]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/trim_map.h>
47
48 SYSCTL_DECL(_vfs_zfs);
49 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50
51 /*
52  * Virtual device management.
53  */
54
55 static vdev_ops_t *vdev_ops_table[] = {
56         &vdev_root_ops,
57         &vdev_raidz_ops,
58         &vdev_mirror_ops,
59         &vdev_replacing_ops,
60         &vdev_spare_ops,
61 #ifdef _KERNEL
62         &vdev_geom_ops,
63 #else
64         &vdev_disk_ops,
65 #endif
66         &vdev_file_ops,
67         &vdev_missing_ops,
68         &vdev_hole_ops,
69         NULL
70 };
71
72
73 /*
74  * Given a vdev type, return the appropriate ops vector.
75  */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79         vdev_ops_t *ops, **opspp;
80
81         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82                 if (strcmp(ops->vdev_op_type, type) == 0)
83                         break;
84
85         return (ops);
86 }
87
88 /*
89  * Default asize function: return the MAX of psize with the asize of
90  * all children.  This is what's used by anything other than RAID-Z.
91  */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96         uint64_t csize;
97
98         for (int c = 0; c < vd->vdev_children; c++) {
99                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100                 asize = MAX(asize, csize);
101         }
102
103         return (asize);
104 }
105
106 /*
107  * Get the minimum allocatable size. We define the allocatable size as
108  * the vdev's asize rounded to the nearest metaslab. This allows us to
109  * replace or attach devices which don't have the same physical size but
110  * can still satisfy the same number of allocations.
111  */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115         vdev_t *pvd = vd->vdev_parent;
116
117         /*
118          * If our parent is NULL (inactive spare or cache) or is the root,
119          * just return our own asize.
120          */
121         if (pvd == NULL)
122                 return (vd->vdev_asize);
123
124         /*
125          * The top-level vdev just returns the allocatable size rounded
126          * to the nearest metaslab.
127          */
128         if (vd == vd->vdev_top)
129                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131         /*
132          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133          * so each child must provide at least 1/Nth of its asize.
134          */
135         if (pvd->vdev_ops == &vdev_raidz_ops)
136                 return (pvd->vdev_min_asize / pvd->vdev_children);
137
138         return (pvd->vdev_min_asize);
139 }
140
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144         vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146         for (int c = 0; c < vd->vdev_children; c++)
147                 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153         vdev_t *rvd = spa->spa_root_vdev;
154
155         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157         if (vdev < rvd->vdev_children) {
158                 ASSERT(rvd->vdev_child[vdev] != NULL);
159                 return (rvd->vdev_child[vdev]);
160         }
161
162         return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168         vdev_t *mvd;
169
170         if (vd->vdev_guid == guid)
171                 return (vd);
172
173         for (int c = 0; c < vd->vdev_children; c++)
174                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175                     NULL)
176                         return (mvd);
177
178         return (NULL);
179 }
180
181 void
182 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
183 {
184         size_t oldsize, newsize;
185         uint64_t id = cvd->vdev_id;
186         vdev_t **newchild;
187
188         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189         ASSERT(cvd->vdev_parent == NULL);
190
191         cvd->vdev_parent = pvd;
192
193         if (pvd == NULL)
194                 return;
195
196         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197
198         oldsize = pvd->vdev_children * sizeof (vdev_t *);
199         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200         newsize = pvd->vdev_children * sizeof (vdev_t *);
201
202         newchild = kmem_zalloc(newsize, KM_SLEEP);
203         if (pvd->vdev_child != NULL) {
204                 bcopy(pvd->vdev_child, newchild, oldsize);
205                 kmem_free(pvd->vdev_child, oldsize);
206         }
207
208         pvd->vdev_child = newchild;
209         pvd->vdev_child[id] = cvd;
210
211         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213
214         /*
215          * Walk up all ancestors to update guid sum.
216          */
217         for (; pvd != NULL; pvd = pvd->vdev_parent)
218                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219 }
220
221 void
222 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223 {
224         int c;
225         uint_t id = cvd->vdev_id;
226
227         ASSERT(cvd->vdev_parent == pvd);
228
229         if (pvd == NULL)
230                 return;
231
232         ASSERT(id < pvd->vdev_children);
233         ASSERT(pvd->vdev_child[id] == cvd);
234
235         pvd->vdev_child[id] = NULL;
236         cvd->vdev_parent = NULL;
237
238         for (c = 0; c < pvd->vdev_children; c++)
239                 if (pvd->vdev_child[c])
240                         break;
241
242         if (c == pvd->vdev_children) {
243                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244                 pvd->vdev_child = NULL;
245                 pvd->vdev_children = 0;
246         }
247
248         /*
249          * Walk up all ancestors to update guid sum.
250          */
251         for (; pvd != NULL; pvd = pvd->vdev_parent)
252                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253 }
254
255 /*
256  * Remove any holes in the child array.
257  */
258 void
259 vdev_compact_children(vdev_t *pvd)
260 {
261         vdev_t **newchild, *cvd;
262         int oldc = pvd->vdev_children;
263         int newc;
264
265         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266
267         for (int c = newc = 0; c < oldc; c++)
268                 if (pvd->vdev_child[c])
269                         newc++;
270
271         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272
273         for (int c = newc = 0; c < oldc; c++) {
274                 if ((cvd = pvd->vdev_child[c]) != NULL) {
275                         newchild[newc] = cvd;
276                         cvd->vdev_id = newc++;
277                 }
278         }
279
280         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281         pvd->vdev_child = newchild;
282         pvd->vdev_children = newc;
283 }
284
285 /*
286  * Allocate and minimally initialize a vdev_t.
287  */
288 vdev_t *
289 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290 {
291         vdev_t *vd;
292
293         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294
295         if (spa->spa_root_vdev == NULL) {
296                 ASSERT(ops == &vdev_root_ops);
297                 spa->spa_root_vdev = vd;
298                 spa->spa_load_guid = spa_generate_guid(NULL);
299         }
300
301         if (guid == 0 && ops != &vdev_hole_ops) {
302                 if (spa->spa_root_vdev == vd) {
303                         /*
304                          * The root vdev's guid will also be the pool guid,
305                          * which must be unique among all pools.
306                          */
307                         guid = spa_generate_guid(NULL);
308                 } else {
309                         /*
310                          * Any other vdev's guid must be unique within the pool.
