         volatile uint16_t *flags;
5848 #if defined(sun)
5849         cpu_t *cpu = CPU;
5850 #else
5851         cpu_t *cpu = &solaris_cpu[curcpu];
5852 #endif
5853
5854         if (dtrace_destructive_disallow)
5855                 return;
5856
5857         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5858
5859         now = dtrace_gethrtime();
5860
5861         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5862                 /*
5863                  * We need to advance the mark to the current time.
5864                  */
5865                 cpu->cpu_dtrace_chillmark = now;
5866                 cpu->cpu_dtrace_chilled = 0;
5867         }
5868
5869         /*
5870          * Now check to see if the requested chill time would take us over
5871          * the maximum amount of time allowed in the chill interval.  (Or
5872          * worse, if the calculation itself induces overflow.)
5873          */
5874         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5875             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5876                 *flags |= CPU_DTRACE_ILLOP;
5877                 return;
5878         }
5879
5880         while (dtrace_gethrtime() - now < val)
5881                 continue;
5882
5883         /*
5884          * Normally, we assure that the value of the variable "timestamp" does
5885          * not change within an ECB.  The presence of chill() represents an
5886          * exception to this rule, however.
5887          */
5888         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5889         cpu->cpu_dtrace_chilled += val;
5890 }
5891
5892 static void
5893 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5894     uint64_t *buf, uint64_t arg)
5895 {
5896         int nframes = DTRACE_USTACK_NFRAMES(arg);
5897         int strsize = DTRACE_USTACK_STRSIZE(arg);
5898         uint64_t *pcs = &buf[1], *fps;
5899         char *str = (char *)&pcs[nframes];
5900         int size, offs = 0, i, j;
5901         uintptr_t old = mstate->dtms_scratch_ptr, saved;
5902         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5903         char *sym;
5904
5905         /*
5906          * Should be taking a faster path if string space has not been
5907          * allocated.
5908          */
5909         ASSERT(strsize != 0);
5910
5911         /*
5912          * We will first allocate some temporary space for the frame pointers.
5913          */
5914         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5915         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5916             (nframes * sizeof (uint64_t));
5917
5918         if (!DTRACE_INSCRATCH(mstate, size)) {
5919                 /*
5920                  * Not enough room for our frame pointers -- need to indicate
5921                  * that we ran out of scratch space.
5922                  */
5923                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5924                 return;
5925         }
5926
5927         mstate->dtms_scratch_ptr += size;
5928         saved = mstate->dtms_scratch_ptr;
5929
5930         /*
5931          * Now get a stack with both program counters and frame pointers.
5932          */
5933         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5934         dtrace_getufpstack(buf, fps, nframes + 1);
5935         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5936
5937         /*
5938          * If that faulted, we're cooked.
5939          */
5940         if (*flags & CPU_DTRACE_FAULT)
5941                 goto out;
5942
5943         /*
5944          * Now we want to walk up the stack, calling the USTACK helper.  For
5945          * each iteration, we restore the scratch pointer.
5946          */
5947         for (i = 0; i < nframes; i++) {
5948                 mstate->dtms_scratch_ptr = saved;
5949
5950                 if (offs >= strsize)
5951                         break;
5952
5953                 sym = (char *)(uintptr_t)dtrace_helper(
5954                     DTRACE_HELPER_ACTION_USTACK,
5955                     mstate, state, pcs[i], fps[i]);
5956
5957                 /*
5958                  * If we faulted while running the helper, we're going to
5959                  * clear the fault and null out the corresponding string.
5960                  */
5961                 if (*flags & CPU_DTRACE_FAULT) {
5962                         *flags &= ~CPU_DTRACE_FAULT;
5963                         str[offs++] = '\0';
5964                         continue;
5965                 }
5966
5967                 if (sym == NULL) {
5968                         str[offs++] = '\0';
5969                         continue;
5970                 }
5971
5972                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5973
5974                 /*
5975                  * Now copy in the string that the helper returned to us.
5976                  */
5977                 for (j = 0; offs + j < strsize; j++) {
5978                         if ((str[offs + j] = sym[j]) == '\0')
5979                                 break;
5980                 }
5981
5982                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5983
5984                 offs += j + 1;
5985         }
5986
5987         if (offs >= strsize) {
5988                 /*
5989                  * If we didn't have room for all of the strings, we don't
5990                  * abort processing -- this needn't be a fatal error -- but we
5991                  * still want to increment a counter (dts_stkstroverflows) to
5992                  * allow this condition to be warned about.  (If this is from
5993                  * a jstack() action, it is easily tuned via jstackstrsize.)
5994                  */
5995                 dtrace_error(&state->dts_stkstroverflows);
5996         }
5997
5998         while (offs < strsize)
5999                 str[offs++] = '\0';
6000
6001 out:
6002         mstate->dtms_scratch_ptr = old;
6003 }
6004
6005 /*
6006  * If you're looking for the epicenter of DTrace, you just found it.  This
6007  * is the function called by the provider to fire a probe -- from which all
6008  * subsequent probe-context DTrace activity emanates.
6009  */
6010 void
6011 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6012     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6013 {
6014         processorid_t cpuid;
6015         dtrace_icookie_t cookie;
6016         dtrace_probe_t *probe;
6017         dtrace_mstate_t mstate;
6018         dtrace_ecb_t *ecb;
6019         dtrace_action_t *act;
6020         intptr_t offs;
6021         size_t size;
6022         int vtime, onintr;
6023         volatile uint16_t *flags;
6024         hrtime_t now;
6025
6026         if (panicstr != NULL)
6027                 return;
6028
6029 #if defined(sun)
6030         /*
6031          * Kick out immediately if this CPU is still being born (in which case
6032          * curthread will be set to -1) or the current thread can't allow
6033          * probes in its current context.
6034          */
6035         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6036                 return;
6037 #endif
6038
6039         cookie = dtrace_interrupt_disable();
6040         probe = dtrace_probes[id - 1];
6041         cpuid = curcpu;
6042         onintr = CPU_ON_INTR(CPU);
6043
6044         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6045             probe->dtpr_predcache == curthread->t_predcache) {
6046                 /*
6047                  * We have hit in the predicate cache; we know that
6048                  * this predicate would evaluate to be false.
6049                  */
6050                 dtrace_interrupt_enable(cookie);
6051                 return;
6052         }
6053
6054 #if defined(sun)
6055         if (panic_quiesce) {
6056 #else
6057         if (panicstr != NULL) {
6058 #endif
6059                 /*
6060                  * We don't trace anything if we're panicking.
6061                  */
6062                 dtrace_interrupt_enable(cookie);
6063                 return;
6064         }
6065
6066         now = dtrace_gethrtime();
6067         vtime = dtrace_vtime_references != 0;
6068
6069         if (vtime && curthread->t_dtrace_start)
6070                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6071
6072         mstate.dtms_difo = NULL;
6073         mstate.dtms_probe = probe;
6074         mstate.dtms_strtok = 0;
6075         mstate.dtms_arg[0] = arg0;
6076         mstate.dtms_arg[1] = arg1;
6077         mstate.dtms_arg[2] = arg2;
6078         mstate.dtms_arg[3] = arg3;
6079         mstate.dtms_arg[4] = arg4;
6080
6081         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6082
6083         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6084                 dtrace_predicate_t *pred = ecb->dte_predicate;
6085                 dtrace_state_t *state = ecb->dte_state;
6086                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6087                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6088                 dtrace_vstate_t *vstate = &state->dts_vstate;
6089                 dtrace_provider_t *prov = probe->dtpr_provider;
6090                 uint64_t tracememsize = 0;
6091                 int committed = 0;
6092                 caddr_t tomax;
6093
6094                 /*
6095                  * A little subtlety with the following (seemingly innocuous)
6096                  * declaration of the automatic 'val':  by looking at the
6097                  * code, you might think that it could be declared in the
6098                  * action processing loop, below.  (That is, it's only used in
6099                  * the action processing loop.)  However, it must be declared
6100                  * out of that scope because in the case of DIF expression
6101                  * arguments to aggregating actions, one iteration of the
6102                  * action loop will use the last iteration's value.
6103                  */
6104                 uint64_t val = 0;
6105
6106                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6107                 *flags &= ~CPU_DTRACE_ERROR;
6108
6109                 if (prov == dtrace_provider) {
6110                         /*
6111                          * If dtrace itself is the provider of this probe,
6112                          * we're only going to continue processing the ECB if
6113                          * arg0 (the dtrace_state_t) is equal to the ECB's
6114                          * creating state.  (This prevents disjoint consumers
6115                          * from seeing one another's metaprobes.)
6116                          */
6117                         if (arg0 != (uint64_t)(uintptr_t)state)
6118                                 continue;
6119                 }
6120
6121                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6122                         /*
6123                          * We're not currently active.  If our provider isn't
6124                          * the dtrace pseudo provider, we're not interested.
6125                          */
6126                         if (prov != dtrace_provider)
6127                                 continue;
6128
6129                         /*
6130                          * Now we must further check if we are in the BEGIN
6131                          * probe.  If we are, we will only continue processing
6132                          * if we're still in WARMUP -- if one BEGIN enabling
6133                          * has invoked the exit() action, we don't want to
6134                          * evaluate subsequent BEGIN enablings.
6135                          */
6136                         if (probe->dtpr_id == dtrace_probeid_begin &&
6137                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6138                                 ASSERT(state->dts_activity ==
6139                                     DTRACE_ACTIVITY_DRAINING);
6140                                 continue;
6141                         }
6142                 }
6143
6144                 if (ecb->dte_cond) {
6145                         /*
6146                          * If the dte_cond bits indicate that this
6147                          * consumer is only allowed to see user-mode firings
6148                          * of this probe, call the provider's dtps_usermode()
6149                          * entry point to check that the probe was fired
6150                          * while in a user context. Skip this ECB if that's
6151                          * not the case.
6152                          */
6153                         if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6154                             prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6155                             probe->dtpr_id, probe->dtpr_arg) == 0)
6156                                 continue;
6157
6158 #if defined(sun)
6159                         /*
6160                          * This is more subtle than it looks. We have to be
6161                          * absolutely certain that CRED() isn't going to
6162                          * change out from under us so it's only legit to
6163                          * examine that structure if we're in constrained
6164                          * situations. Currently, the only times we'll this
6165                          * check is if a non-super-user has enabled the
6166                          * profile or syscall providers -- providers that
6167                          * allow visibility of all processes. For the
6168                          * profile case, the check above will ensure that
6169                          * we're examining a user context.
6170                          */
6171                         if (ecb->dte_cond & DTRACE_COND_OWNER) {
6172                                 cred_t *cr;
6173                                 cred_t *s_cr =
6174                                     ecb->dte_state->dts_cred.dcr_cred;
6175                                 proc_t *proc;
6176
6177                                 ASSERT(s_cr != NULL);
6178
6179                                 if ((cr = CRED()) == NULL ||
6180                                     s_cr->cr_uid != cr->cr_uid ||
6181                                     s_cr->cr_uid != cr->cr_ruid ||
6182                                     s_cr->cr_uid != cr->cr_suid ||
6183                                     s_cr->cr_gid != cr->cr_gid ||
6184                                     s_cr->cr_gid != cr->cr_rgid ||
6185                                     s_cr->cr_gid != cr->cr_sgid ||
6186                                     (proc = ttoproc(curthread)) == NULL ||
6187                                     (proc->p_flag & SNOCD))
6188                                         continue;
6189                         }
6190
6191                         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6192                                 cred_t *cr;
6193                                 cred_t *s_cr =
6194                                     ecb->dte_state->dts_cred.dcr_cred;
6195
6196                                 ASSERT(s_cr != NULL);
6197
6198                                 if ((cr = CRED()) == NULL ||
6199                                     s_cr->cr_zone->zone_id !=
6200                                     cr->cr_zone->zone_id)
6201                                         continue;
6202                         }
6203 #endif
6204                 }
6205
6206                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6207                         /*
6208                          * We seem to be dead.  Unless we (a) have kernel
6209                          * destructive permissions (b) have expicitly enabled
6210                          * destructive actions and (c) destructive actions have
6211                          * not been disabled, we're going to transition into
6212                          * the KILLED state, from which no further processing
6213                          * on this state will be performed.
6214                          */
6215                         if (!dtrace_priv_kernel_destructive(state) ||
6216                             !state->dts_cred.dcr_destructive ||
6217                             dtrace_destructive_disallow) {
6218                                 void *activity = &state->dts_activity;
6219                                 dtrace_activity_t current;
6220
6221                                 do {
6222                                         current = state->dts_activity;
6223                                 } while (dtrace_cas32(activity, current,
6224                                     DTRACE_ACTIVITY_KILLED) != current);
6225
6226                                 continue;
6227                         }
6228                 }
6229
6230                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6231                     ecb->dte_alignment, state, &mstate)) < 0)
6232                         continue;
6233
6234                 tomax = buf->dtb_tomax;
6235                 ASSERT(tomax != NULL);
6236
6237                 if (ecb->dte_size != 0)
6238                         DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6239
6240                 mstate.dtms_epid = ecb->dte_epid;
6241                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6242
6243                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6244                         mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6245                 else
6246                         mstate.dtms_access = 0;
6247
6248                 if (pred != NULL) {
6249                         dtrace_difo_t *dp = pred->dtp_difo;
6250                         int rval;
6251
6252                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6253
6254                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6255                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
6256
6257                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6258                                         /*
6259                                          * Update the predicate cache...
6260                                          */
6261                                         ASSERT(cid == pred->dtp_cacheid);
6262                                         curthread->t_predcache = cid;
6263                                 }
6264
6265                                 continue;
6266                         }
6267                 }
6268
6269                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6270                     act != NULL; act = act->dta_next) {
6271                         size_t valoffs;
6272                         dtrace_difo_t *dp;
6273                         dtrace_recdesc_t *rec = &act->dta_rec;
6274
6275                         size = rec->dtrd_size;
6276                         valoffs = offs + rec->dtrd_offset;
6277
6278                         if (DTRACEACT_ISAGG(act->dta_kind)) {
6279                                 uint64_t v = 0xbad;
6280                                 dtrace_aggregation_t *agg;
6281
6282                                 agg = (dtrace_aggregation_t *)act;
6283
6284                                 if ((dp = act->dta_difo) != NULL)
6285                                         v = dtrace_dif_emulate(dp,
6286                                             &mstate, vstate, state);
6287
6288                                 if (*flags & CPU_DTRACE_ERROR)
6289                                         continue;
6290
6291                                 /*
6292                                  * Note that we always pass the expression
6293                                  * value from the previous iteration of the
6294                                  * action loop.  This value will only be used
6295                                  * if there is an expression argument to the
6296                                  * aggregating action, denoted by the
6297                                  * dtag_hasarg field.
6298                                  */
6299                                 dtrace_aggregate(agg, buf,
6300                                     offs, aggbuf, v, val);
6301                                 continue;
6302                         }
6303
6304                         switch (act->dta_kind) {
6305                         case DTRACEACT_STOP:
6306                                 if (dtrace_priv_proc_destructive(state))
6307                                         dtrace_action_stop();
6308                                 continue;
6309
6310                         case DTRACEACT_BREAKPOINT:
6311                                 if (dtrace_priv_kernel_destructive(state))
6312                                         dtrace_action_breakpoint(ecb);
6313                                 continue;
6314
6315                         case DTRACEACT_PANIC:
6316                                 if (dtrace_priv_kernel_destructive(state))
6317                                         dtrace_action_panic(ecb);
6318                                 continue;
6319
6320                         case DTRACEACT_STACK:
6321                                 if (!dtrace_priv_kernel(state))
6322                                         continue;
6323
6324                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6325                                     size / sizeof (pc_t), probe->dtpr_aframes,
6326                                     DTRACE_ANCHORED(probe) ? NULL :
6327                                     (uint32_t *)arg0);
6328                                 continue;
6329
6330                         case DTRACEACT_JSTACK:
6331                         case DTRACEACT_USTACK:
6332                                 if (!dtrace_priv_proc(state))
6333                                         continue;
6334
6335                                 /*
6336                                  * See comment in DIF_VAR_PID.
6337                                  */
6338                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6339                                     CPU_ON_INTR(CPU)) {
6340                                         int depth = DTRACE_USTACK_NFRAMES(
6341                                             rec->dtrd_arg) + 1;
6342
6343                                         dtrace_bzero((void *)(tomax + valoffs),
6344                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6345                                             + depth * sizeof (uint64_t));
6346
6347                                         continue;
6348                                 }
6349
6350                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6351                                     curproc->p_dtrace_helpers != NULL) {
6352                                         /*
6353                                          * This is the slow path -- we have
6354                                          * allocated string space, and we're
6355                                          * getting the stack of a process that
6356                                          * has helpers.  Call into a separate
6357                                          * routine to perform this processing.
6358                                          */
6359                                         dtrace_action_ustack(&mstate, state,
6360                                             (uint64_t *)(tomax + valoffs),
6361                                             rec->dtrd_arg);
6362                                         continue;
6363                                 }
6364
6365                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6366                                 dtrace_getupcstack((uint64_t *)
6367                                     (tomax + valoffs),
6368                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6369                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6370                                 continue;
6371
6372                         default:
6373                                 break;
6374                         }
6375
6376                         dp = act->dta_difo;
6377                         ASSERT(dp != NULL);
6378
6379                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6380
6381                         if (*flags & CPU_DTRACE_ERROR)
6382                                 continue;
6383
6384                         switch (act->dta_kind) {
6385                         case DTRACEACT_SPECULATE:
6386                                 ASSERT(buf == &state->dts_buffer[cpuid]);
6387                                 buf = dtrace_speculation_buffer(state,
6388                                     cpuid, val);
6389
6390                                 if (buf == NULL) {
6391                                         *flags |= CPU_DTRACE_DROP;
6392                                         continue;
6393                                 }
6394
6395                                 offs = dtrace_buffer_reserve(buf,
6396                                     ecb->dte_needed, ecb->dte_alignment,
6397                                     state, NULL);
6398
6399                                 if (offs < 0) {
6400                                         *flags |= CPU_DTRACE_DROP;
6401                                         continue;
6402                                 }
6403
6404                                 tomax = buf->dtb_tomax;
6405                                 ASSERT(tomax != NULL);
6406
6407                                 if (ecb->dte_size != 0)
6408                                         DTRACE_STORE(uint32_t, tomax, offs,
6409                                             ecb->dte_epid);
6410                                 continue;
6411
6412                         case DTRACEACT_PRINTM: {
6413                                 /* The DIF returns a 'memref'. */
6414                                 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6415
6416                                 /* Get the size from the memref. */
6417                                 size = memref[1];
6418
6419                                 /*
6420                                  * Check if the size exceeds the allocated
6421                                  * buffer size.
6422                                  */
6423                                 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6424                                         /* Flag a drop! */
6425                                         *flags |= CPU_DTRACE_DROP;
6426                                         continue;
6427                                 }
6428
6429                                 /* Store the size in the buffer first. */
6430                                 DTRACE_STORE(uintptr_t, tomax,
6431                                     valoffs, size);
6432
6433                                 /*
6434                                  * Offset the buffer address to the start
6435                                  * of the data.
6436                                  */
6437                                 valoffs += sizeof(uintptr_t);
6438
6439                                 /*
6440                                  * Reset to the memory address rather than
6441                                  * the memref array, then let the BYREF
6442                                  * code below do the work to store the 
6443                                  * memory data in the buffer.
6444                                  */
6445                                 val = memref[0];
6446                                 break;
6447                         }
6448
6449                         case DTRACEACT_PRINTT: {
6450                                 /* The DIF returns a 'typeref'. */
6451                                 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6452                                 char c = '\0' + 1;
6453                                 size_t s;
6454
6455                                 /*
6456                                  * Get the type string length and round it
6457                                  * up so that the data that follows is
6458                                  * aligned for easy access.
6459                                  */
6460                                 size_t typs = strlen((char *) typeref[2]) + 1;
6461                                 typs = roundup(typs,  sizeof(uintptr_t));
6462
6463                                 /*
6464                                  *Get the size from the typeref using the
6465                                  * number of elements and the type size.
6466                                  */
6467                                 size = typeref[1] * typeref[3];
6468
6469                                 /*
6470                                  * Check if the size exceeds the allocated
6471                                  * buffer size.
6472                                  */
6473                                 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6474                                         /* Flag a drop! */
6475                                         *flags |= CPU_DTRACE_DROP;
6476                                 
6477                                 }
6478
6479                                 /* Store the size in the buffer first. */
6480                                 DTRACE_STORE(uintptr_t, tomax,
6481                                     valoffs, size);
6482                                 valoffs += sizeof(uintptr_t);
6483
6484                                 /* Store the type size in the buffer. */
6485                                 DTRACE_STORE(uintptr_t, tomax,
6486                                     valoffs, typeref[3]);
6487                                 valoffs += sizeof(uintptr_t);
6488
6489                                 val = typeref[2];
6490
6491                                 for (s = 0; s < typs; s++) {
6492                                         if (c != '\0')
6493                                                 c = dtrace_load8(val++);
6494
6495                                         DTRACE_STORE(uint8_t, tomax,
6496                                             valoffs++, c);
6497                                 }
6498
6499                                 /*
6500                                  * Reset to the memory address rather than
6501                                  * the typeref array, then let the BYREF
6502                                  * code below do the work to store the 
6503                                  * memory data in the buffer.
6504                                  */
6505                                 val = typeref[0];
6506                                 break;
6507                         }
6508
6509                         case DTRACEACT_CHILL:
6510                                 if (dtrace_priv_kernel_destructive(state))
6511                                         dtrace_action_chill(&mstate, val);
6512                                 continue;
6513
6514                         case DTRACEACT_RAISE:
6515                                 if (dtrace_priv_proc_destructive(state))
6516                                         dtrace_action_raise(val);
6517                                 continue;
6518
6519                         case DTRACEACT_COMMIT:
6520                                 ASSERT(!committed);
6521
6522                                 /*
6523                                  * We need to commit our buffer state.
6524                                  */
6525                                 if (ecb->dte_size)
6526                                         buf->dtb_offset = offs + ecb->dte_size;
6527                                 buf = &state->dts_buffer[cpuid];
6528                                 dtrace_speculation_commit(state, cpuid, val);
6529                                 committed = 1;
6530                                 continue;
6531
6532                         case DTRACEACT_DISCARD:
6533                                 dtrace_speculation_discard(state, cpuid, val);
6534                                 continue;
6535
6536                         case DTRACEACT_DIFEXPR:
6537                         case DTRACEACT_LIBACT:
6538                         case DTRACEACT_PRINTF:
6539                         case DTRACEACT_PRINTA:
6540                         case DTRACEACT_SYSTEM:
6541                         case DTRACEACT_FREOPEN:
6542                         case DTRACEACT_TRACEMEM:
6543                                 break;
6544
6545                         case DTRACEACT_TRACEMEM_DYNSIZE:
6546                                 tracememsize = val;
6547                                 break;
6548
6549                         case DTRACEACT_SYM:
6550                         case DTRACEACT_MOD:
6551                                 if (!dtrace_priv_kernel(state))
6552                                         continue;
6553                                 break;
6554
6555                         case DTRACEACT_USYM:
6556                         case DTRACEACT_UMOD:
6557                         case DTRACEACT_UADDR: {
6558 #if defined(sun)
6559                                 struct pid *pid = curthread->t_procp->p_pidp;
6560 #endif
6561
6562                                 if (!dtrace_priv_proc(state))
6563                                         continue;
6564
6565                                 DTRACE_STORE(uint64_t, tomax,
6566 #if defined(sun)
6567                                     valoffs, (uint64_t)pid->pid_id);
6568 #else
6569                                     valoffs, (uint64_t) curproc->p_pid);
6570 #endif
6571                                 DTRACE_STORE(uint64_t, tomax,
6572                                     valoffs + sizeof (uint64_t), val);
6573
6574                                 continue;
6575                         }
6576
6577                         case DTRACEACT_EXIT: {
6578                                 /*
6579                                  * For the exit action, we are going to attempt
6580                                  * to atomically set our activity to be
6581                                  * draining.  If this fails (either because
6582                                  * another CPU has beat us to the exit action,
6583                                  * or because our current activity is something
6584                                  * other than ACTIVE or WARMUP), we will
6585                                  * continue.  This assures that the exit action
6586                                  * can be successfully recorded at most once
6587                                  * when we're in the ACTIVE state.  If we're
6588                                  * encountering the exit() action while in
6589                                  * COOLDOWN, however, we want to honor the new
6590                                  * status code.  (We know that we're the only
6591                                  * thread in COOLDOWN, so there is no race.)
6592                                  */
6593                                 void *activity = &state->dts_activity;
6594                                 dtrace_activity_t current = state->dts_activity;
6595
6596                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
6597                                         break;
6598
6599                                 if (current != DTRACE_ACTIVITY_WARMUP)
6600                                         current = DTRACE_ACTIVITY_ACTIVE;
6601
6602                                 if (dtrace_cas32(activity, current,
6603                                     DTRACE_ACTIVITY_DRAINING) != current) {
6604                                         *flags |= CPU_DTRACE_DROP;
6605                                         continue;
6606                                 }
6607
6608                                 break;
6609                         }
6610
6611                         default:
6612                                 ASSERT(0);
6613                         }
6614
6615                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6616                                 uintptr_t end = valoffs + size;
6617
6618                                 if (tracememsize != 0 &&
6619                                     valoffs + tracememsize < end) {
6620                                         end = valoffs + tracememsize;
6621                                         tracememsize = 0;
6622                                 }
6623
6624                                 if (!dtrace_vcanload((void *)(uintptr_t)val,
6625                                     &dp->dtdo_rtype, &mstate, vstate))
6626                                         continue;
6627
6628                                 /*
6629                                  * If this is a string, we're going to only
6630                                  * load until we find the zero byte -- after
6631                                  * which we'll store zero bytes.
6632                                  */
6633                                 if (dp->dtdo_rtype.dtdt_kind ==
6634                                     DIF_TYPE_STRING) {
6635                                         char c = '\0' + 1;
6636                                         int intuple = act->dta_intuple;
6637                                         size_t s;
6638
6639                                         for (s = 0; s < size; s++) {
6640                                                 if (c != '\0')
6641                                                         c = dtrace_load8(val++);
6642
6643                                                 DTRACE_STORE(uint8_t, tomax,
6644                                                     valoffs++, c);
6645
6646                                                 if (c == '\0' && intuple)
6647                                                         break;
6648                                         }
6649
6650                                         continue;
6651                                 }
6652
6653                                 while (valoffs < end) {
6654                                         DTRACE_STORE(uint8_t, tomax, valoffs++,
6655                                             dtrace_load8(val++));
6656                                 }
6657
6658                                 continue;
6659                         }
6660
6661                         switch (size) {
6662                         case 0:
6663                                 break;
6664
6665                         case sizeof (uint8_t):
6666                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6667                                 break;
6668                         case sizeof (uint16_t):
6669                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6670                                 break;
6671                         case sizeof (uint32_t):
6672                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6673                                 break;
6674                         case sizeof (uint64_t):
6675                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6676                                 break;
6677                         default:
6678                                 /*
6679                                  * Any other size should have been returned by
6680                                  * reference, not by value.
6681                                  */
6682                                 ASSERT(0);
6683                                 break;
6684                         }
6685                 }
6686
6687                 if (*flags & CPU_DTRACE_DROP)
6688                         continue;
6689
6690                 if (*flags & CPU_DTRACE_FAULT) {
6691                         int ndx;
6692                         dtrace_action_t *err;
6693
6694                         buf->dtb_errors++;
6695
6696                         if (probe->dtpr_id == dtrace_probeid_error) {
6697                                 /*
6698                                  * There's nothing we can do -- we had an
6699                                  * error on the error probe.  We bump an
6700                                  * error counter to at least indicate that
6701                                  * this condition happened.
6702                                  */
6703                                 dtrace_error(&state->dts_dblerrors);
6704                                 continue;
6705                         }
6706
6707                         if (vtime) {
6708                                 /*
6709                                  * Before recursing on dtrace_probe(), we
6710                                  * need to explicitly clear out our start
6711                                  * time to prevent it from being accumulated
6712                                  * into t_dtrace_vtime.
6713                                  */
6714                                 curthread->t_dtrace_start = 0;
6715                         }
6716
6717                         /*
6718                          * Iterate over the actions to figure out which action
6719                          * we were processing when we experienced the error.
6720                          * Note that act points _past_ the faulting action; if
6721                          * act is ecb->dte_action, the fault was in the
6722                          * predicate, if it's ecb->dte_action->dta_next it's
6723                          * in action #1, and so on.
6724                          */
6725                         for (err = ecb->dte_action, ndx = 0;
6726                             err != act; err = err->dta_next, ndx++)
6727                                 continue;
6728
6729                         dtrace_probe_error(state, ecb->dte_epid, ndx,
6730                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6731                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6732                             cpu_core[cpuid].cpuc_dtrace_illval);
6733
6734                         continue;
6735                 }
6736
6737                 if (!committed)
6738                         buf->dtb_offset = offs + ecb->dte_size;
6739         }
6740
6741         if (vtime)
6742                 curthread->t_dtrace_start = dtrace_gethrtime();
6743
6744         dtrace_interrupt_enable(cookie);
6745 }
6746
6747 /*
6748  * DTrace Probe Hashing Functions
6749  *
6750  * The functions in this section (and indeed, the functions in remaining
6751  * sections) are not _called_ from probe context.  (Any exceptions to this are
6752  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6753  * DTrace framework to look-up probes in, add probes to and remove probes from
6754  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6755  * probe tuple -- allowing for fast lookups, regardless of what was
6756  * specified.)
6757  */
6758 static uint_t
6759 dtrace_hash_str(const char *p)
6760 {
6761         unsigned int g;
6762         uint_t hval = 0;
6763
6764         while (*p) {
6765                 hval = (hval << 4) + *p++;
6766                 if ((g = (hval & 0xf0000000)) != 0)
6767                         hval ^= g >> 24;
6768                 hval &= ~g;
6769         }
6770         return (hval);
6771 }
6772
6773 static dtrace_hash_t *
6774 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6775 {
6776         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6777
6778         hash->dth_stroffs = stroffs;
6779         hash->dth_nextoffs = nextoffs;
6780         hash->dth_prevoffs = prevoffs;
6781
6782         hash->dth_size = 1;
6783         hash->dth_mask = hash->dth_size - 1;
6784
6785         hash->dth_tab = kmem_zalloc(hash->dth_size *
6786             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6787
6788         return (hash);
6789 }
6790
6791 static void
6792 dtrace_hash_destroy(dtrace_hash_t *hash)
6793 {
6794 #ifdef DEBUG
6795         int i;
6796
6797         for (i = 0; i < hash->dth_size; i++)
6798                 ASSERT(hash->dth_tab[i] == NULL);
6799 #endif
6800
6801         kmem_free(hash->dth_tab,
6802             hash->dth_size * sizeof (dtrace_hashbucket_t *));
6803         kmem_free(hash, sizeof (dtrace_hash_t));
6804 }
6805
6806 static void
6807 dtrace_hash_resize(dtrace_hash_t *hash)
6808 {
6809         int size = hash->dth_size, i, ndx;
6810         int new_size = hash->dth_size << 1;
6811         int new_mask = new_size - 1;
6812         dtrace_hashbucket_t **new_tab, *bucket, *next;
6813
6814         ASSERT((new_size & new_mask) == 0);
6815
6816         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6817
6818         for (i = 0; i < size; i++) {
6819                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6820                         dtrace_probe_t *probe = bucket->dthb_chain;
6821
6822                         ASSERT(probe != NULL);
6823                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6824
6825                         next = bucket->dthb_next;
6826                         bucket->dthb_next = new_tab[ndx];
6827                         new_tab[ndx] = bucket;
6828                 }
6829         }
6830
6831         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6832         hash->dth_tab = new_tab;
6833         hash->dth_size = new_size;
6834         hash->dth_mask = new_mask;
6835 }
6836
6837 static void
6838 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6839 {
6840         int hashval = DTRACE_HASHSTR(hash, new);
6841         int ndx = hashval & hash->dth_mask;
6842         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6843         dtrace_probe_t **nextp, **prevp;
6844
6845         for (; bucket != NULL; bucket = bucket->dthb_next) {
6846                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6847                         goto add;
6848         }
6849
6850         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6851                 dtrace_hash_resize(hash);
6852                 dtrace_hash_add(hash, new);
6853                 return;
6854         }
6855
6856         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6857         bucket->dthb_next = hash->dth_tab[ndx];
6858         hash->dth_tab[ndx] = bucket;
6859         hash->dth_nbuckets++;
6860
6861 add:
6862         nextp = DTRACE_HASHNEXT(hash, new);
6863         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6864         *nextp = bucket->dthb_chain;
6865
6866         if (bucket->dthb_chain != NULL) {
6867                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6868                 ASSERT(*prevp == NULL);
6869                 *prevp = new;
6870         }
6871
6872         bucket->dthb_chain = new;
6873         bucket->dthb_len++;
6874 }
6875
6876 static dtrace_probe_t *
6877 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6878 {
6879         int hashval = DTRACE_HASHSTR(hash, template);
6880         int ndx = hashval & hash->dth_mask;
6881         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6882
6883         for (; bucket != NULL; bucket = bucket->dthb_next) {
6884                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6885                         return (bucket->dthb_chain);
6886         }
6887
6888         return (NULL);
6889 }
6890
6891 static int
6892 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6893 {
6894         int hashval = DTRACE_HASHSTR(hash, template);
6895         int ndx = hashval & hash->dth_mask;
6896         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6897
6898         for (; bucket != NULL; bucket = bucket->dthb_next) {
6899                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6900                         return (bucket->dthb_len);
6901         }
6902
6903         return (0);
6904 }
6905
6906 static void
6907 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6908 {
6909         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6910         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6911
6912         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6913         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6914
6915         /*
6916          * Find the bucket that we're removing this probe from.
6917          */
6918         for (; bucket != NULL; bucket = bucket->dthb_next) {
6919                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6920                         break;
6921         }
6922
6923         ASSERT(bucket != NULL);
6924
6925         if (*prevp == NULL) {
6926                 if (*nextp == NULL) {
6927                         /*
6928                          * The removed probe was the only probe on this
6929                          * bucket; we need to remove the bucket.
6930                          */
6931                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6932
6933                         ASSERT(bucket->dthb_chain == probe);
6934                         ASSERT(b != NULL);
6935
6936                         if (b == bucket) {
6937                                 hash->dth_tab[ndx] = bucket->dthb_next;
6938                         } else {
6939                                 while (b->dthb_next != bucket)
6940                                         b = b->dthb_next;
6941                                 b->dthb_next = bucket->dthb_next;
6942                         }
6943
6944                         ASSERT(hash->dth_nbuckets > 0);
6945                         hash->dth_nbuckets--;
6946                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6947                         return;
6948                 }
6949
6950                 bucket->dthb_chain = *nextp;
6951         } else {
6952                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6953         }
6954
6955         if (*nextp != NULL)
6956                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6957 }
6958
6959 /*
6960  * DTrace Utility Functions
6961  *
6962  * These are random utility functions that are _not_ called from probe context.
6963  */
6964 static int
6965 dtrace_badattr(const dtrace_attribute_t *a)
6966 {
6967         return (a->dtat_name > DTRACE_STABILITY_MAX ||
6968             a->dtat_data > DTRACE_STABILITY_MAX ||
6969             a->dtat_class > DTRACE_CLASS_MAX);
6970 }
6971
6972 /*
6973  * Return a duplicate copy of a string.  If the specified string is NULL,
6974  * this function returns a zero-length string.
6975  */
6976 static char *
6977 dtrace_strdup(const char *str)
6978 {
6979         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6980
6981         if (str != NULL)
6982                 (void) strcpy(new, str);
6983
6984         return (new);
6985 }
6986
6987 #define DTRACE_ISALPHA(c)       \
6988         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6989
6990 static int
6991 dtrace_badname(const char *s)
6992 {
6993         char c;
6994
6995         if (s == NULL || (c = *s++) == '\0')
6996                 return (0);
6997
6998         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6999                 return (1);
7000
7001         while ((c = *s++) != '\0') {
7002                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7003                     c != '-' && c != '_' && c != '.' && c != '`')
7004                         return (1);
7005         }
7006
7007         return (0);
7008 }
7009
7010 static void
7011 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7012 {
7013         uint32_t priv;
7014
7015 #if defined(sun)
7016         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7017                 /*
7018                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7019                  */
7020                 priv = DTRACE_PRIV_ALL;
7021         } else {
7022                 *uidp = crgetuid(cr);
7023                 *zoneidp = crgetzoneid(cr);
7024
7025                 priv = 0;
7026                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7027                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7028                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7029                         priv |= DTRACE_PRIV_USER;
7030                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7031                         priv |= DTRACE_PRIV_PROC;
7032                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7033                         priv |= DTRACE_PRIV_OWNER;
7034                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7035                         priv |= DTRACE_PRIV_ZONEOWNER;
7036         }
7037 #else
7038         priv = DTRACE_PRIV_ALL;
7039 #endif
7040
7041         *privp = priv;
7042 }
7043
7044 #ifdef DTRACE_ERRDEBUG
7045 static void
7046 dtrace_errdebug(const char *str)
7047 {
7048         int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7049         int occupied = 0;
7050
7051         mutex_enter(&dtrace_errlock);
7052         dtrace_errlast = str;
7053         dtrace_errthread = curthread;
7054
7055         while (occupied++ < DTRACE_ERRHASHSZ) {
7056                 if (dtrace_errhash[hval].dter_msg == str) {
7057                         dtrace_errhash[hval].dter_count++;
7058                         goto out;
7059                 }
7060
7061                 if (dtrace_errhash[hval].dter_msg != NULL) {
7062                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7063                         continue;
7064                 }
7065
7066                 dtrace_errhash[hval].dter_msg = str;
7067                 dtrace_errhash[hval].dter_count = 1;
7068                 goto out;
7069         }
7070
7071         panic("dtrace: undersized error hash");
7072 out:
7073         mutex_exit(&dtrace_errlock);
7074 }
7075 #endif
7076
7077 /*
7078  * DTrace Matching Functions
7079  *
7080  * These functions are used to match groups of probes, given some elements of
7081  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7082  */
7083 static int
7084 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7085     zoneid_t zoneid)
7086 {
7087         if (priv != DTRACE_PRIV_ALL) {
7088                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7089                 uint32_t match = priv & ppriv;
7090
7091                 /*
7092                  * No PRIV_DTRACE_* privileges...
7093                  */
7094                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7095                     DTRACE_PRIV_KERNEL)) == 0)
7096                         return (0);
7097
7098                 /*
7099                  * No matching bits, but there were bits to match...
7100                  */
7101                 if (match == 0 && ppriv != 0)
7102                         return (0);
7103
7104                 /*
7105                  * Need to have permissions to the process, but don't...
7106                  */
7107                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7108                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7109                         return (0);
7110                 }
7111
7112                 /*
7113                  * Need to be in the same zone unless we possess the
7114                  * privilege to examine all zones.
7115                  */
7116                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7117                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7118                         return (0);
7119                 }
7120         }
7121
7122         return (1);
7123 }
7124
7125 /*
7126  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7127  * consists of input pattern strings and an ops-vector to evaluate them.
7128  * This function returns >0 for match, 0 for no match, and <0 for error.
7129  */
7130 static int
7131 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7132     uint32_t priv, uid_t uid, zoneid_t zoneid)
7133 {
7134         dtrace_provider_t *pvp = prp->dtpr_provider;
7135         int rv;
7136
7137         if (pvp->dtpv_defunct)
7138                 return (0);
7139
7140         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7141                 return (rv);
7142
7143         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7144                 return (rv);
7145
7146         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7147                 return (rv);
7148
7149         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7150                 return (rv);
7151
7152         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7153                 return (0);
7154
7155         return (rv);
7156 }
7157
7158 /*
7159  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7160  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7161  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7162  * In addition, all of the recursion cases except for '*' matching have been
7163  * unwound.  For '*', we still implement recursive evaluation, but a depth
7164  * counter is maintained and matching is aborted if we recurse too deep.