311                          */
312                         guid = spa_generate_guid(spa);
313                 }
314                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315         }
316
317         vd->vdev_spa = spa;
318         vd->vdev_id = id;
319         vd->vdev_guid = guid;
320         vd->vdev_guid_sum = guid;
321         vd->vdev_ops = ops;
322         vd->vdev_state = VDEV_STATE_CLOSED;
323         vd->vdev_ishole = (ops == &vdev_hole_ops);
324
325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328         for (int t = 0; t < DTL_TYPES; t++) {
329                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330                     &vd->vdev_dtl_lock);
331         }
332         txg_list_create(&vd->vdev_ms_list,
333             offsetof(struct metaslab, ms_txg_node));
334         txg_list_create(&vd->vdev_dtl_list,
335             offsetof(struct vdev, vdev_dtl_node));
336         vd->vdev_stat.vs_timestamp = gethrtime();
337         vdev_queue_init(vd);
338         vdev_cache_init(vd);
339
340         return (vd);
341 }
342
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352         vdev_ops_t *ops;
353         char *type;
354         uint64_t guid = 0, islog, nparity;
355         vdev_t *vd;
356
357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360                 return (SET_ERROR(EINVAL));
361
362         if ((ops = vdev_getops(type)) == NULL)
363                 return (SET_ERROR(EINVAL));
364
365         /*
366          * If this is a load, get the vdev guid from the nvlist.
367          * Otherwise, vdev_alloc_common() will generate one for us.
368          */
369         if (alloctype == VDEV_ALLOC_LOAD) {
370                 uint64_t label_id;
371
372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373                     label_id != id)
374                         return (SET_ERROR(EINVAL));
375
376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377                         return (SET_ERROR(EINVAL));
378         } else if (alloctype == VDEV_ALLOC_SPARE) {
379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380                         return (SET_ERROR(EINVAL));
381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383                         return (SET_ERROR(EINVAL));
384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386                         return (SET_ERROR(EINVAL));
387         }
388
389         /*
390          * The first allocated vdev must be of type 'root'.
391          */
392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393                 return (SET_ERROR(EINVAL));
394
395         /*
396          * Determine whether we're a log vdev.
397          */
398         islog = 0;
399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401                 return (SET_ERROR(ENOTSUP));
402
403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404                 return (SET_ERROR(ENOTSUP));
405
406         /*
407          * Set the nparity property for RAID-Z vdevs.
408          */
409         nparity = -1ULL;
410         if (ops == &vdev_raidz_ops) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412                     &nparity) == 0) {
413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414                                 return (SET_ERROR(EINVAL));
415                         /*
416                          * Previous versions could only support 1 or 2 parity
417                          * device.
418                          */
419                         if (nparity > 1 &&
420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
421                                 return (SET_ERROR(ENOTSUP));
422                         if (nparity > 2 &&
423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
424                                 return (SET_ERROR(ENOTSUP));
425                 } else {
426                         /*
427                          * We require the parity to be specified for SPAs that
428                          * support multiple parity levels.
429                          */
430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431                                 return (SET_ERROR(EINVAL));
432                         /*
433                          * Otherwise, we default to 1 parity device for RAID-Z.
434                          */
435                         nparity = 1;
436                 }
437         } else {
438                 nparity = 0;
439         }
440         ASSERT(nparity != -1ULL);
441
442         vd = vdev_alloc_common(spa, id, guid, ops);
443
444         vd->vdev_islog = islog;
445         vd->vdev_nparity = nparity;
446
447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448                 vd->vdev_path = spa_strdup(vd->vdev_path);
449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452             &vd->vdev_physpath) == 0)
453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457         /*
458          * Set the whole_disk property.  If it's not specified, leave the value
459          * as -1.
460          */
461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462             &vd->vdev_wholedisk) != 0)
463                 vd->vdev_wholedisk = -1ULL;
464
465         /*
466          * Look for the 'not present' flag.  This will only be set if the device
467          * was not present at the time of import.
468          */
469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470             &vd->vdev_not_present);
471
472         /*
473          * Get the alignment requirement.
474          */
475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477         /*
478          * Retrieve the vdev creation time.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481             &vd->vdev_crtxg);
482
483         /*
484          * If we're a top-level vdev, try to load the allocation parameters.
485          */
486         if (parent && !parent->vdev_parent &&
487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489                     &vd->vdev_ms_array);
490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491                     &vd->vdev_ms_shift);
492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493                     &vd->vdev_asize);
494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495                     &vd->vdev_removing);
496         }
497
498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500                     alloctype == VDEV_ALLOC_ADD ||
501                     alloctype == VDEV_ALLOC_SPLIT ||
502                     alloctype == VDEV_ALLOC_ROOTPOOL);
503                 vd->vdev_mg = metaslab_group_create(islog ?
504                     spa_log_class(spa) : spa_normal_class(spa), vd);
505         }
506
507         /*
508          * If we're a leaf vdev, try to load the DTL object and other state.
509          */
510         if (vd->vdev_ops->vdev_op_leaf &&
511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
513                 if (alloctype == VDEV_ALLOC_LOAD) {
514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515                             &vd->vdev_dtl_smo.smo_object);
516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517                             &vd->vdev_unspare);
518                 }
519
520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521                         uint64_t spare = 0;
522
523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524                             &spare) == 0 && spare)
525                                 spa_spare_add(vd);
526                 }
527
528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529                     &vd->vdev_offline);
530
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532                     &vd->vdev_resilvering);
533
534                 /*
535                  * When importing a pool, we want to ignore the persistent fault
536                  * state, as the diagnosis made on another system may not be
537                  * valid in the current context.  Local vdevs will
538                  * remain in the faulted state.
539                  */
540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542                             &vd->vdev_faulted);
543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544                             &vd->vdev_degraded);
545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546                             &vd->vdev_removed);
547
548                         if (vd->vdev_faulted || vd->vdev_degraded) {
549                                 char *aux;
550
551                                 vd->vdev_label_aux =
552                                     VDEV_AUX_ERR_EXCEEDED;
553                                 if (nvlist_lookup_string(nv,
554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555                                     strcmp(aux, "external") == 0)
556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557                         }
558                 }
559         }
560
561         /*
562          * Add ourselves to the parent's list of children.
563          */
564         vdev_add_child(parent, vd);
565
566         *vdp = vd;
567
568         return (0);
569 }
570
571 void
572 vdev_free(vdev_t *vd)
573 {
574         spa_t *spa = vd->vdev_spa;
575
576         /*
577          * vdev_free() implies closing the vdev first.  This is simpler than
578          * trying to ensure complicated semantics for all callers.
579          */
580         vdev_close(vd);
581
582         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584
585         /*
586          * Free all children.
587          */
588         for (int c = 0; c < vd->vdev_children; c++)
589                 vdev_free(vd->vdev_child[c]);
590
591         ASSERT(vd->vdev_child == NULL);
592         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593
594         /*
595          * Discard allocation state.
596          */
597         if (vd->vdev_mg != NULL) {
598                 vdev_metaslab_fini(vd);
599                 metaslab_group_destroy(vd->vdev_mg);
600         }
601
602         ASSERT0(vd->vdev_stat.vs_space);
603         ASSERT0(vd->vdev_stat.vs_dspace);
604         ASSERT0(vd->vdev_stat.vs_alloc);
605
606         /*
607          * Remove this vdev from its parent's child list.
608          */
609         vdev_remove_child(vd->vdev_parent, vd);
610
611         ASSERT(vd->vdev_parent == NULL);
612
613         /*
614          * Clean up vdev structure.