7165  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7166  */
7167 static int
7168 dtrace_match_glob(const char *s, const char *p, int depth)
7169 {
7170         const char *olds;
7171         char s1, c;
7172         int gs;
7173
7174         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7175                 return (-1);
7176
7177         if (s == NULL)
7178                 s = ""; /* treat NULL as empty string */
7179
7180 top:
7181         olds = s;
7182         s1 = *s++;
7183
7184         if (p == NULL)
7185                 return (0);
7186
7187         if ((c = *p++) == '\0')
7188                 return (s1 == '\0');
7189
7190         switch (c) {
7191         case '[': {
7192                 int ok = 0, notflag = 0;
7193                 char lc = '\0';
7194
7195                 if (s1 == '\0')
7196                         return (0);
7197
7198                 if (*p == '!') {
7199                         notflag = 1;
7200                         p++;
7201                 }
7202
7203                 if ((c = *p++) == '\0')
7204                         return (0);
7205
7206                 do {
7207                         if (c == '-' && lc != '\0' && *p != ']') {
7208                                 if ((c = *p++) == '\0')
7209                                         return (0);
7210                                 if (c == '\\' && (c = *p++) == '\0')
7211                                         return (0);
7212
7213                                 if (notflag) {
7214                                         if (s1 < lc || s1 > c)
7215                                                 ok++;
7216                                         else
7217                                                 return (0);
7218                                 } else if (lc <= s1 && s1 <= c)
7219                                         ok++;
7220
7221                         } else if (c == '\\' && (c = *p++) == '\0')
7222                                 return (0);
7223
7224                         lc = c; /* save left-hand 'c' for next iteration */
7225
7226                         if (notflag) {
7227                                 if (s1 != c)
7228                                         ok++;
7229                                 else
7230                                         return (0);
7231                         } else if (s1 == c)
7232                                 ok++;
7233
7234                         if ((c = *p++) == '\0')
7235                                 return (0);
7236
7237                 } while (c != ']');
7238
7239                 if (ok)
7240                         goto top;
7241
7242                 return (0);
7243         }
7244
7245         case '\\':
7246                 if ((c = *p++) == '\0')
7247                         return (0);
7248                 /*FALLTHRU*/
7249
7250         default:
7251                 if (c != s1)
7252                         return (0);
7253                 /*FALLTHRU*/
7254
7255         case '?':
7256                 if (s1 != '\0')
7257                         goto top;
7258                 return (0);
7259
7260         case '*':
7261                 while (*p == '*')
7262                         p++; /* consecutive *'s are identical to a single one */
7263
7264                 if (*p == '\0')
7265                         return (1);
7266
7267                 for (s = olds; *s != '\0'; s++) {
7268                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7269                                 return (gs);
7270                 }
7271
7272                 return (0);
7273         }
7274 }
7275
7276 /*ARGSUSED*/
7277 static int
7278 dtrace_match_string(const char *s, const char *p, int depth)
7279 {
7280         return (s != NULL && strcmp(s, p) == 0);
7281 }
7282
7283 /*ARGSUSED*/
7284 static int
7285 dtrace_match_nul(const char *s, const char *p, int depth)
7286 {
7287         return (1); /* always match the empty pattern */
7288 }
7289
7290 /*ARGSUSED*/
7291 static int
7292 dtrace_match_nonzero(const char *s, const char *p, int depth)
7293 {
7294         return (s != NULL && s[0] != '\0');
7295 }
7296
7297 static int
7298 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7299     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7300 {
7301         dtrace_probe_t template, *probe;
7302         dtrace_hash_t *hash = NULL;
7303         int len, best = INT_MAX, nmatched = 0;
7304         dtrace_id_t i;
7305
7306         ASSERT(MUTEX_HELD(&dtrace_lock));
7307
7308         /*
7309          * If the probe ID is specified in the key, just lookup by ID and
7310          * invoke the match callback once if a matching probe is found.
7311          */
7312         if (pkp->dtpk_id != DTRACE_IDNONE) {
7313                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7314                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7315                         (void) (*matched)(probe, arg);
7316                         nmatched++;
7317                 }
7318                 return (nmatched);
7319         }
7320
7321         template.dtpr_mod = (char *)pkp->dtpk_mod;
7322         template.dtpr_func = (char *)pkp->dtpk_func;
7323         template.dtpr_name = (char *)pkp->dtpk_name;
7324
7325         /*
7326          * We want to find the most distinct of the module name, function
7327          * name, and name.  So for each one that is not a glob pattern or
7328          * empty string, we perform a lookup in the corresponding hash and
7329          * use the hash table with the fewest collisions to do our search.
7330          */
7331         if (pkp->dtpk_mmatch == &dtrace_match_string &&
7332             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7333                 best = len;
7334                 hash = dtrace_bymod;
7335         }
7336
7337         if (pkp->dtpk_fmatch == &dtrace_match_string &&
7338             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7339                 best = len;
7340                 hash = dtrace_byfunc;
7341         }
7342
7343         if (pkp->dtpk_nmatch == &dtrace_match_string &&
7344             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7345                 best = len;
7346                 hash = dtrace_byname;
7347         }
7348
7349         /*
7350          * If we did not select a hash table, iterate over every probe and
7351          * invoke our callback for each one that matches our input probe key.
7352          */
7353         if (hash == NULL) {
7354                 for (i = 0; i < dtrace_nprobes; i++) {
7355                         if ((probe = dtrace_probes[i]) == NULL ||
7356                             dtrace_match_probe(probe, pkp, priv, uid,
7357                             zoneid) <= 0)
7358                                 continue;
7359
7360                         nmatched++;
7361
7362                         if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7363                                 break;
7364                 }
7365
7366                 return (nmatched);
7367         }
7368
7369         /*
7370          * If we selected a hash table, iterate over each probe of the same key
7371          * name and invoke the callback for every probe that matches the other
7372          * attributes of our input probe key.
7373          */
7374         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7375             probe = *(DTRACE_HASHNEXT(hash, probe))) {
7376
7377                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7378                         continue;
7379
7380                 nmatched++;
7381
7382                 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7383                         break;
7384         }
7385
7386         return (nmatched);
7387 }
7388
7389 /*
7390  * Return the function pointer dtrace_probecmp() should use to compare the
7391  * specified pattern with a string.  For NULL or empty patterns, we select
7392  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7393  * For non-empty non-glob strings, we use dtrace_match_string().
7394  */
7395 static dtrace_probekey_f *
7396 dtrace_probekey_func(const char *p)
7397 {
7398         char c;
7399
7400         if (p == NULL || *p == '\0')
7401                 return (&dtrace_match_nul);
7402
7403         while ((c = *p++) != '\0') {
7404                 if (c == '[' || c == '?' || c == '*' || c == '\\')
7405                         return (&dtrace_match_glob);
7406         }
7407
7408         return (&dtrace_match_string);
7409 }
7410
7411 /*
7412  * Build a probe comparison key for use with dtrace_match_probe() from the
7413  * given probe description.  By convention, a null key only matches anchored
7414  * probes: if each field is the empty string, reset dtpk_fmatch to
7415  * dtrace_match_nonzero().
7416  */
7417 static void
7418 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7419 {
7420         pkp->dtpk_prov = pdp->dtpd_provider;
7421         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7422
7423         pkp->dtpk_mod = pdp->dtpd_mod;
7424         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7425
7426         pkp->dtpk_func = pdp->dtpd_func;
7427         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7428
7429         pkp->dtpk_name = pdp->dtpd_name;
7430         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7431
7432         pkp->dtpk_id = pdp->dtpd_id;
7433
7434         if (pkp->dtpk_id == DTRACE_IDNONE &&
7435             pkp->dtpk_pmatch == &dtrace_match_nul &&
7436             pkp->dtpk_mmatch == &dtrace_match_nul &&
7437             pkp->dtpk_fmatch == &dtrace_match_nul &&
7438             pkp->dtpk_nmatch == &dtrace_match_nul)
7439                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7440 }
7441
7442 /*
7443  * DTrace Provider-to-Framework API Functions
7444  *
7445  * These functions implement much of the Provider-to-Framework API, as
7446  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7447  * the functions in the API for probe management (found below), and
7448  * dtrace_probe() itself (found above).
7449  */
7450
7451 /*
7452  * Register the calling provider with the DTrace framework.  This should
7453  * generally be called by DTrace providers in their attach(9E) entry point.
7454  */
7455 int
7456 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7457     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7458 {
7459         dtrace_provider_t *provider;
7460
7461         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7462                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7463                     "arguments", name ? name : "<NULL>");
7464                 return (EINVAL);
7465         }
7466
7467         if (name[0] == '\0' || dtrace_badname(name)) {
7468                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7469                     "provider name", name);
7470                 return (EINVAL);
7471         }
7472
7473         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7474             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7475             pops->dtps_destroy == NULL ||
7476             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7477                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7478                     "provider ops", name);
7479                 return (EINVAL);
7480         }
7481
7482         if (dtrace_badattr(&pap->dtpa_provider) ||
7483             dtrace_badattr(&pap->dtpa_mod) ||
7484             dtrace_badattr(&pap->dtpa_func) ||
7485             dtrace_badattr(&pap->dtpa_name) ||
7486             dtrace_badattr(&pap->dtpa_args)) {
7487                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7488                     "provider attributes", name);
7489                 return (EINVAL);
7490         }
7491
7492         if (priv & ~DTRACE_PRIV_ALL) {
7493                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7494                     "privilege attributes", name);
7495                 return (EINVAL);
7496         }
7497
7498         if ((priv & DTRACE_PRIV_KERNEL) &&
7499             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7500             pops->dtps_usermode == NULL) {
7501                 cmn_err(CE_WARN, "failed to register provider '%s': need "
7502                     "dtps_usermode() op for given privilege attributes", name);
7503                 return (EINVAL);
7504         }
7505
7506         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7507         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7508         (void) strcpy(provider->dtpv_name, name);
7509
7510         provider->dtpv_attr = *pap;
7511         provider->dtpv_priv.dtpp_flags = priv;
7512         if (cr != NULL) {
7513                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7514                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7515         }
7516         provider->dtpv_pops = *pops;
7517
7518         if (pops->dtps_provide == NULL) {
7519                 ASSERT(pops->dtps_provide_module != NULL);
7520                 provider->dtpv_pops.dtps_provide =
7521                     (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7522         }
7523
7524         if (pops->dtps_provide_module == NULL) {
7525                 ASSERT(pops->dtps_provide != NULL);
7526                 provider->dtpv_pops.dtps_provide_module =
7527                     (void (*)(void *, modctl_t *))dtrace_nullop;
7528         }
7529
7530         if (pops->dtps_suspend == NULL) {
7531                 ASSERT(pops->dtps_resume == NULL);
7532                 provider->dtpv_pops.dtps_suspend =
7533                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7534                 provider->dtpv_pops.dtps_resume =
7535                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7536         }
7537
7538         provider->dtpv_arg = arg;
7539         *idp = (dtrace_provider_id_t)provider;
7540
7541         if (pops == &dtrace_provider_ops) {
7542                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7543                 ASSERT(MUTEX_HELD(&dtrace_lock));
7544                 ASSERT(dtrace_anon.dta_enabling == NULL);
7545
7546                 /*
7547                  * We make sure that the DTrace provider is at the head of
7548                  * the provider chain.
7549                  */
7550                 provider->dtpv_next = dtrace_provider;
7551                 dtrace_provider = provider;
7552                 return (0);
7553         }
7554
7555         mutex_enter(&dtrace_provider_lock);
7556         mutex_enter(&dtrace_lock);
7557
7558         /*
7559          * If there is at least one provider registered, we'll add this
7560          * provider after the first provider.
7561          */
7562         if (dtrace_provider != NULL) {
7563                 provider->dtpv_next = dtrace_provider->dtpv_next;
7564                 dtrace_provider->dtpv_next = provider;
7565         } else {
7566                 dtrace_provider = provider;
7567         }
7568
7569         if (dtrace_retained != NULL) {
7570                 dtrace_enabling_provide(provider);
7571
7572                 /*
7573                  * Now we need to call dtrace_enabling_matchall() -- which
7574                  * will acquire cpu_lock and dtrace_lock.  We therefore need
7575                  * to drop all of our locks before calling into it...
7576                  */
7577                 mutex_exit(&dtrace_lock);
7578                 mutex_exit(&dtrace_provider_lock);
7579                 dtrace_enabling_matchall();
7580
7581                 return (0);
7582         }
7583
7584         mutex_exit(&dtrace_lock);
7585         mutex_exit(&dtrace_provider_lock);
7586
7587         return (0);
7588 }
7589
7590 /*
7591  * Unregister the specified provider from the DTrace framework.  This should
7592  * generally be called by DTrace providers in their detach(9E) entry point.
7593  */
7594 int
7595 dtrace_unregister(dtrace_provider_id_t id)
7596 {
7597         dtrace_provider_t *old = (dtrace_provider_t *)id;
7598         dtrace_provider_t *prev = NULL;
7599         int i, self = 0, noreap = 0;
7600         dtrace_probe_t *probe, *first = NULL;
7601
7602         if (old->dtpv_pops.dtps_enable ==
7603             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7604                 /*
7605                  * If DTrace itself is the provider, we're called with locks
7606                  * already held.
7607                  */
7608                 ASSERT(old == dtrace_provider);
7609 #if defined(sun)
7610                 ASSERT(dtrace_devi != NULL);
7611 #endif
7612                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7613                 ASSERT(MUTEX_HELD(&dtrace_lock));
7614                 self = 1;
7615
7616                 if (dtrace_provider->dtpv_next != NULL) {
7617                         /*
7618                          * There's another provider here; return failure.
7619                          */
7620                         return (EBUSY);
7621                 }
7622         } else {
7623                 mutex_enter(&dtrace_provider_lock);
7624                 mutex_enter(&mod_lock);
7625                 mutex_enter(&dtrace_lock);
7626         }
7627
7628         /*
7629          * If anyone has /dev/dtrace open, or if there are anonymous enabled
7630          * probes, we refuse to let providers slither away, unless this
7631          * provider has already been explicitly invalidated.
7632          */
7633         if (!old->dtpv_defunct &&
7634             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7635             dtrace_anon.dta_state->dts_necbs > 0))) {
7636                 if (!self) {
7637                         mutex_exit(&dtrace_lock);
7638                         mutex_exit(&mod_lock);
7639                         mutex_exit(&dtrace_provider_lock);
7640                 }
7641                 return (EBUSY);
7642         }
7643
7644         /*
7645          * Attempt to destroy the probes associated with this provider.
7646          */
7647         for (i = 0; i < dtrace_nprobes; i++) {
7648                 if ((probe = dtrace_probes[i]) == NULL)
7649                         continue;
7650
7651                 if (probe->dtpr_provider != old)
7652                         continue;
7653
7654                 if (probe->dtpr_ecb == NULL)
7655                         continue;
7656
7657                 /*
7658                  * If we are trying to unregister a defunct provider, and the
7659                  * provider was made defunct within the interval dictated by
7660                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
7661                  * attempt to reap our enablings.  To denote that the provider
7662                  * should reattempt to unregister itself at some point in the
7663                  * future, we will return a differentiable error code (EAGAIN
7664                  * instead of EBUSY) in this case.
7665                  */
7666                 if (dtrace_gethrtime() - old->dtpv_defunct >
7667                     dtrace_unregister_defunct_reap)
7668                         noreap = 1;
7669
7670                 if (!self) {
7671                         mutex_exit(&dtrace_lock);
7672                         mutex_exit(&mod_lock);
7673                         mutex_exit(&dtrace_provider_lock);
7674                 }
7675
7676                 if (noreap)
7677                         return (EBUSY);
7678
7679                 (void) taskq_dispatch(dtrace_taskq,
7680                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7681
7682                 return (EAGAIN);
7683         }
7684
7685         /*
7686          * All of the probes for this provider are disabled; we can safely
7687          * remove all of them from their hash chains and from the probe array.
7688          */
7689         for (i = 0; i < dtrace_nprobes; i++) {
7690                 if ((probe = dtrace_probes[i]) == NULL)
7691                         continue;
7692
7693                 if (probe->dtpr_provider != old)
7694                         continue;
7695
7696                 dtrace_probes[i] = NULL;
7697
7698                 dtrace_hash_remove(dtrace_bymod, probe);
7699                 dtrace_hash_remove(dtrace_byfunc, probe);
7700                 dtrace_hash_remove(dtrace_byname, probe);
7701
7702                 if (first == NULL) {
7703                         first = probe;
7704                         probe->dtpr_nextmod = NULL;
7705                 } else {
7706                         probe->dtpr_nextmod = first;
7707                         first = probe;
7708                 }
7709         }
7710
7711         /*
7712          * The provider's probes have been removed from the hash chains and
7713          * from the probe array.  Now issue a dtrace_sync() to be sure that
7714          * everyone has cleared out from any probe array processing.
7715          */
7716         dtrace_sync();
7717
7718         for (probe = first; probe != NULL; probe = first) {
7719                 first = probe->dtpr_nextmod;
7720
7721                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7722                     probe->dtpr_arg);
7723                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7724                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7725                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7726 #if defined(sun)
7727                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7728 #else
7729                 free_unr(dtrace_arena, probe->dtpr_id);
7730 #endif
7731                 kmem_free(probe, sizeof (dtrace_probe_t));
7732         }
7733
7734         if ((prev = dtrace_provider) == old) {
7735 #if defined(sun)
7736                 ASSERT(self || dtrace_devi == NULL);
7737                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7738 #endif
7739                 dtrace_provider = old->dtpv_next;
7740         } else {
7741                 while (prev != NULL && prev->dtpv_next != old)
7742                         prev = prev->dtpv_next;
7743
7744                 if (prev == NULL) {
7745                         panic("attempt to unregister non-existent "
7746                             "dtrace provider %p\n", (void *)id);
7747                 }
7748
7749                 prev->dtpv_next = old->dtpv_next;
7750         }
7751
7752         if (!self) {
7753                 mutex_exit(&dtrace_lock);
7754                 mutex_exit(&mod_lock);
7755                 mutex_exit(&dtrace_provider_lock);
7756         }
7757
7758         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7759         kmem_free(old, sizeof (dtrace_provider_t));
7760
7761         return (0);
7762 }
7763
7764 /*
7765  * Invalidate the specified provider.  All subsequent probe lookups for the
7766  * specified provider will fail, but its probes will not be removed.
7767  */
7768 void
7769 dtrace_invalidate(dtrace_provider_id_t id)
7770 {
7771         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7772
7773         ASSERT(pvp->dtpv_pops.dtps_enable !=
7774             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7775
7776         mutex_enter(&dtrace_provider_lock);
7777         mutex_enter(&dtrace_lock);
7778
7779         pvp->dtpv_defunct = dtrace_gethrtime();
7780
7781         mutex_exit(&dtrace_lock);
7782         mutex_exit(&dtrace_provider_lock);
7783 }
7784
7785 /*
7786  * Indicate whether or not DTrace has attached.
7787  */
7788 int
7789 dtrace_attached(void)
7790 {
7791         /*
7792          * dtrace_provider will be non-NULL iff the DTrace driver has
7793          * attached.  (It's non-NULL because DTrace is always itself a
7794          * provider.)
7795          */
7796         return (dtrace_provider != NULL);
7797 }
7798
7799 /*
7800  * Remove all the unenabled probes for the given provider.  This function is
7801  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7802  * -- just as many of its associated probes as it can.
7803  */
7804 int
7805 dtrace_condense(dtrace_provider_id_t id)
7806 {
7807         dtrace_provider_t *prov = (dtrace_provider_t *)id;
7808         int i;
7809         dtrace_probe_t *probe;
7810
7811         /*
7812          * Make sure this isn't the dtrace provider itself.
7813          */
7814         ASSERT(prov->dtpv_pops.dtps_enable !=
7815             (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7816
7817         mutex_enter(&dtrace_provider_lock);
7818         mutex_enter(&dtrace_lock);
7819
7820         /*
7821          * Attempt to destroy the probes associated with this provider.
7822          */
7823         for (i = 0; i < dtrace_nprobes; i++) {
7824                 if ((probe = dtrace_probes[i]) == NULL)
7825                         continue;
7826
7827                 if (probe->dtpr_provider != prov)
7828                         continue;
7829
7830                 if (probe->dtpr_ecb != NULL)
7831                         continue;
7832
7833                 dtrace_probes[i] = NULL;
7834
7835                 dtrace_hash_remove(dtrace_bymod, probe);
7836                 dtrace_hash_remove(dtrace_byfunc, probe);
7837                 dtrace_hash_remove(dtrace_byname, probe);
7838
7839                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7840                     probe->dtpr_arg);
7841                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7842                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7843                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7844                 kmem_free(probe, sizeof (dtrace_probe_t));
7845 #if defined(sun)
7846                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7847 #else
7848                 free_unr(dtrace_arena, i + 1);
7849 #endif
7850         }
7851
7852         mutex_exit(&dtrace_lock);
7853         mutex_exit(&dtrace_provider_lock);
7854
7855         return (0);
7856 }
7857
7858 /*
7859  * DTrace Probe Management Functions
7860  *
7861  * The functions in this section perform the DTrace probe management,
7862  * including functions to create probes, look-up probes, and call into the
7863  * providers to request that probes be provided.  Some of these functions are
7864  * in the Provider-to-Framework API; these functions can be identified by the
7865  * fact that they are not declared "static".
7866  */
7867
7868 /*
7869  * Create a probe with the specified module name, function name, and name.
7870  */
7871 dtrace_id_t
7872 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7873     const char *func, const char *name, int aframes, void *arg)
7874 {
7875         dtrace_probe_t *probe, **probes;
7876         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7877         dtrace_id_t id;
7878
7879         if (provider == dtrace_provider) {
7880                 ASSERT(MUTEX_HELD(&dtrace_lock));
7881         } else {
7882                 mutex_enter(&dtrace_lock);
7883         }
7884
7885 #if defined(sun)
7886         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7887             VM_BESTFIT | VM_SLEEP);
7888 #else
7889         id = alloc_unr(dtrace_arena);
7890 #endif
7891         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7892
7893         probe->dtpr_id = id;
7894         probe->dtpr_gen = dtrace_probegen++;
7895         probe->dtpr_mod = dtrace_strdup(mod);
7896         probe->dtpr_func = dtrace_strdup(func);
7897         probe->dtpr_name = dtrace_strdup(name);
7898         probe->dtpr_arg = arg;
7899         probe->dtpr_aframes = aframes;
7900         probe->dtpr_provider = provider;
7901
7902         dtrace_hash_add(dtrace_bymod, probe);
7903         dtrace_hash_add(dtrace_byfunc, probe);
7904         dtrace_hash_add(dtrace_byname, probe);
7905
7906         if (id - 1 >= dtrace_nprobes) {
7907                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7908                 size_t nsize = osize << 1;
7909
7910                 if (nsize == 0) {
7911                         ASSERT(osize == 0);
7912                         ASSERT(dtrace_probes == NULL);
7913                         nsize = sizeof (dtrace_probe_t *);
7914                 }
7915
7916                 probes = kmem_zalloc(nsize, KM_SLEEP);
7917
7918                 if (dtrace_probes == NULL) {
7919                         ASSERT(osize == 0);
7920                         dtrace_probes = probes;
7921                         dtrace_nprobes = 1;
7922                 } else {
7923                         dtrace_probe_t **oprobes = dtrace_probes;
7924
7925                         bcopy(oprobes, probes, osize);
7926                         dtrace_membar_producer();
7927                         dtrace_probes = probes;
7928
7929                         dtrace_sync();
7930
7931                         /*
7932                          * All CPUs are now seeing the new probes array; we can
7933                          * safely free the old array.
7934                          */
7935                         kmem_free(oprobes, osize);
7936                         dtrace_nprobes <<= 1;
7937                 }
7938
7939                 ASSERT(id - 1 < dtrace_nprobes);
7940         }
7941
7942         ASSERT(dtrace_probes[id - 1] == NULL);
7943         dtrace_probes[id - 1] = probe;
7944
7945         if (provider != dtrace_provider)
7946                 mutex_exit(&dtrace_lock);
7947
7948         return (id);
7949 }
7950
7951 static dtrace_probe_t *
7952 dtrace_probe_lookup_id(dtrace_id_t id)
7953 {
7954         ASSERT(MUTEX_HELD(&dtrace_lock));
7955
7956         if (id == 0 || id > dtrace_nprobes)
7957                 return (NULL);
7958
7959         return (dtrace_probes[id - 1]);
7960 }
7961
7962 static int
7963 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7964 {
7965         *((dtrace_id_t *)arg) = probe->dtpr_id;
7966
7967         return (DTRACE_MATCH_DONE);
7968 }
7969
7970 /*
7971  * Look up a probe based on provider and one or more of module name, function
7972  * name and probe name.
7973  */
7974 dtrace_id_t
7975 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7976     char *func, char *name)
7977 {
7978         dtrace_probekey_t pkey;
7979         dtrace_id_t id;
7980         int match;
7981
7982         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7983         pkey.dtpk_pmatch = &dtrace_match_string;
7984         pkey.dtpk_mod = mod;
7985         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7986         pkey.dtpk_func = func;
7987         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7988         pkey.dtpk_name = name;
7989         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7990         pkey.dtpk_id = DTRACE_IDNONE;
7991
7992         mutex_enter(&dtrace_lock);
7993         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7994             dtrace_probe_lookup_match, &id);
7995         mutex_exit(&dtrace_lock);
7996
7997         ASSERT(match == 1 || match == 0);
7998         return (match ? id : 0);
7999 }
8000
8001 /*
8002  * Returns the probe argument associated with the specified probe.
8003  */
8004 void *
8005 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8006 {
8007         dtrace_probe_t *probe;
8008         void *rval = NULL;
8009
8010         mutex_enter(&dtrace_lock);
8011
8012         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8013             probe->dtpr_provider == (dtrace_provider_t *)id)
8014                 rval = probe->dtpr_arg;
8015
8016         mutex_exit(&dtrace_lock);
8017
8018         return (rval);
8019 }
8020
8021 /*
8022  * Copy a probe into a probe description.
8023  */
8024 static void
8025 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8026 {
8027         bzero(pdp, sizeof (dtrace_probedesc_t));
8028         pdp->dtpd_id = prp->dtpr_id;
8029
8030         (void) strncpy(pdp->dtpd_provider,
8031             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8032
8033         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8034         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8035         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8036 }
8037
8038 #if !defined(sun)
8039 static int
8040 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
8041 {
8042         dtrace_provider_t *prv = (dtrace_provider_t *) arg;
8043
8044         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
8045
8046         return(0);
8047 }
8048 #endif
8049
8050
8051 /*
8052  * Called to indicate that a probe -- or probes -- should be provided by a
8053  * specfied provider.  If the specified description is NULL, the provider will
8054  * be told to provide all of its probes.  (This is done whenever a new
8055  * consumer comes along, or whenever a retained enabling is to be matched.) If
8056  * the specified description is non-NULL, the provider is given the
8057  * opportunity to dynamically provide the specified probe, allowing providers
8058  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8059  * probes.)  If the provider is NULL, the operations will be applied to all
8060  * providers; if the provider is non-NULL the operations will only be applied
8061  * to the specified provider.  The dtrace_provider_lock must be held, and the
8062  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8063  * will need to grab the dtrace_lock when it reenters the framework through
8064  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8065  */
8066 static void
8067 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8068 {
8069 #if defined(sun)
8070         modctl_t *ctl;
8071 #endif
8072         int all = 0;
8073
8074         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8075
8076         if (prv == NULL) {
8077                 all = 1;
8078                 prv = dtrace_provider;
8079         }
8080
8081         do {
8082                 /*
8083                  * First, call the blanket provide operation.
8084                  */
8085                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8086
8087                 /*
8088                  * Now call the per-module provide operation.  We will grab
8089                  * mod_lock to prevent the list from being modified.  Note
8090                  * that this also prevents the mod_busy bits from changing.
8091                  * (mod_busy can only be changed with mod_lock held.)
8092                  */
8093                 mutex_enter(&mod_lock);
8094
8095 #if defined(sun)
8096                 ctl = &modules;
8097                 do {
8098                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8099                                 continue;
8100
8101                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8102
8103                 } while ((ctl = ctl->mod_next) != &modules);
8104 #else
8105                 (void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8106 #endif
8107
8108                 mutex_exit(&mod_lock);
8109         } while (all && (prv = prv->dtpv_next) != NULL);
8110 }
8111
8112 #if defined(sun)
8113 /*
8114  * Iterate over each probe, and call the Framework-to-Provider API function
8115  * denoted by offs.
8116  */
8117 static void
8118 dtrace_probe_foreach(uintptr_t offs)
8119 {
8120         dtrace_provider_t *prov;
8121         void (*func)(void *, dtrace_id_t, void *);
8122         dtrace_probe_t *probe;
8123         dtrace_icookie_t cookie;
8124         int i;
8125
8126         /*
8127          * We disable interrupts to walk through the probe array.  This is
8128          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8129          * won't see stale data.
8130          */
8131         cookie = dtrace_interrupt_disable();
8132
8133         for (i = 0; i < dtrace_nprobes; i++) {
8134                 if ((probe = dtrace_probes[i]) == NULL)
8135                         continue;
8136
8137                 if (probe->dtpr_ecb == NULL) {
8138                         /*
8139                          * This probe isn't enabled -- don't call the function.
8140                          */
8141                         continue;
8142                 }
8143
8144                 prov = probe->dtpr_provider;
8145                 func = *((void(**)(void *, dtrace_id_t, void *))
8146                     ((uintptr_t)&prov->dtpv_pops + offs));
8147
8148                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8149         }
8150
8151         dtrace_interrupt_enable(cookie);
8152 }
8153 #endif
8154
8155 static int
8156 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8157 {
8158         dtrace_probekey_t pkey;
8159         uint32_t priv;
8160         uid_t uid;
8161         zoneid_t zoneid;
8162
8163         ASSERT(MUTEX_HELD(&dtrace_lock));
8164         dtrace_ecb_create_cache = NULL;
8165
8166         if (desc == NULL) {
8167                 /*
8168                  * If we're passed a NULL description, we're being asked to
8169                  * create an ECB with a NULL probe.
8170                  */
8171                 (void) dtrace_ecb_create_enable(NULL, enab);
8172                 return (0);
8173         }
8174
8175         dtrace_probekey(desc, &pkey);
8176         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8177             &priv, &uid, &zoneid);
8178
8179         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8180             enab));
8181 }
8182
8183 /*
8184  * DTrace Helper Provider Functions
8185  */
8186 static void
8187 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8188 {
8189         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8190         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8191         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8192 }
8193
8194 static void
8195 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8196     const dof_provider_t *dofprov, char *strtab)
8197 {
8198         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8199         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8200             dofprov->dofpv_provattr);
8201         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8202             dofprov->dofpv_modattr);
8203         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8204             dofprov->dofpv_funcattr);
8205         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8206             dofprov->dofpv_nameattr);
8207         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8208             dofprov->dofpv_argsattr);
8209 }
8210
8211 static void
8212 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8213 {
8214         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8215         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8216         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8217         dof_provider_t *provider;
8218         dof_probe_t *probe;
8219         uint32_t *off, *enoff;
8220         uint8_t *arg;
8221         char *strtab;
8222         uint_t i, nprobes;
8223         dtrace_helper_provdesc_t dhpv;
8224         dtrace_helper_probedesc_t dhpb;
8225         dtrace_meta_t *meta = dtrace_meta_pid;
8226         dtrace_mops_t *mops = &meta->dtm_mops;
8227         void *parg;
8228
8229         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8230         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8231             provider->dofpv_strtab * dof->dofh_secsize);
8232         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8233             provider->dofpv_probes * dof->dofh_secsize);
8234         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8235             provider->dofpv_prargs * dof->dofh_secsize);
8236         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8237             provider->dofpv_proffs * dof->dofh_secsize);
8238
8239         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8240         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8241         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8242         enoff = NULL;
8243
8244         /*
8245          * See dtrace_helper_provider_validate().
8246          */
8247         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8248             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8249                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8250                     provider->dofpv_prenoffs * dof->dofh_secsize);
8251                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8252         }
8253
8254         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8255
8256         /*
8257          * Create the provider.
8258          */
8259         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8260
8261         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8262                 return;
8263
8264         meta->dtm_count++;
8265
8266         /*
8267          * Create the probes.
8268          */
8269         for (i = 0; i < nprobes; i++) {
8270                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8271                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8272
8273                 dhpb.dthpb_mod = dhp->dofhp_mod;
8274                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8275                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8276                 dhpb.dthpb_base = probe->dofpr_addr;
8277                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8278                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8279                 if (enoff != NULL) {
8280                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8281                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8282                 } else {
8283                         dhpb.dthpb_enoffs = NULL;
8284                         dhpb.dthpb_nenoffs = 0;
8285                 }
8286                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8287                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8288                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8289                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8290                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8291
8292                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8293         }
8294 }
8295
8296 static void
8297 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8298 {
8299         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8300         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8301         int i;
8302
8303         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8304
8305         for (i = 0; i < dof->dofh_secnum; i++) {
8306                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8307                     dof->dofh_secoff + i * dof->dofh_secsize);
8308
8309                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8310                         continue;
8311
8312                 dtrace_helper_provide_one(dhp, sec, pid);
8313         }
8314
8315         /*
8316          * We may have just created probes, so we must now rematch against
8317          * any retained enablings.  Note that this call will acquire both
8318          * cpu_lock and dtrace_lock; the fact that we are holding
8319          * dtrace_meta_lock now is what defines the ordering with respect to
8320          * these three locks.
8321          */
8322         dtrace_enabling_matchall();
8323 }
8324
8325 static void
8326 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8327 {
8328         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8329         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8330         dof_sec_t *str_sec;
8331         dof_provider_t *provider;
8332         char *strtab;
8333         dtrace_helper_provdesc_t dhpv;
8334         dtrace_meta_t *meta = dtrace_meta_pid;
8335         dtrace_mops_t *mops = &meta->dtm_mops;
8336
8337         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8338         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8339             provider->dofpv_strtab * dof->dofh_secsize);
8340
8341         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8342
8343         /*
8344          * Create the provider.
8345          */
8346         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8347
8348         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8349
8350         meta->dtm_count--;
8351 }
8352
8353 static void
8354 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8355 {
8356         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8357         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8358         int i;
8359
8360         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8361
8362         for (i = 0; i < dof->dofh_secnum; i++) {
8363                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8364                     dof->dofh_secoff + i * dof->dofh_secsize);
8365
8366                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8367                         continue;
8368
8369                 dtrace_helper_provider_remove_one(dhp, sec, pid);
8370         }
8371 }
8372
8373 /*
8374  * DTrace Meta Provider-to-Framework API Functions
8375  *
8376  * These functions implement the Meta Provider-to-Framework API, as described
8377  * in <sys/dtrace.h>.
8378  */
8379 int
8380 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8381     dtrace_meta_provider_id_t *idp)
8382 {
8383         dtrace_meta_t *meta;
8384         dtrace_helpers_t *help, *next;
8385         int i;
8386
8387         *idp = DTRACE_METAPROVNONE;
8388
8389         /*
8390          * We strictly don't need the name, but we hold onto it for
8391          * debuggability. All hail error queues!
8392          */
8393         if (name == NULL) {
8394                 cmn_err(CE_WARN, "failed to register meta-provider: "
8395                     "invalid name");
8396                 return (EINVAL);
8397         }
8398
8399         if (mops == NULL ||
8400             mops->dtms_create_probe == NULL ||
8401             mops->dtms_provide_pid == NULL ||
8402             mops->dtms_remove_pid == NULL) {
8403                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8404                     "invalid ops", name);
8405                 return (EINVAL);
8406         }
8407
8408         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8409         meta->dtm_mops = *mops;
8410         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8411         (void) strcpy(meta->dtm_name, name);
8412         meta->dtm_arg = arg;
8413
8414         mutex_enter(&dtrace_meta_lock);
8415         mutex_enter(&dtrace_lock);
8416
8417         if (dtrace_meta_pid != NULL) {
8418                 mutex_exit(&dtrace_lock);
8419                 mutex_exit(&dtrace_meta_lock);
8420                 cmn_err(CE_WARN, "failed to register meta-register %s: "
8421                     "user-land meta-provider exists", name);
8422                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8423                 kmem_free(meta, sizeof (dtrace_meta_t));
8424                 return (EINVAL);
8425         }
8426
8427         dtrace_meta_pid = meta;
8428         *idp = (dtrace_meta_provider_id_t)meta;
8429
8430         /*
8431          * If there are providers and probes ready to go, pass them
8432          * off to the new meta provider now.
8433          */
8434
8435         help = dtrace_deferred_pid;
8436         dtrace_deferred_pid = NULL;
8437
8438         mutex_exit(&dtrace_lock);
8439
8440         while (help != NULL) {
8441                 for (i = 0; i < help->dthps_nprovs; i++) {
8442                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8443                             help->dthps_pid);
8444                 }
8445
8446                 next = help->dthps_next;
8447                 help->dthps_next = NULL;
8448                 help->dthps_prev = NULL;
8449                 help->dthps_deferred = 0;
8450                 help = next;
8451         }
8452
8453         mutex_exit(&dtrace_meta_lock);
8454
8455         return (0);
8456 }
8457
8458 int
8459 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8460 {
8461         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8462
8463         mutex_enter(&dtrace_meta_lock);
8464         mutex_enter(&dtrace_lock);
8465
8466         if (old == dtrace_meta_pid) {
8467                 pp = &dtrace_meta_pid;
8468         } else {
8469                 panic("attempt to unregister non-existent "
8470                     "dtrace meta-provider %p\n", (void *)old);
8471         }
8472
8473         if (old->dtm_count != 0) {
8474                 mutex_exit(&dtrace_lock);
8475                 mutex_exit(&dtrace_meta_lock);
8476                 return (EBUSY);
8477         }
8478
8479         *pp = NULL;
8480
8481         mutex_exit(&dtrace_lock);
8482         mutex_exit(&dtrace_meta_lock);
8483
8484         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8485         kmem_free(old, sizeof (dtrace_meta_t));
8486
8487         return (0);
8488 }
8489
8490
8491 /*
8492  * DTrace DIF Object Functions
8493  */
8494 static int
8495 dtrace_difo_err(uint_t pc, const char *format, ...)
8496 {
8497         if (dtrace_err_verbose) {
8498                 va_list alist;
8499
8500                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8501                 va_start(alist, format);
8502                 (void) vuprintf(format, alist);
8503                 va_end(alist);
8504         }
8505
8506 #ifdef DTRACE_ERRDEBUG
8507         dtrace_errdebug(format);
8508 #endif
8509         return (1);
8510 }
8511
8512 /*
8513  * Validate a DTrace DIF object by checking the IR instructions.  The following
8514  * rules are currently enforced by dtrace_difo_validate():
8515  *
8516  * 1. Each instruction must have a valid opcode
8517  * 2. Each register, string, variable, or subroutine reference must be valid
8518  * 3. No instruction can modify register %r0 (must be zero)
8519  * 4. All instruction reserved bits must be set to zero
8520  * 5. The last instruction must be a "ret" instruction
8521  * 6. All branch targets must reference a valid instruction _after_ the branch
8522  */
8523 static int
8524 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8525     cred_t *cr)
8526 {
8527         int err = 0, i;
8528         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8529         int kcheckload;
8530         uint_t pc;
8531
8532         kcheckload = cr == NULL ||
8533             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8534
8535         dp->dtdo_destructive = 0;
8536
8537         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8538                 dif_instr_t instr = dp->dtdo_buf[pc];
8539
8540                 uint_t r1 = DIF_INSTR_R1(instr);
8541                 uint_t r2 = DIF_INSTR_R2(instr);
8542                 uint_t rd = DIF_INSTR_RD(instr);
8543                 uint_t rs = DIF_INSTR_RS(instr);
8544                 uint_t label = DIF_INSTR_LABEL(instr);
8545                 uint_t v = DIF_INSTR_VAR(instr);
8546                 uint_t subr = DIF_INSTR_SUBR(instr);
8547                 uint_t type = DIF_INSTR_TYPE(instr);
8548                 uint_t op = DIF_INSTR_OP(instr);
8549
8550                 switch (op) {
8551                 case DIF_OP_OR:
8552                 case DIF_OP_XOR:
8553                 case DIF_OP_AND:
8554                 case DIF_OP_SLL:
8555                 case DIF_OP_SRL:
8556                 case DIF_OP_SRA:
8557                 case DIF_OP_SUB:
8558                 case DIF_OP_ADD:
8559                 case DIF_OP_MUL:
8560                 case DIF_OP_SDIV:
8561                 case DIF_OP_UDIV:
8562                 case DIF_OP_SREM:
8563                 case DIF_OP_UREM:
8564                 case DIF_OP_COPYS:
8565                         if (r1 >= nregs)
8566                                 err += efunc(pc, "invalid register %u\n", r1);
8567                         if (r2 >= nregs)
8568                                 err += efunc(pc, "invalid register %u\n", r2);
8569                         if (rd >= nregs)
8570                                 err += efunc(pc, "invalid register %u\n", rd);
8571                         if (rd == 0)
8572                                 err += efunc(pc, "cannot write to %r0\n");
8573                         break;
8574                 case DIF_OP_NOT:
8575                 case DIF_OP_MOV:
8576                 case DIF_OP_ALLOCS:
8577                         if (r1 >= nregs)
8578                                 err += efunc(pc, "invalid register %u\n", r1);
8579                         if (r2 != 0)
8580                                 err += efunc(pc, "non-zero reserved bits\n");
8581                         if (rd >= nregs)
8582                                 err += efunc(pc, "invalid register %u\n", rd);
8583                         if (rd == 0)
8584                                 err += efunc(pc, "cannot write to %r0\n");
8585                         break;
8586                 case DIF_OP_LDSB:
8587                 case DIF_OP_LDSH:
8588                 case DIF_OP_LDSW:
8589                 case DIF_OP_LDUB:
8590                 case DIF_OP_LDUH:
8591                 case DIF_OP_LDUW:
8592                 case DIF_OP_LDX:
8593                         if (r1 >= nregs)
8594                                 err += efunc(pc, "invalid register %u\n", r1);
8595                         if (r2 != 0)
8596                                 err += efunc(pc, "non-zero reserved bits\n");
8597                         if (rd >= nregs)
8598                                 err += efunc(pc, "invalid register %u\n", rd);
8599                         if (rd == 0)
8600                                 err += efunc(pc, "cannot write to %r0\n");
8601                         if (kcheckload)
8602                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8603                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8604                         break;
8605                 case DIF_OP_RLDSB:
8606                 case DIF_OP_RLDSH:
8607                 case DIF_OP_RLDSW:
8608                 case DIF_OP_RLDUB:
8609                 case DIF_OP_RLDUH:
8610                 case DIF_OP_RLDUW:
8611                 case DIF_OP_RLDX:
8612                         if (r1 >= nregs)
8613                                 err += efunc(pc, "invalid register %u\n", r1);
8614                         if (r2 != 0)
8615                                 err += efunc(pc, "non-zero reserved bits\n");
8616                         if (rd >= nregs)
8617                                 err += efunc(pc, "invalid register %u\n", rd);
8618                         if (rd == 0)
8619                                 err += efunc(pc, "cannot write to %r0\n");
8620                         break;
8621                 case DIF_OP_ULDSB:
8622                 case DIF_OP_ULDSH:
8623                 case DIF_OP_ULDSW:
8624                 case DIF_OP_ULDUB:
8625                 case DIF_OP_ULDUH:
8626                 case DIF_OP_ULDUW:
8627                 case DIF_OP_ULDX:
8628                         if (r1 >= nregs)
8629                                 err += efunc(pc, "invalid register %u\n", r1);
8630                         if (r2 != 0)
8631                                 err += efunc(pc, "non-zero reserved bits\n");
8632                         if (rd >= nregs)
8633                                 err += efunc(pc, "invalid register %u\n", rd);
8634                         if (rd == 0)
8635                                 err += efunc(pc, "cannot write to %r0\n");
8636                         break;
8637                 case DIF_OP_STB:
8638                 case DIF_OP_STH:
8639                 case DIF_OP_STW:
8640                 case DIF_OP_STX:
8641                         if (r1 >= nregs)
8642                                 err += efunc(pc, "invalid register %u\n", r1);
8643                         if (r2 != 0)
8644                                 err += efunc(pc, "non-zero reserved bits\n");
8645                         if (rd >= nregs)
8646                                 err += efunc(pc, "invalid register %u\n", rd);
8647                         if (rd == 0)
8648                                 err += efunc(pc, "cannot write to 0 address\n");
8649                         break;
8650                 case DIF_OP_CMP:
8651                 case DIF_OP_SCMP:
8652                         if (r1 >= nregs)
8653                                 err += efunc(pc, "invalid register %u\n", r1);
8654                         if (r2 >= nregs)
8655                                 err += efunc(pc, "invalid register %u\n", r2);
8656                         if (rd != 0)
8657                                 err += efunc(pc, "non-zero reserved bits\n");
8658                         break;
8659                 case DIF_OP_TST:
8660                         if (r1 >= nregs)
8661                                 err += efunc(pc, "invalid register %u\n", r1);
8662                         if (r2 != 0 || rd != 0)
8663                                 err += efunc(pc, "non-zero reserved bits\n");
8664                         break;
8665                 case DIF_OP_BA:
8666                 case DIF_OP_BE:
8667                 case DIF_OP_BNE:
8668                 case DIF_OP_BG:
8669                 case DIF_OP_BGU:
8670                 case DIF_OP_BGE:
8671                 case DIF_OP_BGEU:
8672                 case DIF_OP_BL:
8673                 case DIF_OP_BLU:
8674                 case DIF_OP_BLE:
8675                 case DIF_OP_BLEU:
8676                         if (label >= dp->dtdo_len) {
8677                                 err += efunc(pc, "invalid branch target %u\n",
8678                                     label);
8679                         }
8680                         if (label <= pc) {
8681                                 err += efunc(pc, "backward branch to %u\n",
8682                                     label);
8683                         }
8684                         break;
8685                 case DIF_OP_RET:
8686                         if (r1 != 0 || r2 != 0)
8687                                 err += efunc(pc, "non-zero reserved bits\n");
8688                         if (rd >= nregs)
8689                                 err += efunc(pc, "invalid register %u\n", rd);
8690                         break;
8691                 case DIF_OP_NOP:
8692                 case DIF_OP_POPTS:
8693                 case DIF_OP_FLUSHTS:
8694                         if (r1 != 0 || r2 != 0 || rd != 0)
8695                                 err += efunc(pc, "non-zero reserved bits\n");
8696                         break;
8697                 case DIF_OP_SETX:
8698                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8699                                 err += efunc(pc, "invalid integer ref %u\n",
8700                                     DIF_INSTR_INTEGER(instr));
8701                         }
8702                         if (rd >= nregs)
8703                                 err += efunc(pc, "invalid register %u\n", rd);
8704                         if (rd == 0)
8705                                 err += efunc(pc, "cannot write to %r0\n");
8706                         break;
8707                 case DIF_OP_SETS:
8708                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8709                                 err += efunc(pc, "invalid string ref %u\n",
8710                                     DIF_INSTR_STRING(instr));
8711                         }
8712                         if (rd >= nregs)
8713                                 err += efunc(pc, "invalid register %u\n", rd);
8714                         if (rd == 0)
8715                                 err += efunc(pc, "cannot write to %r0\n");
8716                         break;
8717                 case DIF_OP_LDGA:
8718                 case DIF_OP_LDTA:
8719                         if (r1 > DIF_VAR_ARRAY_MAX)
8720                                 err += efunc(pc, "invalid array %u\n", r1);
8721                         if (r2 >= nregs)
8722                                 err += efunc(pc, "invalid register %u\n", r2);
8723                         if (rd >= nregs)
8724                                 err += efunc(pc, "invalid register %u\n", rd);
8725                         if (rd == 0)
8726                                 err += efunc(pc, "cannot write to %r0\n");
8727                         break;
8728                 case DIF_OP_LDGS:
8729                 case DIF_OP_LDTS:
8730                 case DIF_OP_LDLS:
8731                 case DIF_OP_LDGAA:
8732                 case DIF_OP_LDTAA:
8733                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8734                                 err += efunc(pc, "invalid variable %u\n", v);
8735                         if (rd >= nregs)
8736                                 err += efunc(pc, "invalid register %u\n", rd);
8737                         if (rd == 0)
8738                                 err += efunc(pc, "cannot write to %r0\n");
8739                         break;
8740                 case DIF_OP_STGS:
8741                 case DIF_OP_STTS:
8742                 case DIF_OP_STLS:
8743                 case DIF_OP_STGAA:
8744                 case DIF_OP_STTAA:
8745                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8746                                 err += efunc(pc, "invalid variable %u\n", v);
8747                         if (rs >= nregs)
8748                                 err += efunc(pc, "invalid register %u\n", rd);
8749                         break;
8750                 case DIF_OP_CALL:
8751                         if (subr > DIF_SUBR_MAX)
8752                                 err += efunc(pc, "invalid subr %u\n", subr);
8753                         if (rd >= nregs)
8754                                 err += efunc(pc, "invalid register %u\n", rd);
8755                         if (rd == 0)
8756                                 err += efunc(pc, "cannot write to %r0\n");
8757
8758                         if (subr == DIF_SUBR_COPYOUT ||
8759                             subr == DIF_SUBR_COPYOUTSTR) {
8760                                 dp->dtdo_destructive = 1;
8761                         }
8762                         break;
8763                 case DIF_OP_PUSHTR:
8764                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8765                                 err += efunc(pc, "invalid ref type %u\n", type);
8766                         if (r2 >= nregs)
8767                                 err += efunc(pc, "invalid register %u\n", r2);
8768                         if (rs >= nregs)
8769                                 err += efunc(pc, "invalid register %u\n", rs);
8770                         break;
8771                 case DIF_OP_PUSHTV:
8772                         if (type != DIF_TYPE_CTF)
8773                                 err += efunc(pc, "invalid val type %u\n", type);
8774                         if (r2 >= nregs)
8775                                 err += efunc(pc, "invalid register %u\n", r2);
8776                         if (rs >= nregs)
8777                                 err += efunc(pc, "invalid register %u\n", rs);
8778                         break;
8779                 default:
8780                         err += efunc(pc, "invalid opcode %u\n",
8781                             DIF_INSTR_OP(instr));
8782                 }
8783         }
8784
8785         if (dp->dtdo_len != 0 &&
8786             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8787                 err += efunc(dp->dtdo_len - 1,
8788                     "expected 'ret' as last DIF instruction\n");
8789         }
8790
8791         if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8792                 /*
8793                  * If we're not returning by reference, the size must be either
8794                  * 0 or the size of one of the base types.
8795                  */
8796                 switch (dp->dtdo_rtype.dtdt_size) {
8797                 case 0:
8798                 case sizeof (uint8_t):
8799                 case sizeof (uint16_t):
8800                 case sizeof (uint32_t):
8801                 case sizeof (uint64_t):
8802                         break;
8803
8804                 default:
8805                         err += efunc(dp->dtdo_len - 1, "bad return size");
8806                 }
8807         }
8808
8809         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8810                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8811                 dtrace_diftype_t *vt, *et;
8812                 uint_t id, ndx;
8813
8814                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8815                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
8816                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8817                         err += efunc(i, "unrecognized variable scope %d\n",
8818                             v->dtdv_scope);
8819                         break;
8820                 }
8821
8822                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8823                     v->dtdv_kind != DIFV_KIND_SCALAR) {
8824                         err += efunc(i, "unrecognized variable type %d\n",
8825                             v->dtdv_kind);
8826                         break;
8827                 }
8828
8829                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8830                         err += efunc(i, "%d exceeds variable id limit\n", id);
8831                         break;
8832                 }
8833
8834                 if (id < DIF_VAR_OTHER_UBASE)
8835                         continue;
8836
8837                 /*
8838                  * For user-defined variables, we need to check that this
8839                  * definition is identical to any previous definition that we
8840                  * encountered.
8841                  */
8842                 ndx = id - DIF_VAR_OTHER_UBASE;
8843
8844                 switch (v->dtdv_scope) {
8845                 case DIFV_SCOPE_GLOBAL:
8846                         if (ndx < vstate->dtvs_nglobals) {
8847                                 dtrace_statvar_t *svar;
8848
8849                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8850                                         existing = &svar->dtsv_var;
8851                         }
8852
8853                         break;
8854
8855                 case DIFV_SCOPE_THREAD:
8856                         if (ndx < vstate->dtvs_ntlocals)
8857                                 existing = &vstate->dtvs_tlocals[ndx];
8858                         break;
8859
8860                 case DIFV_SCOPE_LOCAL:
8861                         if (ndx < vstate->dtvs_nlocals) {
8862                                 dtrace_statvar_t *svar;
8863
8864                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8865                                         existing = &svar->dtsv_var;
8866                         }
8867
8868                         break;
8869                 }
8870
8871                 vt = &v->dtdv_type;
8872
8873                 if (vt->dtdt_flags & DIF_TF_BYREF) {
8874                         if (vt->dtdt_size == 0) {
8875                                 err += efunc(i, "zero-sized variable\n");
8876                                 break;
8877                         }
8878
8879                         if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8880                             vt->dtdt_size > dtrace_global_maxsize) {
8881                                 err += efunc(i, "oversized by-ref global\n");
8882                                 break;
8883                         }
8884                 }
8885
8886                 if (existing == NULL || existing->dtdv_id == 0)
8887                         continue;
8888
8889                 ASSERT(existing->dtdv_id == v->dtdv_id);
8890                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8891
8892                 if (existing->dtdv_kind != v->dtdv_kind)
8893                         err += efunc(i, "%d changed variable kind\n", id);
8894
8895                 et = &existing->dtdv_type;
8896
8897                 if (vt->dtdt_flags != et->dtdt_flags) {
8898                         err += efunc(i, "%d changed variable type flags\n", id);
8899                         break;
8900                 }
8901
8902                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8903                         err += efunc(i, "%d changed variable type size\n", id);
8904                         break;
8905                 }
8906         }
8907
8908         return (err);
8909 }
8910
8911 /*
8912  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8913  * are much more constrained than normal DIFOs.  Specifically, they may
8914  * not:
8915  *
8916  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8917  *    miscellaneous string routines
8918  * 2. Access DTrace variables other than the args[] array, and the
8919  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8920  * 3. Have thread-local variables.
8921  * 4. Have dynamic variables.
8922  */
8923 static int
8924 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8925 {
8926         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8927         int err = 0;
8928         uint_t pc;
8929
8930         for (pc = 0; pc < dp->dtdo_len; pc++) {
8931                 dif_instr_t instr = dp->dtdo_buf[pc];
8932
8933                 uint_t v = DIF_INSTR_VAR(instr);
8934                 uint_t subr = DIF_INSTR_SUBR(instr);
8935                 uint_t op = DIF_INSTR_OP(instr);
8936
8937                 switch (op) {
8938                 case DIF_OP_OR:
8939                 case DIF_OP_XOR:
8940                 case DIF_OP_AND:
8941                 case DIF_OP_SLL:
8942                 case DIF_OP_SRL:
8943                 case DIF_OP_SRA:
8944                 case DIF_OP_SUB:
8945                 case DIF_OP_ADD:
8946                 case DIF_OP_MUL:
8947                 case DIF_OP_SDIV:
8948                 case DIF_OP_UDIV:
8949                 case DIF_OP_SREM:
8950                 case DIF_OP_UREM:
8951                 case DIF_OP_COPYS:
8952                 case DIF_OP_NOT:
8953                 case DIF_OP_MOV:
8954                 case DIF_OP_RLDSB:
8955                 case DIF_OP_RLDSH:
8956                 case DIF_OP_RLDSW:
8957                 case DIF_OP_RLDUB:
8958                 case DIF_OP_RLDUH:
8959                 case DIF_OP_RLDUW:
8960                 case DIF_OP_RLDX:
8961                 case DIF_OP_ULDSB:
8962                 case DIF_OP_ULDSH:
8963                 case DIF_OP_ULDSW:
8964                 case DIF_OP_ULDUB:
8965                 case DIF_OP_ULDUH:
8966                 case DIF_OP_ULDUW:
8967                 case DIF_OP_ULDX:
8968                 case DIF_OP_STB:
8969                 case DIF_OP_STH:
8970                 case DIF_OP_STW:
8971                 case DIF_OP_STX:
8972                 case DIF_OP_ALLOCS:
8973                 case DIF_OP_CMP:
8974                 case DIF_OP_SCMP:
8975                 case DIF_OP_TST:
8976                 case DIF_OP_BA:
8977                 case DIF_OP_BE:
8978                 case DIF_OP_BNE:
8979                 case DIF_OP_BG:
8980                 case DIF_OP_BGU:
8981                 case DIF_OP_BGE:
8982                 case DIF_OP_BGEU:
8983                 case DIF_OP_BL:
8984                 case DIF_OP_BLU:
8985                 case DIF_OP_BLE:
8986                 case DIF_OP_BLEU:
8987                 case DIF_OP_RET:
8988                 case DIF_OP_NOP:
8989                 case DIF_OP_POPTS:
8990                 case DIF_OP_FLUSHTS:
8991                 case DIF_OP_SETX:
8992                 case DIF_OP_SETS:
8993                 case DIF_OP_LDGA:
8994                 case DIF_OP_LDLS:
8995                 case DIF_OP_STGS:
8996                 case DIF_OP_STLS:
8997                 case DIF_OP_PUSHTR:
8998                 case DIF_OP_PUSHTV:
8999                         break;
9000
9001                 case DIF_OP_LDGS:
9002                         if (v >= DIF_VAR_OTHER_UBASE)
9003                                 break;
9004
9005                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9006                                 break;
9007
9008                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9009                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9010                             v == DIF_VAR_EXECARGS ||
9011                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9012                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9013                                 break;
9014
9015                         err += efunc(pc, "illegal variable %u\n", v);
9016                         break;
9017
9018                 case DIF_OP_LDTA:
9019                 case DIF_OP_LDTS:
9020                 case DIF_OP_LDGAA:
9021                 case DIF_OP_LDTAA:
9022                         err += efunc(pc, "illegal dynamic variable load\n");
9023                         break;
9024
9025                 case DIF_OP_STTS:
9026                 case DIF_OP_STGAA:
9027                 case DIF_OP_STTAA:
9028                         err += efunc(pc, "illegal dynamic variable store\n");
9029                         break;
9030
9031                 case DIF_OP_CALL:
9032                         if (subr == DIF_SUBR_ALLOCA ||
9033                             subr == DIF_SUBR_BCOPY ||
9034                             subr == DIF_SUBR_COPYIN ||
9035                             subr == DIF_SUBR_COPYINTO ||
9036                             subr == DIF_SUBR_COPYINSTR ||
9037                             subr == DIF_SUBR_INDEX ||
9038                             subr == DIF_SUBR_INET_NTOA ||
9039                             subr == DIF_SUBR_INET_NTOA6 ||
9040                             subr == DIF_SUBR_INET_NTOP ||
9041                             subr == DIF_SUBR_LLTOSTR ||
9042                             subr == DIF_SUBR_RINDEX ||
9043                             subr == DIF_SUBR_STRCHR ||
9044                             subr == DIF_SUBR_STRJOIN ||
9045                             subr == DIF_SUBR_STRRCHR ||
9046                             subr == DIF_SUBR_STRSTR ||
9047                             subr == DIF_SUBR_HTONS ||
9048                             subr == DIF_SUBR_HTONL ||
9049                             subr == DIF_SUBR_HTONLL ||
9050                             subr == DIF_SUBR_NTOHS ||
9051                             subr == DIF_SUBR_NTOHL ||
9052                             subr == DIF_SUBR_NTOHLL ||
9053                             subr == DIF_SUBR_MEMREF ||
9054                             subr == DIF_SUBR_TYPEREF)
9055                                 break;
9056
9057                         err += efunc(pc, "invalid subr %u\n", subr);
9058                         break;
9059
9060                 default:
9061                         err += efunc(pc, "invalid opcode %u\n",
9062                             DIF_INSTR_OP(instr));
9063                 }
9064         }
9065
9066         return (err);
9067 }
9068
9069 /*
9070  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9071  * basis; 0 if not.
9072  */
9073 static int
9074 dtrace_difo_cacheable(dtrace_difo_t *dp)
9075 {
9076         int i;
9077
9078         if (dp == NULL)
9079                 return (0);
9080
9081         for (i = 0; i < dp->dtdo_varlen; i++) {
9082                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9083
9084                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9085                         continue;
9086
9087                 switch (v->dtdv_id) {
9088                 case DIF_VAR_CURTHREAD:
9089                 case DIF_VAR_PID:
9090                 case DIF_VAR_TID:
9091                 case DIF_VAR_EXECARGS:
9092                 case DIF_VAR_EXECNAME:
9093                 case DIF_VAR_ZONENAME:
9094                         break;
9095
9096                 default:
9097                         return (0);
9098                 }
9099         }
9100
9101         /*
9102          * This DIF object may be cacheable.  Now we need to look for any
9103          * array loading instructions, any memory loading instructions, or
9104          * any stores to thread-local variables.
9105          */
9106         for (i = 0; i < dp->dtdo_len; i++) {
9107                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9108
9109                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9110                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9111                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9112                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9113                         return (0);
9114         }
9115
9116         return (1);
9117 }
9118
9119 static void
9120 dtrace_difo_hold(dtrace_difo_t *dp)
9121 {
9122         int i;
9123
9124         ASSERT(MUTEX_HELD(&dtrace_lock));
9125
9126         dp->dtdo_refcnt++;
9127         ASSERT(dp->dtdo_refcnt != 0);
9128
9129         /*
9130          * We need to check this DIF object for references to the variable
9131          * DIF_VAR_VTIMESTAMP.
9132          */
9133         for (i = 0; i < dp->dtdo_varlen; i++) {
9134                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9135
9136                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9137                         continue;
9138
9139                 if (dtrace_vtime_references++ == 0)
9140                         dtrace_vtime_enable();
9141         }
9142 }
9143
9144 /*
9145  * This routine calculates the dynamic variable chunksize for a given DIF
9146  * object.  The calculation is not fool-proof, and can probably be tricked by
9147  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9148  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9149  * if a dynamic variable size exceeds the chunksize.
9150  */
9151 static void
9152 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9153 {
9154         uint64_t sval = 0;
9155         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9156         const dif_instr_t *text = dp->dtdo_buf;
9157         uint_t pc, srd = 0;
9158         uint_t ttop = 0;
9159         size_t size, ksize;
9160         uint_t id, i;
9161
9162         for (pc = 0; pc < dp->dtdo_len; pc++) {
9163                 dif_instr_t instr = text[pc];
9164                 uint_t op = DIF_INSTR_OP(instr);
9165                 uint_t rd = DIF_INSTR_RD(instr);
9166                 uint_t r1 = DIF_INSTR_R1(instr);
9167                 uint_t nkeys = 0;
9168                 uchar_t scope = 0;
9169
9170                 dtrace_key_t *key = tupregs;
9171
9172                 switch (op) {
9173                 case DIF_OP_SETX:
9174                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9175                         srd = rd;
9176                         continue;
9177
9178                 case DIF_OP_STTS:
9179                         key = &tupregs[DIF_DTR_NREGS];
9180                         key[0].dttk_size = 0;
9181                         key[1].dttk_size = 0;
9182                         nkeys = 2;
9183                         scope = DIFV_SCOPE_THREAD;
9184                         break;
9185
9186                 case DIF_OP_STGAA:
9187                 case DIF_OP_STTAA:
9188                         nkeys = ttop;
9189
9190                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9191                                 key[nkeys++].dttk_size = 0;
9192
9193                         key[nkeys++].dttk_size = 0;
9194
9195                         if (op == DIF_OP_STTAA) {
9196                                 scope = DIFV_SCOPE_THREAD;
9197                         } else {
9198                                 scope = DIFV_SCOPE_GLOBAL;
9199                         }
9200
9201                         break;
9202
9203                 case DIF_OP_PUSHTR:
9204                         if (ttop == DIF_DTR_NREGS)
9205                                 return;
9206
9207                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9208                                 /*
9209                                  * If the register for the size of the "pushtr"
9210                                  * is %r0 (or the value is 0) and the type is
9211                                  * a string, we'll use the system-wide default
9212                                  * string size.
9213                                  */
9214                                 tupregs[ttop++].dttk_size =
9215                                     dtrace_strsize_default;
9216                         } else {
9217                                 if (srd == 0)
9218                                         return;
9219
9220                                 tupregs[ttop++].dttk_size = sval;
9221                         }
9222
9223                         break;
9224
9225                 case DIF_OP_PUSHTV:
9226                         if (ttop == DIF_DTR_NREGS)
9227                                 return;
9228
9229                         tupregs[ttop++].dttk_size = 0;
9230                         break;
9231
9232                 case DIF_OP_FLUSHTS:
9233                         ttop = 0;
9234                         break;
9235
9236                 case DIF_OP_POPTS:
9237                         if (ttop != 0)
9238                                 ttop--;
9239                         break;
9240                 }
9241
9242                 sval = 0;
9243                 srd = 0;
9244
9245                 if (nkeys == 0)
9246                         continue;
9247
9248                 /*
9249                  * We have a dynamic variable allocation; calculate its size.
9250                  */
9251                 for (ksize = 0, i = 0; i < nkeys; i++)
9252                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9253
9254                 size = sizeof (dtrace_dynvar_t);
9255                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9256                 size += ksize;
9257
9258                 /*
9259                  * Now we need to determine the size of the stored data.
9260                  */
9261                 id = DIF_INSTR_VAR(instr);
9262
9263                 for (i = 0; i < dp->dtdo_varlen; i++) {
9264                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9265
9266                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9267                                 size += v->dtdv_type.dtdt_size;
9268                                 break;
9269                         }
9270                 }
9271
9272                 if (i == dp->dtdo_varlen)
9273                         return;
9274
9275                 /*
9276                  * We have the size.  If this is larger than the chunk size
9277                  * for our dynamic variable state, reset the chunk size.
9278                  */
9279                 size = P2ROUNDUP(size, sizeof (uint64_t));
9280
9281                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9282                         vstate->dtvs_dynvars.dtds_chunksize = size;
9283         }
9284 }
9285
9286 static void
9287 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9288 {
9289         int i, oldsvars, osz, nsz, otlocals, ntlocals;
9290         uint_t id;
9291
9292         ASSERT(MUTEX_HELD(&dtrace_lock));
9293         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9294
9295         for (i = 0; i < dp->dtdo_varlen; i++) {
9296                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9297                 dtrace_statvar_t *svar, ***svarp = NULL;
9298                 size_t dsize = 0;
9299                 uint8_t scope = v->dtdv_scope;
9300                 int *np = NULL;
9301
9302                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9303                         continue;
9304
9305                 id -= DIF_VAR_OTHER_UBASE;
9306
9307                 switch (scope) {
9308                 case DIFV_SCOPE_THREAD:
9309                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9310                                 dtrace_difv_t *tlocals;
9311
9312                                 if ((ntlocals = (otlocals << 1)) == 0)
9313                                         ntlocals = 1;
9314
9315                                 osz = otlocals * sizeof (dtrace_difv_t);
9316                                 nsz = ntlocals * sizeof (dtrace_difv_t);
9317
9318                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9319
9320                                 if (osz != 0) {
9321                                         bcopy(vstate->dtvs_tlocals,
9322                                             tlocals, osz);
9323                                         kmem_free(vstate->dtvs_tlocals, osz);
9324                                 }
9325
9326                                 vstate->dtvs_tlocals = tlocals;
9327                                 vstate->dtvs_ntlocals = ntlocals;
9328                         }
9329
9330                         vstate->dtvs_tlocals[id] = *v;
9331                         continue;
9332
9333                 case DIFV_SCOPE_LOCAL:
9334                         np = &vstate->dtvs_nlocals;
9335                         svarp = &vstate->dtvs_locals;
9336
9337                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9338                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
9339                                     sizeof (uint64_t));
9340                         else
9341                                 dsize = NCPU * sizeof (uint64_t);
9342
9343                         break;
9344
9345                 case DIFV_SCOPE_GLOBAL:
9346                         np = &vstate->dtvs_nglobals;
9347                         svarp = &vstate->dtvs_globals;
9348
9349                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9350                                 dsize = v->dtdv_type.dtdt_size +
9351                                     sizeof (uint64_t);
9352
9353                         break;
9354
9355                 default:
9356                         ASSERT(0);
9357                 }
9358
9359                 while (id >= (oldsvars = *np)) {
9360                         dtrace_statvar_t **statics;
9361                         int newsvars, oldsize, newsize;
9362
9363                         if ((newsvars = (oldsvars << 1)) == 0)
9364                                 newsvars = 1;
9365
9366                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9367                         newsize = newsvars * sizeof (dtrace_statvar_t *);
9368
9369                         statics = kmem_zalloc(newsize, KM_SLEEP);
9370
9371                         if (oldsize != 0) {
9372                                 bcopy(*svarp, statics, oldsize);
9373                                 kmem_free(*svarp, oldsize);
9374                         }
9375
9376                         *svarp = statics;
9377                         *np = newsvars;
9378                 }
9379
9380                 if ((svar = (*svarp)[id]) == NULL) {
9381                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9382                         svar->dtsv_var = *v;
9383
9384                         if ((svar->dtsv_size = dsize) != 0) {
9385                                 svar->dtsv_data = (uint64_t)(uintptr_t)
9386                                     kmem_zalloc(dsize, KM_SLEEP);
9387                         }
9388
9389                         (*svarp)[id] = svar;
9390                 }
9391
9392                 svar->dtsv_refcnt++;
9393         }
9394
9395         dtrace_difo_chunksize(dp, vstate);
9396         dtrace_difo_hold(dp);
9397 }
9398
9399 static dtrace_difo_t *
9400 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9401 {
9402         dtrace_difo_t *new;
9403         size_t sz;
9404
9405         ASSERT(dp->dtdo_buf != NULL);
9406         ASSERT(dp->dtdo_refcnt != 0);
9407
9408         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9409
9410         ASSERT(dp->dtdo_buf != NULL);
9411         sz = dp->dtdo_len * sizeof (dif_instr_t);
9412         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9413         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9414         new->dtdo_len = dp->dtdo_len;
9415
9416         if (dp->dtdo_strtab != NULL) {
9417                 ASSERT(dp->dtdo_strlen != 0);
9418                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9419                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9420                 new->dtdo_strlen = dp->dtdo_strlen;
9421         }
9422
9423         if (dp->dtdo_inttab != NULL) {
9424                 ASSERT(dp->dtdo_intlen != 0);
9425                 sz = dp->dtdo_intlen * sizeof (uint64_t);
9426                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9427                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9428                 new->dtdo_intlen = dp->dtdo_intlen;
9429         }
9430
9431         if (dp->dtdo_vartab != NULL) {
9432                 ASSERT(dp->dtdo_varlen != 0);
9433                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9434                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9435                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9436                 new->dtdo_varlen = dp->dtdo_varlen;
9437         }
9438
9439         dtrace_difo_init(new, vstate);
9440         return (new);
9441 }
9442
9443 static void
9444 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9445 {
9446         int i;
9447
9448         ASSERT(dp->dtdo_refcnt == 0);
9449
9450         for (i = 0; i < dp->dtdo_varlen; i++) {
9451                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9452                 dtrace_statvar_t *svar, **svarp = NULL;
9453                 uint_t id;
9454                 uint8_t scope = v->dtdv_scope;
9455                 int *np = NULL;
9456
9457                 switch (scope) {
9458                 case DIFV_SCOPE_THREAD:
9459                         continue;
9460
9461                 case DIFV_SCOPE_LOCAL:
9462                         np = &vstate->dtvs_nlocals;
9463                         svarp = vstate->dtvs_locals;
9464                         break;
9465
9466                 case DIFV_SCOPE_GLOBAL:
9467                         np = &vstate->dtvs_nglobals;
9468                         svarp = vstate->dtvs_globals;
9469                         break;
9470
9471                 default:
9472                         ASSERT(0);
9473                 }
9474
9475                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9476                         continue;
9477
9478                 id -= DIF_VAR_OTHER_UBASE;
9479                 ASSERT(id < *np);
9480
9481                 svar = svarp[id];
9482                 ASSERT(svar != NULL);
9483                 ASSERT(svar->dtsv_refcnt > 0);
9484
9485                 if (--svar->dtsv_refcnt > 0)
9486                         continue;
9487
9488                 if (svar->dtsv_size != 0) {
9489                         ASSERT(svar->dtsv_data != 0);
9490                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
9491                             svar->dtsv_size);
9492                 }
9493
9494                 kmem_free(svar, sizeof (dtrace_statvar_t));
9495                 svarp[id] = NULL;
9496         }
9497
9498         if (dp->dtdo_buf != NULL)
9499                 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9500         if (dp->dtdo_inttab != NULL)
9501                 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9502         if (dp->dtdo_strtab != NULL)
9503                 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9504         if (dp->dtdo_vartab != NULL)
9505                 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9506
9507         kmem_free(dp, sizeof (dtrace_difo_t));
9508 }
9509
9510 static void
9511 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9512 {
9513         int i;
9514
9515         ASSERT(MUTEX_HELD(&dtrace_lock));
9516         ASSERT(dp->dtdo_refcnt != 0);
9517
9518         for (i = 0; i < dp->dtdo_varlen; i++) {
9519                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9520
9521                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9522                         continue;
9523
9524                 ASSERT(dtrace_vtime_references > 0);
9525                 if (--dtrace_vtime_references == 0)
9526                         dtrace_vtime_disable();
9527         }
9528
9529         if (--dp->dtdo_refcnt == 0)
9530                 dtrace_difo_destroy(dp, vstate);
9531 }
9532
9533 /*
9534  * DTrace Format Functions
9535  */
9536 static uint16_t
9537 dtrace_format_add(dtrace_state_t *state, char *str)
9538 {
9539         char *fmt, **new;
9540         uint16_t ndx, len = strlen(str) + 1;
9541
9542         fmt = kmem_zalloc(len, KM_SLEEP);
9543         bcopy(str, fmt, len);
9544
9545         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9546                 if (state->dts_formats[ndx] == NULL) {
9547                         state->dts_formats[ndx] = fmt;
9548                         return (ndx + 1);
9549                 }
9550         }
9551
9552         if (state->dts_nformats == USHRT_MAX) {
9553                 /*
9554                  * This is only likely if a denial-of-service attack is being
9555                  * attempted.  As such, it's okay to fail silently here.
9556                  */
9557                 kmem_free(fmt, len);
9558                 return (0);
9559         }
9560
9561         /*
9562          * For simplicity, we always resize the formats array to be exactly the
9563          * number of formats.
9564          */
9565         ndx = state->dts_nformats++;
9566         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9567
9568         if (state->dts_formats != NULL) {
9569                 ASSERT(ndx != 0);
9570                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9571                 kmem_free(state->dts_formats, ndx * sizeof (char *));
9572         }
9573
9574         state->dts_formats = new;
9575         state->dts_formats[ndx] = fmt;
9576
9577         return (ndx + 1);
9578 }
9579
9580 static void
9581 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9582 {
9583         char *fmt;
9584
9585         ASSERT(state->dts_formats != NULL);
9586         ASSERT(format <= state->dts_nformats);
9587         ASSERT(state->dts_formats[format - 1] != NULL);
9588
9589         fmt = state->dts_formats[format - 1];
9590         kmem_free(fmt, strlen(fmt) + 1);
9591         state->dts_formats[format - 1] = NULL;
9592 }
9593
9594 static void
9595 dtrace_format_destroy(dtrace_state_t *state)
9596 {
9597         int i;
9598
9599         if (state->dts_nformats == 0) {
9600                 ASSERT(state->dts_formats == NULL);
9601                 return;
9602         }
9603
9604         ASSERT(state->dts_formats != NULL);
9605
9606         for (i = 0; i < state->dts_nformats; i++) {
9607                 char *fmt = state->dts_formats[i];
9608
9609                 if (fmt == NULL)
9610                         continue;
9611
9612                 kmem_free(fmt, strlen(fmt) + 1);
9613         }
9614
9615         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9616         state->dts_nformats = 0;
9617         state->dts_formats = NULL;
9618 }
9619
9620 /*
9621  * DTrace Predicate Functions
9622  */
9623 static dtrace_predicate_t *
9624 dtrace_predicate_create(dtrace_difo_t *dp)
9625 {
9626         dtrace_predicate_t *pred;
9627
9628         ASSERT(MUTEX_HELD(&dtrace_lock));
9629         ASSERT(dp->dtdo_refcnt != 0);
9630
9631         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9632         pred->dtp_difo = dp;
9633         pred->dtp_refcnt = 1;
9634
9635         if (!dtrace_difo_cacheable(dp))
9636                 return (pred);
9637
9638         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9639                 /*
9640                  * This is only theoretically possible -- we have had 2^32
9641                  * cacheable predicates on this machine.  We cannot allow any
9642                  * more predicates to become cacheable:  as unlikely as it is,
9643                  * there may be a thread caching a (now stale) predicate cache
9644                  * ID. (N.B.: the temptation is being successfully resisted to
9645                  * have this cmn_err() "Holy shit -- we executed this code!")
9646                  */
9647                 return (pred);
9648         }
9649
9650         pred->dtp_cacheid = dtrace_predcache_id++;
9651
9652         return (pred);
9653 }
9654
9655 static void
9656 dtrace_predicate_hold(dtrace_predicate_t *pred)
9657 {
9658         ASSERT(MUTEX_HELD(&dtrace_lock));
9659         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9660         ASSERT(pred->dtp_refcnt > 0);
9661
9662         pred->dtp_refcnt++;
9663 }
9664
9665 static void
9666 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9667 {
9668         dtrace_difo_t *dp = pred->dtp_difo;
9669
9670         ASSERT(MUTEX_HELD(&dtrace_lock));
9671         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9672         ASSERT(pred->dtp_refcnt > 0);
9673
9674         if (--pred->dtp_refcnt == 0) {
9675                 dtrace_difo_release(pred->dtp_difo, vstate);
9676                 kmem_free(pred, sizeof (dtrace_predicate_t));
9677         }
9678 }
9679
9680 /*
9681  * DTrace Action Description Functions
9682  */
9683 static dtrace_actdesc_t *
9684 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9685     uint64_t uarg, uint64_t arg)
9686 {
9687         dtrace_actdesc_t *act;
9688
9689 #if defined(sun)
9690         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9691             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9692 #endif
9693
9694         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9695         act->dtad_kind = kind;
9696         act->dtad_ntuple = ntuple;
9697         act->dtad_uarg = uarg;
9698         act->dtad_arg = arg;
9699         act->dtad_refcnt = 1;
9700
9701         return (act);
9702 }
9703
9704 static void
9705 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9706 {
9707         ASSERT(act->dtad_refcnt >= 1);
9708         act->dtad_refcnt++;
9709 }
9710
9711 static void
9712 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9713 {
9714         dtrace_actkind_t kind = act->dtad_kind;
9715         dtrace_difo_t *dp;
9716
9717         ASSERT(act->dtad_refcnt >= 1);
9718
9719         if (--act->dtad_refcnt != 0)
9720                 return;
9721
9722         if ((dp = act->dtad_difo) != NULL)
9723                 dtrace_difo_release(dp, vstate);
9724
9725         if (DTRACEACT_ISPRINTFLIKE(kind)) {
9726                 char *str = (char *)(uintptr_t)act->dtad_arg;
9727
9728 #if defined(sun)
9729                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9730                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9731 #endif
9732
9733                 if (str != NULL)
9734                         kmem_free(str, strlen(str) + 1);
9735         }
9736
9737         kmem_free(act, sizeof (dtrace_actdesc_t));
9738 }
9739
9740 /*
9741  * DTrace ECB Functions
9742  */
9743 static dtrace_ecb_t *
9744 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9745 {
9746         dtrace_ecb_t *ecb;
9747         dtrace_epid_t epid;
9748
9749         ASSERT(MUTEX_HELD(&dtrace_lock));
9750
9751         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9752         ecb->dte_predicate = NULL;
9753         ecb->dte_probe = probe;
9754
9755         /*
9756          * The default size is the size of the default action: recording
9757          * the epid.
9758          */
9759         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9760         ecb->dte_alignment = sizeof (dtrace_epid_t);
9761
9762         epid = state->dts_epid++;
9763
9764         if (epid - 1 >= state->dts_necbs) {
9765                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9766                 int necbs = state->dts_necbs << 1;
9767
9768                 ASSERT(epid == state->dts_necbs + 1);
9769
9770                 if (necbs == 0) {
9771                         ASSERT(oecbs == NULL);
9772                         necbs = 1;
9773                 }
9774
9775                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9776
9777                 if (oecbs != NULL)
9778                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9779
9780                 dtrace_membar_producer();
9781                 state->dts_ecbs = ecbs;
9782
9783                 if (oecbs != NULL) {
9784                         /*
9785                          * If this state is active, we must dtrace_sync()
9786                          * before we can free the old dts_ecbs array:  we're
9787                          * coming in hot, and there may be active ring
9788                          * buffer processing (which indexes into the dts_ecbs
9789                          * array) on another CPU.
9790                          */
9791                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9792                                 dtrace_sync();
9793
9794                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9795                 }
9796
9797                 dtrace_membar_producer();
9798                 state->dts_necbs = necbs;
9799         }
9800
9801         ecb->dte_state = state;
9802
9803         ASSERT(state->dts_ecbs[epid - 1] == NULL);
9804         dtrace_membar_producer();
9805         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9806
9807         return (ecb);
9808 }
9809
9810 static void
9811 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9812 {
9813         dtrace_probe_t *probe = ecb->dte_probe;
9814
9815         ASSERT(MUTEX_HELD(&cpu_lock));
9816         ASSERT(MUTEX_HELD(&dtrace_lock));
9817         ASSERT(ecb->dte_next == NULL);
9818
9819         if (probe == NULL) {
9820                 /*
9821                  * This is the NULL probe -- there's nothing to do.
9822                  */
9823                 return;
9824         }
9825
9826         if (probe->dtpr_ecb == NULL) {
9827                 dtrace_provider_t *prov = probe->dtpr_provider;
9828
9829                 /*
9830                  * We're the first ECB on this probe.
9831                  */
9832                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9833
9834                 if (ecb->dte_predicate != NULL)
9835                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9836
9837                 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9838                     probe->dtpr_id, probe->dtpr_arg);
9839         } else {
9840                 /*
9841                  * This probe is already active.  Swing the last pointer to
9842                  * point to the new ECB, and issue a dtrace_sync() to assure
9843                  * that all CPUs have seen the change.
9844                  */
9845                 ASSERT(probe->dtpr_ecb_last != NULL);
9846                 probe->dtpr_ecb_last->dte_next = ecb;
9847                 probe->dtpr_ecb_last = ecb;
9848                 probe->dtpr_predcache = 0;
9849
9850                 dtrace_sync();
9851         }
9852 }
9853
9854 static void
9855 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9856 {
9857         uint32_t maxalign = sizeof (dtrace_epid_t);
9858         uint32_t align = sizeof (uint8_t), offs, diff;
9859         dtrace_action_t *act;
9860         int wastuple = 0;
9861         uint32_t aggbase = UINT32_MAX;
9862         dtrace_state_t *state = ecb->dte_state;
9863
9864         /*
9865          * If we record anything, we always record the epid.  (And we always
9866          * record it first.)