615          */
616         vdev_queue_fini(vd);
617         vdev_cache_fini(vd);
618
619         if (vd->vdev_path)
620                 spa_strfree(vd->vdev_path);
621         if (vd->vdev_devid)
622                 spa_strfree(vd->vdev_devid);
623         if (vd->vdev_physpath)
624                 spa_strfree(vd->vdev_physpath);
625         if (vd->vdev_fru)
626                 spa_strfree(vd->vdev_fru);
627
628         if (vd->vdev_isspare)
629                 spa_spare_remove(vd);
630         if (vd->vdev_isl2cache)
631                 spa_l2cache_remove(vd);
632
633         txg_list_destroy(&vd->vdev_ms_list);
634         txg_list_destroy(&vd->vdev_dtl_list);
635
636         mutex_enter(&vd->vdev_dtl_lock);
637         for (int t = 0; t < DTL_TYPES; t++) {
638                 space_map_unload(&vd->vdev_dtl[t]);
639                 space_map_destroy(&vd->vdev_dtl[t]);
640         }
641         mutex_exit(&vd->vdev_dtl_lock);
642
643         mutex_destroy(&vd->vdev_dtl_lock);
644         mutex_destroy(&vd->vdev_stat_lock);
645         mutex_destroy(&vd->vdev_probe_lock);
646
647         if (vd == spa->spa_root_vdev)
648                 spa->spa_root_vdev = NULL;
649
650         kmem_free(vd, sizeof (vdev_t));
651 }
652
653 /*
654  * Transfer top-level vdev state from svd to tvd.
655  */
656 static void
657 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
658 {
659         spa_t *spa = svd->vdev_spa;
660         metaslab_t *msp;
661         vdev_t *vd;
662         int t;
663
664         ASSERT(tvd == tvd->vdev_top);
665
666         tvd->vdev_ms_array = svd->vdev_ms_array;
667         tvd->vdev_ms_shift = svd->vdev_ms_shift;
668         tvd->vdev_ms_count = svd->vdev_ms_count;
669
670         svd->vdev_ms_array = 0;
671         svd->vdev_ms_shift = 0;
672         svd->vdev_ms_count = 0;
673
674         if (tvd->vdev_mg)
675                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
676         tvd->vdev_mg = svd->vdev_mg;
677         tvd->vdev_ms = svd->vdev_ms;
678
679         svd->vdev_mg = NULL;
680         svd->vdev_ms = NULL;
681
682         if (tvd->vdev_mg != NULL)
683                 tvd->vdev_mg->mg_vd = tvd;
684
685         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
686         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
687         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
688
689         svd->vdev_stat.vs_alloc = 0;
690         svd->vdev_stat.vs_space = 0;
691         svd->vdev_stat.vs_dspace = 0;
692
693         for (t = 0; t < TXG_SIZE; t++) {
694                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
695                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
696                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
697                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
698                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
699                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
700         }
701
702         if (list_link_active(&svd->vdev_config_dirty_node)) {
703                 vdev_config_clean(svd);
704                 vdev_config_dirty(tvd);
705         }
706
707         if (list_link_active(&svd->vdev_state_dirty_node)) {
708                 vdev_state_clean(svd);
709                 vdev_state_dirty(tvd);
710         }
711
712         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
713         svd->vdev_deflate_ratio = 0;
714
715         tvd->vdev_islog = svd->vdev_islog;
716         svd->vdev_islog = 0;
717 }
718
719 static void
720 vdev_top_update(vdev_t *tvd, vdev_t *vd)
721 {
722         if (vd == NULL)
723                 return;
724
725         vd->vdev_top = tvd;
726
727         for (int c = 0; c < vd->vdev_children; c++)
728                 vdev_top_update(tvd, vd->vdev_child[c]);
729 }
730
731 /*
732  * Add a mirror/replacing vdev above an existing vdev.
733  */
734 vdev_t *
735 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
736 {
737         spa_t *spa = cvd->vdev_spa;
738         vdev_t *pvd = cvd->vdev_parent;
739         vdev_t *mvd;
740
741         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742
743         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
744
745         mvd->vdev_asize = cvd->vdev_asize;
746         mvd->vdev_min_asize = cvd->vdev_min_asize;
747         mvd->vdev_max_asize = cvd->vdev_max_asize;
748         mvd->vdev_ashift = cvd->vdev_ashift;
749         mvd->vdev_state = cvd->vdev_state;
750         mvd->vdev_crtxg = cvd->vdev_crtxg;
751
752         vdev_remove_child(pvd, cvd);
753         vdev_add_child(pvd, mvd);
754         cvd->vdev_id = mvd->vdev_children;
755         vdev_add_child(mvd, cvd);
756         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
757
758         if (mvd == mvd->vdev_top)
759                 vdev_top_transfer(cvd, mvd);
760
761         return (mvd);
762 }
763
764 /*
765  * Remove a 1-way mirror/replacing vdev from the tree.
766  */
767 void
768 vdev_remove_parent(vdev_t *cvd)
769 {
770         vdev_t *mvd = cvd->vdev_parent;
771         vdev_t *pvd = mvd->vdev_parent;
772
773         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
774
775         ASSERT(mvd->vdev_children == 1);
776         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
777             mvd->vdev_ops == &vdev_replacing_ops ||
778             mvd->vdev_ops == &vdev_spare_ops);
779         cvd->vdev_ashift = mvd->vdev_ashift;
780
781         vdev_remove_child(mvd, cvd);
782         vdev_remove_child(pvd, mvd);
783
784         /*
785          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
786          * Otherwise, we could have detached an offline device, and when we
787          * go to import the pool we'll think we have two top-level vdevs,
788          * instead of a different version of the same top-level vdev.
789          */
790         if (mvd->vdev_top == mvd) {
791                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
792                 cvd->vdev_orig_guid = cvd->vdev_guid;
793                 cvd->vdev_guid += guid_delta;
794                 cvd->vdev_guid_sum += guid_delta;
795         }
796         cvd->vdev_id = mvd->vdev_id;
797         vdev_add_child(pvd, cvd);
798         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
799
800         if (cvd == cvd->vdev_top)
801                 vdev_top_transfer(mvd, cvd);
802
803         ASSERT(mvd->vdev_children == 0);
804         vdev_free(mvd);
805 }
806
807 int
808 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
809 {
810         spa_t *spa = vd->vdev_spa;
811         objset_t *mos = spa->spa_meta_objset;
812         uint64_t m;
813         uint64_t oldc = vd->vdev_ms_count;
814         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
815         metaslab_t **mspp;
816         int error;
817
818         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
819
820         /*
821          * This vdev is not being allocated from yet or is a hole.
822          */
823         if (vd->vdev_ms_shift == 0)
824                 return (0);
825
826         ASSERT(!vd->vdev_ishole);
827
828         /*
829          * Compute the raidz-deflation ratio.  Note, we hard-code
830          * in 128k (1 << 17) because it is the current "typical" blocksize.
831          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
832          * or we will inconsistently account for existing bp's.