9867          */
9868         offs = sizeof (dtrace_epid_t);
9869         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9870
9871         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9872                 dtrace_recdesc_t *rec = &act->dta_rec;
9873
9874                 if ((align = rec->dtrd_alignment) > maxalign)
9875                         maxalign = align;
9876
9877                 if (!wastuple && act->dta_intuple) {
9878                         /*
9879                          * This is the first record in a tuple.  Align the
9880                          * offset to be at offset 4 in an 8-byte aligned
9881                          * block.
9882                          */
9883                         diff = offs + sizeof (dtrace_aggid_t);
9884
9885                         if ((diff = (diff & (sizeof (uint64_t) - 1))))
9886                                 offs += sizeof (uint64_t) - diff;
9887
9888                         aggbase = offs - sizeof (dtrace_aggid_t);
9889                         ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9890                 }
9891
9892                 /*LINTED*/
9893                 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9894                         /*
9895                          * The current offset is not properly aligned; align it.
9896                          */
9897                         offs += align - diff;
9898                 }
9899
9900                 rec->dtrd_offset = offs;
9901
9902                 if (offs + rec->dtrd_size > ecb->dte_needed) {
9903                         ecb->dte_needed = offs + rec->dtrd_size;
9904
9905                         if (ecb->dte_needed > state->dts_needed)
9906                                 state->dts_needed = ecb->dte_needed;
9907                 }
9908
9909                 if (DTRACEACT_ISAGG(act->dta_kind)) {
9910                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9911                         dtrace_action_t *first = agg->dtag_first, *prev;
9912
9913                         ASSERT(rec->dtrd_size != 0 && first != NULL);
9914                         ASSERT(wastuple);
9915                         ASSERT(aggbase != UINT32_MAX);
9916
9917                         agg->dtag_base = aggbase;
9918
9919                         while ((prev = first->dta_prev) != NULL &&
9920                             DTRACEACT_ISAGG(prev->dta_kind)) {
9921                                 agg = (dtrace_aggregation_t *)prev;
9922                                 first = agg->dtag_first;
9923                         }
9924
9925                         if (prev != NULL) {
9926                                 offs = prev->dta_rec.dtrd_offset +
9927                                     prev->dta_rec.dtrd_size;
9928                         } else {
9929                                 offs = sizeof (dtrace_epid_t);
9930                         }
9931                         wastuple = 0;
9932                 } else {
9933                         if (!act->dta_intuple)
9934                                 ecb->dte_size = offs + rec->dtrd_size;
9935
9936                         offs += rec->dtrd_size;
9937                 }
9938
9939                 wastuple = act->dta_intuple;
9940         }
9941
9942         if ((act = ecb->dte_action) != NULL &&
9943             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9944             ecb->dte_size == sizeof (dtrace_epid_t)) {
9945                 /*
9946                  * If the size is still sizeof (dtrace_epid_t), then all
9947                  * actions store no data; set the size to 0.
9948                  */
9949                 ecb->dte_alignment = maxalign;
9950                 ecb->dte_size = 0;
9951
9952                 /*
9953                  * If the needed space is still sizeof (dtrace_epid_t), then
9954                  * all actions need no additional space; set the needed
9955                  * size to 0.
9956                  */
9957                 if (ecb->dte_needed == sizeof (dtrace_epid_t))
9958                         ecb->dte_needed = 0;
9959
9960                 return;
9961         }
9962
9963         /*
9964          * Set our alignment, and make sure that the dte_size and dte_needed
9965          * are aligned to the size of an EPID.
9966          */
9967         ecb->dte_alignment = maxalign;
9968         ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9969             ~(sizeof (dtrace_epid_t) - 1);
9970         ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9971             ~(sizeof (dtrace_epid_t) - 1);
9972         ASSERT(ecb->dte_size <= ecb->dte_needed);
9973 }
9974
9975 static dtrace_action_t *
9976 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9977 {
9978         dtrace_aggregation_t *agg;
9979         size_t size = sizeof (uint64_t);
9980         int ntuple = desc->dtad_ntuple;
9981         dtrace_action_t *act;
9982         dtrace_recdesc_t *frec;
9983         dtrace_aggid_t aggid;
9984         dtrace_state_t *state = ecb->dte_state;
9985
9986         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9987         agg->dtag_ecb = ecb;
9988
9989         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9990
9991         switch (desc->dtad_kind) {
9992         case DTRACEAGG_MIN:
9993                 agg->dtag_initial = INT64_MAX;
9994                 agg->dtag_aggregate = dtrace_aggregate_min;
9995                 break;
9996
9997         case DTRACEAGG_MAX:
9998                 agg->dtag_initial = INT64_MIN;
9999                 agg->dtag_aggregate = dtrace_aggregate_max;
10000                 break;
10001
10002         case DTRACEAGG_COUNT:
10003                 agg->dtag_aggregate = dtrace_aggregate_count;
10004                 break;
10005
10006         case DTRACEAGG_QUANTIZE:
10007                 agg->dtag_aggregate = dtrace_aggregate_quantize;
10008                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10009                     sizeof (uint64_t);
10010                 break;
10011
10012         case DTRACEAGG_LQUANTIZE: {
10013                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10014                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10015
10016                 agg->dtag_initial = desc->dtad_arg;
10017                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10018
10019                 if (step == 0 || levels == 0)
10020                         goto err;
10021
10022                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10023                 break;
10024         }
10025
10026         case DTRACEAGG_LLQUANTIZE: {
10027                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10028                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10029                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10030                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10031                 int64_t v;
10032
10033                 agg->dtag_initial = desc->dtad_arg;
10034                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10035
10036                 if (factor < 2 || low >= high || nsteps < factor)
10037                         goto err;
10038
10039                 /*
10040                  * Now check that the number of steps evenly divides a power
10041                  * of the factor.  (This assures both integer bucket size and
10042                  * linearity within each magnitude.)
10043                  */
10044                 for (v = factor; v < nsteps; v *= factor)
10045                         continue;
10046
10047                 if ((v % nsteps) || (nsteps % factor))
10048                         goto err;
10049
10050                 size = (dtrace_aggregate_llquantize_bucket(factor,
10051                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10052                 break;
10053         }
10054
10055         case DTRACEAGG_AVG:
10056                 agg->dtag_aggregate = dtrace_aggregate_avg;
10057                 size = sizeof (uint64_t) * 2;
10058                 break;
10059
10060         case DTRACEAGG_STDDEV:
10061                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10062                 size = sizeof (uint64_t) * 4;
10063                 break;
10064
10065         case DTRACEAGG_SUM:
10066                 agg->dtag_aggregate = dtrace_aggregate_sum;
10067                 break;
10068
10069         default:
10070                 goto err;
10071         }
10072
10073         agg->dtag_action.dta_rec.dtrd_size = size;
10074
10075         if (ntuple == 0)
10076                 goto err;
10077
10078         /*
10079          * We must make sure that we have enough actions for the n-tuple.
10080          */
10081         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10082                 if (DTRACEACT_ISAGG(act->dta_kind))
10083                         break;
10084
10085                 if (--ntuple == 0) {
10086                         /*
10087                          * This is the action with which our n-tuple begins.
10088                          */
10089                         agg->dtag_first = act;
10090                         goto success;
10091                 }
10092         }
10093
10094         /*
10095          * This n-tuple is short by ntuple elements.  Return failure.
10096          */
10097         ASSERT(ntuple != 0);
10098 err:
10099         kmem_free(agg, sizeof (dtrace_aggregation_t));
10100         return (NULL);
10101
10102 success:
10103         /*
10104          * If the last action in the tuple has a size of zero, it's actually
10105          * an expression argument for the aggregating action.
10106          */
10107         ASSERT(ecb->dte_action_last != NULL);
10108         act = ecb->dte_action_last;
10109
10110         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10111                 ASSERT(act->dta_difo != NULL);
10112
10113                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10114                         agg->dtag_hasarg = 1;
10115         }
10116
10117         /*
10118          * We need to allocate an id for this aggregation.
10119          */
10120 #if defined(sun)
10121         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10122             VM_BESTFIT | VM_SLEEP);
10123 #else
10124         aggid = alloc_unr(state->dts_aggid_arena);
10125 #endif
10126
10127         if (aggid - 1 >= state->dts_naggregations) {
10128                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10129                 dtrace_aggregation_t **aggs;
10130                 int naggs = state->dts_naggregations << 1;
10131                 int onaggs = state->dts_naggregations;
10132
10133                 ASSERT(aggid == state->dts_naggregations + 1);
10134
10135                 if (naggs == 0) {
10136                         ASSERT(oaggs == NULL);
10137                         naggs = 1;
10138                 }
10139
10140                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10141
10142                 if (oaggs != NULL) {
10143                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10144                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10145                 }
10146
10147                 state->dts_aggregations = aggs;
10148                 state->dts_naggregations = naggs;
10149         }
10150
10151         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10152         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10153
10154         frec = &agg->dtag_first->dta_rec;
10155         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10156                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10157
10158         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10159                 ASSERT(!act->dta_intuple);
10160                 act->dta_intuple = 1;
10161         }
10162
10163         return (&agg->dtag_action);
10164 }
10165
10166 static void
10167 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10168 {
10169         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10170         dtrace_state_t *state = ecb->dte_state;
10171         dtrace_aggid_t aggid = agg->dtag_id;
10172
10173         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10174 #if defined(sun)
10175         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10176 #else
10177         free_unr(state->dts_aggid_arena, aggid);
10178 #endif
10179
10180         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10181         state->dts_aggregations[aggid - 1] = NULL;
10182
10183         kmem_free(agg, sizeof (dtrace_aggregation_t));
10184 }
10185
10186 static int
10187 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10188 {
10189         dtrace_action_t *action, *last;
10190         dtrace_difo_t *dp = desc->dtad_difo;
10191         uint32_t size = 0, align = sizeof (uint8_t), mask;
10192         uint16_t format = 0;
10193         dtrace_recdesc_t *rec;
10194         dtrace_state_t *state = ecb->dte_state;
10195         dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10196         uint64_t arg = desc->dtad_arg;
10197
10198         ASSERT(MUTEX_HELD(&dtrace_lock));
10199         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10200
10201         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10202                 /*
10203                  * If this is an aggregating action, there must be neither
10204                  * a speculate nor a commit on the action chain.
10205                  */
10206                 dtrace_action_t *act;
10207
10208                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10209                         if (act->dta_kind == DTRACEACT_COMMIT)
10210                                 return (EINVAL);
10211
10212                         if (act->dta_kind == DTRACEACT_SPECULATE)
10213                                 return (EINVAL);
10214                 }
10215
10216                 action = dtrace_ecb_aggregation_create(ecb, desc);
10217
10218                 if (action == NULL)
10219                         return (EINVAL);
10220         } else {
10221                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10222                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10223                     dp != NULL && dp->dtdo_destructive)) {
10224                         state->dts_destructive = 1;
10225                 }
10226
10227                 switch (desc->dtad_kind) {
10228                 case DTRACEACT_PRINTF:
10229                 case DTRACEACT_PRINTA:
10230                 case DTRACEACT_SYSTEM:
10231                 case DTRACEACT_FREOPEN:
10232                 case DTRACEACT_DIFEXPR:
10233                         /*
10234                          * We know that our arg is a string -- turn it into a
10235                          * format.
10236                          */
10237                         if (arg == 0) {
10238                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10239                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10240                                 format = 0;
10241                         } else {
10242                                 ASSERT(arg != 0);
10243 #if defined(sun)
10244                                 ASSERT(arg > KERNELBASE);
10245 #endif
10246                                 format = dtrace_format_add(state,
10247                                     (char *)(uintptr_t)arg);
10248                         }
10249
10250                         /*FALLTHROUGH*/
10251                 case DTRACEACT_LIBACT:
10252                 case DTRACEACT_TRACEMEM:
10253                 case DTRACEACT_TRACEMEM_DYNSIZE:
10254                         if (dp == NULL)
10255                                 return (EINVAL);
10256
10257                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10258                                 break;
10259
10260                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10261                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10262                                         return (EINVAL);
10263
10264                                 size = opt[DTRACEOPT_STRSIZE];
10265                         }
10266
10267                         break;
10268
10269                 case DTRACEACT_STACK:
10270                         if ((nframes = arg) == 0) {
10271                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10272                                 ASSERT(nframes > 0);
10273                                 arg = nframes;
10274                         }
10275
10276                         size = nframes * sizeof (pc_t);
10277                         break;
10278
10279                 case DTRACEACT_JSTACK:
10280                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10281                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10282
10283                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10284                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10285
10286                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10287
10288                         /*FALLTHROUGH*/
10289                 case DTRACEACT_USTACK:
10290                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10291                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10292                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10293                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10294                                 ASSERT(nframes > 0);
10295                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10296                         }
10297
10298                         /*
10299                          * Save a slot for the pid.
10300                          */
10301                         size = (nframes + 1) * sizeof (uint64_t);
10302                         size += DTRACE_USTACK_STRSIZE(arg);
10303                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10304
10305                         break;
10306
10307                 case DTRACEACT_SYM:
10308                 case DTRACEACT_MOD:
10309                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10310                             sizeof (uint64_t)) ||
10311                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10312                                 return (EINVAL);
10313                         break;
10314
10315                 case DTRACEACT_USYM:
10316                 case DTRACEACT_UMOD:
10317                 case DTRACEACT_UADDR:
10318                         if (dp == NULL ||
10319                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10320                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10321                                 return (EINVAL);
10322
10323                         /*
10324                          * We have a slot for the pid, plus a slot for the
10325                          * argument.  To keep things simple (aligned with
10326                          * bitness-neutral sizing), we store each as a 64-bit
10327                          * quantity.
10328                          */
10329                         size = 2 * sizeof (uint64_t);
10330                         break;
10331
10332                 case DTRACEACT_STOP:
10333                 case DTRACEACT_BREAKPOINT:
10334                 case DTRACEACT_PANIC:
10335                         break;
10336
10337                 case DTRACEACT_CHILL:
10338                 case DTRACEACT_DISCARD:
10339                 case DTRACEACT_RAISE:
10340                         if (dp == NULL)
10341                                 return (EINVAL);
10342                         break;
10343
10344                 case DTRACEACT_EXIT:
10345                         if (dp == NULL ||
10346                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10347                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10348                                 return (EINVAL);
10349                         break;
10350
10351                 case DTRACEACT_SPECULATE:
10352                         if (ecb->dte_size > sizeof (dtrace_epid_t))
10353                                 return (EINVAL);
10354
10355                         if (dp == NULL)
10356                                 return (EINVAL);
10357
10358                         state->dts_speculates = 1;
10359                         break;
10360
10361                 case DTRACEACT_PRINTM:
10362                         size = dp->dtdo_rtype.dtdt_size;
10363                         break;
10364
10365                 case DTRACEACT_PRINTT:
10366                         size = dp->dtdo_rtype.dtdt_size;
10367                         break;
10368
10369                 case DTRACEACT_COMMIT: {
10370                         dtrace_action_t *act = ecb->dte_action;
10371
10372                         for (; act != NULL; act = act->dta_next) {
10373                                 if (act->dta_kind == DTRACEACT_COMMIT)
10374                                         return (EINVAL);
10375                         }
10376
10377                         if (dp == NULL)
10378                                 return (EINVAL);
10379                         break;
10380                 }
10381
10382                 default:
10383                         return (EINVAL);
10384                 }
10385
10386                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10387                         /*
10388                          * If this is a data-storing action or a speculate,
10389                          * we must be sure that there isn't a commit on the
10390                          * action chain.
10391                          */
10392                         dtrace_action_t *act = ecb->dte_action;
10393
10394                         for (; act != NULL; act = act->dta_next) {
10395                                 if (act->dta_kind == DTRACEACT_COMMIT)
10396                                         return (EINVAL);
10397                         }
10398                 }
10399
10400                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10401                 action->dta_rec.dtrd_size = size;
10402         }
10403
10404         action->dta_refcnt = 1;
10405         rec = &action->dta_rec;
10406         size = rec->dtrd_size;
10407
10408         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10409                 if (!(size & mask)) {
10410                         align = mask + 1;
10411                         break;
10412                 }
10413         }
10414
10415         action->dta_kind = desc->dtad_kind;
10416
10417         if ((action->dta_difo = dp) != NULL)
10418                 dtrace_difo_hold(dp);
10419
10420         rec->dtrd_action = action->dta_kind;
10421         rec->dtrd_arg = arg;
10422         rec->dtrd_uarg = desc->dtad_uarg;
10423         rec->dtrd_alignment = (uint16_t)align;
10424         rec->dtrd_format = format;
10425
10426         if ((last = ecb->dte_action_last) != NULL) {
10427                 ASSERT(ecb->dte_action != NULL);
10428                 action->dta_prev = last;
10429                 last->dta_next = action;
10430         } else {
10431                 ASSERT(ecb->dte_action == NULL);
10432                 ecb->dte_action = action;
10433         }
10434
10435         ecb->dte_action_last = action;
10436
10437         return (0);
10438 }
10439
10440 static void
10441 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10442 {
10443         dtrace_action_t *act = ecb->dte_action, *next;
10444         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10445         dtrace_difo_t *dp;
10446         uint16_t format;
10447
10448         if (act != NULL && act->dta_refcnt > 1) {
10449                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10450                 act->dta_refcnt--;
10451         } else {
10452                 for (; act != NULL; act = next) {
10453                         next = act->dta_next;
10454                         ASSERT(next != NULL || act == ecb->dte_action_last);
10455                         ASSERT(act->dta_refcnt == 1);
10456
10457                         if ((format = act->dta_rec.dtrd_format) != 0)
10458                                 dtrace_format_remove(ecb->dte_state, format);
10459
10460                         if ((dp = act->dta_difo) != NULL)
10461                                 dtrace_difo_release(dp, vstate);
10462
10463                         if (DTRACEACT_ISAGG(act->dta_kind)) {
10464                                 dtrace_ecb_aggregation_destroy(ecb, act);
10465                         } else {
10466                                 kmem_free(act, sizeof (dtrace_action_t));
10467                         }
10468                 }
10469         }
10470
10471         ecb->dte_action = NULL;
10472         ecb->dte_action_last = NULL;
10473         ecb->dte_size = sizeof (dtrace_epid_t);
10474 }
10475
10476 static void
10477 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10478 {
10479         /*
10480          * We disable the ECB by removing it from its probe.
10481          */
10482         dtrace_ecb_t *pecb, *prev = NULL;
10483         dtrace_probe_t *probe = ecb->dte_probe;
10484
10485         ASSERT(MUTEX_HELD(&dtrace_lock));
10486
10487         if (probe == NULL) {
10488                 /*
10489                  * This is the NULL probe; there is nothing to disable.
10490                  */
10491                 return;
10492         }
10493
10494         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10495                 if (pecb == ecb)
10496                         break;
10497                 prev = pecb;
10498         }
10499
10500         ASSERT(pecb != NULL);
10501
10502         if (prev == NULL) {
10503                 probe->dtpr_ecb = ecb->dte_next;
10504         } else {
10505                 prev->dte_next = ecb->dte_next;
10506         }
10507
10508         if (ecb == probe->dtpr_ecb_last) {
10509                 ASSERT(ecb->dte_next == NULL);
10510                 probe->dtpr_ecb_last = prev;
10511         }
10512
10513         /*
10514          * The ECB has been disconnected from the probe; now sync to assure
10515          * that all CPUs have seen the change before returning.
10516          */
10517         dtrace_sync();
10518
10519         if (probe->dtpr_ecb == NULL) {
10520                 /*
10521                  * That was the last ECB on the probe; clear the predicate
10522                  * cache ID for the probe, disable it and sync one more time
10523                  * to assure that we'll never hit it again.
10524                  */
10525                 dtrace_provider_t *prov = probe->dtpr_provider;
10526
10527                 ASSERT(ecb->dte_next == NULL);
10528                 ASSERT(probe->dtpr_ecb_last == NULL);
10529                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10530                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10531                     probe->dtpr_id, probe->dtpr_arg);
10532                 dtrace_sync();
10533         } else {
10534                 /*
10535                  * There is at least one ECB remaining on the probe.  If there
10536                  * is _exactly_ one, set the probe's predicate cache ID to be
10537                  * the predicate cache ID of the remaining ECB.
10538                  */
10539                 ASSERT(probe->dtpr_ecb_last != NULL);
10540                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10541
10542                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10543                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10544
10545                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
10546
10547                         if (p != NULL)
10548                                 probe->dtpr_predcache = p->dtp_cacheid;
10549                 }
10550
10551                 ecb->dte_next = NULL;
10552         }
10553 }
10554
10555 static void
10556 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10557 {
10558         dtrace_state_t *state = ecb->dte_state;
10559         dtrace_vstate_t *vstate = &state->dts_vstate;
10560         dtrace_predicate_t *pred;
10561         dtrace_epid_t epid = ecb->dte_epid;
10562
10563         ASSERT(MUTEX_HELD(&dtrace_lock));
10564         ASSERT(ecb->dte_next == NULL);
10565         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10566
10567         if ((pred = ecb->dte_predicate) != NULL)
10568                 dtrace_predicate_release(pred, vstate);
10569
10570         dtrace_ecb_action_remove(ecb);
10571
10572         ASSERT(state->dts_ecbs[epid - 1] == ecb);
10573         state->dts_ecbs[epid - 1] = NULL;
10574
10575         kmem_free(ecb, sizeof (dtrace_ecb_t));
10576 }
10577
10578 static dtrace_ecb_t *
10579 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10580     dtrace_enabling_t *enab)
10581 {
10582         dtrace_ecb_t *ecb;
10583         dtrace_predicate_t *pred;
10584         dtrace_actdesc_t *act;
10585         dtrace_provider_t *prov;
10586         dtrace_ecbdesc_t *desc = enab->dten_current;
10587
10588         ASSERT(MUTEX_HELD(&dtrace_lock));
10589         ASSERT(state != NULL);
10590
10591         ecb = dtrace_ecb_add(state, probe);
10592         ecb->dte_uarg = desc->dted_uarg;
10593
10594         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10595                 dtrace_predicate_hold(pred);
10596                 ecb->dte_predicate = pred;
10597         }
10598
10599         if (probe != NULL) {
10600                 /*
10601                  * If the provider shows more leg than the consumer is old
10602                  * enough to see, we need to enable the appropriate implicit
10603                  * predicate bits to prevent the ecb from activating at
10604                  * revealing times.
10605                  *
10606                  * Providers specifying DTRACE_PRIV_USER at register time
10607                  * are stating that they need the /proc-style privilege
10608                  * model to be enforced, and this is what DTRACE_COND_OWNER
10609                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
10610                  */
10611                 prov = probe->dtpr_provider;
10612                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10613                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10614                         ecb->dte_cond |= DTRACE_COND_OWNER;
10615
10616                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10617                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10618                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10619
10620                 /*
10621                  * If the provider shows us kernel innards and the user
10622                  * is lacking sufficient privilege, enable the
10623                  * DTRACE_COND_USERMODE implicit predicate.
10624                  */
10625                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10626                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10627                         ecb->dte_cond |= DTRACE_COND_USERMODE;
10628         }
10629
10630         if (dtrace_ecb_create_cache != NULL) {
10631                 /*
10632                  * If we have a cached ecb, we'll use its action list instead
10633                  * of creating our own (saving both time and space).
10634                  */
10635                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10636                 dtrace_action_t *act = cached->dte_action;
10637
10638                 if (act != NULL) {
10639                         ASSERT(act->dta_refcnt > 0);
10640                         act->dta_refcnt++;
10641                         ecb->dte_action = act;
10642                         ecb->dte_action_last = cached->dte_action_last;
10643                         ecb->dte_needed = cached->dte_needed;
10644                         ecb->dte_size = cached->dte_size;
10645                         ecb->dte_alignment = cached->dte_alignment;
10646                 }
10647
10648                 return (ecb);
10649         }
10650
10651         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10652                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10653                         dtrace_ecb_destroy(ecb);
10654                         return (NULL);
10655                 }
10656         }
10657
10658         dtrace_ecb_resize(ecb);
10659
10660         return (dtrace_ecb_create_cache = ecb);
10661 }
10662
10663 static int
10664 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10665 {
10666         dtrace_ecb_t *ecb;
10667         dtrace_enabling_t *enab = arg;
10668         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10669
10670         ASSERT(state != NULL);
10671
10672         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10673                 /*
10674                  * This probe was created in a generation for which this
10675                  * enabling has previously created ECBs; we don't want to
10676                  * enable it again, so just kick out.
10677                  */
10678                 return (DTRACE_MATCH_NEXT);
10679         }
10680
10681         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10682                 return (DTRACE_MATCH_DONE);
10683
10684         dtrace_ecb_enable(ecb);
10685         return (DTRACE_MATCH_NEXT);
10686 }
10687
10688 static dtrace_ecb_t *
10689 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10690 {
10691         dtrace_ecb_t *ecb;
10692
10693         ASSERT(MUTEX_HELD(&dtrace_lock));
10694
10695         if (id == 0 || id > state->dts_necbs)
10696                 return (NULL);
10697
10698         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10699         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10700
10701         return (state->dts_ecbs[id - 1]);
10702 }
10703
10704 static dtrace_aggregation_t *
10705 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10706 {
10707         dtrace_aggregation_t *agg;
10708
10709         ASSERT(MUTEX_HELD(&dtrace_lock));
10710
10711         if (id == 0 || id > state->dts_naggregations)
10712                 return (NULL);
10713
10714         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10715         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10716             agg->dtag_id == id);
10717
10718         return (state->dts_aggregations[id - 1]);
10719 }
10720
10721 /*
10722  * DTrace Buffer Functions
10723  *
10724  * The following functions manipulate DTrace buffers.  Most of these functions
10725  * are called in the context of establishing or processing consumer state;
10726  * exceptions are explicitly noted.
10727  */
10728
10729 /*
10730  * Note:  called from cross call context.  This function switches the two
10731  * buffers on a given CPU.  The atomicity of this operation is assured by
10732  * disabling interrupts while the actual switch takes place; the disabling of
10733  * interrupts serializes the execution with any execution of dtrace_probe() on
10734  * the same CPU.
10735  */
10736 static void
10737 dtrace_buffer_switch(dtrace_buffer_t *buf)
10738 {
10739         caddr_t tomax = buf->dtb_tomax;
10740         caddr_t xamot = buf->dtb_xamot;
10741         dtrace_icookie_t cookie;
10742         hrtime_t now = dtrace_gethrtime();
10743
10744         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10745         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10746
10747         cookie = dtrace_interrupt_disable();
10748         buf->dtb_tomax = xamot;
10749         buf->dtb_xamot = tomax;
10750         buf->dtb_xamot_drops = buf->dtb_drops;
10751         buf->dtb_xamot_offset = buf->dtb_offset;
10752         buf->dtb_xamot_errors = buf->dtb_errors;
10753         buf->dtb_xamot_flags = buf->dtb_flags;
10754         buf->dtb_offset = 0;
10755         buf->dtb_drops = 0;
10756         buf->dtb_errors = 0;
10757         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10758         buf->dtb_interval = now - buf->dtb_switched;
10759         buf->dtb_switched = now;
10760         dtrace_interrupt_enable(cookie);
10761 }
10762
10763 /*
10764  * Note:  called from cross call context.  This function activates a buffer
10765  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10766  * is guaranteed by the disabling of interrupts.
10767  */
10768 static void
10769 dtrace_buffer_activate(dtrace_state_t *state)
10770 {
10771         dtrace_buffer_t *buf;
10772         dtrace_icookie_t cookie = dtrace_interrupt_disable();
10773
10774         buf = &state->dts_buffer[curcpu];
10775
10776         if (buf->dtb_tomax != NULL) {
10777                 /*
10778                  * We might like to assert that the buffer is marked inactive,
10779                  * but this isn't necessarily true:  the buffer for the CPU
10780                  * that processes the BEGIN probe has its buffer activated
10781                  * manually.  In this case, we take the (harmless) action
10782                  * re-clearing the bit INACTIVE bit.
10783                  */
10784                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10785         }
10786
10787         dtrace_interrupt_enable(cookie);
10788 }
10789
10790 static int
10791 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10792     processorid_t cpu)
10793 {
10794 #if defined(sun)
10795         cpu_t *cp;
10796 #endif
10797         dtrace_buffer_t *buf;
10798
10799 #if defined(sun)
10800         ASSERT(MUTEX_HELD(&cpu_lock));
10801         ASSERT(MUTEX_HELD(&dtrace_lock));
10802
10803         if (size > dtrace_nonroot_maxsize &&
10804             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10805                 return (EFBIG);
10806
10807         cp = cpu_list;
10808
10809         do {
10810                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10811                         continue;
10812
10813                 buf = &bufs[cp->cpu_id];
10814
10815                 /*
10816                  * If there is already a buffer allocated for this CPU, it
10817                  * is only possible that this is a DR event.  In this case,
10818                  */
10819                 if (buf->dtb_tomax != NULL) {
10820                         ASSERT(buf->dtb_size == size);
10821                         continue;
10822                 }
10823
10824                 ASSERT(buf->dtb_xamot == NULL);
10825
10826                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10827                         goto err;
10828
10829                 buf->dtb_size = size;
10830                 buf->dtb_flags = flags;
10831                 buf->dtb_offset = 0;
10832                 buf->dtb_drops = 0;
10833
10834                 if (flags & DTRACEBUF_NOSWITCH)
10835                         continue;
10836
10837                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10838                         goto err;
10839         } while ((cp = cp->cpu_next) != cpu_list);
10840
10841         return (0);
10842
10843 err:
10844         cp = cpu_list;
10845
10846         do {
10847                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10848                         continue;
10849
10850                 buf = &bufs[cp->cpu_id];
10851
10852                 if (buf->dtb_xamot != NULL) {
10853                         ASSERT(buf->dtb_tomax != NULL);
10854                         ASSERT(buf->dtb_size == size);
10855                         kmem_free(buf->dtb_xamot, size);
10856                 }
10857
10858                 if (buf->dtb_tomax != NULL) {
10859                         ASSERT(buf->dtb_size == size);
10860                         kmem_free(buf->dtb_tomax, size);
10861                 }
10862
10863                 buf->dtb_tomax = NULL;
10864                 buf->dtb_xamot = NULL;
10865                 buf->dtb_size = 0;
10866         } while ((cp = cp->cpu_next) != cpu_list);
10867
10868         return (ENOMEM);
10869 #else
10870         int i;
10871
10872 #if defined(__amd64__)
10873         /*
10874          * FreeBSD isn't good at limiting the amount of memory we
10875          * ask to malloc, so let's place a limit here before trying
10876          * to do something that might well end in tears at bedtime.
10877          */
10878         if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10879                 return(ENOMEM);
10880 #endif
10881
10882         ASSERT(MUTEX_HELD(&dtrace_lock));
10883         CPU_FOREACH(i) {
10884                 if (cpu != DTRACE_CPUALL && cpu != i)
10885                         continue;
10886
10887                 buf = &bufs[i];
10888
10889                 /*
10890                  * If there is already a buffer allocated for this CPU, it
10891                  * is only possible that this is a DR event.  In this case,
10892                  * the buffer size must match our specified size.
10893                  */
10894                 if (buf->dtb_tomax != NULL) {
10895                         ASSERT(buf->dtb_size == size);
10896                         continue;
10897                 }
10898
10899                 ASSERT(buf->dtb_xamot == NULL);
10900
10901                 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10902                         goto err;
10903
10904                 buf->dtb_size = size;
10905                 buf->dtb_flags = flags;
10906                 buf->dtb_offset = 0;
10907                 buf->dtb_drops = 0;
10908
10909                 if (flags & DTRACEBUF_NOSWITCH)
10910                         continue;
10911
10912                 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10913                         goto err;
10914         }
10915
10916         return (0);
10917
10918 err:
10919         /*
10920          * Error allocating memory, so free the buffers that were
10921          * allocated before the failed allocation.
10922          */
10923         CPU_FOREACH(i) {
10924                 if (cpu != DTRACE_CPUALL && cpu != i)
10925                         continue;
10926
10927                 buf = &bufs[i];
10928
10929                 if (buf->dtb_xamot != NULL) {
10930                         ASSERT(buf->dtb_tomax != NULL);
10931                         ASSERT(buf->dtb_size == size);
10932                         kmem_free(buf->dtb_xamot, size);
10933                 }
10934
10935                 if (buf->dtb_tomax != NULL) {
10936                         ASSERT(buf->dtb_size == size);
10937                         kmem_free(buf->dtb_tomax, size);
10938                 }
10939
10940                 buf->dtb_tomax = NULL;
10941                 buf->dtb_xamot = NULL;
10942                 buf->dtb_size = 0;
10943
10944         }
10945
10946         return (ENOMEM);
10947 #endif
10948 }
10949
10950 /*
10951  * Note:  called from probe context.  This function just increments the drop
10952  * count on a buffer.  It has been made a function to allow for the
10953  * possibility of understanding the source of mysterious drop counts.  (A
10954  * problem for which one may be particularly disappointed that DTrace cannot
10955  * be used to understand DTrace.)
10956  */
10957 static void
10958 dtrace_buffer_drop(dtrace_buffer_t *buf)
10959 {
10960         buf->dtb_drops++;
10961 }
10962
10963 /*
10964  * Note:  called from probe context.  This function is called to reserve space
10965  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10966  * mstate.  Returns the new offset in the buffer, or a negative value if an
10967  * error has occurred.
10968  */
10969 static intptr_t
10970 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10971     dtrace_state_t *state, dtrace_mstate_t *mstate)
10972 {
10973         intptr_t offs = buf->dtb_offset, soffs;
10974         intptr_t woffs;
10975         caddr_t tomax;
10976         size_t total;
10977
10978         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10979                 return (-1);
10980
10981         if ((tomax = buf->dtb_tomax) == NULL) {
10982                 dtrace_buffer_drop(buf);
10983                 return (-1);
10984         }
10985
10986         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10987                 while (offs & (align - 1)) {
10988                         /*
10989                          * Assert that our alignment is off by a number which
10990                          * is itself sizeof (uint32_t) aligned.
10991                          */
10992                         ASSERT(!((align - (offs & (align - 1))) &
10993                             (sizeof (uint32_t) - 1)));
10994                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10995                         offs += sizeof (uint32_t);
10996                 }
10997
10998                 if ((soffs = offs + needed) > buf->dtb_size) {
10999                         dtrace_buffer_drop(buf);
11000                         return (-1);
11001                 }
11002
11003                 if (mstate == NULL)
11004                         return (offs);
11005
11006                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11007                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11008                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11009
11010                 return (offs);
11011         }
11012
11013         if (buf->dtb_flags & DTRACEBUF_FILL) {
11014                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11015                     (buf->dtb_flags & DTRACEBUF_FULL))
11016                         return (-1);
11017                 goto out;
11018         }
11019
11020         total = needed + (offs & (align - 1));
11021
11022         /*
11023          * For a ring buffer, life is quite a bit more complicated.  Before
11024          * we can store any padding, we need to adjust our wrapping offset.
11025          * (If we've never before wrapped or we're not about to, no adjustment
11026          * is required.)
11027          */
11028         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11029             offs + total > buf->dtb_size) {
11030                 woffs = buf->dtb_xamot_offset;
11031
11032                 if (offs + total > buf->dtb_size) {
11033                         /*
11034                          * We can't fit in the end of the buffer.  First, a
11035                          * sanity check that we can fit in the buffer at all.
11036                          */
11037                         if (total > buf->dtb_size) {
11038                                 dtrace_buffer_drop(buf);
11039                                 return (-1);
11040                         }
11041
11042                         /*
11043                          * We're going to be storing at the top of the buffer,
11044                          * so now we need to deal with the wrapped offset.  We
11045                          * only reset our wrapped offset to 0 if it is
11046                          * currently greater than the current offset.  If it
11047                          * is less than the current offset, it is because a
11048                          * previous allocation induced a wrap -- but the
11049                          * allocation didn't subsequently take the space due
11050                          * to an error or false predicate evaluation.  In this
11051                          * case, we'll just leave the wrapped offset alone: if
11052                          * the wrapped offset hasn't been advanced far enough
11053                          * for this allocation, it will be adjusted in the
11054                          * lower loop.
11055                          */
11056                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11057                                 if (woffs >= offs)
11058                                         woffs = 0;
11059                         } else {
11060                                 woffs = 0;
11061                         }
11062
11063                         /*
11064                          * Now we know that we're going to be storing to the
11065                          * top of the buffer and that there is room for us
11066                          * there.  We need to clear the buffer from the current
11067                          * offset to the end (there may be old gunk there).
11068                          */
11069                         while (offs < buf->dtb_size)
11070                                 tomax[offs++] = 0;
11071
11072                         /*
11073                          * We need to set our offset to zero.  And because we
11074                          * are wrapping, we need to set the bit indicating as
11075                          * much.  We can also adjust our needed space back
11076                          * down to the space required by the ECB -- we know
11077                          * that the top of the buffer is aligned.
11078                          */
11079                         offs = 0;
11080                         total = needed;
11081                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11082                 } else {
11083                         /*
11084                          * There is room for us in the buffer, so we simply
11085                          * need to check the wrapped offset.
11086                          */
11087                         if (woffs < offs) {
11088                                 /*
11089                                  * The wrapped offset is less than the offset.
11090                                  * This can happen if we allocated buffer space
11091                                  * that induced a wrap, but then we didn't
11092                                  * subsequently take the space due to an error
11093                                  * or false predicate evaluation.  This is
11094                                  * okay; we know that _this_ allocation isn't
11095                                  * going to induce a wrap.  We still can't
11096                                  * reset the wrapped offset to be zero,
11097                                  * however: the space may have been trashed in
11098                                  * the previous failed probe attempt.  But at
11099                                  * least the wrapped offset doesn't need to
11100                                  * be adjusted at all...
11101                                  */
11102                                 goto out;
11103                         }
11104                 }
11105
11106                 while (offs + total > woffs) {
11107                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11108                         size_t size;
11109
11110                         if (epid == DTRACE_EPIDNONE) {
11111                                 size = sizeof (uint32_t);
11112                         } else {
11113                                 ASSERT(epid <= state->dts_necbs);
11114                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11115
11116                                 size = state->dts_ecbs[epid - 1]->dte_size;
11117                         }
11118
11119                         ASSERT(woffs + size <= buf->dtb_size);
11120                         ASSERT(size != 0);
11121
11122                         if (woffs + size == buf->dtb_size) {
11123                                 /*
11124                                  * We've reached the end of the buffer; we want
11125                                  * to set the wrapped offset to 0 and break
11126                                  * out.  However, if the offs is 0, then we're
11127                                  * in a strange edge-condition:  the amount of
11128                                  * space that we want to reserve plus the size
11129                                  * of the record that we're overwriting is
11130                                  * greater than the size of the buffer.  This
11131                                  * is problematic because if we reserve the
11132                                  * space but subsequently don't consume it (due
11133                                  * to a failed predicate or error) the wrapped
11134                                  * offset will be 0 -- yet the EPID at offset 0
11135                                  * will not be committed.  This situation is
11136                                  * relatively easy to deal with:  if we're in
11137                                  * this case, the buffer is indistinguishable
11138                                  * from one that hasn't wrapped; we need only
11139                                  * finish the job by clearing the wrapped bit,
11140                                  * explicitly setting the offset to be 0, and
11141                                  * zero'ing out the old data in the buffer.
11142                                  */
11143                                 if (offs == 0) {
11144                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11145                                         buf->dtb_offset = 0;
11146                                         woffs = total;
11147
11148                                         while (woffs < buf->dtb_size)
11149                                                 tomax[woffs++] = 0;
11150                                 }
11151
11152                                 woffs = 0;
11153                                 break;
11154                         }
11155
11156                         woffs += size;
11157                 }
11158
11159                 /*
11160                  * We have a wrapped offset.  It may be that the wrapped offset
11161                  * has become zero -- that's okay.
11162                  */
11163                 buf->dtb_xamot_offset = woffs;
11164         }
11165
11166 out:
11167         /*
11168          * Now we can plow the buffer with any necessary padding.
11169          */
11170         while (offs & (align - 1)) {
11171                 /*
11172                  * Assert that our alignment is off by a number which
11173                  * is itself sizeof (uint32_t) aligned.
11174                  */
11175                 ASSERT(!((align - (offs & (align - 1))) &
11176                     (sizeof (uint32_t) - 1)));
11177                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11178                 offs += sizeof (uint32_t);
11179         }
11180
11181         if (buf->dtb_flags & DTRACEBUF_FILL) {
11182                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11183                         buf->dtb_flags |= DTRACEBUF_FULL;
11184                         return (-1);
11185                 }
11186         }
11187
11188         if (mstate == NULL)
11189                 return (offs);
11190
11191         /*
11192          * For ring buffers and fill buffers, the scratch space is always
11193          * the inactive buffer.
11194          */
11195         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11196         mstate->dtms_scratch_size = buf->dtb_size;
11197         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11198
11199         return (offs);
11200 }
11201
11202 static void
11203 dtrace_buffer_polish(dtrace_buffer_t *buf)
11204 {
11205         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11206         ASSERT(MUTEX_HELD(&dtrace_lock));
11207
11208         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11209                 return;
11210
11211         /*
11212          * We need to polish the ring buffer.  There are three cases:
11213          *
11214          * - The first (and presumably most common) is that there is no gap
11215          *   between the buffer offset and the wrapped offset.  In this case,
11216          *   there is nothing in the buffer that isn't valid data; we can
11217          *   mark the buffer as polished and return.
11218          *
11219          * - The second (less common than the first but still more common
11220          *   than the third) is that there is a gap between the buffer offset
11221          *   and the wrapped offset, and the wrapped offset is larger than the
11222          *   buffer offset.  This can happen because of an alignment issue, or
11223          *   can happen because of a call to dtrace_buffer_reserve() that
11224          *   didn't subsequently consume the buffer space.  In this case,
11225          *   we need to zero the data from the buffer offset to the wrapped
11226          *   offset.
11227          *
11228          * - The third (and least common) is that there is a gap between the
11229          *   buffer offset and the wrapped offset, but the wrapped offset is
11230          *   _less_ than the buffer offset.  This can only happen because a
11231          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11232          *   was not subsequently consumed.  In this case, we need to zero the
11233          *   space from the offset to the end of the buffer _and_ from the
11234          *   top of the buffer to the wrapped offset.
11235          */
11236         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11237                 bzero(buf->dtb_tomax + buf->dtb_offset,
11238                     buf->dtb_xamot_offset - buf->dtb_offset);
11239         }
11240
11241         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11242                 bzero(buf->dtb_tomax + buf->dtb_offset,
11243                     buf->dtb_size - buf->dtb_offset);
11244                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11245         }
11246 }
11247
11248 /*
11249  * This routine determines if data generated at the specified time has likely
11250  * been entirely consumed at user-level.  This routine is called to determine
11251  * if an ECB on a defunct probe (but for an active enabling) can be safely
11252  * disabled and destroyed.
11253  */
11254 static int
11255 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11256 {
11257         int i;
11258
11259         for (i = 0; i < NCPU; i++) {
11260                 dtrace_buffer_t *buf = &bufs[i];
11261
11262                 if (buf->dtb_size == 0)
11263                         continue;
11264
11265                 if (buf->dtb_flags & DTRACEBUF_RING)
11266                         return (0);
11267
11268                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11269                         return (0);
11270
11271                 if (buf->dtb_switched - buf->dtb_interval < when)
11272                         return (0);
11273         }
11274
11275         return (1);
11276 }
11277
11278 static void
11279 dtrace_buffer_free(dtrace_buffer_t *bufs)
11280 {
11281         int i;
11282
11283         for (i = 0; i < NCPU; i++) {
11284                 dtrace_buffer_t *buf = &bufs[i];
11285
11286                 if (buf->dtb_tomax == NULL) {
11287                         ASSERT(buf->dtb_xamot == NULL);
11288                         ASSERT(buf->dtb_size == 0);
11289                         continue;
11290                 }
11291
11292                 if (buf->dtb_xamot != NULL) {
11293                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11294                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11295                 }
11296
11297                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11298                 buf->dtb_size = 0;
11299                 buf->dtb_tomax = NULL;
11300                 buf->dtb_xamot = NULL;
11301         }
11302 }
11303
11304 /*
11305  * DTrace Enabling Functions
11306  */
11307 static dtrace_enabling_t *
11308 dtrace_enabling_create(dtrace_vstate_t *vstate)
11309 {
11310         dtrace_enabling_t *enab;
11311
11312         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11313         enab->dten_vstate = vstate;
11314
11315         return (enab);
11316 }
11317
11318 static void
11319 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11320 {
11321         dtrace_ecbdesc_t **ndesc;
11322         size_t osize, nsize;
11323
11324         /*
11325          * We can't add to enablings after we've enabled them, or after we've
11326          * retained them.
11327          */
11328         ASSERT(enab->dten_probegen == 0);
11329         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11330
11331         if (enab->dten_ndesc < enab->dten_maxdesc) {
11332                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11333                 return;
11334         }
11335
11336         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11337
11338         if (enab->dten_maxdesc == 0) {
11339                 enab->dten_maxdesc = 1;
11340         } else {
11341                 enab->dten_maxdesc <<= 1;
11342         }
11343
11344         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11345
11346         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11347         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11348         bcopy(enab->dten_desc, ndesc, osize);
11349         if (enab->dten_desc != NULL)
11350                 kmem_free(enab->dten_desc, osize);
11351
11352         enab->dten_desc = ndesc;
11353         enab->dten_desc[enab->dten_ndesc++] = ecb;
11354 }
11355
11356 static void
11357 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11358     dtrace_probedesc_t *pd)
11359 {
11360         dtrace_ecbdesc_t *new;
11361         dtrace_predicate_t *pred;
11362         dtrace_actdesc_t *act;
11363
11364         /*
11365          * We're going to create a new ECB description that matches the
11366          * specified ECB in every way, but has the specified probe description.
11367          */
11368         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11369
11370         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11371                 dtrace_predicate_hold(pred);
11372
11373         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11374                 dtrace_actdesc_hold(act);
11375
11376         new->dted_action = ecb->dted_action;
11377         new->dted_pred = ecb->dted_pred;
11378         new->dted_probe = *pd;
11379         new->dted_uarg = ecb->dted_uarg;
11380
11381         dtrace_enabling_add(enab, new);
11382 }
11383
11384 static void
11385 dtrace_enabling_dump(dtrace_enabling_t *enab)
11386 {
11387         int i;
11388
11389         for (i = 0; i < enab->dten_ndesc; i++) {
11390                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11391
11392                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11393                     desc->dtpd_provider, desc->dtpd_mod,
11394                     desc->dtpd_func, desc->dtpd_name);
11395         }
11396 }
11397
11398 static void
11399 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11400 {
11401         int i;
11402         dtrace_ecbdesc_t *ep;
11403         dtrace_vstate_t *vstate = enab->dten_vstate;
11404
11405         ASSERT(MUTEX_HELD(&dtrace_lock));
11406
11407         for (i = 0; i < enab->dten_ndesc; i++) {
11408                 dtrace_actdesc_t *act, *next;
11409                 dtrace_predicate_t *pred;
11410
11411                 ep = enab->dten_desc[i];
11412
11413                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11414                         dtrace_predicate_release(pred, vstate);
11415
11416                 for (act = ep->dted_action; act != NULL; act = next) {
11417                         next = act->dtad_next;
11418                         dtrace_actdesc_release(act, vstate);
11419                 }
11420
11421                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11422         }
11423
11424         if (enab->dten_desc != NULL)
11425                 kmem_free(enab->dten_desc,
11426                     enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11427
11428         /*
11429          * If this was a retained enabling, decrement the dts_nretained count
11430          * and take it off of the dtrace_retained list.
11431          */
11432         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11433             dtrace_retained == enab) {
11434                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11435                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11436                 enab->dten_vstate->dtvs_state->dts_nretained--;
11437         }
11438
11439         if (enab->dten_prev == NULL) {
11440                 if (dtrace_retained == enab) {
11441                         dtrace_retained = enab->dten_next;
11442
11443                         if (dtrace_retained != NULL)
11444                                 dtrace_retained->dten_prev = NULL;
11445                 }
11446         } else {
11447                 ASSERT(enab != dtrace_retained);
11448                 ASSERT(dtrace_retained != NULL);
11449                 enab->dten_prev->dten_next = enab->dten_next;
11450         }
11451
11452         if (enab->dten_next != NULL) {
11453                 ASSERT(dtrace_retained != NULL);
11454                 enab->dten_next->dten_prev = enab->dten_prev;
11455         }
11456
11457         kmem_free(enab, sizeof (dtrace_enabling_t));
11458 }
11459
11460 static int
11461 dtrace_enabling_retain(dtrace_enabling_t *enab)
11462 {
11463         dtrace_state_t *state;
11464
11465         ASSERT(MUTEX_HELD(&dtrace_lock));
11466         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11467         ASSERT(enab->dten_vstate != NULL);
11468
11469         state = enab->dten_vstate->dtvs_state;
11470         ASSERT(state != NULL);
11471
11472         /*
11473          * We only allow each state to retain dtrace_retain_max enablings.
11474          */
11475         if (state->dts_nretained >= dtrace_retain_max)
11476                 return (ENOSPC);
11477
11478         state->dts_nretained++;
11479
11480         if (dtrace_retained == NULL) {
11481                 dtrace_retained = enab;
11482                 return (0);
11483         }
11484
11485         enab->dten_next = dtrace_retained;
11486         dtrace_retained->dten_prev = enab;
11487         dtrace_retained = enab;
11488
11489         return (0);
11490 }
11491
11492 static int
11493 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11494     dtrace_probedesc_t *create)
11495 {
11496         dtrace_enabling_t *new, *enab;
11497         int found = 0, err = ENOENT;
11498
11499         ASSERT(MUTEX_HELD(&dtrace_lock));
11500         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11501         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11502         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11503         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11504
11505         new = dtrace_enabling_create(&state->dts_vstate);
11506
11507         /*
11508          * Iterate over all retained enablings, looking for enablings that
11509          * match the specified state.
11510          */
11511         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11512                 int i;
11513
11514                 /*
11515                  * dtvs_state can only be NULL for helper enablings -- and
11516                  * helper enablings can't be retained.
11517                  */
11518                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11519
11520                 if (enab->dten_vstate->dtvs_state != state)
11521                         continue;
11522
11523                 /*
11524                  * Now iterate over each probe description; we're looking for
11525                  * an exact match to the specified probe description.
11526                  */
11527                 for (i = 0; i < enab->dten_ndesc; i++) {
11528                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11529                         dtrace_probedesc_t *pd = &ep->dted_probe;
11530
11531                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11532                                 continue;
11533
11534                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11535                                 continue;
11536
11537                         if (strcmp(pd->dtpd_func, match->dtpd_func))
11538                                 continue;
11539
11540                         if (strcmp(pd->dtpd_name, match->dtpd_name))
11541                                 continue;
11542
11543                         /*
11544                          * We have a winning probe!  Add it to our growing
11545                          * enabling.
11546                          */
11547                         found = 1;
11548                         dtrace_enabling_addlike(new, ep, create);
11549                 }
11550         }
11551
11552         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11553                 dtrace_enabling_destroy(new);
11554                 return (err);
11555         }
11556
11557         return (0);
11558 }
11559
11560 static void
11561 dtrace_enabling_retract(dtrace_state_t *state)
11562 {
11563         dtrace_enabling_t *enab, *next;
11564
11565         ASSERT(MUTEX_HELD(&dtrace_lock));
11566
11567         /*
11568          * Iterate over all retained enablings, destroy the enablings retained
11569          * for the specified state.
11570          */
11571         for (enab = dtrace_retained; enab != NULL; enab = next) {
11572                 next = enab->dten_next;
11573
11574                 /*
11575                  * dtvs_state can only be NULL for helper enablings -- and
11576                  * helper enablings can't be retained.
11577                  */
11578                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11579
11580                 if (enab->dten_vstate->dtvs_state == state) {
11581                         ASSERT(state->dts_nretained > 0);
11582                         dtrace_enabling_destroy(enab);
11583                 }
11584         }
11585
11586         ASSERT(state->dts_nretained == 0);
11587 }
11588
11589 static int
11590 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11591 {
11592         int i = 0;
11593         int matched = 0;
11594
11595         ASSERT(MUTEX_HELD(&cpu_lock));
11596         ASSERT(MUTEX_HELD(&dtrace_lock));
11597
11598         for (i = 0; i < enab->dten_ndesc; i++) {
11599                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11600
11601                 enab->dten_current = ep;
11602                 enab->dten_error = 0;
11603
11604                 matched += dtrace_probe_enable(&ep->dted_probe, enab);
11605
11606                 if (enab->dten_error != 0) {
11607                         /*
11608                          * If we get an error half-way through enabling the
11609                          * probes, we kick out -- perhaps with some number of
11610                          * them enabled.  Leaving enabled probes enabled may
11611                          * be slightly confusing for user-level, but we expect
11612                          * that no one will attempt to actually drive on in
11613                          * the face of such errors.  If this is an anonymous
11614                          * enabling (indicated with a NULL nmatched pointer),
11615                          * we cmn_err() a message.  We aren't expecting to
11616                          * get such an error -- such as it can exist at all,
11617                          * it would be a result of corrupted DOF in the driver
11618                          * properties.
11619                          */
11620                         if (nmatched == NULL) {
11621                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
11622                                     "error on %p: %d", (void *)ep,
11623                                     enab->dten_error);
11624                         }
11625
11626                         return (enab->dten_error);
11627                 }
11628         }
11629
11630         enab->dten_probegen = dtrace_probegen;
11631         if (nmatched != NULL)
11632                 *nmatched = matched;
11633
11634         return (0);
11635 }
11636
11637 static void
11638 dtrace_enabling_matchall(void)
11639 {
11640         dtrace_enabling_t *enab;
11641
11642         mutex_enter(&cpu_lock);
11643         mutex_enter(&dtrace_lock);
11644
11645         /*
11646          * Iterate over all retained enablings to see if any probes match
11647          * against them.  We only perform this operation on enablings for which
11648          * we have sufficient permissions by virtue of being in the global zone
11649          * or in the same zone as the DTrace client.  Because we can be called
11650          * after dtrace_detach() has been called, we cannot assert that there
11651          * are retained enablings.  We can safely load from dtrace_retained,
11652          * however:  the taskq_destroy() at the end of dtrace_detach() will
11653          * block pending our completion.
11654          */
11655         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11656 #if defined(sun)
11657                 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11658
11659                 if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11660 #endif
11661                         (void) dtrace_enabling_match(enab, NULL);
11662         }
11663
11664         mutex_exit(&dtrace_lock);
11665         mutex_exit(&cpu_lock);
11666 }
11667
11668 /*
11669  * If an enabling is to be enabled without having matched probes (that is, if
11670  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11671  * enabling must be _primed_ by creating an ECB for every ECB description.
11672  * This must be done to assure that we know the number of speculations, the
11673  * number of aggregations, the minimum buffer size needed, etc. before we
11674  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11675  * enabling any probes, we create ECBs for every ECB decription, but with a
11676  * NULL probe -- which is exactly what this function does.
11677  */
11678 static void
11679 dtrace_enabling_prime(dtrace_state_t *state)
11680 {
11681         dtrace_enabling_t *enab;
11682         int i;
11683
11684         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11685                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11686
11687                 if (enab->dten_vstate->dtvs_state != state)
11688                         continue;
11689
11690                 /*
11691                  * We don't want to prime an enabling more than once, lest
11692                  * we allow a malicious user to induce resource exhaustion.
11693                  * (The ECBs that result from priming an enabling aren't
11694                  * leaked -- but they also aren't deallocated until the
11695                  * consumer state is destroyed.)
11696                  */
11697                 if (enab->dten_primed)
11698                         continue;
11699
11700                 for (i = 0; i < enab->dten_ndesc; i++) {
11701                         enab->dten_current = enab->dten_desc[i];
11702                         (void) dtrace_probe_enable(NULL, enab);
11703                 }
11704
11705                 enab->dten_primed = 1;
11706         }
11707 }
11708
11709 /*
11710  * Called to indicate that probes should be provided due to retained
11711  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11712  * must take an initial lap through the enabling calling the dtps_provide()
11713  * entry point explicitly to allow for autocreated probes.
11714  */
11715 static void
11716 dtrace_enabling_provide(dtrace_provider_t *prv)
11717 {
11718         int i, all = 0;
11719         dtrace_probedesc_t desc;
11720
11721         ASSERT(MUTEX_HELD(&dtrace_lock));
11722         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11723
11724         if (prv == NULL) {
11725                 all = 1;
11726                 prv = dtrace_provider;
11727         }
11728
11729         do {
11730                 dtrace_enabling_t *enab = dtrace_retained;
11731                 void *parg = prv->dtpv_arg;
11732
11733                 for (; enab != NULL; enab = enab->dten_next) {
11734                         for (i = 0; i < enab->dten_ndesc; i++) {
11735                                 desc = enab->dten_desc[i]->dted_probe;
11736                                 mutex_exit(&dtrace_lock);
11737                                 prv->dtpv_pops.dtps_provide(parg, &desc);
11738                                 mutex_enter(&dtrace_lock);
11739                         }
11740                 }
11741         } while (all && (prv = prv->dtpv_next) != NULL);
11742
11743         mutex_exit(&dtrace_lock);
11744         dtrace_probe_provide(NULL, all ? NULL : prv);
11745         mutex_enter(&dtrace_lock);
11746 }
11747
11748 /*
11749  * Called to reap ECBs that are attached to probes from defunct providers.
11750  */
11751 static void
11752 dtrace_enabling_reap(void)
11753 {
11754         dtrace_provider_t *prov;
11755         dtrace_probe_t *probe;
11756         dtrace_ecb_t *ecb;
11757         hrtime_t when;
11758         int i;
11759
11760         mutex_enter(&cpu_lock);
11761         mutex_enter(&dtrace_lock);
11762
11763         for (i = 0; i < dtrace_nprobes; i++) {
11764                 if ((probe = dtrace_probes[i]) == NULL)
11765                         continue;
11766
11767                 if (probe->dtpr_ecb == NULL)
11768                         continue;
11769
11770                 prov = probe->dtpr_provider;
11771
11772                 if ((when = prov->dtpv_defunct) == 0)
11773                         continue;
11774
11775                 /*
11776                  * We have ECBs on a defunct provider:  we want to reap these
11777                  * ECBs to allow the provider to unregister.  The destruction
11778                  * of these ECBs must be done carefully:  if we destroy the ECB
11779                  * and the consumer later wishes to consume an EPID that
11780                  * corresponds to the destroyed ECB (and if the EPID metadata
11781                  * has not been previously consumed), the consumer will abort
11782                  * processing on the unknown EPID.  To reduce (but not, sadly,
11783                  * eliminate) the possibility of this, we will only destroy an
11784                  * ECB for a defunct provider if, for the state that
11785                  * corresponds to the ECB:
11786                  *
11787                  *  (a) There is no speculative tracing (which can effectively
11788                  *      cache an EPID for an arbitrary amount of time).
11789                  *
11790                  *  (b) The principal buffers have been switched twice since the
11791                  *      provider became defunct.
11792                  *
11793                  *  (c) The aggregation buffers are of zero size or have been
11794                  *      switched twice since the provider became defunct.
11795                  *
11796                  * We use dts_speculates to determine (a) and call a function
11797                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11798                  * that as soon as we've been unable to destroy one of the ECBs
11799                  * associated with the probe, we quit trying -- reaping is only
11800                  * fruitful in as much as we can destroy all ECBs associated
11801                  * with the defunct provider's probes.
11802                  */
11803                 while ((ecb = probe->dtpr_ecb) != NULL) {
11804                         dtrace_state_t *state = ecb->dte_state;
11805                         dtrace_buffer_t *buf = state->dts_buffer;
11806                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11807
11808                         if (state->dts_speculates)
11809                                 break;
11810
11811                         if (!dtrace_buffer_consumed(buf, when))
11812                                 break;
11813
11814                         if (!dtrace_buffer_consumed(aggbuf, when))
11815                                 break;
11816
11817                         dtrace_ecb_disable(ecb);
11818                         ASSERT(probe->dtpr_ecb != ecb);
11819                         dtrace_ecb_destroy(ecb);
11820                 }
11821         }
11822
11823         mutex_exit(&dtrace_lock);
11824         mutex_exit(&cpu_lock);
11825 }
11826
11827 /*
11828  * DTrace DOF Functions
11829  */
11830 /*ARGSUSED*/
11831 static void
11832 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11833 {
11834         if (dtrace_err_verbose)
11835                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11836
11837 #ifdef DTRACE_ERRDEBUG
11838         dtrace_errdebug(str);
11839 #endif
11840 }
11841
11842 /*
11843  * Create DOF out of a currently enabled state.  Right now, we only create
11844  * DOF containing the run-time options -- but this could be expanded to create
11845  * complete DOF representing the enabled state.
11846  */
11847 static dof_hdr_t *
11848 dtrace_dof_create(dtrace_state_t *state)
11849 {
11850         dof_hdr_t *dof;
11851         dof_sec_t *sec;
11852         dof_optdesc_t *opt;
11853         int i, len = sizeof (dof_hdr_t) +
11854             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11855             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11856
11857         ASSERT(MUTEX_HELD(&dtrace_lock));
11858
11859         dof = kmem_zalloc(len, KM_SLEEP);
11860         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11861         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11862         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11863         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11864
11865         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11866         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11867         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11868         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11869         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11870         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11871
11872         dof->dofh_flags = 0;
11873         dof->dofh_hdrsize = sizeof (dof_hdr_t);
11874         dof->dofh_secsize = sizeof (dof_sec_t);
11875         dof->dofh_secnum = 1;   /* only DOF_SECT_OPTDESC */
11876         dof->dofh_secoff = sizeof (dof_hdr_t);
11877         dof->dofh_loadsz = len;
11878         dof->dofh_filesz = len;
11879         dof->dofh_pad = 0;
11880
11881         /*
11882          * Fill in the option section header...
11883          */
11884         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11885         sec->dofs_type = DOF_SECT_OPTDESC;
11886         sec->dofs_align = sizeof (uint64_t);
11887         sec->dofs_flags = DOF_SECF_LOAD;
11888         sec->dofs_entsize = sizeof (dof_optdesc_t);
11889
11890         opt = (dof_optdesc_t *)((uintptr_t)sec +
11891             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11892
11893         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11894         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11895
11896         for (i = 0; i < DTRACEOPT_MAX; i++) {
11897                 opt[i].dofo_option = i;
11898                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11899                 opt[i].dofo_value = state->dts_options[i];
11900         }
11901
11902         return (dof);
11903 }
11904
11905 static dof_hdr_t *
11906 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11907 {
11908         dof_hdr_t hdr, *dof;
11909
11910         ASSERT(!MUTEX_HELD(&dtrace_lock));
11911
11912         /*
11913          * First, we're going to copyin() the sizeof (dof_hdr_t).
11914          */
11915         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11916                 dtrace_dof_error(NULL, "failed to copyin DOF header");
11917                 *errp = EFAULT;
11918                 return (NULL);
11919         }
11920
11921         /*
11922          * Now we'll allocate the entire DOF and copy it in -- provided
11923          * that the length isn't outrageous.
11924          */
11925         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11926                 dtrace_dof_error(&hdr, "load size exceeds maximum");
11927                 *errp = E2BIG;
11928                 return (NULL);
11929         }
11930
11931         if (hdr.dofh_loadsz < sizeof (hdr)) {
11932                 dtrace_dof_error(&hdr, "invalid load size");
11933                 *errp = EINVAL;
11934                 return (NULL);
11935         }
11936
11937         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11938
11939         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11940                 kmem_free(dof, hdr.dofh_loadsz);
11941                 *errp = EFAULT;
11942                 return (NULL);
11943         }
11944
11945         return (dof);
11946 }
11947
11948 #if !defined(sun)
11949 static __inline uchar_t
11950 dtrace_dof_char(char c) {
11951         switch (c) {
11952         case '0':
11953         case '1':
11954         case '2':
11955         case '3':
11956         case '4':
11957         case '5':
11958         case '6':
11959         case '7':
11960         case '8':
11961         case '9':
11962                 return (c - '0');
11963         case 'A':
11964         case 'B':
11965         case 'C':
11966         case 'D':
11967         case 'E':
11968         case 'F':
11969                 return (c - 'A' + 10);
11970         case 'a':
11971         case 'b':
11972         case 'c':
11973         case 'd':
11974         case 'e':
11975         case 'f':
11976                 return (c - 'a' + 10);
11977         }
11978         /* Should not reach here. */
11979         return (0);
11980 }
11981 #endif
11982
11983 static dof_hdr_t *
11984 dtrace_dof_property(const char *name)
11985 {
11986         uchar_t *buf;
11987         uint64_t loadsz;
11988         unsigned int len, i;
11989         dof_hdr_t *dof;
11990
11991 #if defined(sun)
11992         /*
11993          * Unfortunately, array of values in .conf files are always (and
11994          * only) interpreted to be integer arrays.  We must read our DOF
11995          * as an integer array, and then squeeze it into a byte array.
11996          */
11997         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11998             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11999                 return (NULL);
12000
12001         for (i = 0; i < len; i++)
12002                 buf[i] = (uchar_t)(((int *)buf)[i]);
12003
12004         if (len < sizeof (dof_hdr_t)) {
12005                 ddi_prop_free(buf);
12006                 dtrace_dof_error(NULL, "truncated header");
12007                 return (NULL);
12008         }
12009
12010         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12011                 ddi_prop_free(buf);
12012                 dtrace_dof_error(NULL, "truncated DOF");
12013                 return (NULL);
12014         }
12015
12016         if (loadsz >= dtrace_dof_maxsize) {
12017                 ddi_prop_free(buf);
12018                 dtrace_dof_error(NULL, "oversized DOF");
12019                 return (NULL);
12020         }
12021
12022         dof = kmem_alloc(loadsz, KM_SLEEP);
12023         bcopy(buf, dof, loadsz);
12024         ddi_prop_free(buf);
12025 #else
12026         char *p;
12027         char *p_env;
12028
12029         if ((p_env = getenv(name)) == NULL)
12030                 return (NULL);
12031
12032         len = strlen(p_env) / 2;
12033
12034         buf = kmem_alloc(len, KM_SLEEP);
12035
12036         dof = (dof_hdr_t *) buf;
12037
12038         p = p_env;
12039
12040         for (i = 0; i < len; i++) {
12041                 buf[i] = (dtrace_dof_char(p[0]) << 4) |
12042                      dtrace_dof_char(p[1]);
12043                 p += 2;
12044         }
12045
12046         freeenv(p_env);
12047
12048         if (len < sizeof (dof_hdr_t)) {
12049                 kmem_free(buf, 0);
12050                 dtrace_dof_error(NULL, "truncated header");
12051                 return (NULL);
12052         }
12053
12054         if (len < (loadsz = dof->dofh_loadsz)) {
12055                 kmem_free(buf, 0);
12056                 dtrace_dof_error(NULL, "truncated DOF");
12057                 return (NULL);
12058         }
12059
12060         if (loadsz >= dtrace_dof_maxsize) {
12061                 kmem_free(buf, 0);
12062                 dtrace_dof_error(NULL, "oversized DOF");
12063                 return (NULL);
12064         }
12065 #endif
12066
12067         return (dof);
12068 }
12069
12070 static void
12071 dtrace_dof_destroy(dof_hdr_t *dof)
12072 {
12073         kmem_free(dof, dof->dofh_loadsz);
12074 }
12075
12076 /*
12077  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12078  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12079  * a type other than DOF_SECT_NONE is specified, the header is checked against
12080  * this type and NULL is returned if the types do not match.
12081  */
12082 static dof_sec_t *
12083 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12084 {
12085         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12086             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12087
12088         if (i >= dof->dofh_secnum) {
12089                 dtrace_dof_error(dof, "referenced section index is invalid");
12090                 return (NULL);
12091         }
12092
12093         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12094                 dtrace_dof_error(dof, "referenced section is not loadable");
12095                 return (NULL);
12096         }
12097
12098         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12099                 dtrace_dof_error(dof, "referenced section is the wrong type");
12100                 return (NULL);
12101         }
12102
12103         return (sec);
12104 }
12105
12106 static dtrace_probedesc_t *
12107 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12108 {
12109         dof_probedesc_t *probe;
12110         dof_sec_t *strtab;
12111         uintptr_t daddr = (uintptr_t)dof;
12112         uintptr_t str;
12113         size_t size;
12114
12115         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12116                 dtrace_dof_error(dof, "invalid probe section");
12117                 return (NULL);
12118         }
12119
12120         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12121                 dtrace_dof_error(dof, "bad alignment in probe description");
12122                 return (NULL);
12123         }
12124
12125         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12126                 dtrace_dof_error(dof, "truncated probe description");
12127                 return (NULL);
12128         }
12129
12130         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12131         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12132
12133         if (strtab == NULL)
12134                 return (NULL);
12135
12136         str = daddr + strtab->dofs_offset;
12137         size = strtab->dofs_size;
12138
12139         if (probe->dofp_provider >= strtab->dofs_size) {
12140                 dtrace_dof_error(dof, "corrupt probe provider");
12141                 return (NULL);
12142         }
12143
12144         (void) strncpy(desc->dtpd_provider,
12145             (char *)(str + probe->dofp_provider),
12146             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12147
12148         if (probe->dofp_mod >= strtab->dofs_size) {
12149                 dtrace_dof_error(dof, "corrupt probe module");
12150                 return (NULL);
12151         }
12152
12153         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12154             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12155
12156         if (probe->dofp_func >= strtab->dofs_size) {
12157                 dtrace_dof_error(dof, "corrupt probe function");
12158                 return (NULL);
12159         }
12160
12161         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12162             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12163
12164         if (probe->dofp_name >= strtab->dofs_size) {
12165                 dtrace_dof_error(dof, "corrupt probe name");
12166                 return (NULL);
12167         }
12168
12169         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12170             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12171
12172         return (desc);
12173 }
12174
12175 static dtrace_difo_t *
12176 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12177     cred_t *cr)
12178 {
12179         dtrace_difo_t *dp;
12180         size_t ttl = 0;
12181         dof_difohdr_t *dofd;
12182         uintptr_t daddr = (uintptr_t)dof;
12183         size_t max = dtrace_difo_maxsize;
12184         int i, l, n;
12185
12186         static const struct {
12187                 int section;
12188                 int bufoffs;
12189                 int lenoffs;
12190                 int entsize;
12191                 int align;
12192                 const char *msg;
12193         } difo[] = {
12194                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12195                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12196                 sizeof (dif_instr_t), "multiple DIF sections" },
12197
12198                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12199                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12200                 sizeof (uint64_t), "multiple integer tables" },
12201
12202                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12203                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12204                 sizeof (char), "multiple string tables" },
12205
12206                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12207                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12208                 sizeof (uint_t), "multiple variable tables" },
12209
12210                 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12211         };
12212
12213         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12214                 dtrace_dof_error(dof, "invalid DIFO header section");
12215                 return (NULL);
12216         }
12217
12218         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12219                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12220                 return (NULL);
12221         }
12222
12223         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12224             sec->dofs_size % sizeof (dof_secidx_t)) {
12225                 dtrace_dof_error(dof, "bad size in DIFO header");
12226                 return (NULL);
12227         }
12228
12229         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12230         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12231
12232         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12233         dp->dtdo_rtype = dofd->dofd_rtype;
12234
12235         for (l = 0; l < n; l++) {
12236                 dof_sec_t *subsec;
12237                 void **bufp;
12238                 uint32_t *lenp;
12239
12240                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12241                     dofd->dofd_links[l])) == NULL)
12242                         goto err; /* invalid section link */
12243
12244                 if (ttl + subsec->dofs_size > max) {
12245                         dtrace_dof_error(dof, "exceeds maximum size");
12246                         goto err;
12247                 }
12248
12249                 ttl += subsec->dofs_size;
12250
12251                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12252                         if (subsec->dofs_type != difo[i].section)
12253                                 continue;
12254
12255                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12256                                 dtrace_dof_error(dof, "section not loaded");
12257                                 goto err;
12258                         }
12259
12260                         if (subsec->dofs_align != difo[i].align) {
12261                                 dtrace_dof_error(dof, "bad alignment");
12262                                 goto err;
12263                         }
12264
12265                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12266                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12267
12268                         if (*bufp != NULL) {
12269                                 dtrace_dof_error(dof, difo[i].msg);
12270                                 goto err;
12271                         }
12272
12273                         if (difo[i].entsize != subsec->dofs_entsize) {
12274                                 dtrace_dof_error(dof, "entry size mismatch");
12275                                 goto err;
12276                         }
12277
12278                         if (subsec->dofs_entsize != 0 &&
12279                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12280                                 dtrace_dof_error(dof, "corrupt entry size");
12281                                 goto err;
12282                         }
12283
12284                         *lenp = subsec->dofs_size;
12285                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12286                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12287                             *bufp, subsec->dofs_size);
12288
12289                         if (subsec->dofs_entsize != 0)
12290                                 *lenp /= subsec->dofs_entsize;
12291
12292                         break;
12293                 }
12294
12295                 /*
12296                  * If we encounter a loadable DIFO sub-section that is not
12297                  * known to us, assume this is a broken program and fail.
12298                  */
12299                 if (difo[i].section == DOF_SECT_NONE &&
12300                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12301                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12302                         goto err;
12303                 }
12304         }
12305
12306         if (dp->dtdo_buf == NULL) {
12307                 /*
12308                  * We can't have a DIF object without DIF text.
12309                  */
12310                 dtrace_dof_error(dof, "missing DIF text");
12311                 goto err;
12312         }
12313
12314         /*
12315          * Before we validate the DIF object, run through the variable table
12316          * looking for the strings -- if any of their size are under, we'll set
12317          * their size to be the system-wide default string size.  Note that
12318          * this should _not_ happen if the "strsize" option has been set --
12319          * in this case, the compiler should have set the size to reflect the
12320          * setting of the option.
12321          */
12322         for (i = 0; i < dp->dtdo_varlen; i++) {
12323                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12324                 dtrace_diftype_t *t = &v->dtdv_type;
12325
12326                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12327                         continue;
12328
12329                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12330                         t->dtdt_size = dtrace_strsize_default;
12331         }
12332
12333         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12334                 goto err;
12335
12336         dtrace_difo_init(dp, vstate);
12337         return (dp);
12338
12339 err:
12340         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12341         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12342         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12343         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12344
12345         kmem_free(dp, sizeof (dtrace_difo_t));
12346         return (NULL);
12347 }
12348
12349 static dtrace_predicate_t *
12350 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12351     cred_t *cr)
12352 {
12353         dtrace_difo_t *dp;
12354
12355         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12356                 return (NULL);
12357
12358         return (dtrace_predicate_create(dp));
12359 }
12360
12361 static dtrace_actdesc_t *
12362 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12363     cred_t *cr)
12364 {
12365         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12366         dof_actdesc_t *desc;
12367         dof_sec_t *difosec;
12368         size_t offs;
12369         uintptr_t daddr = (uintptr_t)dof;
12370         uint64_t arg;
12371         dtrace_actkind_t kind;
12372
12373         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12374                 dtrace_dof_error(dof, "invalid action section");
12375                 return (NULL);
12376         }
12377
12378         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12379                 dtrace_dof_error(dof, "truncated action description");
12380                 return (NULL);
12381         }
12382
12383         if (sec->dofs_align != sizeof (uint64_t)) {
12384                 dtrace_dof_error(dof, "bad alignment in action description");
12385                 return (NULL);
12386         }
12387
12388         if (sec->dofs_size < sec->dofs_entsize) {
12389                 dtrace_dof_error(dof, "section entry size exceeds total size");
12390                 return (NULL);
12391         }
12392
12393         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12394                 dtrace_dof_error(dof, "bad entry size in action description");
12395                 return (NULL);
12396         }
12397
12398         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12399                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12400                 return (NULL);
12401         }
12402
12403         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12404                 desc = (dof_actdesc_t *)(daddr +
12405                     (uintptr_t)sec->dofs_offset + offs);
12406                 kind = (dtrace_actkind_t)desc->dofa_kind;
12407
12408                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12409                     (kind != DTRACEACT_PRINTA ||
12410                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12411                     (kind == DTRACEACT_DIFEXPR &&
12412                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12413                         dof_sec_t *strtab;
12414                         char *str, *fmt;
12415                         uint64_t i;
12416
12417                         /*
12418                          * The argument to these actions is an index into the
12419                          * DOF string table.  For printf()-like actions, this
12420                          * is the format string.  For print(), this is the
12421                          * CTF type of the expression result.
12422                          */
12423                         if ((strtab = dtrace_dof_sect(dof,
12424                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12425                                 goto err;
12426
12427                         str = (char *)((uintptr_t)dof +
12428                             (uintptr_t)strtab->dofs_offset);
12429
12430                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12431                                 if (str[i] == '\0')
12432                                         break;
12433                         }
12434
12435                         if (i >= strtab->dofs_size) {
12436                                 dtrace_dof_error(dof, "bogus format string");
12437                                 goto err;
12438                         }
12439
12440                         if (i == desc->dofa_arg) {
12441                                 dtrace_dof_error(dof, "empty format string");
12442                                 goto err;
12443                         }
12444
12445                         i -= desc->dofa_arg;
12446                         fmt = kmem_alloc(i + 1, KM_SLEEP);
12447                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
12448                         arg = (uint64_t)(uintptr_t)fmt;
12449                 } else {
12450                         if (kind == DTRACEACT_PRINTA) {
12451                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12452                                 arg = 0;
12453                         } else {
12454                                 arg = desc->dofa_arg;
12455                         }
12456                 }
12457
12458                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12459                     desc->dofa_uarg, arg);
12460
12461                 if (last != NULL) {
12462                         last->dtad_next = act;
12463                 } else {
12464                         first = act;
12465                 }
12466
12467                 last = act;
12468
12469                 if (desc->dofa_difo == DOF_SECIDX_NONE)
12470                         continue;
12471
12472                 if ((difosec = dtrace_dof_sect(dof,
12473                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12474                         goto err;
12475
12476                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12477
12478                 if (act->dtad_difo == NULL)
12479                         goto err;
12480         }
12481
12482         ASSERT(first != NULL);
12483         return (first);
12484
12485 err:
12486         for (act = first; act != NULL; act = next) {
12487                 next = act->dtad_next;
12488                 dtrace_actdesc_release(act, vstate);
12489         }
12490
12491         return (NULL);
12492 }
12493
12494 static dtrace_ecbdesc_t *
12495 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12496     cred_t *cr)
12497 {
12498         dtrace_ecbdesc_t *ep;
12499         dof_ecbdesc_t *ecb;
12500         dtrace_probedesc_t *desc;
12501         dtrace_predicate_t *pred = NULL;
12502
12503         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12504                 dtrace_dof_error(dof, "truncated ECB description");
12505                 return (NULL);
12506         }
12507
12508         if (sec->dofs_align != sizeof (uint64_t)) {
12509                 dtrace_dof_error(dof, "bad alignment in ECB description");
12510                 return (NULL);
12511         }
12512
12513         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12514         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12515
12516         if (sec == NULL)
12517                 return (NULL);
12518
12519         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12520         ep->dted_uarg = ecb->dofe_uarg;
12521         desc = &ep->dted_probe;
12522
12523         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12524                 goto err;
12525
12526         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12527                 if ((sec = dtrace_dof_sect(dof,
12528                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12529                         goto err;
12530
12531                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12532                         goto err;
12533
12534                 ep->dted_pred.dtpdd_predicate = pred;
12535         }
12536
12537         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12538                 if ((sec = dtrace_dof_sect(dof,
12539                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12540                         goto err;
12541
12542                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12543
12544                 if (ep->dted_action == NULL)
12545                         goto err;
12546         }
12547
12548         return (ep);
12549
12550 err:
12551         if (pred != NULL)
12552                 dtrace_predicate_release(pred, vstate);
12553         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12554         return (NULL);
12555 }
12556
12557 /*
12558  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12559  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12560  * site of any user SETX relocations to account for load object base address.
12561  * In the future, if we need other relocations, this function can be extended.
12562  */
12563 static int
12564 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12565 {
12566         uintptr_t daddr = (uintptr_t)dof;
12567         dof_relohdr_t *dofr =
12568             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12569         dof_sec_t *ss, *rs, *ts;
12570         dof_relodesc_t *r;
12571         uint_t i, n;
12572
12573         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12574             sec->dofs_align != sizeof (dof_secidx_t)) {
12575                 dtrace_dof_error(dof, "invalid relocation header");
12576                 return (-1);
12577         }
12578
12579         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12580         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12581         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12582
12583         if (ss == NULL || rs == NULL || ts == NULL)
12584                 return (-1); /* dtrace_dof_error() has been called already */
12585
12586         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12587             rs->dofs_align != sizeof (uint64_t)) {
12588                 dtrace_dof_error(dof, "invalid relocation section");
12589                 return (-1);
12590         }
12591
12592         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12593         n = rs->dofs_size / rs->dofs_entsize;
12594
12595         for (i = 0; i < n; i++) {
12596                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12597
12598                 switch (r->dofr_type) {
12599                 case DOF_RELO_NONE:
12600                         break;
12601                 case DOF_RELO_SETX:
12602                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12603                             sizeof (uint64_t) > ts->dofs_size) {
12604                                 dtrace_dof_error(dof, "bad relocation offset");
12605                                 return (-1);
12606                         }
12607
12608                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12609                                 dtrace_dof_error(dof, "misaligned setx relo");
12610                                 return (-1);
12611                         }
12612
12613                         *(uint64_t *)taddr += ubase;
12614                         break;
12615                 default:
12616                         dtrace_dof_error(dof, "invalid relocation type");
12617                         return (-1);
12618                 }
12619
12620                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12621         }
12622
12623         return (0);
12624 }
12625
12626 /*
12627  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12628  * header:  it should be at the front of a memory region that is at least
12629  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12630  * size.  It need not be validated in any other way.