833          */
834         vd->vdev_deflate_ratio = (1 << 17) /
835             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
836
837         ASSERT(oldc <= newc);
838
839         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
840
841         if (oldc != 0) {
842                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
843                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
844         }
845
846         vd->vdev_ms = mspp;
847         vd->vdev_ms_count = newc;
848
849         for (m = oldc; m < newc; m++) {
850                 space_map_obj_t smo = { 0, 0, 0 };
851                 if (txg == 0) {
852                         uint64_t object = 0;
853                         error = dmu_read(mos, vd->vdev_ms_array,
854                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
855                             DMU_READ_PREFETCH);
856                         if (error)
857                                 return (error);
858                         if (object != 0) {
859                                 dmu_buf_t *db;
860                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
861                                 if (error)
862                                         return (error);
863                                 ASSERT3U(db->db_size, >=, sizeof (smo));
864                                 bcopy(db->db_data, &smo, sizeof (smo));
865                                 ASSERT3U(smo.smo_object, ==, object);
866                                 dmu_buf_rele(db, FTAG);
867                         }
868                 }
869                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
870                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
871         }
872
873         if (txg == 0)
874                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
875
876         /*
877          * If the vdev is being removed we don't activate
878          * the metaslabs since we want to ensure that no new
879          * allocations are performed on this device.
880          */
881         if (oldc == 0 && !vd->vdev_removing)
882                 metaslab_group_activate(vd->vdev_mg);
883
884         if (txg == 0)
885                 spa_config_exit(spa, SCL_ALLOC, FTAG);
886
887         return (0);
888 }
889
890 void
891 vdev_metaslab_fini(vdev_t *vd)
892 {
893         uint64_t m;
894         uint64_t count = vd->vdev_ms_count;
895
896         if (vd->vdev_ms != NULL) {
897                 metaslab_group_passivate(vd->vdev_mg);
898                 for (m = 0; m < count; m++)
899                         if (vd->vdev_ms[m] != NULL)
900                                 metaslab_fini(vd->vdev_ms[m]);
901                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
902                 vd->vdev_ms = NULL;
903         }
904 }
905
906 typedef struct vdev_probe_stats {
907         boolean_t       vps_readable;
908         boolean_t       vps_writeable;
909         int             vps_flags;
910 } vdev_probe_stats_t;
911
912 static void
913 vdev_probe_done(zio_t *zio)
914 {
915         spa_t *spa = zio->io_spa;
916         vdev_t *vd = zio->io_vd;
917         vdev_probe_stats_t *vps = zio->io_private;
918
919         ASSERT(vd->vdev_probe_zio != NULL);
920
921         if (zio->io_type == ZIO_TYPE_READ) {
922                 if (zio->io_error == 0)
923                         vps->vps_readable = 1;
924                 if (zio->io_error == 0 && spa_writeable(spa)) {
925                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
926                             zio->io_offset, zio->io_size, zio->io_data,
927                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
928                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
929                 } else {
930                         zio_buf_free(zio->io_data, zio->io_size);
931                 }
932         } else if (zio->io_type == ZIO_TYPE_WRITE) {
933                 if (zio->io_error == 0)
934                         vps->vps_writeable = 1;
935                 zio_buf_free(zio->io_data, zio->io_size);
936         } else if (zio->io_type == ZIO_TYPE_NULL) {
937                 zio_t *pio;
938
939                 vd->vdev_cant_read |= !vps->vps_readable;
940                 vd->vdev_cant_write |= !vps->vps_writeable;
941
942                 if (vdev_readable(vd) &&
943                     (vdev_writeable(vd) || !spa_writeable(spa))) {
944                         zio->io_error = 0;
945                 } else {
946                         ASSERT(zio->io_error != 0);
947                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
948                             spa, vd, NULL, 0, 0);
949                         zio->io_error = SET_ERROR(ENXIO);
950                 }
951
952                 mutex_enter(&vd->vdev_probe_lock);
953                 ASSERT(vd->vdev_probe_zio == zio);
954                 vd->vdev_probe_zio = NULL;
955                 mutex_exit(&vd->vdev_probe_lock);
956
957                 while ((pio = zio_walk_parents(zio)) != NULL)
958                         if (!vdev_accessible(vd, pio))
959                                 pio->io_error = SET_ERROR(ENXIO);
960
961                 kmem_free(vps, sizeof (*vps));
962         }
963 }
964
965 /*
966  * Determine whether this device is accessible.
967  *
968  * Read and write to several known locations: the pad regions of each
969  * vdev label but the first, which we leave alone in case it contains
970  * a VTOC.
971  */
972 zio_t *
973 vdev_probe(vdev_t *vd, zio_t *zio)
974 {
975         spa_t *spa = vd->vdev_spa;
976         vdev_probe_stats_t *vps = NULL;
977         zio_t *pio;
978
979         ASSERT(vd->vdev_ops->vdev_op_leaf);
980
981         /*
982          * Don't probe the probe.
983          */
984         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
985                 return (NULL);
986
987         /*
988          * To prevent 'probe storms' when a device fails, we create
989          * just one probe i/o at a time.  All zios that want to probe
990          * this vdev will become parents of the probe io.
991          */
992         mutex_enter(&vd->vdev_probe_lock);
993
994         if ((pio = vd->vdev_probe_zio) == NULL) {
995                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
996
997                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
998                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
999                     ZIO_FLAG_TRYHARD;
1000
1001                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1002                         /*
1003                          * vdev_cant_read and vdev_cant_write can only
1004                          * transition from TRUE to FALSE when we have the
1005                          * SCL_ZIO lock as writer; otherwise they can only
1006                          * transition from FALSE to TRUE.  This ensures that
1007                          * any zio looking at these values can assume that
1008                          * failures persist for the life of the I/O.  That's
1009                          * important because when a device has intermittent
1010                          * connectivity problems, we want to ensure that
1011                          * they're ascribed to the device (ENXIO) and not
1012                          * the zio (EIO).
1013                          *
1014                          * Since we hold SCL_ZIO as writer here, clear both
1015                          * values so the probe can reevaluate from first
1016                          * principles.
1017                          */
1018                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1019                         vd->vdev_cant_read = B_FALSE;
1020                         vd->vdev_cant_write = B_FALSE;
1021                 }
1022
1023                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1024                     vdev_probe_done, vps,
1025                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1026
1027                 /*
1028                  * We can't change the vdev state in this context, so we
1029                  * kick off an async task to do it on our behalf.
1030                  */
1031                 if (zio != NULL) {
1032                         vd->vdev_probe_wanted = B_TRUE;
1033                         spa_async_request(spa, SPA_ASYNC_PROBE);
1034                 }
1035         }
1036
1037         if (zio != NULL)
1038                 zio_add_child(zio, pio);
1039
1040         mutex_exit(&vd->vdev_probe_lock);
1041
1042         if (vps == NULL) {
1043                 ASSERT(zio != NULL);
1044                 return (NULL);
1045         }
1046
1047         for (int l = 1; l < VDEV_LABELS; l++) {
1048                 zio_nowait(zio_read_phys(pio, vd,
1049                     vdev_label_offset(vd->vdev_psize, l,
1050                     offsetof(vdev_label_t, vl_pad2)),
1051                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1052                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1053                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1054         }
1055
1056         if (zio == NULL)
1057                 return (pio);
1058
1059         zio_nowait(pio);
1060         return (NULL);
1061 }
1062
1063 static void
1064 vdev_open_child(void *arg)
1065 {
1066         vdev_t *vd = arg;
1067
1068         vd->vdev_open_thread = curthread;
1069         vd->vdev_open_error = vdev_open(vd);
1070         vd->vdev_open_thread = NULL;
1071 }
1072
1073 boolean_t
1074 vdev_uses_zvols(vdev_t *vd)
1075 {
1076         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1077             strlen(ZVOL_DIR)) == 0)
1078                 return (B_TRUE);
1079         for (int c = 0; c < vd->vdev_children; c++)
1080                 if (vdev_uses_zvols(vd->vdev_child[c]))
1081                         return (B_TRUE);
1082         return (B_FALSE);
1083 }
1084
1085 void
1086 vdev_open_children(vdev_t *vd)
1087 {
1088         taskq_t *tq;
1089         int children = vd->vdev_children;
1090
1091         /*
1092          * in order to handle pools on top of zvols, do the opens
1093          * in a single thread so that the same thread holds the
1094          * spa_namespace_lock
1095          */
1096         if (B_TRUE || vdev_uses_zvols(vd)) {
1097                 for (int c = 0; c < children; c++)
1098                         vd->vdev_child[c]->vdev_open_error =
1099                             vdev_open(vd->vdev_child[c]);
1100                 return;
1101         }
1102         tq = taskq_create("vdev_open", children, minclsyspri,
1103             children, children, TASKQ_PREPOPULATE);
1104
1105         for (int c = 0; c < children; c++)
1106                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1107                     TQ_SLEEP) != 0);
1108
1109         taskq_destroy(tq);
1110 }
1111
1112 /*
1113  * Prepare a virtual device for access.
1114  */
1115 int
1116 vdev_open(vdev_t *vd)
1117 {
1118         spa_t *spa = vd->vdev_spa;
1119         int error;
1120         uint64_t osize = 0;
1121         uint64_t max_osize = 0;
1122         uint64_t asize, max_asize, psize;
1123         uint64_t ashift = 0;
1124
1125         ASSERT(vd->vdev_open_thread == curthread ||
1126             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1127         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1128             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1129             vd->vdev_state == VDEV_STATE_OFFLINE);
1130
1131         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1132         vd->vdev_cant_read = B_FALSE;
1133         vd->vdev_cant_write = B_FALSE;
1134         vd->vdev_min_asize = vdev_get_min_asize(vd);
1135
1136         /*
1137          * If this vdev is not removed, check its fault status.  If it's
1138          * faulted, bail out of the open.
1139          */
1140         if (!vd->vdev_removed && vd->vdev_faulted) {
1141                 ASSERT(vd->vdev_children == 0);
1142                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1143                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1144                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1145                     vd->vdev_label_aux);
1146                 return (SET_ERROR(ENXIO));
1147         } else if (vd->vdev_offline) {
1148                 ASSERT(vd->vdev_children == 0);
1149                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1150                 return (SET_ERROR(ENXIO));
1151         }
1152
1153         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1154
1155         /*
1156          * Reset the vdev_reopening flag so that we actually close
1157          * the vdev on error.
1158          */
1159         vd->vdev_reopening = B_FALSE;
1160         if (zio_injection_enabled && error == 0)
1161                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1162
1163         if (error) {
1164                 if (vd->vdev_removed &&
1165                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1166                         vd->vdev_removed = B_FALSE;
1167
1168                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1169                     vd->vdev_stat.vs_aux);
1170                 return (error);
1171         }
1172
1173         vd->vdev_removed = B_FALSE;
1174
1175         /*
1176          * Recheck the faulted flag now that we have confirmed that
1177          * the vdev is accessible.  If we're faulted, bail.
1178          */
1179         if (vd->vdev_faulted) {
1180                 ASSERT(vd->vdev_children == 0);
1181                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1182                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1183                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1184                     vd->vdev_label_aux);
1185                 return (SET_ERROR(ENXIO));
1186         }
1187
1188         if (vd->vdev_degraded) {
1189                 ASSERT(vd->vdev_children == 0);
1190                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1191                     VDEV_AUX_ERR_EXCEEDED);
1192         } else {
1193                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1194         }
1195
1196         /*
1197          * For hole or missing vdevs we just return success.
1198          */
1199         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1200                 return (0);
1201
1202         if (vd->vdev_ops->vdev_op_leaf) {
1203                 vd->vdev_notrim = B_FALSE;
1204                 trim_map_create(vd);
1205         }
1206
1207         for (int c = 0; c < vd->vdev_children; c++) {
1208                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1209                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1210                             VDEV_AUX_NONE);
1211                         break;
1212                 }
1213         }
1214
1215         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1216         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1217
1218         if (vd->vdev_children == 0) {
1219                 if (osize < SPA_MINDEVSIZE) {
1220                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1221                             VDEV_AUX_TOO_SMALL);
1222                         return (SET_ERROR(EOVERFLOW));
1223                 }
1224                 psize = osize;
1225                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1226                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1227                     VDEV_LABEL_END_SIZE);
1228         } else {
1229                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1230                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1231                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1232                             VDEV_AUX_TOO_SMALL);
1233                         return (SET_ERROR(EOVERFLOW));
1234                 }
1235                 psize = 0;
1236                 asize = osize;
1237                 max_asize = max_osize;
1238         }
1239
1240         vd->vdev_psize = psize;
1241
1242         /*
1243          * Make sure the allocatable size hasn't shrunk.
1244          */
1245         if (asize < vd->vdev_min_asize) {
1246                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1247                     VDEV_AUX_BAD_LABEL);
1248                 return (SET_ERROR(EINVAL));
1249         }
1250
1251         if (vd->vdev_asize == 0) {
1252                 /*
1253                  * This is the first-ever open, so use the computed values.
1254                  * For testing purposes, a higher ashift can be requested.
1255                  */
1256                 vd->vdev_asize = asize;
1257                 vd->vdev_max_asize = max_asize;
1258                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1259         } else {
1260                 /*
1261                  * Make sure the alignment requirement hasn't increased.
1262                  */
1263                 if (ashift > vd->vdev_top->vdev_ashift) {
1264                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1265                             VDEV_AUX_BAD_LABEL);
1266                         return (EINVAL);
1267                 }
1268                 vd->vdev_max_asize = max_asize;
1269         }
1270
1271         /*
1272          * If all children are healthy and the asize has increased,
1273          * then we've experienced dynamic LUN growth.  If automatic
1274          * expansion is enabled then use the additional space.