12631  */
12632 static int
12633 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12634     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12635 {
12636         uint64_t len = dof->dofh_loadsz, seclen;
12637         uintptr_t daddr = (uintptr_t)dof;
12638         dtrace_ecbdesc_t *ep;
12639         dtrace_enabling_t *enab;
12640         uint_t i;
12641
12642         ASSERT(MUTEX_HELD(&dtrace_lock));
12643         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12644
12645         /*
12646          * Check the DOF header identification bytes.  In addition to checking
12647          * valid settings, we also verify that unused bits/bytes are zeroed so
12648          * we can use them later without fear of regressing existing binaries.
12649          */
12650         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12651             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12652                 dtrace_dof_error(dof, "DOF magic string mismatch");
12653                 return (-1);
12654         }
12655
12656         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12657             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12658                 dtrace_dof_error(dof, "DOF has invalid data model");
12659                 return (-1);
12660         }
12661
12662         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12663                 dtrace_dof_error(dof, "DOF encoding mismatch");
12664                 return (-1);
12665         }
12666
12667         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12668             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12669                 dtrace_dof_error(dof, "DOF version mismatch");
12670                 return (-1);
12671         }
12672
12673         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12674                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12675                 return (-1);
12676         }
12677
12678         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12679                 dtrace_dof_error(dof, "DOF uses too many integer registers");
12680                 return (-1);
12681         }
12682
12683         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12684                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12685                 return (-1);
12686         }
12687
12688         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12689                 if (dof->dofh_ident[i] != 0) {
12690                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
12691                         return (-1);
12692                 }
12693         }
12694
12695         if (dof->dofh_flags & ~DOF_FL_VALID) {
12696                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12697                 return (-1);
12698         }
12699
12700         if (dof->dofh_secsize == 0) {
12701                 dtrace_dof_error(dof, "zero section header size");
12702                 return (-1);
12703         }
12704
12705         /*
12706          * Check that the section headers don't exceed the amount of DOF
12707          * data.  Note that we cast the section size and number of sections
12708          * to uint64_t's to prevent possible overflow in the multiplication.
12709          */
12710         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12711
12712         if (dof->dofh_secoff > len || seclen > len ||
12713             dof->dofh_secoff + seclen > len) {
12714                 dtrace_dof_error(dof, "truncated section headers");
12715                 return (-1);
12716         }
12717
12718         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12719                 dtrace_dof_error(dof, "misaligned section headers");
12720                 return (-1);
12721         }
12722
12723         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12724                 dtrace_dof_error(dof, "misaligned section size");
12725                 return (-1);
12726         }
12727
12728         /*
12729          * Take an initial pass through the section headers to be sure that
12730          * the headers don't have stray offsets.  If the 'noprobes' flag is
12731          * set, do not permit sections relating to providers, probes, or args.
12732          */
12733         for (i = 0; i < dof->dofh_secnum; i++) {
12734                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12735                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12736
12737                 if (noprobes) {
12738                         switch (sec->dofs_type) {
12739                         case DOF_SECT_PROVIDER:
12740                         case DOF_SECT_PROBES:
12741                         case DOF_SECT_PRARGS:
12742                         case DOF_SECT_PROFFS:
12743                                 dtrace_dof_error(dof, "illegal sections "
12744                                     "for enabling");
12745                                 return (-1);
12746                         }
12747                 }
12748
12749                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12750                         continue; /* just ignore non-loadable sections */
12751
12752                 if (sec->dofs_align & (sec->dofs_align - 1)) {
12753                         dtrace_dof_error(dof, "bad section alignment");
12754                         return (-1);
12755                 }
12756
12757                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12758                         dtrace_dof_error(dof, "misaligned section");
12759                         return (-1);
12760                 }
12761
12762                 if (sec->dofs_offset > len || sec->dofs_size > len ||
12763                     sec->dofs_offset + sec->dofs_size > len) {
12764                         dtrace_dof_error(dof, "corrupt section header");
12765                         return (-1);
12766                 }
12767
12768                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12769                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12770                         dtrace_dof_error(dof, "non-terminating string table");
12771                         return (-1);
12772                 }
12773         }
12774
12775         /*
12776          * Take a second pass through the sections and locate and perform any
12777          * relocations that are present.  We do this after the first pass to
12778          * be sure that all sections have had their headers validated.
12779          */
12780         for (i = 0; i < dof->dofh_secnum; i++) {
12781                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12782                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12783
12784                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12785                         continue; /* skip sections that are not loadable */
12786
12787                 switch (sec->dofs_type) {
12788                 case DOF_SECT_URELHDR:
12789                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12790                                 return (-1);
12791                         break;
12792                 }
12793         }
12794
12795         if ((enab = *enabp) == NULL)
12796                 enab = *enabp = dtrace_enabling_create(vstate);
12797
12798         for (i = 0; i < dof->dofh_secnum; i++) {
12799                 dof_sec_t *sec = (dof_sec_t *)(daddr +
12800                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12801
12802                 if (sec->dofs_type != DOF_SECT_ECBDESC)
12803                         continue;
12804
12805                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12806                         dtrace_enabling_destroy(enab);
12807                         *enabp = NULL;
12808                         return (-1);
12809                 }
12810
12811                 dtrace_enabling_add(enab, ep);
12812         }
12813
12814         return (0);
12815 }
12816
12817 /*
12818  * Process DOF for any options.  This routine assumes that the DOF has been
12819  * at least processed by dtrace_dof_slurp().
12820  */
12821 static int
12822 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12823 {
12824         int i, rval;
12825         uint32_t entsize;
12826         size_t offs;
12827         dof_optdesc_t *desc;
12828
12829         for (i = 0; i < dof->dofh_secnum; i++) {
12830                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12831                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12832
12833                 if (sec->dofs_type != DOF_SECT_OPTDESC)
12834                         continue;
12835
12836                 if (sec->dofs_align != sizeof (uint64_t)) {
12837                         dtrace_dof_error(dof, "bad alignment in "
12838                             "option description");
12839                         return (EINVAL);
12840                 }
12841
12842                 if ((entsize = sec->dofs_entsize) == 0) {
12843                         dtrace_dof_error(dof, "zeroed option entry size");
12844                         return (EINVAL);
12845                 }
12846
12847                 if (entsize < sizeof (dof_optdesc_t)) {
12848                         dtrace_dof_error(dof, "bad option entry size");
12849                         return (EINVAL);
12850                 }
12851
12852                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12853                         desc = (dof_optdesc_t *)((uintptr_t)dof +
12854                             (uintptr_t)sec->dofs_offset + offs);
12855
12856                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12857                                 dtrace_dof_error(dof, "non-zero option string");
12858                                 return (EINVAL);
12859                         }
12860
12861                         if (desc->dofo_value == DTRACEOPT_UNSET) {
12862                                 dtrace_dof_error(dof, "unset option");
12863                                 return (EINVAL);
12864                         }
12865
12866                         if ((rval = dtrace_state_option(state,
12867                             desc->dofo_option, desc->dofo_value)) != 0) {
12868                                 dtrace_dof_error(dof, "rejected option");
12869                                 return (rval);
12870                         }
12871                 }
12872         }
12873
12874         return (0);
12875 }
12876
12877 /*
12878  * DTrace Consumer State Functions
12879  */
12880 static int
12881 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12882 {
12883         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12884         void *base;
12885         uintptr_t limit;
12886         dtrace_dynvar_t *dvar, *next, *start;
12887         int i;
12888
12889         ASSERT(MUTEX_HELD(&dtrace_lock));
12890         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12891
12892         bzero(dstate, sizeof (dtrace_dstate_t));
12893
12894         if ((dstate->dtds_chunksize = chunksize) == 0)
12895                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12896
12897         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12898                 size = min;
12899
12900         if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12901                 return (ENOMEM);
12902
12903         dstate->dtds_size = size;
12904         dstate->dtds_base = base;
12905         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12906         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12907
12908         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12909
12910         if (hashsize != 1 && (hashsize & 1))
12911                 hashsize--;
12912
12913         dstate->dtds_hashsize = hashsize;
12914         dstate->dtds_hash = dstate->dtds_base;
12915
12916         /*
12917          * Set all of our hash buckets to point to the single sink, and (if
12918          * it hasn't already been set), set the sink's hash value to be the
12919          * sink sentinel value.  The sink is needed for dynamic variable
12920          * lookups to know that they have iterated over an entire, valid hash
12921          * chain.
12922          */
12923         for (i = 0; i < hashsize; i++)
12924                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12925
12926         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12927                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12928
12929         /*
12930          * Determine number of active CPUs.  Divide free list evenly among
12931          * active CPUs.
12932          */
12933         start = (dtrace_dynvar_t *)
12934             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12935         limit = (uintptr_t)base + size;
12936
12937         maxper = (limit - (uintptr_t)start) / NCPU;
12938         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12939
12940 #if !defined(sun)
12941         CPU_FOREACH(i) {
12942 #else
12943         for (i = 0; i < NCPU; i++) {
12944 #endif
12945                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12946
12947                 /*
12948                  * If we don't even have enough chunks to make it once through
12949                  * NCPUs, we're just going to allocate everything to the first
12950                  * CPU.  And if we're on the last CPU, we're going to allocate
12951                  * whatever is left over.  In either case, we set the limit to
12952                  * be the limit of the dynamic variable space.
12953                  */
12954                 if (maxper == 0 || i == NCPU - 1) {
12955                         limit = (uintptr_t)base + size;
12956                         start = NULL;
12957                 } else {
12958                         limit = (uintptr_t)start + maxper;
12959                         start = (dtrace_dynvar_t *)limit;
12960                 }
12961
12962                 ASSERT(limit <= (uintptr_t)base + size);
12963
12964                 for (;;) {
12965                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12966                             dstate->dtds_chunksize);
12967
12968                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12969                                 break;
12970
12971                         dvar->dtdv_next = next;
12972                         dvar = next;
12973                 }
12974
12975                 if (maxper == 0)
12976                         break;
12977         }
12978
12979         return (0);
12980 }
12981
12982 static void
12983 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12984 {
12985         ASSERT(MUTEX_HELD(&cpu_lock));
12986
12987         if (dstate->dtds_base == NULL)
12988                 return;
12989
12990         kmem_free(dstate->dtds_base, dstate->dtds_size);
12991         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12992 }
12993
12994 static void
12995 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12996 {
12997         /*
12998          * Logical XOR, where are you?
12999          */
13000         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13001
13002         if (vstate->dtvs_nglobals > 0) {
13003                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13004                     sizeof (dtrace_statvar_t *));
13005         }
13006
13007         if (vstate->dtvs_ntlocals > 0) {
13008                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13009                     sizeof (dtrace_difv_t));
13010         }
13011
13012         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13013
13014         if (vstate->dtvs_nlocals > 0) {
13015                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13016                     sizeof (dtrace_statvar_t *));
13017         }
13018 }
13019
13020 #if defined(sun)
13021 static void
13022 dtrace_state_clean(dtrace_state_t *state)
13023 {
13024         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13025                 return;
13026
13027         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13028         dtrace_speculation_clean(state);
13029 }
13030
13031 static void
13032 dtrace_state_deadman(dtrace_state_t *state)
13033 {
13034         hrtime_t now;
13035
13036         dtrace_sync();
13037
13038         now = dtrace_gethrtime();
13039
13040         if (state != dtrace_anon.dta_state &&
13041             now - state->dts_laststatus >= dtrace_deadman_user)
13042                 return;
13043
13044         /*
13045          * We must be sure that dts_alive never appears to be less than the
13046          * value upon entry to dtrace_state_deadman(), and because we lack a
13047          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13048          * store INT64_MAX to it, followed by a memory barrier, followed by
13049          * the new value.  This assures that dts_alive never appears to be
13050          * less than its true value, regardless of the order in which the
13051          * stores to the underlying storage are issued.
13052          */
13053         state->dts_alive = INT64_MAX;
13054         dtrace_membar_producer();
13055         state->dts_alive = now;
13056 }
13057 #else
13058 static void
13059 dtrace_state_clean(void *arg)
13060 {
13061         dtrace_state_t *state = arg;
13062         dtrace_optval_t *opt = state->dts_options;
13063
13064         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13065                 return;
13066
13067         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13068         dtrace_speculation_clean(state);
13069
13070         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13071             dtrace_state_clean, state);
13072 }
13073
13074 static void
13075 dtrace_state_deadman(void *arg)
13076 {
13077         dtrace_state_t *state = arg;
13078         hrtime_t now;
13079
13080         dtrace_sync();
13081
13082         dtrace_debug_output();
13083
13084         now = dtrace_gethrtime();
13085
13086         if (state != dtrace_anon.dta_state &&
13087             now - state->dts_laststatus >= dtrace_deadman_user)
13088                 return;
13089
13090         /*
13091          * We must be sure that dts_alive never appears to be less than the
13092          * value upon entry to dtrace_state_deadman(), and because we lack a
13093          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13094          * store INT64_MAX to it, followed by a memory barrier, followed by
13095          * the new value.  This assures that dts_alive never appears to be
13096          * less than its true value, regardless of the order in which the
13097          * stores to the underlying storage are issued.
13098          */
13099         state->dts_alive = INT64_MAX;
13100         dtrace_membar_producer();
13101         state->dts_alive = now;
13102
13103         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13104             dtrace_state_deadman, state);
13105 }
13106 #endif
13107
13108 static dtrace_state_t *
13109 #if defined(sun)
13110 dtrace_state_create(dev_t *devp, cred_t *cr)
13111 #else
13112 dtrace_state_create(struct cdev *dev)
13113 #endif
13114 {
13115 #if defined(sun)
13116         minor_t minor;
13117         major_t major;
13118 #else
13119         cred_t *cr = NULL;
13120         int m = 0;
13121 #endif
13122         char c[30];
13123         dtrace_state_t *state;
13124         dtrace_optval_t *opt;
13125         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13126
13127         ASSERT(MUTEX_HELD(&dtrace_lock));
13128         ASSERT(MUTEX_HELD(&cpu_lock));
13129
13130 #if defined(sun)
13131         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13132             VM_BESTFIT | VM_SLEEP);
13133
13134         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13135                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13136                 return (NULL);
13137         }
13138
13139         state = ddi_get_soft_state(dtrace_softstate, minor);
13140 #else
13141         if (dev != NULL) {
13142                 cr = dev->si_cred;
13143                 m = dev2unit(dev);
13144                 }
13145
13146         /* Allocate memory for the state. */
13147         state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13148 #endif
13149
13150         state->dts_epid = DTRACE_EPIDNONE + 1;
13151
13152         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13153 #if defined(sun)
13154         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13155             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13156
13157         if (devp != NULL) {
13158                 major = getemajor(*devp);
13159         } else {
13160                 major = ddi_driver_major(dtrace_devi);
13161         }
13162
13163         state->dts_dev = makedevice(major, minor);
13164
13165         if (devp != NULL)
13166                 *devp = state->dts_dev;
13167 #else
13168         state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13169         state->dts_dev = dev;
13170 #endif
13171
13172         /*
13173          * We allocate NCPU buffers.  On the one hand, this can be quite
13174          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13175          * other hand, it saves an additional memory reference in the probe
13176          * path.
13177          */
13178         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13179         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13180
13181 #if defined(sun)
13182         state->dts_cleaner = CYCLIC_NONE;
13183         state->dts_deadman = CYCLIC_NONE;
13184 #else
13185         callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13186         callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13187 #endif
13188         state->dts_vstate.dtvs_state = state;
13189
13190         for (i = 0; i < DTRACEOPT_MAX; i++)
13191                 state->dts_options[i] = DTRACEOPT_UNSET;
13192
13193         /*
13194          * Set the default options.
13195          */
13196         opt = state->dts_options;
13197         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13198         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13199         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13200         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13201         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13202         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13203         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13204         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13205         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13206         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13207         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13208         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13209         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13210         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13211
13212         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13213
13214         /*
13215          * Depending on the user credentials, we set flag bits which alter probe
13216          * visibility or the amount of destructiveness allowed.  In the case of
13217          * actual anonymous tracing, or the possession of all privileges, all of
13218          * the normal checks are bypassed.
13219          */
13220         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13221                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13222                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13223         } else {
13224                 /*
13225                  * Set up the credentials for this instantiation.  We take a
13226                  * hold on the credential to prevent it from disappearing on
13227                  * us; this in turn prevents the zone_t referenced by this
13228                  * credential from disappearing.  This means that we can
13229                  * examine the credential and the zone from probe context.
13230                  */
13231                 crhold(cr);
13232                 state->dts_cred.dcr_cred = cr;
13233
13234                 /*
13235                  * CRA_PROC means "we have *some* privilege for dtrace" and
13236                  * unlocks the use of variables like pid, zonename, etc.
13237                  */
13238                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13239                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13240                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13241                 }
13242
13243                 /*
13244                  * dtrace_user allows use of syscall and profile providers.
13245                  * If the user also has proc_owner and/or proc_zone, we
13246                  * extend the scope to include additional visibility and
13247                  * destructive power.
13248                  */
13249                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13250                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13251                                 state->dts_cred.dcr_visible |=
13252                                     DTRACE_CRV_ALLPROC;
13253
13254                                 state->dts_cred.dcr_action |=
13255                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13256                         }
13257
13258                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13259                                 state->dts_cred.dcr_visible |=
13260                                     DTRACE_CRV_ALLZONE;
13261
13262                                 state->dts_cred.dcr_action |=
13263                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13264                         }
13265
13266                         /*
13267                          * If we have all privs in whatever zone this is,
13268                          * we can do destructive things to processes which
13269                          * have altered credentials.
13270                          */
13271 #if defined(sun)
13272                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13273                             cr->cr_zone->zone_privset)) {
13274                                 state->dts_cred.dcr_action |=
13275                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13276                         }
13277 #endif
13278                 }
13279
13280                 /*
13281                  * Holding the dtrace_kernel privilege also implies that
13282                  * the user has the dtrace_user privilege from a visibility
13283                  * perspective.  But without further privileges, some
13284                  * destructive actions are not available.
13285                  */
13286                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13287                         /*
13288                          * Make all probes in all zones visible.  However,
13289                          * this doesn't mean that all actions become available
13290                          * to all zones.
13291                          */
13292                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13293                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13294
13295                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13296                             DTRACE_CRA_PROC;
13297                         /*
13298                          * Holding proc_owner means that destructive actions
13299                          * for *this* zone are allowed.
13300                          */
13301                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13302                                 state->dts_cred.dcr_action |=
13303                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13304
13305                         /*
13306                          * Holding proc_zone means that destructive actions
13307                          * for this user/group ID in all zones is allowed.
13308                          */
13309                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13310                                 state->dts_cred.dcr_action |=
13311                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13312
13313 #if defined(sun)
13314                         /*
13315                          * If we have all privs in whatever zone this is,
13316                          * we can do destructive things to processes which
13317                          * have altered credentials.
13318                          */
13319                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13320                             cr->cr_zone->zone_privset)) {
13321                                 state->dts_cred.dcr_action |=
13322                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13323                         }
13324 #endif
13325                 }
13326
13327                 /*
13328                  * Holding the dtrace_proc privilege gives control over fasttrap
13329                  * and pid providers.  We need to grant wider destructive
13330                  * privileges in the event that the user has proc_owner and/or
13331                  * proc_zone.
13332                  */
13333                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13334                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13335                                 state->dts_cred.dcr_action |=
13336                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13337
13338                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13339                                 state->dts_cred.dcr_action |=
13340                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13341                 }
13342         }
13343
13344         return (state);
13345 }
13346
13347 static int
13348 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13349 {
13350         dtrace_optval_t *opt = state->dts_options, size;
13351         processorid_t cpu = 0;;
13352         int flags = 0, rval;
13353
13354         ASSERT(MUTEX_HELD(&dtrace_lock));
13355         ASSERT(MUTEX_HELD(&cpu_lock));
13356         ASSERT(which < DTRACEOPT_MAX);
13357         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13358             (state == dtrace_anon.dta_state &&
13359             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13360
13361         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13362                 return (0);
13363
13364         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13365                 cpu = opt[DTRACEOPT_CPU];
13366
13367         if (which == DTRACEOPT_SPECSIZE)
13368                 flags |= DTRACEBUF_NOSWITCH;
13369
13370         if (which == DTRACEOPT_BUFSIZE) {
13371                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13372                         flags |= DTRACEBUF_RING;
13373
13374                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13375                         flags |= DTRACEBUF_FILL;
13376
13377                 if (state != dtrace_anon.dta_state ||
13378                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13379                         flags |= DTRACEBUF_INACTIVE;
13380         }
13381
13382         for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13383                 /*
13384                  * The size must be 8-byte aligned.  If the size is not 8-byte
13385                  * aligned, drop it down by the difference.
13386                  */
13387                 if (size & (sizeof (uint64_t) - 1))
13388                         size -= size & (sizeof (uint64_t) - 1);
13389
13390                 if (size < state->dts_reserve) {
13391                         /*
13392                          * Buffers always must be large enough to accommodate
13393                          * their prereserved space.  We return E2BIG instead
13394                          * of ENOMEM in this case to allow for user-level
13395                          * software to differentiate the cases.
13396                          */
13397                         return (E2BIG);
13398                 }
13399
13400                 rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13401
13402                 if (rval != ENOMEM) {
13403                         opt[which] = size;
13404                         return (rval);
13405                 }
13406
13407                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13408                         return (rval);
13409         }
13410
13411         return (ENOMEM);
13412 }
13413
13414 static int
13415 dtrace_state_buffers(dtrace_state_t *state)
13416 {
13417         dtrace_speculation_t *spec = state->dts_speculations;
13418         int rval, i;
13419
13420         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13421             DTRACEOPT_BUFSIZE)) != 0)
13422                 return (rval);
13423
13424         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13425             DTRACEOPT_AGGSIZE)) != 0)
13426                 return (rval);
13427
13428         for (i = 0; i < state->dts_nspeculations; i++) {
13429                 if ((rval = dtrace_state_buffer(state,
13430                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13431                         return (rval);
13432         }
13433
13434         return (0);
13435 }
13436
13437 static void
13438 dtrace_state_prereserve(dtrace_state_t *state)
13439 {
13440         dtrace_ecb_t *ecb;
13441         dtrace_probe_t *probe;
13442
13443         state->dts_reserve = 0;
13444
13445         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13446                 return;
13447
13448         /*
13449          * If our buffer policy is a "fill" buffer policy, we need to set the
13450          * prereserved space to be the space required by the END probes.
13451          */
13452         probe = dtrace_probes[dtrace_probeid_end - 1];
13453         ASSERT(probe != NULL);
13454
13455         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13456                 if (ecb->dte_state != state)
13457                         continue;
13458
13459                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13460         }
13461 }
13462
13463 static int
13464 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13465 {
13466         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13467         dtrace_speculation_t *spec;
13468         dtrace_buffer_t *buf;
13469 #if defined(sun)
13470         cyc_handler_t hdlr;
13471         cyc_time_t when;
13472 #endif
13473         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13474         dtrace_icookie_t cookie;
13475
13476         mutex_enter(&cpu_lock);
13477         mutex_enter(&dtrace_lock);
13478
13479         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13480                 rval = EBUSY;
13481                 goto out;
13482         }
13483
13484         /*
13485          * Before we can perform any checks, we must prime all of the
13486          * retained enablings that correspond to this state.
13487          */
13488         dtrace_enabling_prime(state);
13489
13490         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13491                 rval = EACCES;
13492                 goto out;
13493         }
13494
13495         dtrace_state_prereserve(state);
13496
13497         /*
13498          * Now we want to do is try to allocate our speculations.
13499          * We do not automatically resize the number of speculations; if
13500          * this fails, we will fail the operation.
13501          */
13502         nspec = opt[DTRACEOPT_NSPEC];
13503         ASSERT(nspec != DTRACEOPT_UNSET);
13504
13505         if (nspec > INT_MAX) {
13506                 rval = ENOMEM;
13507                 goto out;
13508         }
13509
13510         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13511
13512         if (spec == NULL) {
13513                 rval = ENOMEM;
13514                 goto out;
13515         }
13516
13517         state->dts_speculations = spec;
13518         state->dts_nspeculations = (int)nspec;
13519
13520         for (i = 0; i < nspec; i++) {
13521                 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13522                         rval = ENOMEM;
13523                         goto err;
13524                 }
13525
13526                 spec[i].dtsp_buffer = buf;
13527         }
13528
13529         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13530                 if (dtrace_anon.dta_state == NULL) {
13531                         rval = ENOENT;
13532                         goto out;
13533                 }
13534
13535                 if (state->dts_necbs != 0) {
13536                         rval = EALREADY;
13537                         goto out;
13538                 }
13539
13540                 state->dts_anon = dtrace_anon_grab();
13541                 ASSERT(state->dts_anon != NULL);
13542                 state = state->dts_anon;
13543
13544                 /*
13545                  * We want "grabanon" to be set in the grabbed state, so we'll
13546                  * copy that option value from the grabbing state into the
13547                  * grabbed state.
13548                  */
13549                 state->dts_options[DTRACEOPT_GRABANON] =
13550                     opt[DTRACEOPT_GRABANON];
13551
13552                 *cpu = dtrace_anon.dta_beganon;
13553
13554                 /*
13555                  * If the anonymous state is active (as it almost certainly
13556                  * is if the anonymous enabling ultimately matched anything),
13557                  * we don't allow any further option processing -- but we
13558                  * don't return failure.
13559                  */
13560                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13561                         goto out;
13562         }
13563
13564         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13565             opt[DTRACEOPT_AGGSIZE] != 0) {
13566                 if (state->dts_aggregations == NULL) {
13567                         /*
13568                          * We're not going to create an aggregation buffer
13569                          * because we don't have any ECBs that contain
13570                          * aggregations -- set this option to 0.
13571                          */
13572                         opt[DTRACEOPT_AGGSIZE] = 0;
13573                 } else {
13574                         /*
13575                          * If we have an aggregation buffer, we must also have
13576                          * a buffer to use as scratch.
13577                          */
13578                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13579                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13580                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13581                         }
13582                 }
13583         }
13584
13585         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13586             opt[DTRACEOPT_SPECSIZE] != 0) {
13587                 if (!state->dts_speculates) {
13588                         /*
13589                          * We're not going to create speculation buffers
13590                          * because we don't have any ECBs that actually
13591                          * speculate -- set the speculation size to 0.
13592                          */
13593                         opt[DTRACEOPT_SPECSIZE] = 0;
13594                 }
13595         }
13596
13597         /*
13598          * The bare minimum size for any buffer that we're actually going to
13599          * do anything to is sizeof (uint64_t).
13600          */
13601         sz = sizeof (uint64_t);
13602
13603         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13604             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13605             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13606                 /*
13607                  * A buffer size has been explicitly set to 0 (or to a size
13608                  * that will be adjusted to 0) and we need the space -- we
13609                  * need to return failure.  We return ENOSPC to differentiate
13610                  * it from failing to allocate a buffer due to failure to meet
13611                  * the reserve (for which we return E2BIG).
13612                  */
13613                 rval = ENOSPC;
13614                 goto out;
13615         }
13616
13617         if ((rval = dtrace_state_buffers(state)) != 0)
13618                 goto err;
13619
13620         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13621                 sz = dtrace_dstate_defsize;
13622
13623         do {
13624                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13625
13626                 if (rval == 0)
13627                         break;
13628
13629                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13630                         goto err;
13631         } while (sz >>= 1);
13632
13633         opt[DTRACEOPT_DYNVARSIZE] = sz;
13634
13635         if (rval != 0)
13636                 goto err;
13637
13638         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13639                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13640
13641         if (opt[DTRACEOPT_CLEANRATE] == 0)
13642                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13643
13644         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13645                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13646
13647         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13648                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13649
13650         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13651 #if defined(sun)
13652         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13653         hdlr.cyh_arg = state;
13654         hdlr.cyh_level = CY_LOW_LEVEL;
13655
13656         when.cyt_when = 0;
13657         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13658
13659         state->dts_cleaner = cyclic_add(&hdlr, &when);
13660
13661         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13662         hdlr.cyh_arg = state;
13663         hdlr.cyh_level = CY_LOW_LEVEL;
13664
13665         when.cyt_when = 0;
13666         when.cyt_interval = dtrace_deadman_interval;
13667
13668         state->dts_deadman = cyclic_add(&hdlr, &when);
13669 #else
13670         callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13671             dtrace_state_clean, state);
13672         callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13673             dtrace_state_deadman, state);
13674 #endif
13675
13676         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13677
13678         /*
13679          * Now it's time to actually fire the BEGIN probe.  We need to disable
13680          * interrupts here both to record the CPU on which we fired the BEGIN
13681          * probe (the data from this CPU will be processed first at user
13682          * level) and to manually activate the buffer for this CPU.
13683          */
13684         cookie = dtrace_interrupt_disable();
13685         *cpu = curcpu;
13686         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13687         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13688
13689         dtrace_probe(dtrace_probeid_begin,
13690             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13691         dtrace_interrupt_enable(cookie);
13692         /*
13693          * We may have had an exit action from a BEGIN probe; only change our
13694          * state to ACTIVE if we're still in WARMUP.
13695          */
13696         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13697             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13698
13699         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13700                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13701
13702         /*
13703          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13704          * want each CPU to transition its principal buffer out of the
13705          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13706          * processing an ECB halfway down a probe's ECB chain; all CPUs will
13707          * atomically transition from processing none of a state's ECBs to
13708          * processing all of them.
13709          */
13710         dtrace_xcall(DTRACE_CPUALL,
13711             (dtrace_xcall_t)dtrace_buffer_activate, state);
13712         goto out;
13713
13714 err:
13715         dtrace_buffer_free(state->dts_buffer);
13716         dtrace_buffer_free(state->dts_aggbuffer);
13717
13718         if ((nspec = state->dts_nspeculations) == 0) {
13719                 ASSERT(state->dts_speculations == NULL);
13720                 goto out;
13721         }
13722
13723         spec = state->dts_speculations;
13724         ASSERT(spec != NULL);
13725
13726         for (i = 0; i < state->dts_nspeculations; i++) {
13727                 if ((buf = spec[i].dtsp_buffer) == NULL)
13728                         break;
13729
13730                 dtrace_buffer_free(buf);
13731                 kmem_free(buf, bufsize);
13732         }
13733
13734         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13735         state->dts_nspeculations = 0;
13736         state->dts_speculations = NULL;
13737
13738 out:
13739         mutex_exit(&dtrace_lock);
13740         mutex_exit(&cpu_lock);
13741
13742         return (rval);
13743 }
13744
13745 static int
13746 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13747 {
13748         dtrace_icookie_t cookie;
13749
13750         ASSERT(MUTEX_HELD(&dtrace_lock));
13751
13752         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13753             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13754                 return (EINVAL);
13755
13756         /*
13757          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13758          * to be sure that every CPU has seen it.  See below for the details
13759          * on why this is done.
13760          */
13761         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13762         dtrace_sync();
13763
13764         /*
13765          * By this point, it is impossible for any CPU to be still processing
13766          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13767          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13768          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13769          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13770          * iff we're in the END probe.
13771          */
13772         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13773         dtrace_sync();
13774         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13775
13776         /*
13777          * Finally, we can release the reserve and call the END probe.  We
13778          * disable interrupts across calling the END probe to allow us to
13779          * return the CPU on which we actually called the END probe.  This
13780          * allows user-land to be sure that this CPU's principal buffer is
13781          * processed last.
13782          */
13783         state->dts_reserve = 0;
13784
13785         cookie = dtrace_interrupt_disable();
13786         *cpu = curcpu;
13787         dtrace_probe(dtrace_probeid_end,
13788             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13789         dtrace_interrupt_enable(cookie);
13790
13791         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13792         dtrace_sync();
13793
13794         return (0);
13795 }
13796
13797 static int
13798 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13799     dtrace_optval_t val)
13800 {
13801         ASSERT(MUTEX_HELD(&dtrace_lock));
13802
13803         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13804                 return (EBUSY);
13805
13806         if (option >= DTRACEOPT_MAX)
13807                 return (EINVAL);
13808
13809         if (option != DTRACEOPT_CPU && val < 0)
13810                 return (EINVAL);
13811
13812         switch (option) {
13813         case DTRACEOPT_DESTRUCTIVE:
13814                 if (dtrace_destructive_disallow)
13815                         return (EACCES);
13816
13817                 state->dts_cred.dcr_destructive = 1;
13818                 break;
13819
13820         case DTRACEOPT_BUFSIZE:
13821         case DTRACEOPT_DYNVARSIZE:
13822         case DTRACEOPT_AGGSIZE:
13823         case DTRACEOPT_SPECSIZE:
13824         case DTRACEOPT_STRSIZE:
13825                 if (val < 0)
13826                         return (EINVAL);
13827
13828                 if (val >= LONG_MAX) {
13829                         /*
13830                          * If this is an otherwise negative value, set it to
13831                          * the highest multiple of 128m less than LONG_MAX.
13832                          * Technically, we're adjusting the size without
13833                          * regard to the buffer resizing policy, but in fact,
13834                          * this has no effect -- if we set the buffer size to
13835                          * ~LONG_MAX and the buffer policy is ultimately set to
13836                          * be "manual", the buffer allocation is guaranteed to
13837                          * fail, if only because the allocation requires two
13838                          * buffers.  (We set the the size to the highest
13839                          * multiple of 128m because it ensures that the size
13840                          * will remain a multiple of a megabyte when
13841                          * repeatedly halved -- all the way down to 15m.)
13842                          */
13843                         val = LONG_MAX - (1 << 27) + 1;
13844                 }
13845         }
13846
13847         state->dts_options[option] = val;
13848
13849         return (0);
13850 }
13851
13852 static void
13853 dtrace_state_destroy(dtrace_state_t *state)
13854 {
13855         dtrace_ecb_t *ecb;
13856         dtrace_vstate_t *vstate = &state->dts_vstate;
13857 #if defined(sun)
13858         minor_t minor = getminor(state->dts_dev);
13859 #endif
13860         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13861         dtrace_speculation_t *spec = state->dts_speculations;
13862         int nspec = state->dts_nspeculations;
13863         uint32_t match;
13864
13865         ASSERT(MUTEX_HELD(&dtrace_lock));
13866         ASSERT(MUTEX_HELD(&cpu_lock));
13867
13868         /*
13869          * First, retract any retained enablings for this state.
13870          */
13871         dtrace_enabling_retract(state);
13872         ASSERT(state->dts_nretained == 0);
13873
13874         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13875             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13876                 /*
13877                  * We have managed to come into dtrace_state_destroy() on a
13878                  * hot enabling -- almost certainly because of a disorderly
13879                  * shutdown of a consumer.  (That is, a consumer that is
13880                  * exiting without having called dtrace_stop().) In this case,
13881                  * we're going to set our activity to be KILLED, and then
13882                  * issue a sync to be sure that everyone is out of probe
13883                  * context before we start blowing away ECBs.
13884                  */
13885                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13886                 dtrace_sync();
13887         }
13888
13889         /*
13890          * Release the credential hold we took in dtrace_state_create().
13891          */
13892         if (state->dts_cred.dcr_cred != NULL)
13893                 crfree(state->dts_cred.dcr_cred);
13894
13895         /*
13896          * Now we can safely disable and destroy any enabled probes.  Because
13897          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13898          * (especially if they're all enabled), we take two passes through the
13899          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13900          * in the second we disable whatever is left over.
13901          */
13902         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13903                 for (i = 0; i < state->dts_necbs; i++) {
13904                         if ((ecb = state->dts_ecbs[i]) == NULL)
13905                                 continue;
13906
13907                         if (match && ecb->dte_probe != NULL) {
13908                                 dtrace_probe_t *probe = ecb->dte_probe;
13909                                 dtrace_provider_t *prov = probe->dtpr_provider;
13910
13911                                 if (!(prov->dtpv_priv.dtpp_flags & match))
13912                                         continue;
13913                         }
13914
13915                         dtrace_ecb_disable(ecb);
13916                         dtrace_ecb_destroy(ecb);
13917                 }
13918
13919                 if (!match)
13920                         break;
13921         }
13922
13923         /*
13924          * Before we free the buffers, perform one more sync to assure that
13925          * every CPU is out of probe context.
13926          */
13927         dtrace_sync();
13928
13929         dtrace_buffer_free(state->dts_buffer);
13930         dtrace_buffer_free(state->dts_aggbuffer);
13931
13932         for (i = 0; i < nspec; i++)
13933                 dtrace_buffer_free(spec[i].dtsp_buffer);
13934
13935 #if defined(sun)
13936         if (state->dts_cleaner != CYCLIC_NONE)
13937                 cyclic_remove(state->dts_cleaner);
13938
13939         if (state->dts_deadman != CYCLIC_NONE)
13940                 cyclic_remove(state->dts_deadman);
13941 #else
13942         callout_stop(&state->dts_cleaner);
13943         callout_drain(&state->dts_cleaner);
13944         callout_stop(&state->dts_deadman);
13945         callout_drain(&state->dts_deadman);
13946 #endif
13947
13948         dtrace_dstate_fini(&vstate->dtvs_dynvars);
13949         dtrace_vstate_fini(vstate);
13950         if (state->dts_ecbs != NULL)
13951                 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13952
13953         if (state->dts_aggregations != NULL) {
13954 #ifdef DEBUG
13955                 for (i = 0; i < state->dts_naggregations; i++)
13956                         ASSERT(state->dts_aggregations[i] == NULL);
13957 #endif
13958                 ASSERT(state->dts_naggregations > 0);
13959                 kmem_free(state->dts_aggregations,
13960                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13961         }
13962
13963         kmem_free(state->dts_buffer, bufsize);
13964         kmem_free(state->dts_aggbuffer, bufsize);
13965
13966         for (i = 0; i < nspec; i++)
13967                 kmem_free(spec[i].dtsp_buffer, bufsize);
13968
13969         if (spec != NULL)
13970                 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13971
13972         dtrace_format_destroy(state);
13973
13974         if (state->dts_aggid_arena != NULL) {
13975 #if defined(sun)
13976                 vmem_destroy(state->dts_aggid_arena);
13977 #else
13978                 delete_unrhdr(state->dts_aggid_arena);
13979 #endif
13980                 state->dts_aggid_arena = NULL;
13981         }
13982 #if defined(sun)
13983         ddi_soft_state_free(dtrace_softstate, minor);
13984         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13985 #endif
13986 }
13987
13988 /*
13989  * DTrace Anonymous Enabling Functions
13990  */
13991 static dtrace_state_t *
13992 dtrace_anon_grab(void)
13993 {
13994         dtrace_state_t *state;
13995
13996         ASSERT(MUTEX_HELD(&dtrace_lock));
13997
13998         if ((state = dtrace_anon.dta_state) == NULL) {
13999                 ASSERT(dtrace_anon.dta_enabling == NULL);
14000                 return (NULL);
14001         }
14002
14003         ASSERT(dtrace_anon.dta_enabling != NULL);
14004         ASSERT(dtrace_retained != NULL);
14005
14006         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14007         dtrace_anon.dta_enabling = NULL;
14008         dtrace_anon.dta_state = NULL;
14009
14010         return (state);
14011 }
14012
14013 static void
14014 dtrace_anon_property(void)
14015 {
14016         int i, rv;
14017         dtrace_state_t *state;
14018         dof_hdr_t *dof;
14019         char c[32];             /* enough for "dof-data-" + digits */
14020
14021         ASSERT(MUTEX_HELD(&dtrace_lock));
14022         ASSERT(MUTEX_HELD(&cpu_lock));
14023
14024         for (i = 0; ; i++) {
14025                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14026
14027                 dtrace_err_verbose = 1;
14028
14029                 if ((dof = dtrace_dof_property(c)) == NULL) {
14030                         dtrace_err_verbose = 0;
14031                         break;
14032                 }
14033
14034 #if defined(sun)
14035                 /*
14036                  * We want to create anonymous state, so we need to transition
14037                  * the kernel debugger to indicate that DTrace is active.  If
14038                  * this fails (e.g. because the debugger has modified text in
14039                  * some way), we won't continue with the processing.
14040                  */
14041                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14042                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14043                             "enabling ignored.");
14044                         dtrace_dof_destroy(dof);
14045                         break;
14046                 }
14047 #endif
14048
14049                 /*
14050                  * If we haven't allocated an anonymous state, we'll do so now.
14051                  */
14052                 if ((state = dtrace_anon.dta_state) == NULL) {
14053 #if defined(sun)
14054                         state = dtrace_state_create(NULL, NULL);
14055 #else
14056                         state = dtrace_state_create(NULL);
14057 #endif
14058                         dtrace_anon.dta_state = state;
14059
14060                         if (state == NULL) {
14061                                 /*
14062                                  * This basically shouldn't happen:  the only
14063                                  * failure mode from dtrace_state_create() is a
14064                                  * failure of ddi_soft_state_zalloc() that
14065                                  * itself should never happen.  Still, the
14066                                  * interface allows for a failure mode, and
14067                                  * we want to fail as gracefully as possible:
14068                                  * we'll emit an error message and cease
14069                                  * processing anonymous state in this case.