1275          */
1276         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1277             (vd->vdev_expanding || spa->spa_autoexpand))
1278                 vd->vdev_asize = asize;
1279
1280         vdev_set_min_asize(vd);
1281
1282         /*
1283          * Ensure we can issue some IO before declaring the
1284          * vdev open for business.
1285          */
1286         if (vd->vdev_ops->vdev_op_leaf &&
1287             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1288                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1289                     VDEV_AUX_ERR_EXCEEDED);
1290                 return (error);
1291         }
1292
1293         /*
1294          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1295          * resilver.  But don't do this if we are doing a reopen for a scrub,
1296          * since this would just restart the scrub we are already doing.
1297          */
1298         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1299             vdev_resilver_needed(vd, NULL, NULL))
1300                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1301
1302         return (0);
1303 }
1304
1305 /*
1306  * Called once the vdevs are all opened, this routine validates the label
1307  * contents.  This needs to be done before vdev_load() so that we don't
1308  * inadvertently do repair I/Os to the wrong device.
1309  *
1310  * If 'strict' is false ignore the spa guid check. This is necessary because
1311  * if the machine crashed during a re-guid the new guid might have been written
1312  * to all of the vdev labels, but not the cached config. The strict check
1313  * will be performed when the pool is opened again using the mos config.
1314  *
1315  * This function will only return failure if one of the vdevs indicates that it
1316  * has since been destroyed or exported.  This is only possible if
1317  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1318  * will be updated but the function will return 0.
1319  */
1320 int
1321 vdev_validate(vdev_t *vd, boolean_t strict)
1322 {
1323         spa_t *spa = vd->vdev_spa;
1324         nvlist_t *label;
1325         uint64_t guid = 0, top_guid;
1326         uint64_t state;
1327
1328         for (int c = 0; c < vd->vdev_children; c++)
1329                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1330                         return (SET_ERROR(EBADF));
1331
1332         /*
1333          * If the device has already failed, or was marked offline, don't do
1334          * any further validation.  Otherwise, label I/O will fail and we will
1335          * overwrite the previous state.
1336          */
1337         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1338                 uint64_t aux_guid = 0;
1339                 nvlist_t *nvl;
1340                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1341                     spa_last_synced_txg(spa) : -1ULL;
1342
1343                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1344                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1345                             VDEV_AUX_BAD_LABEL);
1346                         return (0);
1347                 }
1348
1349                 /*
1350                  * Determine if this vdev has been split off into another
1351                  * pool.  If so, then refuse to open it.
1352                  */
1353                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1354                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1355                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1356                             VDEV_AUX_SPLIT_POOL);
1357                         nvlist_free(label);
1358                         return (0);
1359                 }
1360
1361                 if (strict && (nvlist_lookup_uint64(label,
1362                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1363                     guid != spa_guid(spa))) {
1364                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1365                             VDEV_AUX_CORRUPT_DATA);
1366                         nvlist_free(label);
1367                         return (0);
1368                 }
1369
1370                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1371                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1372                     &aux_guid) != 0)
1373                         aux_guid = 0;
1374
1375                 /*
1376                  * If this vdev just became a top-level vdev because its
1377                  * sibling was detached, it will have adopted the parent's
1378                  * vdev guid -- but the label may or may not be on disk yet.
1379                  * Fortunately, either version of the label will have the
1380                  * same top guid, so if we're a top-level vdev, we can
1381                  * safely compare to that instead.
1382                  *
1383                  * If we split this vdev off instead, then we also check the
1384                  * original pool's guid.  We don't want to consider the vdev
1385                  * corrupt if it is partway through a split operation.
1386                  */
1387                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1388                     &guid) != 0 ||
1389                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1390                     &top_guid) != 0 ||
1391                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1392                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1393                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1394                             VDEV_AUX_CORRUPT_DATA);
1395                         nvlist_free(label);
1396                         return (0);
1397                 }
1398
1399                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1400                     &state) != 0) {
1401                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1402                             VDEV_AUX_CORRUPT_DATA);
1403                         nvlist_free(label);
1404                         return (0);
1405                 }
1406
1407                 nvlist_free(label);
1408
1409                 /*
1410                  * If this is a verbatim import, no need to check the
1411                  * state of the pool.
1412                  */
1413                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1414                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1415                     state != POOL_STATE_ACTIVE)
1416                         return (SET_ERROR(EBADF));
1417
1418                 /*
1419                  * If we were able to open and validate a vdev that was
1420                  * previously marked permanently unavailable, clear that state
1421                  * now.
1422                  */
1423                 if (vd->vdev_not_present)
1424                         vd->vdev_not_present = 0;
1425         }
1426
1427         return (0);
1428 }
1429
1430 /*
1431  * Close a virtual device.
1432  */
1433 void
1434 vdev_close(vdev_t *vd)
1435 {
1436         spa_t *spa = vd->vdev_spa;
1437         vdev_t *pvd = vd->vdev_parent;
1438
1439         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1440
1441         /*
1442          * If our parent is reopening, then we are as well, unless we are
1443          * going offline.
1444          */
1445         if (pvd != NULL && pvd->vdev_reopening)
1446                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1447
1448         vd->vdev_ops->vdev_op_close(vd);
1449
1450         vdev_cache_purge(vd);
1451
1452         if (vd->vdev_ops->vdev_op_leaf)
1453                 trim_map_destroy(vd);
1454
1455         /*
1456          * We record the previous state before we close it, so that if we are
1457          * doing a reopen(), we don't generate FMA ereports if we notice that
1458          * it's still faulted.
1459          */
1460         vd->vdev_prevstate = vd->vdev_state;
1461
1462         if (vd->vdev_offline)
1463                 vd->vdev_state = VDEV_STATE_OFFLINE;
1464         else
1465                 vd->vdev_state = VDEV_STATE_CLOSED;
1466         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1467 }
1468
1469 void
1470 vdev_hold(vdev_t *vd)
1471 {
1472         spa_t *spa = vd->vdev_spa;
1473
1474         ASSERT(spa_is_root(spa));
1475         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1476                 return;
1477
1478         for (int c = 0; c < vd->vdev_children; c++)
1479                 vdev_hold(vd->vdev_child[c]);
1480
1481         if (vd->vdev_ops->vdev_op_leaf)
1482                 vd->vdev_ops->vdev_op_hold(vd);
1483 }
1484
1485 void
1486 vdev_rele(vdev_t *vd)
1487 {
1488         spa_t *spa = vd->vdev_spa;
1489
1490         ASSERT(spa_is_root(spa));
1491         for (int c = 0; c < vd->vdev_children; c++)
1492                 vdev_rele(vd->vdev_child[c]);
1493
1494         if (vd->vdev_ops->vdev_op_leaf)
1495                 vd->vdev_ops->vdev_op_rele(vd);
1496 }
1497
1498 /*
1499  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1500  * reopen leaf vdevs which had previously been opened as they might deadlock
1501  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1502  * If the leaf has never been opened then open it, as usual.