14070                                  */
14071                                 cmn_err(CE_WARN, "failed to create "
14072                                     "anonymous state");
14073                                 dtrace_dof_destroy(dof);
14074                                 break;
14075                         }
14076                 }
14077
14078                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14079                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14080
14081                 if (rv == 0)
14082                         rv = dtrace_dof_options(dof, state);
14083
14084                 dtrace_err_verbose = 0;
14085                 dtrace_dof_destroy(dof);
14086
14087                 if (rv != 0) {
14088                         /*
14089                          * This is malformed DOF; chuck any anonymous state
14090                          * that we created.
14091                          */
14092                         ASSERT(dtrace_anon.dta_enabling == NULL);
14093                         dtrace_state_destroy(state);
14094                         dtrace_anon.dta_state = NULL;
14095                         break;
14096                 }
14097
14098                 ASSERT(dtrace_anon.dta_enabling != NULL);
14099         }
14100
14101         if (dtrace_anon.dta_enabling != NULL) {
14102                 int rval;
14103
14104                 /*
14105                  * dtrace_enabling_retain() can only fail because we are
14106                  * trying to retain more enablings than are allowed -- but
14107                  * we only have one anonymous enabling, and we are guaranteed
14108                  * to be allowed at least one retained enabling; we assert
14109                  * that dtrace_enabling_retain() returns success.
14110                  */
14111                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14112                 ASSERT(rval == 0);
14113
14114                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14115         }
14116 }
14117
14118 /*
14119  * DTrace Helper Functions
14120  */
14121 static void
14122 dtrace_helper_trace(dtrace_helper_action_t *helper,
14123     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14124 {
14125         uint32_t size, next, nnext, i;
14126         dtrace_helptrace_t *ent;
14127         uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14128
14129         if (!dtrace_helptrace_enabled)
14130                 return;
14131
14132         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14133
14134         /*
14135          * What would a tracing framework be without its own tracing
14136          * framework?  (Well, a hell of a lot simpler, for starters...)
14137          */
14138         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14139             sizeof (uint64_t) - sizeof (uint64_t);
14140
14141         /*
14142          * Iterate until we can allocate a slot in the trace buffer.
14143          */
14144         do {
14145                 next = dtrace_helptrace_next;
14146
14147                 if (next + size < dtrace_helptrace_bufsize) {
14148                         nnext = next + size;
14149                 } else {
14150                         nnext = size;
14151                 }
14152         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14153
14154         /*
14155          * We have our slot; fill it in.
14156          */
14157         if (nnext == size)
14158                 next = 0;
14159
14160         ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14161         ent->dtht_helper = helper;
14162         ent->dtht_where = where;
14163         ent->dtht_nlocals = vstate->dtvs_nlocals;
14164
14165         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14166             mstate->dtms_fltoffs : -1;
14167         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14168         ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14169
14170         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14171                 dtrace_statvar_t *svar;
14172
14173                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14174                         continue;
14175
14176                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14177                 ent->dtht_locals[i] =
14178                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14179         }
14180 }
14181
14182 static uint64_t
14183 dtrace_helper(int which, dtrace_mstate_t *mstate,
14184     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14185 {
14186         uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14187         uint64_t sarg0 = mstate->dtms_arg[0];
14188         uint64_t sarg1 = mstate->dtms_arg[1];
14189         uint64_t rval = 0;
14190         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14191         dtrace_helper_action_t *helper;
14192         dtrace_vstate_t *vstate;
14193         dtrace_difo_t *pred;
14194         int i, trace = dtrace_helptrace_enabled;
14195
14196         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14197
14198         if (helpers == NULL)
14199                 return (0);
14200
14201         if ((helper = helpers->dthps_actions[which]) == NULL)
14202                 return (0);
14203
14204         vstate = &helpers->dthps_vstate;
14205         mstate->dtms_arg[0] = arg0;
14206         mstate->dtms_arg[1] = arg1;
14207
14208         /*
14209          * Now iterate over each helper.  If its predicate evaluates to 'true',
14210          * we'll call the corresponding actions.  Note that the below calls
14211          * to dtrace_dif_emulate() may set faults in machine state.  This is
14212          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14213          * the stored DIF offset with its own (which is the desired behavior).
14214          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14215          * from machine state; this is okay, too.
14216          */
14217         for (; helper != NULL; helper = helper->dtha_next) {
14218                 if ((pred = helper->dtha_predicate) != NULL) {
14219                         if (trace)
14220                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14221
14222                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14223                                 goto next;
14224
14225                         if (*flags & CPU_DTRACE_FAULT)
14226                                 goto err;
14227                 }
14228
14229                 for (i = 0; i < helper->dtha_nactions; i++) {
14230                         if (trace)
14231                                 dtrace_helper_trace(helper,
14232                                     mstate, vstate, i + 1);
14233
14234                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14235                             mstate, vstate, state);
14236
14237                         if (*flags & CPU_DTRACE_FAULT)
14238                                 goto err;
14239                 }
14240
14241 next:
14242                 if (trace)
14243                         dtrace_helper_trace(helper, mstate, vstate,
14244                             DTRACE_HELPTRACE_NEXT);
14245         }
14246
14247         if (trace)
14248                 dtrace_helper_trace(helper, mstate, vstate,
14249                     DTRACE_HELPTRACE_DONE);
14250
14251         /*
14252          * Restore the arg0 that we saved upon entry.
14253          */
14254         mstate->dtms_arg[0] = sarg0;
14255         mstate->dtms_arg[1] = sarg1;
14256
14257         return (rval);
14258
14259 err:
14260         if (trace)
14261                 dtrace_helper_trace(helper, mstate, vstate,
14262                     DTRACE_HELPTRACE_ERR);
14263
14264         /*
14265          * Restore the arg0 that we saved upon entry.
14266          */
14267         mstate->dtms_arg[0] = sarg0;
14268         mstate->dtms_arg[1] = sarg1;
14269
14270         return (0);
14271 }
14272
14273 static void
14274 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14275     dtrace_vstate_t *vstate)
14276 {
14277         int i;
14278
14279         if (helper->dtha_predicate != NULL)
14280                 dtrace_difo_release(helper->dtha_predicate, vstate);
14281
14282         for (i = 0; i < helper->dtha_nactions; i++) {
14283                 ASSERT(helper->dtha_actions[i] != NULL);
14284                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14285         }
14286
14287         kmem_free(helper->dtha_actions,
14288             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14289         kmem_free(helper, sizeof (dtrace_helper_action_t));
14290 }
14291
14292 static int
14293 dtrace_helper_destroygen(int gen)
14294 {
14295         proc_t *p = curproc;
14296         dtrace_helpers_t *help = p->p_dtrace_helpers;
14297         dtrace_vstate_t *vstate;
14298         int i;
14299
14300         ASSERT(MUTEX_HELD(&dtrace_lock));
14301
14302         if (help == NULL || gen > help->dthps_generation)
14303                 return (EINVAL);
14304
14305         vstate = &help->dthps_vstate;
14306
14307         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14308                 dtrace_helper_action_t *last = NULL, *h, *next;
14309
14310                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14311                         next = h->dtha_next;
14312
14313                         if (h->dtha_generation == gen) {
14314                                 if (last != NULL) {
14315                                         last->dtha_next = next;
14316                                 } else {
14317                                         help->dthps_actions[i] = next;
14318                                 }
14319
14320                                 dtrace_helper_action_destroy(h, vstate);
14321                         } else {
14322                                 last = h;
14323                         }
14324                 }
14325         }
14326
14327         /*
14328          * Interate until we've cleared out all helper providers with the
14329          * given generation number.
14330          */
14331         for (;;) {
14332                 dtrace_helper_provider_t *prov;
14333
14334                 /*
14335                  * Look for a helper provider with the right generation. We
14336                  * have to start back at the beginning of the list each time
14337                  * because we drop dtrace_lock. It's unlikely that we'll make
14338                  * more than two passes.
14339                  */
14340                 for (i = 0; i < help->dthps_nprovs; i++) {
14341                         prov = help->dthps_provs[i];
14342
14343                         if (prov->dthp_generation == gen)
14344                                 break;
14345                 }
14346
14347                 /*
14348                  * If there were no matches, we're done.
14349                  */
14350                 if (i == help->dthps_nprovs)
14351                         break;
14352
14353                 /*
14354                  * Move the last helper provider into this slot.
14355                  */
14356                 help->dthps_nprovs--;
14357                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14358                 help->dthps_provs[help->dthps_nprovs] = NULL;
14359
14360                 mutex_exit(&dtrace_lock);
14361
14362                 /*
14363                  * If we have a meta provider, remove this helper provider.
14364                  */
14365                 mutex_enter(&dtrace_meta_lock);
14366                 if (dtrace_meta_pid != NULL) {
14367                         ASSERT(dtrace_deferred_pid == NULL);
14368                         dtrace_helper_provider_remove(&prov->dthp_prov,
14369                             p->p_pid);
14370                 }
14371                 mutex_exit(&dtrace_meta_lock);
14372
14373                 dtrace_helper_provider_destroy(prov);
14374
14375                 mutex_enter(&dtrace_lock);
14376         }
14377
14378         return (0);
14379 }
14380
14381 static int
14382 dtrace_helper_validate(dtrace_helper_action_t *helper)
14383 {
14384         int err = 0, i;
14385         dtrace_difo_t *dp;
14386
14387         if ((dp = helper->dtha_predicate) != NULL)
14388                 err += dtrace_difo_validate_helper(dp);
14389
14390         for (i = 0; i < helper->dtha_nactions; i++)
14391                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14392
14393         return (err == 0);
14394 }
14395
14396 static int
14397 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14398 {
14399         dtrace_helpers_t *help;
14400         dtrace_helper_action_t *helper, *last;
14401         dtrace_actdesc_t *act;
14402         dtrace_vstate_t *vstate;
14403         dtrace_predicate_t *pred;
14404         int count = 0, nactions = 0, i;
14405
14406         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14407                 return (EINVAL);
14408
14409         help = curproc->p_dtrace_helpers;
14410         last = help->dthps_actions[which];
14411         vstate = &help->dthps_vstate;
14412
14413         for (count = 0; last != NULL; last = last->dtha_next) {
14414                 count++;
14415                 if (last->dtha_next == NULL)
14416                         break;
14417         }
14418
14419         /*
14420          * If we already have dtrace_helper_actions_max helper actions for this
14421          * helper action type, we'll refuse to add a new one.
14422          */
14423         if (count >= dtrace_helper_actions_max)
14424                 return (ENOSPC);
14425
14426         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14427         helper->dtha_generation = help->dthps_generation;
14428
14429         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14430                 ASSERT(pred->dtp_difo != NULL);
14431                 dtrace_difo_hold(pred->dtp_difo);
14432                 helper->dtha_predicate = pred->dtp_difo;
14433         }
14434
14435         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14436                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14437                         goto err;
14438
14439                 if (act->dtad_difo == NULL)
14440                         goto err;
14441
14442                 nactions++;
14443         }
14444
14445         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14446             (helper->dtha_nactions = nactions), KM_SLEEP);
14447
14448         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14449                 dtrace_difo_hold(act->dtad_difo);
14450                 helper->dtha_actions[i++] = act->dtad_difo;
14451         }
14452
14453         if (!dtrace_helper_validate(helper))
14454                 goto err;
14455
14456         if (last == NULL) {
14457                 help->dthps_actions[which] = helper;
14458         } else {
14459                 last->dtha_next = helper;
14460         }
14461
14462         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14463                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14464                 dtrace_helptrace_next = 0;
14465         }
14466
14467         return (0);
14468 err:
14469         dtrace_helper_action_destroy(helper, vstate);
14470         return (EINVAL);
14471 }
14472
14473 static void
14474 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14475     dof_helper_t *dofhp)
14476 {
14477         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14478
14479         mutex_enter(&dtrace_meta_lock);
14480         mutex_enter(&dtrace_lock);
14481
14482         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14483                 /*
14484                  * If the dtrace module is loaded but not attached, or if
14485                  * there aren't isn't a meta provider registered to deal with
14486                  * these provider descriptions, we need to postpone creating
14487                  * the actual providers until later.
14488                  */
14489
14490                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14491                     dtrace_deferred_pid != help) {
14492                         help->dthps_deferred = 1;
14493                         help->dthps_pid = p->p_pid;
14494                         help->dthps_next = dtrace_deferred_pid;
14495                         help->dthps_prev = NULL;
14496                         if (dtrace_deferred_pid != NULL)
14497                                 dtrace_deferred_pid->dthps_prev = help;
14498                         dtrace_deferred_pid = help;
14499                 }
14500
14501                 mutex_exit(&dtrace_lock);
14502
14503         } else if (dofhp != NULL) {
14504                 /*
14505                  * If the dtrace module is loaded and we have a particular
14506                  * helper provider description, pass that off to the
14507                  * meta provider.
14508                  */
14509
14510                 mutex_exit(&dtrace_lock);
14511
14512                 dtrace_helper_provide(dofhp, p->p_pid);
14513
14514         } else {
14515                 /*
14516                  * Otherwise, just pass all the helper provider descriptions
14517                  * off to the meta provider.
14518                  */
14519
14520                 int i;
14521                 mutex_exit(&dtrace_lock);
14522
14523                 for (i = 0; i < help->dthps_nprovs; i++) {
14524                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14525                             p->p_pid);
14526                 }
14527         }
14528
14529         mutex_exit(&dtrace_meta_lock);
14530 }
14531
14532 static int
14533 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14534 {
14535         dtrace_helpers_t *help;
14536         dtrace_helper_provider_t *hprov, **tmp_provs;
14537         uint_t tmp_maxprovs, i;
14538
14539         ASSERT(MUTEX_HELD(&dtrace_lock));
14540
14541         help = curproc->p_dtrace_helpers;
14542         ASSERT(help != NULL);
14543
14544         /*
14545          * If we already have dtrace_helper_providers_max helper providers,
14546          * we're refuse to add a new one.
14547          */
14548         if (help->dthps_nprovs >= dtrace_helper_providers_max)
14549                 return (ENOSPC);
14550
14551         /*
14552          * Check to make sure this isn't a duplicate.
14553          */
14554         for (i = 0; i < help->dthps_nprovs; i++) {
14555                 if (dofhp->dofhp_addr ==
14556                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
14557                         return (EALREADY);
14558         }
14559
14560         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14561         hprov->dthp_prov = *dofhp;
14562         hprov->dthp_ref = 1;
14563         hprov->dthp_generation = gen;
14564
14565         /*
14566          * Allocate a bigger table for helper providers if it's already full.
14567          */
14568         if (help->dthps_maxprovs == help->dthps_nprovs) {
14569                 tmp_maxprovs = help->dthps_maxprovs;
14570                 tmp_provs = help->dthps_provs;
14571
14572                 if (help->dthps_maxprovs == 0)
14573                         help->dthps_maxprovs = 2;
14574                 else
14575                         help->dthps_maxprovs *= 2;
14576                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14577                         help->dthps_maxprovs = dtrace_helper_providers_max;
14578
14579                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14580
14581                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14582                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14583
14584                 if (tmp_provs != NULL) {
14585                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14586                             sizeof (dtrace_helper_provider_t *));
14587                         kmem_free(tmp_provs, tmp_maxprovs *
14588                             sizeof (dtrace_helper_provider_t *));
14589                 }
14590         }
14591
14592         help->dthps_provs[help->dthps_nprovs] = hprov;
14593         help->dthps_nprovs++;
14594
14595         return (0);
14596 }
14597
14598 static void
14599 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14600 {
14601         mutex_enter(&dtrace_lock);
14602
14603         if (--hprov->dthp_ref == 0) {
14604                 dof_hdr_t *dof;
14605                 mutex_exit(&dtrace_lock);
14606                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14607                 dtrace_dof_destroy(dof);
14608                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14609         } else {
14610                 mutex_exit(&dtrace_lock);
14611         }
14612 }
14613
14614 static int
14615 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14616 {
14617         uintptr_t daddr = (uintptr_t)dof;
14618         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14619         dof_provider_t *provider;
14620         dof_probe_t *probe;
14621         uint8_t *arg;
14622         char *strtab, *typestr;
14623         dof_stridx_t typeidx;
14624         size_t typesz;
14625         uint_t nprobes, j, k;
14626
14627         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14628
14629         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14630                 dtrace_dof_error(dof, "misaligned section offset");
14631                 return (-1);
14632         }
14633
14634         /*
14635          * The section needs to be large enough to contain the DOF provider
14636          * structure appropriate for the given version.
14637          */
14638         if (sec->dofs_size <
14639             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14640             offsetof(dof_provider_t, dofpv_prenoffs) :
14641             sizeof (dof_provider_t))) {
14642                 dtrace_dof_error(dof, "provider section too small");
14643                 return (-1);
14644         }
14645
14646         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14647         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14648         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14649         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14650         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14651
14652         if (str_sec == NULL || prb_sec == NULL ||
14653             arg_sec == NULL || off_sec == NULL)
14654                 return (-1);
14655
14656         enoff_sec = NULL;
14657
14658         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14659             provider->dofpv_prenoffs != DOF_SECT_NONE &&
14660             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14661             provider->dofpv_prenoffs)) == NULL)
14662                 return (-1);
14663
14664         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14665
14666         if (provider->dofpv_name >= str_sec->dofs_size ||
14667             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14668                 dtrace_dof_error(dof, "invalid provider name");
14669                 return (-1);
14670         }
14671
14672         if (prb_sec->dofs_entsize == 0 ||
14673             prb_sec->dofs_entsize > prb_sec->dofs_size) {
14674                 dtrace_dof_error(dof, "invalid entry size");
14675                 return (-1);
14676         }
14677
14678         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14679                 dtrace_dof_error(dof, "misaligned entry size");
14680                 return (-1);
14681         }
14682
14683         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14684                 dtrace_dof_error(dof, "invalid entry size");
14685                 return (-1);
14686         }
14687
14688         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14689                 dtrace_dof_error(dof, "misaligned section offset");
14690                 return (-1);
14691         }
14692
14693         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14694                 dtrace_dof_error(dof, "invalid entry size");
14695                 return (-1);
14696         }
14697
14698         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14699
14700         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14701
14702         /*
14703          * Take a pass through the probes to check for errors.
14704          */
14705         for (j = 0; j < nprobes; j++) {
14706                 probe = (dof_probe_t *)(uintptr_t)(daddr +
14707                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14708
14709                 if (probe->dofpr_func >= str_sec->dofs_size) {
14710                         dtrace_dof_error(dof, "invalid function name");
14711                         return (-1);
14712                 }
14713
14714                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14715                         dtrace_dof_error(dof, "function name too long");
14716                         return (-1);
14717                 }
14718
14719                 if (probe->dofpr_name >= str_sec->dofs_size ||
14720                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14721                         dtrace_dof_error(dof, "invalid probe name");
14722                         return (-1);
14723                 }
14724
14725                 /*
14726                  * The offset count must not wrap the index, and the offsets
14727                  * must also not overflow the section's data.
14728                  */
14729                 if (probe->dofpr_offidx + probe->dofpr_noffs <
14730                     probe->dofpr_offidx ||
14731                     (probe->dofpr_offidx + probe->dofpr_noffs) *
14732                     off_sec->dofs_entsize > off_sec->dofs_size) {
14733                         dtrace_dof_error(dof, "invalid probe offset");
14734                         return (-1);
14735                 }
14736
14737                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14738                         /*
14739                          * If there's no is-enabled offset section, make sure
14740                          * there aren't any is-enabled offsets. Otherwise
14741                          * perform the same checks as for probe offsets
14742                          * (immediately above).
14743                          */
14744                         if (enoff_sec == NULL) {
14745                                 if (probe->dofpr_enoffidx != 0 ||
14746                                     probe->dofpr_nenoffs != 0) {
14747                                         dtrace_dof_error(dof, "is-enabled "
14748                                             "offsets with null section");
14749                                         return (-1);
14750                                 }
14751                         } else if (probe->dofpr_enoffidx +
14752                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14753                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14754                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14755                                 dtrace_dof_error(dof, "invalid is-enabled "
14756                                     "offset");
14757                                 return (-1);
14758                         }
14759
14760                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14761                                 dtrace_dof_error(dof, "zero probe and "
14762                                     "is-enabled offsets");
14763                                 return (-1);
14764                         }
14765                 } else if (probe->dofpr_noffs == 0) {
14766                         dtrace_dof_error(dof, "zero probe offsets");
14767                         return (-1);
14768                 }
14769
14770                 if (probe->dofpr_argidx + probe->dofpr_xargc <
14771                     probe->dofpr_argidx ||
14772                     (probe->dofpr_argidx + probe->dofpr_xargc) *
14773                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
14774                         dtrace_dof_error(dof, "invalid args");
14775                         return (-1);
14776                 }
14777
14778                 typeidx = probe->dofpr_nargv;
14779                 typestr = strtab + probe->dofpr_nargv;
14780                 for (k = 0; k < probe->dofpr_nargc; k++) {
14781                         if (typeidx >= str_sec->dofs_size) {
14782                                 dtrace_dof_error(dof, "bad "
14783                                     "native argument type");
14784                                 return (-1);
14785                         }
14786
14787                         typesz = strlen(typestr) + 1;
14788                         if (typesz > DTRACE_ARGTYPELEN) {
14789                                 dtrace_dof_error(dof, "native "
14790                                     "argument type too long");
14791                                 return (-1);
14792                         }
14793                         typeidx += typesz;
14794                         typestr += typesz;
14795                 }
14796
14797                 typeidx = probe->dofpr_xargv;
14798                 typestr = strtab + probe->dofpr_xargv;
14799                 for (k = 0; k < probe->dofpr_xargc; k++) {
14800                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14801                                 dtrace_dof_error(dof, "bad "
14802                                     "native argument index");
14803                                 return (-1);
14804                         }
14805
14806                         if (typeidx >= str_sec->dofs_size) {
14807                                 dtrace_dof_error(dof, "bad "
14808                                     "translated argument type");
14809                                 return (-1);
14810                         }
14811
14812                         typesz = strlen(typestr) + 1;
14813                         if (typesz > DTRACE_ARGTYPELEN) {
14814                                 dtrace_dof_error(dof, "translated argument "
14815                                     "type too long");
14816                                 return (-1);
14817                         }
14818
14819                         typeidx += typesz;
14820                         typestr += typesz;
14821                 }
14822         }
14823
14824         return (0);
14825 }
14826
14827 static int
14828 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14829 {
14830         dtrace_helpers_t *help;
14831         dtrace_vstate_t *vstate;
14832         dtrace_enabling_t *enab = NULL;
14833         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14834         uintptr_t daddr = (uintptr_t)dof;
14835
14836         ASSERT(MUTEX_HELD(&dtrace_lock));
14837
14838         if ((help = curproc->p_dtrace_helpers) == NULL)
14839                 help = dtrace_helpers_create(curproc);
14840
14841         vstate = &help->dthps_vstate;
14842
14843         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14844             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14845                 dtrace_dof_destroy(dof);
14846                 return (rv);
14847         }
14848
14849         /*
14850          * Look for helper providers and validate their descriptions.
14851          */
14852         if (dhp != NULL) {
14853                 for (i = 0; i < dof->dofh_secnum; i++) {
14854                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14855                             dof->dofh_secoff + i * dof->dofh_secsize);
14856
14857                         if (sec->dofs_type != DOF_SECT_PROVIDER)
14858                                 continue;
14859
14860                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
14861                                 dtrace_enabling_destroy(enab);
14862                                 dtrace_dof_destroy(dof);
14863                                 return (-1);
14864                         }
14865
14866                         nprovs++;
14867                 }
14868         }
14869
14870         /*
14871          * Now we need to walk through the ECB descriptions in the enabling.
14872          */
14873         for (i = 0; i < enab->dten_ndesc; i++) {
14874                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14875                 dtrace_probedesc_t *desc = &ep->dted_probe;
14876
14877                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14878                         continue;
14879
14880                 if (strcmp(desc->dtpd_mod, "helper") != 0)
14881                         continue;
14882
14883                 if (strcmp(desc->dtpd_func, "ustack") != 0)
14884                         continue;
14885
14886                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14887                     ep)) != 0) {
14888                         /*
14889                          * Adding this helper action failed -- we are now going
14890                          * to rip out the entire generation and return failure.
14891                          */
14892                         (void) dtrace_helper_destroygen(help->dthps_generation);
14893                         dtrace_enabling_destroy(enab);
14894                         dtrace_dof_destroy(dof);
14895                         return (-1);
14896                 }
14897
14898                 nhelpers++;
14899         }
14900
14901         if (nhelpers < enab->dten_ndesc)
14902                 dtrace_dof_error(dof, "unmatched helpers");
14903
14904         gen = help->dthps_generation++;
14905         dtrace_enabling_destroy(enab);
14906
14907         if (dhp != NULL && nprovs > 0) {
14908                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14909                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14910                         mutex_exit(&dtrace_lock);
14911                         dtrace_helper_provider_register(curproc, help, dhp);
14912                         mutex_enter(&dtrace_lock);
14913
14914                         destroy = 0;
14915                 }
14916         }
14917
14918         if (destroy)
14919                 dtrace_dof_destroy(dof);
14920
14921         return (gen);
14922 }
14923
14924 static dtrace_helpers_t *
14925 dtrace_helpers_create(proc_t *p)
14926 {
14927         dtrace_helpers_t *help;
14928
14929         ASSERT(MUTEX_HELD(&dtrace_lock));
14930         ASSERT(p->p_dtrace_helpers == NULL);
14931
14932         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14933         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14934             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14935
14936         p->p_dtrace_helpers = help;
14937         dtrace_helpers++;
14938
14939         return (help);
14940 }
14941
14942 #if defined(sun)
14943 static
14944 #endif
14945 void
14946 dtrace_helpers_destroy(proc_t *p)
14947 {
14948         dtrace_helpers_t *help;
14949         dtrace_vstate_t *vstate;
14950 #if defined(sun)
14951         proc_t *p = curproc;
14952 #endif
14953         int i;
14954
14955         mutex_enter(&dtrace_lock);
14956
14957         ASSERT(p->p_dtrace_helpers != NULL);
14958         ASSERT(dtrace_helpers > 0);
14959
14960         help = p->p_dtrace_helpers;
14961         vstate = &help->dthps_vstate;
14962
14963         /*
14964          * We're now going to lose the help from this process.
14965          */
14966         p->p_dtrace_helpers = NULL;
14967         dtrace_sync();
14968
14969         /*
14970          * Destory the helper actions.
14971          */
14972         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14973                 dtrace_helper_action_t *h, *next;
14974
14975                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14976                         next = h->dtha_next;
14977                         dtrace_helper_action_destroy(h, vstate);
14978                         h = next;
14979                 }
14980         }
14981
14982         mutex_exit(&dtrace_lock);
14983
14984         /*
14985          * Destroy the helper providers.
14986          */
14987         if (help->dthps_maxprovs > 0) {
14988                 mutex_enter(&dtrace_meta_lock);
14989                 if (dtrace_meta_pid != NULL) {
14990                         ASSERT(dtrace_deferred_pid == NULL);
14991
14992                         for (i = 0; i < help->dthps_nprovs; i++) {
14993                                 dtrace_helper_provider_remove(
14994                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
14995                         }
14996                 } else {
14997                         mutex_enter(&dtrace_lock);
14998                         ASSERT(help->dthps_deferred == 0 ||
14999                             help->dthps_next != NULL ||
15000                             help->dthps_prev != NULL ||
15001                             help == dtrace_deferred_pid);
15002
15003                         /*
15004                          * Remove the helper from the deferred list.
15005                          */
15006                         if (help->dthps_next != NULL)
15007                                 help->dthps_next->dthps_prev = help->dthps_prev;
15008                         if (help->dthps_prev != NULL)
15009                                 help->dthps_prev->dthps_next = help->dthps_next;
15010                         if (dtrace_deferred_pid == help) {
15011                                 dtrace_deferred_pid = help->dthps_next;
15012                                 ASSERT(help->dthps_prev == NULL);
15013                         }
15014
15015                         mutex_exit(&dtrace_lock);
15016                 }
15017
15018                 mutex_exit(&dtrace_meta_lock);
15019
15020                 for (i = 0; i < help->dthps_nprovs; i++) {
15021                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15022                 }
15023
15024                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15025                     sizeof (dtrace_helper_provider_t *));
15026         }
15027
15028         mutex_enter(&dtrace_lock);
15029
15030         dtrace_vstate_fini(&help->dthps_vstate);
15031         kmem_free(help->dthps_actions,
15032             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15033         kmem_free(help, sizeof (dtrace_helpers_t));
15034
15035         --dtrace_helpers;
15036         mutex_exit(&dtrace_lock);
15037 }
15038
15039 #if defined(sun)
15040 static
15041 #endif
15042 void
15043 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15044 {
15045         dtrace_helpers_t *help, *newhelp;
15046         dtrace_helper_action_t *helper, *new, *last;
15047         dtrace_difo_t *dp;
15048         dtrace_vstate_t *vstate;
15049         int i, j, sz, hasprovs = 0;
15050
15051         mutex_enter(&dtrace_lock);
15052         ASSERT(from->p_dtrace_helpers != NULL);
15053         ASSERT(dtrace_helpers > 0);
15054
15055         help = from->p_dtrace_helpers;
15056         newhelp = dtrace_helpers_create(to);
15057         ASSERT(to->p_dtrace_helpers != NULL);
15058
15059         newhelp->dthps_generation = help->dthps_generation;
15060         vstate = &newhelp->dthps_vstate;
15061
15062         /*
15063          * Duplicate the helper actions.
15064          */
15065         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15066                 if ((helper = help->dthps_actions[i]) == NULL)
15067                         continue;
15068
15069                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15070                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15071                             KM_SLEEP);
15072                         new->dtha_generation = helper->dtha_generation;
15073
15074                         if ((dp = helper->dtha_predicate) != NULL) {
15075                                 dp = dtrace_difo_duplicate(dp, vstate);
15076                                 new->dtha_predicate = dp;
15077                         }
15078
15079                         new->dtha_nactions = helper->dtha_nactions;
15080                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15081                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15082
15083                         for (j = 0; j < new->dtha_nactions; j++) {
15084                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15085
15086                                 ASSERT(dp != NULL);
15087                                 dp = dtrace_difo_duplicate(dp, vstate);
15088                                 new->dtha_actions[j] = dp;
15089                         }
15090
15091                         if (last != NULL) {
15092                                 last->dtha_next = new;
15093                         } else {
15094                                 newhelp->dthps_actions[i] = new;
15095                         }
15096
15097                         last = new;
15098                 }
15099         }
15100
15101         /*
15102          * Duplicate the helper providers and register them with the
15103          * DTrace framework.
15104          */
15105         if (help->dthps_nprovs > 0) {
15106                 newhelp->dthps_nprovs = help->dthps_nprovs;
15107                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15108                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15109                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15110                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15111                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15112                         newhelp->dthps_provs[i]->dthp_ref++;
15113                 }
15114
15115                 hasprovs = 1;
15116         }
15117
15118         mutex_exit(&dtrace_lock);
15119
15120         if (hasprovs)
15121                 dtrace_helper_provider_register(to, newhelp, NULL);
15122 }
15123
15124 #if defined(sun)
15125 /*
15126  * DTrace Hook Functions
15127  */
15128 static void
15129 dtrace_module_loaded(modctl_t *ctl)
15130 {
15131         dtrace_provider_t *prv;
15132
15133         mutex_enter(&dtrace_provider_lock);
15134         mutex_enter(&mod_lock);
15135
15136         ASSERT(ctl->mod_busy);
15137
15138         /*
15139          * We're going to call each providers per-module provide operation
15140          * specifying only this module.
15141          */
15142         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15143                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15144
15145         mutex_exit(&mod_lock);
15146         mutex_exit(&dtrace_provider_lock);
15147
15148         /*
15149          * If we have any retained enablings, we need to match against them.
15150          * Enabling probes requires that cpu_lock be held, and we cannot hold
15151          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15152          * module.  (In particular, this happens when loading scheduling
15153          * classes.)  So if we have any retained enablings, we need to dispatch
15154          * our task queue to do the match for us.
15155          */
15156         mutex_enter(&dtrace_lock);
15157
15158         if (dtrace_retained == NULL) {
15159                 mutex_exit(&dtrace_lock);
15160                 return;
15161         }
15162
15163         (void) taskq_dispatch(dtrace_taskq,
15164             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15165
15166         mutex_exit(&dtrace_lock);
15167
15168         /*
15169          * And now, for a little heuristic sleaze:  in general, we want to
15170          * match modules as soon as they load.  However, we cannot guarantee
15171          * this, because it would lead us to the lock ordering violation
15172          * outlined above.  The common case, of course, is that cpu_lock is
15173          * _not_ held -- so we delay here for a clock tick, hoping that that's
15174          * long enough for the task queue to do its work.  If it's not, it's
15175          * not a serious problem -- it just means that the module that we
15176          * just loaded may not be immediately instrumentable.
15177          */
15178         delay(1);
15179 }
15180
15181 static void
15182 dtrace_module_unloaded(modctl_t *ctl)
15183 {
15184         dtrace_probe_t template, *probe, *first, *next;
15185         dtrace_provider_t *prov;
15186
15187         template.dtpr_mod = ctl->mod_modname;
15188
15189         mutex_enter(&dtrace_provider_lock);
15190         mutex_enter(&mod_lock);
15191         mutex_enter(&dtrace_lock);
15192
15193         if (dtrace_bymod == NULL) {
15194                 /*
15195                  * The DTrace module is loaded (obviously) but not attached;
15196                  * we don't have any work to do.
15197                  */
15198                 mutex_exit(&dtrace_provider_lock);
15199                 mutex_exit(&mod_lock);
15200                 mutex_exit(&dtrace_lock);
15201                 return;
15202         }
15203
15204         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15205             probe != NULL; probe = probe->dtpr_nextmod) {
15206                 if (probe->dtpr_ecb != NULL) {
15207                         mutex_exit(&dtrace_provider_lock);
15208                         mutex_exit(&mod_lock);
15209                         mutex_exit(&dtrace_lock);
15210
15211                         /*
15212                          * This shouldn't _actually_ be possible -- we're
15213                          * unloading a module that has an enabled probe in it.
15214                          * (It's normally up to the provider to make sure that
15215                          * this can't happen.)  However, because dtps_enable()
15216                          * doesn't have a failure mode, there can be an
15217                          * enable/unload race.  Upshot:  we don't want to
15218                          * assert, but we're not going to disable the
15219                          * probe, either.
15220                          */
15221                         if (dtrace_err_verbose) {
15222                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15223                                     "enabled probes", ctl->mod_modname);
15224                         }
15225
15226                         return;
15227                 }
15228         }
15229
15230         probe = first;
15231
15232         for (first = NULL; probe != NULL; probe = next) {
15233                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15234
15235                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15236
15237                 next = probe->dtpr_nextmod;
15238                 dtrace_hash_remove(dtrace_bymod, probe);
15239                 dtrace_hash_remove(dtrace_byfunc, probe);
15240                 dtrace_hash_remove(dtrace_byname, probe);
15241
15242                 if (first == NULL) {
15243                         first = probe;
15244                         probe->dtpr_nextmod = NULL;
15245                 } else {
15246                         probe->dtpr_nextmod = first;
15247                         first = probe;
15248                 }
15249         }
15250
15251         /*
15252          * We've removed all of the module's probes from the hash chains and
15253          * from the probe array.  Now issue a dtrace_sync() to be sure that
15254          * everyone has cleared out from any probe array processing.
15255          */
15256         dtrace_sync();
15257
15258         for (probe = first; probe != NULL; probe = first) {
15259                 first = probe->dtpr_nextmod;
15260                 prov = probe->dtpr_provider;
15261                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15262                     probe->dtpr_arg);
15263                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15264                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15265                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15266                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15267                 kmem_free(probe, sizeof (dtrace_probe_t));
15268         }
15269
15270         mutex_exit(&dtrace_lock);
15271         mutex_exit(&mod_lock);
15272         mutex_exit(&dtrace_provider_lock);
15273 }
15274
15275 static void
15276 dtrace_suspend(void)
15277 {
15278         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15279 }
15280
15281 static void
15282 dtrace_resume(void)
15283 {
15284         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15285 }
15286 #endif
15287
15288 static int
15289 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15290 {
15291         ASSERT(MUTEX_HELD(&cpu_lock));
15292         mutex_enter(&dtrace_lock);
15293
15294         switch (what) {
15295         case CPU_CONFIG: {
15296                 dtrace_state_t *state;
15297                 dtrace_optval_t *opt, rs, c;
15298
15299                 /*
15300                  * For now, we only allocate a new buffer for anonymous state.
15301                  */
15302                 if ((state = dtrace_anon.dta_state) == NULL)
15303                         break;
15304
15305                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15306                         break;
15307
15308                 opt = state->dts_options;
15309                 c = opt[DTRACEOPT_CPU];
15310
15311                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15312                         break;
15313
15314                 /*
15315                  * Regardless of what the actual policy is, we're going to
15316                  * temporarily set our resize policy to be manual.  We're
15317                  * also going to temporarily set our CPU option to denote
15318                  * the newly configured CPU.
15319                  */
15320                 rs = opt[DTRACEOPT_BUFRESIZE];
15321                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15322                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15323
15324                 (void) dtrace_state_buffers(state);
15325
15326                 opt[DTRACEOPT_BUFRESIZE] = rs;
15327                 opt[DTRACEOPT_CPU] = c;
15328
15329                 break;
15330         }
15331
15332         case CPU_UNCONFIG:
15333                 /*
15334                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15335                  * buffer will be freed when the consumer exits.)
15336                  */
15337                 break;
15338
15339         default:
15340                 break;
15341         }
15342
15343         mutex_exit(&dtrace_lock);
15344         return (0);
15345 }
15346
15347 #if defined(sun)
15348 static void
15349 dtrace_cpu_setup_initial(processorid_t cpu)
15350 {
15351         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15352 }
15353 #endif
15354
15355 static void
15356 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15357 {
15358         if (dtrace_toxranges >= dtrace_toxranges_max) {
15359                 int osize, nsize;
15360                 dtrace_toxrange_t *range;
15361
15362                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15363
15364                 if (osize == 0) {
15365                         ASSERT(dtrace_toxrange == NULL);
15366                         ASSERT(dtrace_toxranges_max == 0);
15367                         dtrace_toxranges_max = 1;
15368                 } else {
15369                         dtrace_toxranges_max <<= 1;
15370                 }
15371
15372                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15373                 range = kmem_zalloc(nsize, KM_SLEEP);
15374
15375                 if (dtrace_toxrange != NULL) {
15376                         ASSERT(osize != 0);
15377                         bcopy(dtrace_toxrange, range, osize);
15378                         kmem_free(dtrace_toxrange, osize);
15379                 }
15380
15381                 dtrace_toxrange = range;
15382         }
15383
15384         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15385         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15386
15387         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15388         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15389         dtrace_toxranges++;
15390 }
15391
15392 /*
15393  * DTrace Driver Cookbook Functions
15394  */
15395 #if defined(sun)
15396 /*ARGSUSED*/
15397 static int
15398 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15399 {
15400         dtrace_provider_id_t id;
15401         dtrace_state_t *state = NULL;
15402         dtrace_enabling_t *enab;
15403
15404         mutex_enter(&cpu_lock);
15405         mutex_enter(&dtrace_provider_lock);
15406         mutex_enter(&dtrace_lock);
15407
15408         if (ddi_soft_state_init(&dtrace_softstate,
15409             sizeof (dtrace_state_t), 0) != 0) {
15410                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15411                 mutex_exit(&cpu_lock);
15412                 mutex_exit(&dtrace_provider_lock);
15413                 mutex_exit(&dtrace_lock);
15414                 return (DDI_FAILURE);
15415         }
15416
15417         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15418             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15419             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15420             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15421                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15422                 ddi_remove_minor_node(devi, NULL);
15423                 ddi_soft_state_fini(&dtrace_softstate);
15424                 mutex_exit(&cpu_lock);
15425                 mutex_exit(&dtrace_provider_lock);
15426                 mutex_exit(&dtrace_lock);
15427                 return (DDI_FAILURE);
15428         }
15429
15430         ddi_report_dev(devi);
15431         dtrace_devi = devi;
15432
15433         dtrace_modload = dtrace_module_loaded;
15434         dtrace_modunload = dtrace_module_unloaded;
15435         dtrace_cpu_init = dtrace_cpu_setup_initial;
15436         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15437         dtrace_helpers_fork = dtrace_helpers_duplicate;
15438         dtrace_cpustart_init = dtrace_suspend;
15439         dtrace_cpustart_fini = dtrace_resume;
15440         dtrace_debugger_init = dtrace_suspend;
15441         dtrace_debugger_fini = dtrace_resume;
15442
15443         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15444
15445         ASSERT(MUTEX_HELD(&cpu_lock));
15446
15447         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15448             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15449         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15450             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15451             VM_SLEEP | VMC_IDENTIFIER);
15452         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15453             1, INT_MAX, 0);
15454
15455         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15456             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15457             NULL, NULL, NULL, NULL, NULL, 0);
15458
15459         ASSERT(MUTEX_HELD(&cpu_lock));
15460         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15461             offsetof(dtrace_probe_t, dtpr_nextmod),
15462             offsetof(dtrace_probe_t, dtpr_prevmod));
15463
15464         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15465             offsetof(dtrace_probe_t, dtpr_nextfunc),
15466             offsetof(dtrace_probe_t, dtpr_prevfunc));
15467
15468         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15469             offsetof(dtrace_probe_t, dtpr_nextname),
15470             offsetof(dtrace_probe_t, dtpr_prevname));
15471
15472         if (dtrace_retain_max < 1) {
15473                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15474                     "setting to 1", dtrace_retain_max);
15475                 dtrace_retain_max = 1;
15476         }
15477
15478         /*
15479          * Now discover our toxic ranges.
15480          */
15481         dtrace_toxic_ranges(dtrace_toxrange_add);
15482
15483         /*
15484          * Before we register ourselves as a provider to our own framework,
15485          * we would like to assert that dtrace_provider is NULL -- but that's
15486          * not true if we were loaded as a dependency of a DTrace provider.
15487          * Once we've registered, we can assert that dtrace_provider is our
15488          * pseudo provider.
15489          */
15490         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15491             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15492
15493         ASSERT(dtrace_provider != NULL);
15494         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15495
15496         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15497             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15498         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15499             dtrace_provider, NULL, NULL, "END", 0, NULL);
15500         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15501             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15502
15503         dtrace_anon_property();
15504         mutex_exit(&cpu_lock);
15505
15506         /*
15507          * If DTrace helper tracing is enabled, we need to allocate the
15508          * trace buffer and initialize the values.
15509          */
15510         if (dtrace_helptrace_enabled) {
15511                 ASSERT(dtrace_helptrace_buffer == NULL);
15512                 dtrace_helptrace_buffer =
15513                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15514                 dtrace_helptrace_next = 0;
15515         }
15516
15517         /*
15518          * If there are already providers, we must ask them to provide their
15519          * probes, and then match any anonymous enabling against them.  Note
15520          * that there should be no other retained enablings at this time:
15521          * the only retained enablings at this time should be the anonymous
15522          * enabling.
15523          */
15524         if (dtrace_anon.dta_enabling != NULL) {
15525                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15526
15527                 dtrace_enabling_provide(NULL);
15528                 state = dtrace_anon.dta_state;
15529
15530                 /*
15531                  * We couldn't hold cpu_lock across the above call to
15532                  * dtrace_enabling_provide(), but we must hold it to actually
15533                  * enable the probes.  We have to drop all of our locks, pick
15534                  * up cpu_lock, and regain our locks before matching the
15535                  * retained anonymous enabling.
15536                  */
15537                 mutex_exit(&dtrace_lock);
15538                 mutex_exit(&dtrace_provider_lock);
15539
15540                 mutex_enter(&cpu_lock);
15541                 mutex_enter(&dtrace_provider_lock);
15542                 mutex_enter(&dtrace_lock);
15543
15544                 if ((enab = dtrace_anon.dta_enabling) != NULL)
15545                         (void) dtrace_enabling_match(enab, NULL);
15546
15547                 mutex_exit(&cpu_lock);
15548         }
15549
15550         mutex_exit(&dtrace_lock);
15551         mutex_exit(&dtrace_provider_lock);
15552
15553         if (state != NULL) {
15554                 /*
15555                  * If we created any anonymous state, set it going now.
15556                  */
15557                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15558         }
15559
15560         return (DDI_SUCCESS);
15561 }
15562 #endif
15563
15564 #if !defined(sun)
15565 #if __FreeBSD_version >= 800039
15566 static void
15567 dtrace_dtr(void *data __unused)
15568 {
15569 }
15570 #endif
15571 #endif
15572
15573 /*ARGSUSED*/
15574 static int
15575 #if defined(sun)
15576 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15577 #else
15578 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15579 #endif
15580 {
15581         dtrace_state_t *state;
15582         uint32_t priv;
15583         uid_t uid;
15584         zoneid_t zoneid;
15585
15586 #if defined(sun)
15587         if (getminor(*devp) == DTRACEMNRN_HELPER)
15588                 return (0);
15589
15590         /*
15591          * If this wasn't an open with the "helper" minor, then it must be
15592          * the "dtrace" minor.
15593          */
15594         ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15595 #else
15596         cred_t *cred_p = NULL;
15597
15598 #if __FreeBSD_version < 800039
15599         /*
15600          * The first minor device is the one that is cloned so there is
15601          * nothing more to do here.
15602          */
15603         if (dev2unit(dev) == 0)
15604                 return 0;
15605
15606         /*
15607          * Devices are cloned, so if the DTrace state has already
15608          * been allocated, that means this device belongs to a
15609          * different client. Each client should open '/dev/dtrace'
15610          * to get a cloned device.
15611          */
15612         if (dev->si_drv1 != NULL)
15613                 return (EBUSY);
15614 #endif
15615
15616         cred_p = dev->si_cred;
15617 #endif
15618
15619         /*
15620          * If no DTRACE_PRIV_* bits are set in the credential, then the
15621          * caller lacks sufficient permission to do anything with DTrace.
15622          */
15623         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15624         if (priv == DTRACE_PRIV_NONE) {
15625 #if !defined(sun)
15626 #if __FreeBSD_version < 800039
15627                 /* Destroy the cloned device. */
15628                 destroy_dev(dev);
15629 #endif
15630 #endif
15631
15632                 return (EACCES);
15633         }
15634
15635         /*
15636          * Ask all providers to provide all their probes.
15637          */
15638         mutex_enter(&dtrace_provider_lock);
15639         dtrace_probe_provide(NULL, NULL);
15640         mutex_exit(&dtrace_provider_lock);
15641
15642         mutex_enter(&cpu_lock);
15643         mutex_enter(&dtrace_lock);
15644         dtrace_opens++;
15645         dtrace_membar_producer();
15646
15647 #if defined(sun)
15648         /*
15649          * If the kernel debugger is active (that is, if the kernel debugger
15650          * modified text in some way), we won't allow the open.
15651          */
15652         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15653                 dtrace_opens--;
15654                 mutex_exit(&cpu_lock);
15655                 mutex_exit(&dtrace_lock);
15656                 return (EBUSY);
15657         }
15658
15659         state = dtrace_state_create(devp, cred_p);
15660 #else
15661         state = dtrace_state_create(dev);
15662 #if __FreeBSD_version < 800039
15663         dev->si_drv1 = state;
15664 #else
15665         devfs_set_cdevpriv(state, dtrace_dtr);
15666 #endif
15667         /* This code actually belongs in dtrace_attach() */
15668         if (dtrace_opens == 1)
15669                 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15670                     1, INT_MAX, 0);
15671 #endif
15672
15673         mutex_exit(&cpu_lock);
15674
15675         if (state == NULL) {
15676 #if defined(sun)
15677                 if (--dtrace_opens == 0)
15678                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15679 #else
15680                 --dtrace_opens;
15681 #endif
15682                 mutex_exit(&dtrace_lock);
15683 #if !defined(sun)
15684 #if __FreeBSD_version < 800039
15685                 /* Destroy the cloned device. */
15686                 destroy_dev(dev);
15687 #endif
15688 #endif
15689                 return (EAGAIN);
15690         }
15691
15692         mutex_exit(&dtrace_lock);
15693
15694         return (0);
15695 }
15696
15697 /*ARGSUSED*/
15698 static int
15699 #if defined(sun)
15700 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15701 #else
15702 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15703 #endif
15704 {
15705 #if defined(sun)
15706         minor_t minor = getminor(dev);
15707         dtrace_state_t *state;
15708
15709         if (minor == DTRACEMNRN_HELPER)
15710                 return (0);
15711
15712         state = ddi_get_soft_state(dtrace_softstate, minor);
15713 #else
15714 #if __FreeBSD_version < 800039
15715         dtrace_state_t *state = dev->si_drv1;
15716
15717         /* Check if this is not a cloned device. */
15718         if (dev2unit(dev) == 0)
15719                 return (0);
15720 #else
15721         dtrace_state_t *state;
15722         devfs_get_cdevpriv((void **) &state);
15723 #endif
15724
15725 #endif
15726
15727         mutex_enter(&cpu_lock);
15728         mutex_enter(&dtrace_lock);
15729
15730         if (state != NULL) {
15731                 if (state->dts_anon) {
15732                         /*
15733                          * There is anonymous state. Destroy that first.
15734                          */
15735                         ASSERT(dtrace_anon.dta_state == NULL);
15736                         dtrace_state_destroy(state->dts_anon);
15737                 }
15738
15739                 dtrace_state_destroy(state);
15740
15741 #if !defined(sun)
15742                 kmem_free(state, 0);
15743 #if __FreeBSD_version < 800039
15744                 dev->si_drv1 = NULL;
15745 #endif
15746 #endif
15747         }
15748
15749         ASSERT(dtrace_opens > 0);
15750 #if defined(sun)
15751         if (--dtrace_opens == 0)
15752                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15753 #else
15754         --dtrace_opens;
15755         /* This code actually belongs in dtrace_detach() */
15756         if ((dtrace_opens == 0) && (dtrace_taskq != NULL)) {
15757                 taskq_destroy(dtrace_taskq);
15758                 dtrace_taskq = NULL;
15759         }
15760 #endif
15761
15762         mutex_exit(&dtrace_lock);
15763         mutex_exit(&cpu_lock);
15764
15765 #if __FreeBSD_version < 800039
15766         /* Schedule this cloned device to be destroyed. */
15767         destroy_dev_sched(dev);
15768 #endif
15769
15770         return (0);
15771 }
15772
15773 #if defined(sun)
15774 /*ARGSUSED*/
15775 static int
15776 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15777 {
15778         int rval;
15779         dof_helper_t help, *dhp = NULL;
15780
15781         switch (cmd) {
15782         case DTRACEHIOC_ADDDOF:
15783                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15784                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
15785                         return (EFAULT);
15786                 }
15787
15788                 dhp = &help;
15789                 arg = (intptr_t)help.dofhp_dof;
15790                 /*FALLTHROUGH*/
15791
15792         case DTRACEHIOC_ADD: {
15793                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15794
15795                 if (dof == NULL)
15796                         return (rval);
15797
15798                 mutex_enter(&dtrace_lock);
15799
15800                 /*
15801                  * dtrace_helper_slurp() takes responsibility for the dof --
15802                  * it may free it now or it may save it and free it later.
15803                  */
15804                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15805                         *rv = rval;
15806                         rval = 0;
15807                 } else {
15808                         rval = EINVAL;
15809                 }
15810
15811                 mutex_exit(&dtrace_lock);
15812                 return (rval);
15813         }
15814
15815         case DTRACEHIOC_REMOVE: {
15816                 mutex_enter(&dtrace_lock);
15817                 rval = dtrace_helper_destroygen(arg);
15818                 mutex_exit(&dtrace_lock);
15819
15820                 return (rval);
15821         }
15822
15823         default:
15824                 break;
15825         }
15826
15827         return (ENOTTY);
15828 }
15829
15830 /*ARGSUSED*/
15831 static int
15832 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15833 {
15834         minor_t minor = getminor(dev);
15835         dtrace_state_t *state;
15836         int rval;
15837
15838         if (minor == DTRACEMNRN_HELPER)
15839                 return (dtrace_ioctl_helper(cmd, arg, rv));
15840
15841         state = ddi_get_soft_state(dtrace_softstate, minor);
15842
15843         if (state->dts_anon) {
15844                 ASSERT(dtrace_anon.dta_state == NULL);
15845                 state = state->dts_anon;
15846         }
15847
15848         switch (cmd) {
15849         case DTRACEIOC_PROVIDER: {
15850                 dtrace_providerdesc_t pvd;
15851                 dtrace_provider_t *pvp;
15852
15853                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15854                         return (EFAULT);
15855
15856                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15857                 mutex_enter(&dtrace_provider_lock);
15858
15859                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15860                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15861                                 break;
15862                 }
15863
15864                 mutex_exit(&dtrace_provider_lock);
15865
15866                 if (pvp == NULL)
15867                         return (ESRCH);
15868
15869                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15870                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15871
15872                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15873                         return (EFAULT);
15874
15875                 return (0);
15876         }
15877
15878         case DTRACEIOC_EPROBE: {
15879                 dtrace_eprobedesc_t epdesc;
15880                 dtrace_ecb_t *ecb;
15881                 dtrace_action_t *act;
15882                 void *buf;
15883                 size_t size;
15884                 uintptr_t dest;
15885                 int nrecs;
15886
15887                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15888                         return (EFAULT);
15889
15890                 mutex_enter(&dtrace_lock);
15891
15892                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15893                         mutex_exit(&dtrace_lock);
15894                         return (EINVAL);
15895                 }
15896
15897                 if (ecb->dte_probe == NULL) {
15898                         mutex_exit(&dtrace_lock);
15899                         return (EINVAL);
15900                 }
15901
15902                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15903                 epdesc.dtepd_uarg = ecb->dte_uarg;
15904                 epdesc.dtepd_size = ecb->dte_size;
15905
15906                 nrecs = epdesc.dtepd_nrecs;
15907                 epdesc.dtepd_nrecs = 0;
15908                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15909                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15910                                 continue;
15911
15912                         epdesc.dtepd_nrecs++;
15913                 }
15914
15915                 /*
15916                  * Now that we have the size, we need to allocate a temporary
15917                  * buffer in which to store the complete description.  We need
15918                  * the temporary buffer to be able to drop dtrace_lock()
15919                  * across the copyout(), below.
15920                  */
15921                 size = sizeof (dtrace_eprobedesc_t) +
15922                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15923
15924                 buf = kmem_alloc(size, KM_SLEEP);
15925                 dest = (uintptr_t)buf;
15926
15927                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15928                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15929
15930                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15931                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15932                                 continue;
15933
15934                         if (nrecs-- == 0)
15935                                 break;
15936
15937                         bcopy(&act->dta_rec, (void *)dest,
15938                             sizeof (dtrace_recdesc_t));
15939                         dest += sizeof (dtrace_recdesc_t);
15940                 }
15941
15942                 mutex_exit(&dtrace_lock);
15943
15944                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15945                         kmem_free(buf, size);
15946                         return (EFAULT);
15947                 }
15948
15949                 kmem_free(buf, size);
15950                 return (0);
15951         }
15952
15953         case DTRACEIOC_AGGDESC: {
15954                 dtrace_aggdesc_t aggdesc;
15955                 dtrace_action_t *act;
15956                 dtrace_aggregation_t *agg;
15957                 int nrecs;
15958                 uint32_t offs;
15959                 dtrace_recdesc_t *lrec;
15960                 void *buf;
15961                 size_t size;
15962                 uintptr_t dest;
15963
15964                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15965                         return (EFAULT);
15966
15967                 mutex_enter(&dtrace_lock);
15968
15969                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15970                         mutex_exit(&dtrace_lock);
15971                         return (EINVAL);
15972                 }
15973
15974                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15975
15976                 nrecs = aggdesc.dtagd_nrecs;
15977                 aggdesc.dtagd_nrecs = 0;
15978
15979                 offs = agg->dtag_base;
15980                 lrec = &agg->dtag_action.dta_rec;
15981                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15982
15983                 for (act = agg->dtag_first; ; act = act->dta_next) {
15984                         ASSERT(act->dta_intuple ||
15985                             DTRACEACT_ISAGG(act->dta_kind));
15986
15987                         /*
15988                          * If this action has a record size of zero, it
15989                          * denotes an argument to the aggregating action.
15990                          * Because the presence of this record doesn't (or
15991                          * shouldn't) affect the way the data is interpreted,
15992                          * we don't copy it out to save user-level the
15993                          * confusion of dealing with a zero-length record.
15994                          */
15995                         if (act->dta_rec.dtrd_size == 0) {
15996                                 ASSERT(agg->dtag_hasarg);
15997                                 continue;
15998                         }
15999
16000                         aggdesc.dtagd_nrecs++;
16001
16002                         if (act == &agg->dtag_action)
16003                                 break;
16004                 }
16005
16006                 /*
16007                  * Now that we have the size, we need to allocate a temporary
16008                  * buffer in which to store the complete description.  We need
16009                  * the temporary buffer to be able to drop dtrace_lock()
16010                  * across the copyout(), below.
16011                  */
16012                 size = sizeof (dtrace_aggdesc_t) +
16013                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16014
16015                 buf = kmem_alloc(size, KM_SLEEP);
16016                 dest = (uintptr_t)buf;
16017
16018                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16019                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16020
16021                 for (act = agg->dtag_first; ; act = act->dta_next) {
16022                         dtrace_recdesc_t rec = act->dta_rec;
16023
16024                         /*
16025                          * See the comment in the above loop for why we pass
16026                          * over zero-length records.
16027                          */
16028                         if (rec.dtrd_size == 0) {
16029                                 ASSERT(agg->dtag_hasarg);
16030                                 continue;
16031                         }
16032
16033                         if (nrecs-- == 0)
16034                                 break;
16035
16036                         rec.dtrd_offset -= offs;
16037                         bcopy(&rec, (void *)dest, sizeof (rec));
16038                         dest += sizeof (dtrace_recdesc_t);
16039
16040                         if (act == &agg->dtag_action)
16041                                 break;
16042                 }
16043
16044                 mutex_exit(&dtrace_lock);
16045
16046                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16047                         kmem_free(buf, size);
16048                         return (EFAULT);
16049                 }
16050
16051                 kmem_free(buf, size);
16052                 return (0);
16053         }
16054
16055         case DTRACEIOC_ENABLE: {
16056                 dof_hdr_t *dof;
16057                 dtrace_enabling_t *enab = NULL;
16058                 dtrace_vstate_t *vstate;
16059                 int err = 0;
16060
16061                 *rv = 0;
16062
16063                 /*
16064                  * If a NULL argument has been passed, we take this as our
16065                  * cue to reevaluate our enablings.
16066                  */
16067                 if (arg == NULL) {
16068                         dtrace_enabling_matchall();
16069
16070                         return (0);
16071                 }
16072
16073                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16074                         return (rval);
16075
16076                 mutex_enter(&cpu_lock);
16077                 mutex_enter(&dtrace_lock);
16078                 vstate = &state->dts_vstate;
16079
16080                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16081                         mutex_exit(&dtrace_lock);
16082                         mutex_exit(&cpu_lock);
16083                         dtrace_dof_destroy(dof);
16084                         return (EBUSY);
16085                 }
16086
16087                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16088                         mutex_exit(&dtrace_lock);
16089                         mutex_exit(&cpu_lock);
16090                         dtrace_dof_destroy(dof);
16091                         return (EINVAL);
16092                 }
16093
16094                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16095                         dtrace_enabling_destroy(enab);
16096                         mutex_exit(&dtrace_lock);
16097                         mutex_exit(&cpu_lock);
16098                         dtrace_dof_destroy(dof);
16099                         return (rval);
16100                 }
16101
16102                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16103                         err = dtrace_enabling_retain(enab);
16104                 } else {
16105                         dtrace_enabling_destroy(enab);
16106                 }
16107
16108                 mutex_exit(&cpu_lock);
16109                 mutex_exit(&dtrace_lock);
16110                 dtrace_dof_destroy(dof);
16111
16112                 return (err);
16113         }
16114
16115         case DTRACEIOC_REPLICATE: {
16116                 dtrace_repldesc_t desc;
16117                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16118                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16119                 int err;
16120
16121                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16122                         return (EFAULT);
16123
16124                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16125                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16126                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16127                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16128
16129                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16130                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16131                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16132                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16133
16134                 mutex_enter(&dtrace_lock);
16135                 err = dtrace_enabling_replicate(state, match, create);
16136                 mutex_exit(&dtrace_lock);
16137
16138                 return (err);
16139         }
16140
16141         case DTRACEIOC_PROBEMATCH:
16142         case DTRACEIOC_PROBES: {
16143                 dtrace_probe_t *probe = NULL;
16144                 dtrace_probedesc_t desc;
16145                 dtrace_probekey_t pkey;
16146                 dtrace_id_t i;
16147                 int m = 0;
16148                 uint32_t priv;
16149                 uid_t uid;
16150                 zoneid_t zoneid;
16151
16152                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16153                         return (EFAULT);
16154
16155                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16156                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16157                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16158                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16159
16160                 /*
16161                  * Before we attempt to match this probe, we want to give
16162                  * all providers the opportunity to provide it.
16163                  */
16164                 if (desc.dtpd_id == DTRACE_IDNONE) {
16165                         mutex_enter(&dtrace_provider_lock);
16166                         dtrace_probe_provide(&desc, NULL);
16167                         mutex_exit(&dtrace_provider_lock);
16168                         desc.dtpd_id++;
16169                 }
16170
16171                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16172                         dtrace_probekey(&desc, &pkey);
16173                         pkey.dtpk_id = DTRACE_IDNONE;
16174                 }
16175
16176                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16177
16178                 mutex_enter(&dtrace_lock);
16179
16180                 if (cmd == DTRACEIOC_PROBEMATCH) {
16181                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16182                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16183                                     (m = dtrace_match_probe(probe, &pkey,
16184                                     priv, uid, zoneid)) != 0)
16185                                         break;
16186                         }
16187
16188                         if (m < 0) {
16189                                 mutex_exit(&dtrace_lock);
16190                                 return (EINVAL);
16191                         }
16192
16193                 } else {
16194                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16195                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16196                                     dtrace_match_priv(probe, priv, uid, zoneid))
16197                                         break;
16198                         }
16199                 }
16200
16201                 if (probe == NULL) {
16202                         mutex_exit(&dtrace_lock);
16203                         return (ESRCH);
16204                 }
16205
16206                 dtrace_probe_description(probe, &desc);
16207                 mutex_exit(&dtrace_lock);
16208
16209                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16210                         return (EFAULT);
16211
16212                 return (0);
16213         }
16214
16215         case DTRACEIOC_PROBEARG: {
16216                 dtrace_argdesc_t desc;
16217                 dtrace_probe_t *probe;
16218                 dtrace_provider_t *prov;
16219
16220                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16221                         return (EFAULT);
16222
16223                 if (desc.dtargd_id == DTRACE_IDNONE)
16224                         return (EINVAL);
16225
16226                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16227                         return (EINVAL);
16228
16229                 mutex_enter(&dtrace_provider_lock);
16230                 mutex_enter(&mod_lock);
16231                 mutex_enter(&dtrace_lock);
16232
16233                 if (desc.dtargd_id > dtrace_nprobes) {
16234                         mutex_exit(&dtrace_lock);
16235                         mutex_exit(&mod_lock);
16236                         mutex_exit(&dtrace_provider_lock);
16237                         return (EINVAL);
16238                 }
16239
16240                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16241                         mutex_exit(&dtrace_lock);
16242                         mutex_exit(&mod_lock);
16243                         mutex_exit(&dtrace_provider_lock);
16244                         return (EINVAL);
16245                 }
16246
16247                 mutex_exit(&dtrace_lock);
16248
16249                 prov = probe->dtpr_provider;
16250
16251                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16252                         /*
16253                          * There isn't any typed information for this probe.
16254                          * Set the argument number to DTRACE_ARGNONE.
16255                          */
16256                         desc.dtargd_ndx = DTRACE_ARGNONE;
16257                 } else {
16258                         desc.dtargd_native[0] = '\0';
16259                         desc.dtargd_xlate[0] = '\0';
16260                         desc.dtargd_mapping = desc.dtargd_ndx;
16261
16262                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16263                             probe->dtpr_id, probe->dtpr_arg, &desc);
16264                 }
16265
16266                 mutex_exit(&mod_lock);
16267                 mutex_exit(&dtrace_provider_lock);
16268
16269                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16270                         return (EFAULT);
16271
16272                 return (0);
16273         }
16274
16275         case DTRACEIOC_GO: {
16276                 processorid_t cpuid;
16277                 rval = dtrace_state_go(state, &cpuid);
16278
16279                 if (rval != 0)
16280                         return (rval);
16281
16282                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16283                         return (EFAULT);
16284
16285                 return (0);
16286         }
16287
16288         case DTRACEIOC_STOP: {
16289                 processorid_t cpuid;
16290
16291                 mutex_enter(&dtrace_lock);
16292                 rval = dtrace_state_stop(state, &cpuid);
16293                 mutex_exit(&dtrace_lock);
16294
16295                 if (rval != 0)
16296                         return (rval);
16297
16298                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16299                         return (EFAULT);
16300
16301                 return (0);
16302         }
16303
16304         case DTRACEIOC_DOFGET: {
16305                 dof_hdr_t hdr, *dof;
16306                 uint64_t len;
16307
16308                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16309                         return (EFAULT);
16310
16311                 mutex_enter(&dtrace_lock);
16312                 dof = dtrace_dof_create(state);
16313                 mutex_exit(&dtrace_lock);
16314
16315                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16316                 rval = copyout(dof, (void *)arg, len);
16317                 dtrace_dof_destroy(dof);
16318
16319                 return (rval == 0 ? 0 : EFAULT);
16320         }
16321
16322         case DTRACEIOC_AGGSNAP:
16323         case DTRACEIOC_BUFSNAP: {
16324                 dtrace_bufdesc_t desc;
16325                 caddr_t cached;
16326                 dtrace_buffer_t *buf;
16327
16328                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16329                         return (EFAULT);
16330
16331                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16332                         return (EINVAL);
16333
16334                 mutex_enter(&dtrace_lock);
16335
16336                 if (cmd == DTRACEIOC_BUFSNAP) {
16337                         buf = &state->dts_buffer[desc.dtbd_cpu];
16338                 } else {
16339                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16340                 }
16341
16342                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16343                         size_t sz = buf->dtb_offset;
16344
16345                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16346                                 mutex_exit(&dtrace_lock);
16347                                 return (EBUSY);
16348                         }
16349
16350                         /*
16351                          * If this buffer has already been consumed, we're
16352                          * going to indicate that there's nothing left here
16353                          * to consume.
16354                          */
16355                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16356                                 mutex_exit(&dtrace_lock);
16357
16358                                 desc.dtbd_size = 0;
16359                                 desc.dtbd_drops = 0;
16360                                 desc.dtbd_errors = 0;
16361                                 desc.dtbd_oldest = 0;
16362                                 sz = sizeof (desc);
16363
16364                                 if (copyout(&desc, (void *)arg, sz) != 0)
16365                                         return (EFAULT);
16366
16367                                 return (0);
16368                         }
16369
16370                         /*
16371                          * If this is a ring buffer that has wrapped, we want
16372                          * to copy the whole thing out.
16373                          */
16374                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16375                                 dtrace_buffer_polish(buf);
16376                                 sz = buf->dtb_size;
16377                         }
16378
16379                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16380                                 mutex_exit(&dtrace_lock);
16381                                 return (EFAULT);
16382                         }
16383
16384                         desc.dtbd_size = sz;
16385                         desc.dtbd_drops = buf->dtb_drops;
16386                         desc.dtbd_errors = buf->dtb_errors;
16387                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16388
16389                         mutex_exit(&dtrace_lock);
16390
16391                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16392                                 return (EFAULT);
16393
16394                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16395
16396                         return (0);
16397                 }
16398
16399                 if (buf->dtb_tomax == NULL) {
16400                         ASSERT(buf->dtb_xamot == NULL);
16401                         mutex_exit(&dtrace_lock);
16402                         return (ENOENT);
16403                 }
16404
16405                 cached = buf->dtb_tomax;
16406                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16407
16408                 dtrace_xcall(desc.dtbd_cpu,
16409                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16410
16411                 state->dts_errors += buf->dtb_xamot_errors;
16412
16413                 /*
16414                  * If the buffers did not actually switch, then the cross call
16415                  * did not take place -- presumably because the given CPU is
16416                  * not in the ready set.  If this is the case, we'll return
16417                  * ENOENT.
16418                  */
16419                 if (buf->dtb_tomax == cached) {
16420                         ASSERT(buf->dtb_xamot != cached);
16421                         mutex_exit(&dtrace_lock);
16422                         return (ENOENT);
16423                 }
16424
16425                 ASSERT(cached == buf->dtb_xamot);
16426
16427                 /*
16428                  * We have our snapshot; now copy it out.
16429                  */
16430                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16431                     buf->dtb_xamot_offset) != 0) {
16432                         mutex_exit(&dtrace_lock);
16433                         return (EFAULT);
16434                 }
16435
16436                 desc.dtbd_size = buf->dtb_xamot_offset;
16437                 desc.dtbd_drops = buf->dtb_xamot_drops;
16438                 desc.dtbd_errors = buf->dtb_xamot_errors;
16439                 desc.dtbd_oldest = 0;
16440
16441                 mutex_exit(&dtrace_lock);
16442
16443                 /*
16444                  * Finally, copy out the buffer description.
16445                  */
16446                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16447                         return (EFAULT);
16448
16449                 return (0);
16450         }
16451
16452         case DTRACEIOC_CONF: {
16453                 dtrace_conf_t conf;
16454
16455                 bzero(&conf, sizeof (conf));
16456                 conf.dtc_difversion = DIF_VERSION;
16457                 conf.dtc_difintregs = DIF_DIR_NREGS;
16458                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16459                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16460
16461                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16462                         return (EFAULT);
16463
16464                 return (0);
16465         }
16466
16467         case DTRACEIOC_STATUS: {
16468                 dtrace_status_t stat;
16469                 dtrace_dstate_t *dstate;
16470                 int i, j;
16471                 uint64_t nerrs;
16472
16473                 /*
16474                  * See the comment in dtrace_state_deadman() for the reason
16475                  * for setting dts_laststatus to INT64_MAX before setting
16476                  * it to the correct value.
16477                  */
16478                 state->dts_laststatus = INT64_MAX;
16479                 dtrace_membar_producer();
16480                 state->dts_laststatus = dtrace_gethrtime();
16481
16482                 bzero(&stat, sizeof (stat));
16483
16484                 mutex_enter(&dtrace_lock);
16485
16486                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16487                         mutex_exit(&dtrace_lock);
16488                         return (ENOENT);
16489                 }
16490
16491                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16492                         stat.dtst_exiting = 1;
16493
16494                 nerrs = state->dts_errors;
16495                 dstate = &state->dts_vstate.dtvs_dynvars;
16496
16497                 for (i = 0; i < NCPU; i++) {
16498                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16499
16500                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16501                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16502                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16503
16504                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16505                                 stat.dtst_filled++;
16506
16507                         nerrs += state->dts_buffer[i].dtb_errors;
16508
16509                         for (j = 0; j < state->dts_nspeculations; j++) {
16510                                 dtrace_speculation_t *spec;
16511                                 dtrace_buffer_t *buf;
16512
16513                                 spec = &state->dts_speculations[j];
16514                                 buf = &spec->dtsp_buffer[i];
16515                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16516                         }
16517                 }
16518
16519                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16520                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16521                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16522                 stat.dtst_dblerrors = state->dts_dblerrors;
16523                 stat.dtst_killed =
16524                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16525                 stat.dtst_errors = nerrs;
16526
16527                 mutex_exit(&dtrace_lock);
16528
16529                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16530                         return (EFAULT);
16531
16532                 return (0);
16533         }
16534
16535         case DTRACEIOC_FORMAT: {
16536                 dtrace_fmtdesc_t fmt;
16537                 char *str;
16538                 int len;
16539
16540                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16541                         return (EFAULT);
16542
16543                 mutex_enter(&dtrace_lock);
16544
16545                 if (fmt.dtfd_format == 0 ||
16546                     fmt.dtfd_format > state->dts_nformats) {
16547                         mutex_exit(&dtrace_lock);
16548                         return (EINVAL);
16549                 }
16550
16551                 /*
16552                  * Format strings are allocated contiguously and they are
16553                  * never freed; if a format index is less than the number
16554                  * of formats, we can assert that the format map is non-NULL
16555                  * and that the format for the specified index is non-NULL.
16556                  */
16557                 ASSERT(state->dts_formats != NULL);
16558                 str = state->dts_formats[fmt.dtfd_format - 1];
16559                 ASSERT(str != NULL);
16560
16561                 len = strlen(str) + 1;
16562
16563                 if (len > fmt.dtfd_length) {
16564                         fmt.dtfd_length = len;
16565
16566                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16567                                 mutex_exit(&dtrace_lock);
16568                                 return (EINVAL);
16569                         }
16570                 } else {
16571                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16572                                 mutex_exit(&dtrace_lock);
16573                                 return (EINVAL);
16574                         }
16575                 }
16576
16577                 mutex_exit(&dtrace_lock);
16578                 return (0);
16579         }
16580
16581         default:
16582                 break;
16583         }
16584
16585         return (ENOTTY);
16586 }
16587
16588 /*ARGSUSED*/
16589 static int
16590 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16591 {
16592         dtrace_state_t *state;
16593
16594         switch (cmd) {
16595         case DDI_DETACH:
16596                 break;
16597
16598         case DDI_SUSPEND:
16599                 return (DDI_SUCCESS);
16600
16601         default:
16602                 return (DDI_FAILURE);
16603         }
16604
16605         mutex_enter(&cpu_lock);
16606         mutex_enter(&dtrace_provider_lock);
16607         mutex_enter(&dtrace_lock);
16608
16609         ASSERT(dtrace_opens == 0);
16610
16611         if (dtrace_helpers > 0) {
16612                 mutex_exit(&dtrace_provider_lock);
16613                 mutex_exit(&dtrace_lock);
16614                 mutex_exit(&cpu_lock);
16615                 return (DDI_FAILURE);
16616         }
16617
16618         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16619                 mutex_exit(&dtrace_provider_lock);
16620                 mutex_exit(&dtrace_lock);
16621                 mutex_exit(&cpu_lock);
16622                 return (DDI_FAILURE);
16623         }
16624
16625         dtrace_provider = NULL;
16626
16627         if ((state = dtrace_anon_grab()) != NULL) {
16628                 /*
16629                  * If there were ECBs on this state, the provider should
16630                  * have not been allowed to detach; assert that there is
16631                  * none.
16632                  */
16633                 ASSERT(state->dts_necbs == 0);
16634                 dtrace_state_destroy(state);
16635
16636                 /*
16637                  * If we're being detached with anonymous state, we need to
16638                  * indicate to the kernel debugger that DTrace is now inactive.
16639                  */
16640                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16641         }
16642
16643         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16644         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16645         dtrace_cpu_init = NULL;
16646         dtrace_helpers_cleanup = NULL;
16647         dtrace_helpers_fork = NULL;
16648         dtrace_cpustart_init = NULL;
16649         dtrace_cpustart_fini = NULL;
16650         dtrace_debugger_init = NULL;
16651         dtrace_debugger_fini = NULL;
16652         dtrace_modload = NULL;
16653         dtrace_modunload = NULL;
16654
16655         mutex_exit(&cpu_lock);
16656
16657         if (dtrace_helptrace_enabled) {
16658                 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16659                 dtrace_helptrace_buffer = NULL;
16660         }
16661
16662         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16663         dtrace_probes = NULL;
16664         dtrace_nprobes = 0;
16665
16666         dtrace_hash_destroy(dtrace_bymod);
16667         dtrace_hash_destroy(dtrace_byfunc);
16668         dtrace_hash_destroy(dtrace_byname);
16669         dtrace_bymod = NULL;
16670         dtrace_byfunc = NULL;
16671         dtrace_byname = NULL;
16672
16673         kmem_cache_destroy(dtrace_state_cache);
16674         vmem_destroy(dtrace_minor);
16675         vmem_destroy(dtrace_arena);
16676
16677         if (dtrace_toxrange != NULL) {
16678                 kmem_free(dtrace_toxrange,
16679                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16680                 dtrace_toxrange = NULL;
16681                 dtrace_toxranges = 0;
16682                 dtrace_toxranges_max = 0;
16683         }
16684
16685         ddi_remove_minor_node(dtrace_devi, NULL);
16686         dtrace_devi = NULL;
16687
16688         ddi_soft_state_fini(&dtrace_softstate);
16689
16690         ASSERT(dtrace_vtime_references == 0);
16691         ASSERT(dtrace_opens == 0);
16692         ASSERT(dtrace_retained == NULL);
16693
16694         mutex_exit(&dtrace_lock);
16695         mutex_exit(&dtrace_provider_lock);
16696
16697         /*
16698          * We don't destroy the task queue until after we have dropped our
16699          * locks (taskq_destroy() may block on running tasks).  To prevent
16700          * attempting to do work after we have effectively detached but before
16701          * the task queue has been destroyed, all tasks dispatched via the
16702          * task queue must check that DTrace is still attached before
16703          * performing any operation.
16704          */
16705         taskq_destroy(dtrace_taskq);
16706         dtrace_taskq = NULL;
16707
16708         return (DDI_SUCCESS);
16709 }
16710 #endif
16711
16712 #if defined(sun)
16713 /*ARGSUSED*/
16714 static int
16715 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16716 {
16717         int error;
16718
16719         switch (infocmd) {
16720         case DDI_INFO_DEVT2DEVINFO:
16721                 *result = (void *)dtrace_devi;
16722                 error = DDI_SUCCESS;
16723                 break;
16724         case DDI_INFO_DEVT2INSTANCE:
16725                 *result = (void *)0;
16726                 error = DDI_SUCCESS;
16727                 break;
16728         default:
16729                 error = DDI_FAILURE;
16730         }
16731         return (error);
16732 }
16733 #endif
16734
16735 #if defined(sun)
16736 static struct cb_ops dtrace_cb_ops = {
16737         dtrace_open,            /* open */
16738         dtrace_close,           /* close */
16739         nulldev,                /* strategy */
16740         nulldev,                /* print */
16741         nodev,                  /* dump */
16742         nodev,                  /* read */
16743         nodev,                  /* write */
16744         dtrace_ioctl,           /* ioctl */
16745         nodev,                  /* devmap */
16746         nodev,                  /* mmap */
16747         nodev,                  /* segmap */
16748         nochpoll,               /* poll */
16749         ddi_prop_op,            /* cb_prop_op */
16750         0,                      /* streamtab  */
16751         D_NEW | D_MP            /* Driver compatibility flag */
16752 };
16753
16754 static struct dev_ops dtrace_ops = {
16755         DEVO_REV,               /* devo_rev */
16756         0,                      /* refcnt */
16757         dtrace_info,            /* get_dev_info */
16758         nulldev,                /* identify */
16759         nulldev,                /* probe */
16760         dtrace_attach,          /* attach */
16761         dtrace_detach,          /* detach */
16762         nodev,                  /* reset */
16763         &dtrace_cb_ops,         /* driver operations */
16764         NULL,                   /* bus operations */
16765         nodev                   /* dev power */
16766 };
16767
16768 static struct modldrv modldrv = {
16769         &mod_driverops,         /* module type (this is a pseudo driver) */
16770         "Dynamic Tracing",      /* name of module */
16771         &dtrace_ops,            /* driver ops */
16772 };
16773
16774 static struct modlinkage modlinkage = {
16775         MODREV_1,
16776         (void *)&modldrv,
16777         NULL
16778 };
16779
16780 int
16781 _init(void)
16782 {
16783         return (mod_install(&modlinkage));
16784 }
16785
16786 int
16787 _info(struct modinfo *modinfop)
16788 {
16789         return (mod_info(&modlinkage, modinfop));
16790 }
16791
16792 int
16793 _fini(void)
16794 {
16795         return (mod_remove(&modlinkage));
16796 }
16797 #else
16798
16799 static d_ioctl_t        dtrace_ioctl;
16800 static d_ioctl_t        dtrace_ioctl_helper;
16801 static void             dtrace_load(void *);
16802 static int              dtrace_unload(void);
16803 #if __FreeBSD_version < 800039
16804 static void             dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16805 static struct clonedevs *dtrace_clones;         /* Ptr to the array of cloned devices. */
16806 static eventhandler_tag eh_tag;                 /* Event handler tag. */
16807 #else
16808 static struct cdev      *dtrace_dev;
16809 static struct cdev      *helper_dev;
16810 #endif
16811
16812 void dtrace_invop_init(void);
16813 void dtrace_invop_uninit(void);
16814
16815 static struct cdevsw dtrace_cdevsw = {
16816         .d_version      = D_VERSION,
16817         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16818         .d_close        = dtrace_close,
16819         .d_ioctl        = dtrace_ioctl,
16820         .d_open         = dtrace_open,
16821         .d_name         = "dtrace",
16822 };
16823
16824 static struct cdevsw helper_cdevsw = {
16825         .d_version      = D_VERSION,
16826         .d_flags        = D_TRACKCLOSE | D_NEEDMINOR,
16827         .d_ioctl        = dtrace_ioctl_helper,
16828         .d_name         = "helper",
16829 };
16830
16831 #include <dtrace_anon.c>
16832 #if __FreeBSD_version < 800039
16833 #include <dtrace_clone.c>
16834 #endif
16835 #include <dtrace_ioctl.c>
16836 #include <dtrace_load.c>
16837 #include <dtrace_modevent.c>
16838 #include <dtrace_sysctl.c>
16839 #include <dtrace_unload.c>
16840 #include <dtrace_vtime.c>
16841 #include <dtrace_hacks.c>
16842 #include <dtrace_isa.c>
16843
16844 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16845 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16846 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16847
16848 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16849 MODULE_VERSION(dtrace, 1);
16850 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16851 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16852 #endif