1503  */
1504 void
1505 vdev_reopen(vdev_t *vd)
1506 {
1507         spa_t *spa = vd->vdev_spa;
1508
1509         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1510
1511         /* set the reopening flag unless we're taking the vdev offline */
1512         vd->vdev_reopening = !vd->vdev_offline;
1513         vdev_close(vd);
1514         (void) vdev_open(vd);
1515
1516         /*
1517          * Call vdev_validate() here to make sure we have the same device.
1518          * Otherwise, a device with an invalid label could be successfully
1519          * opened in response to vdev_reopen().
1520          */
1521         if (vd->vdev_aux) {
1522                 (void) vdev_validate_aux(vd);
1523                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1524                     vd->vdev_aux == &spa->spa_l2cache &&
1525                     !l2arc_vdev_present(vd))
1526                         l2arc_add_vdev(spa, vd);
1527         } else {
1528                 (void) vdev_validate(vd, B_TRUE);
1529         }
1530
1531         /*
1532          * Reassess parent vdev's health.
1533          */
1534         vdev_propagate_state(vd);
1535 }
1536
1537 int
1538 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1539 {
1540         int error;
1541
1542         /*
1543          * Normally, partial opens (e.g. of a mirror) are allowed.
1544          * For a create, however, we want to fail the request if
1545          * there are any components we can't open.
1546          */
1547         error = vdev_open(vd);
1548
1549         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1550                 vdev_close(vd);
1551                 return (error ? error : ENXIO);
1552         }
1553
1554         /*
1555          * Recursively initialize all labels.
1556          */
1557         if ((error = vdev_label_init(vd, txg, isreplacing ?
1558             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1559                 vdev_close(vd);
1560                 return (error);
1561         }
1562
1563         return (0);
1564 }
1565
1566 void
1567 vdev_metaslab_set_size(vdev_t *vd)
1568 {
1569         /*
1570          * Aim for roughly 200 metaslabs per vdev.
1571          */
1572         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1573         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1574 }
1575
1576 void
1577 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1578 {
1579         ASSERT(vd == vd->vdev_top);
1580         ASSERT(!vd->vdev_ishole);
1581         ASSERT(ISP2(flags));
1582         ASSERT(spa_writeable(vd->vdev_spa));
1583
1584         if (flags & VDD_METASLAB)
1585                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1586
1587         if (flags & VDD_DTL)
1588                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1589
1590         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1591 }
1592
1593 /*
1594  * DTLs.
1595  *
1596  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1597  * the vdev has less than perfect replication.  There are four kinds of DTL:
1598  *
1599  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1600  *
1601  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1602  *
1603  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1604  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1605  *      txgs that was scrubbed.
1606  *
1607  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1608  *      persistent errors or just some device being offline.
1609  *      Unlike the other three, the DTL_OUTAGE map is not generally
1610  *      maintained; it's only computed when needed, typically to
1611  *      determine whether a device can be detached.
1612  *
1613  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1614  * either has the data or it doesn't.
1615  *
1616  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1617  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1618  * if any child is less than fully replicated, then so is its parent.
1619  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1620  * comprising only those txgs which appear in 'maxfaults' or more children;
1621  * those are the txgs we don't have enough replication to read.  For example,
1622  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1623  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1624  * two child DTL_MISSING maps.
1625  *
1626  * It should be clear from the above that to compute the DTLs and outage maps
1627  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1628  * Therefore, that is all we keep on disk.  When loading the pool, or after
1629  * a configuration change, we generate all other DTLs from first principles.
1630  */
1631 void
1632 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1633 {
1634         space_map_t *sm = &vd->vdev_dtl[t];
1635
1636         ASSERT(t < DTL_TYPES);
1637         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1638         ASSERT(spa_writeable(vd->vdev_spa));
1639
1640         mutex_enter(sm->sm_lock);
1641         if (!space_map_contains(sm, txg, size))
1642                 space_map_add(sm, txg, size);
1643         mutex_exit(sm->sm_lock);
1644 }
1645
1646 boolean_t
1647 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1648 {
1649         space_map_t *sm = &vd->vdev_dtl[t];
1650         boolean_t dirty = B_FALSE;
1651
1652         ASSERT(t < DTL_TYPES);
1653         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1654
1655         mutex_enter(sm->sm_lock);
1656         if (sm->sm_space != 0)
1657                 dirty = space_map_contains(sm, txg, size);
1658         mutex_exit(sm->sm_lock);
1659
1660         return (dirty);
1661 }
1662
1663 boolean_t
1664 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1665 {
1666         space_map_t *sm = &vd->vdev_dtl[t];
1667         boolean_t empty;
1668
1669         mutex_enter(sm->sm_lock);
1670         empty = (sm->sm_space == 0);
1671         mutex_exit(sm->sm_lock);
1672
1673         return (empty);
1674 }
1675
1676 /*
1677  * Reassess DTLs after a config change or scrub completion.
1678  */
1679 void
1680 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1681 {
1682         spa_t *spa = vd->vdev_spa;
1683         avl_tree_t reftree;
1684         int minref;
1685
1686         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1687
1688         for (int c = 0; c < vd->vdev_children; c++)
1689                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1690                     scrub_txg, scrub_done);
1691
1692         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1693                 return;
1694
1695         if (vd->vdev_ops->vdev_op_leaf) {
1696                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1697
1698                 mutex_enter(&vd->vdev_dtl_lock);
1699                 if (scrub_txg != 0 &&
1700                     (spa->spa_scrub_started ||
1701                     (scn && scn->scn_phys.scn_errors == 0))) {
1702                         /*
1703                          * We completed a scrub up to scrub_txg.  If we
1704                          * did it without rebooting, then the scrub dtl
1705                          * will be valid, so excise the old region and
1706                          * fold in the scrub dtl.  Otherwise, leave the
1707                          * dtl as-is if there was an error.
1708                          *
1709                          * There's little trick here: to excise the beginning
1710                          * of the DTL_MISSING map, we put it into a reference
1711                          * tree and then add a segment with refcnt -1 that
1712                          * covers the range [0, scrub_txg).  This means
1713                          * that each txg in that range has refcnt -1 or 0.
1714                          * We then add DTL_SCRUB with a refcnt of 2, so that
1715                          * entries in the range [0, scrub_txg) will have a
1716                          * positive refcnt -- either 1 or 2.  We then convert
1717                          * the reference tree into the new DTL_MISSING map.
1718                          */
1719                         space_map_ref_create(&reftree);
1720                         space_map_ref_add_map(&reftree,
1721                             &vd->vdev_dtl[DTL_MISSING], 1);
1722                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1723                         space_map_ref_add_map(&reftree,
1724                             &vd->vdev_dtl[DTL_SCRUB], 2);
1725                         space_map_ref_generate_map(&reftree,
1726                             &vd->vdev_dtl[DTL_MISSING], 1);
1727                         space_map_ref_destroy(&reftree);
1728                 }
1729                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1730                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1731                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1732                 if (scrub_done)
1733                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1734                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1735                 if (!vdev_readable(vd))
1736                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1737                 else
1738                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1739                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1740                 mutex_exit(&vd->vdev_dtl_lock);
1741
1742                 if (txg != 0)
1743                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1744                 return;
1745         }
1746
1747         mutex_enter(&vd->vdev_dtl_lock);
1748         for (int t = 0; t < DTL_TYPES; t++) {
1749                 /* account for child's outage in parent's missing map */
1750                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1751                 if (t == DTL_SCRUB)
1752                         continue;                       /* leaf vdevs only */
1753                 if (t == DTL_PARTIAL)
1754                         minref = 1;                     /* i.e. non-zero */
1755                 else if (vd->vdev_nparity != 0)
1756                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1757                 else
1758                         minref = vd->vdev_children;     /* any kind of mirror */
1759                 space_map_ref_create(&reftree);
1760                 for (int c = 0; c < vd->vdev_children; c++) {
1761                         vdev_t *cvd = vd->vdev_child[c];
1762                         mutex_enter(&cvd->vdev_dtl_lock);
1763                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1764                         mutex_exit(&cvd->vdev_dtl_lock);
1765                 }
1766                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1767                 space_map_ref_destroy(&reftree);
1768         }
1769         mutex_exit(&vd->vdev_dtl_lock);
1770 }
1771
1772 static int
1773 vdev_dtl_load(vdev_t *vd)
1774 {
1775         spa_t *spa = vd->vdev_spa;
1776         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1777         objset_t *mos = spa->spa_meta_objset;
1778         dmu_buf_t *db;
1779         int error;
1780
1781         ASSERT(vd->vdev_children == 0);
1782
1783         if (smo->smo_object == 0)
1784                 return (0);
1785
1786         ASSERT(!vd->vdev_ishole);
1787
1788         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1789                 return (error);
1790
1791         ASSERT3U(db->db_size, >=, sizeof (*smo));
1792         bcopy(db->db_data, smo, sizeof (*smo));
1793         dmu_buf_rele(db, FTAG);
1794
1795         mutex_enter(&vd->vdev_dtl_lock);
1796         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1797             NULL, SM_ALLOC, smo, mos);
1798         mutex_exit(&vd->vdev_dtl_lock);
1799
1800         return (error);
1801 }
1802
1803 void
1804 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1805 {
1806         spa_t *spa = vd->vdev_spa;
1807         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1808         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1809         objset_t *mos = spa->spa_meta_objset;
1810         space_map_t smsync;
1811         kmutex_t smlock;
1812         dmu_buf_t *db;
1813         dmu_tx_t *tx;
1814
1815         ASSERT(!vd->vdev_ishole);
1816
1817         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1818
1819         if (vd->vdev_detached) {
1820                 if (smo->smo_object != 0) {
1821                         int err = dmu_object_free(mos, smo->smo_object, tx);
1822                         ASSERT0(err);
1823                         smo->smo_object = 0;
1824                 }
1825                 dmu_tx_commit(tx);
1826                 return;
1827         }
1828
1829         if (smo->smo_object == 0) {
1830                 ASSERT(smo->smo_objsize == 0);
1831                 ASSERT(smo->smo_alloc == 0);
1832                 smo->smo_object = dmu_object_alloc(mos,
1833                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1834                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1835                 ASSERT(smo->smo_object != 0);
1836                 vdev_config_dirty(vd->vdev_top);
1837         }
1838
1839         bzero(&smlock, sizeof (smlock));
1840         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1841
1842         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1843             &smlock);
1844
1845         mutex_enter(&smlock);
1846
1847         mutex_enter(&vd->vdev_dtl_lock);
1848         space_map_walk(sm, space_map_add, &smsync);
1849         mutex_exit(&vd->vdev_dtl_lock);
1850
1851         space_map_truncate(smo, mos, tx);
1852         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1853         space_map_vacate(&smsync, NULL, NULL);
1854
1855         space_map_destroy(&smsync);
1856
1857         mutex_exit(&smlock);
1858         mutex_destroy(&smlock);
1859
1860         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1861         dmu_buf_will_dirty(db, tx);
1862         ASSERT3U(db->db_size, >=, sizeof (*smo));
1863         bcopy(smo, db->db_data, sizeof (*smo));
1864         dmu_buf_rele(db, FTAG);
1865
1866         dmu_tx_commit(tx);
1867 }
1868
1869 /*
1870  * Determine whether the specified vdev can be offlined/detached/removed
1871  * without losing data.
1872  */
1873 boolean_t
1874 vdev_dtl_required(vdev_t *vd)
1875 {
1876         spa_t *spa = vd->vdev_spa;
1877         vdev_t *tvd = vd->vdev_top;
1878         uint8_t cant_read = vd->vdev_cant_read;
1879         boolean_t required;
1880
1881         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1882
1883         if (vd == spa->spa_root_vdev || vd == tvd)
1884                 return (B_TRUE);
1885
1886         /*
1887          * Temporarily mark the device as unreadable, and then determine
1888          * whether this results in any DTL outages in the top-level vdev.
1889          * If not, we can safely offline/detach/remove the device.
1890          */
1891         vd->vdev_cant_read = B_TRUE;
1892         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1893         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1894         vd->vdev_cant_read = cant_read;
1895         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1896
1897         if (!required && zio_injection_enabled)
1898                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1899
1900         return (required);
1901 }
1902
1903 /*
1904  * Determine if resilver is needed, and if so the txg range.
1905  */
1906 boolean_t
1907 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1908 {
1909         boolean_t needed = B_FALSE;
1910         uint64_t thismin = UINT64_MAX;
1911         uint64_t thismax = 0;
1912
1913         if (vd->vdev_children == 0) {
1914                 mutex_enter(&vd->vdev_dtl_lock);
1915                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1916                     vdev_writeable(vd)) {
1917                         space_seg_t *ss;
1918
1919                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1920                         thismin = ss->ss_start - 1;
1921                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1922                         thismax = ss->ss_end;
1923                         needed = B_TRUE;
1924                 }
1925                 mutex_exit(&vd->vdev_dtl_lock);
1926         } else {
1927                 for (int c = 0; c < vd->vdev_children; c++) {
1928                         vdev_t *cvd = vd->vdev_child[c];
1929                         uint64_t cmin, cmax;
1930
1931                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1932                                 thismin = MIN(thismin, cmin);
1933                                 thismax = MAX(thismax, cmax);
1934                                 needed = B_TRUE;
1935                         }
1936                 }
1937         }
1938
1939         if (needed && minp) {
1940                 *minp = thismin;
1941                 *maxp = thismax;
1942         }
1943         return (needed);
1944 }
1945
1946 void
1947 vdev_load(vdev_t *vd)
1948 {
1949         /*
1950          * Recursively load all children.
1951          */
1952         for (int c = 0; c < vd->vdev_children; c++)
1953                 vdev_load(vd->vdev_child[c]);
1954
1955         /*
1956          * If this is a top-level vdev, initialize its metaslabs.
1957          */
1958         if (vd == vd->vdev_top && !vd->vdev_ishole &&
1959             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1960             vdev_metaslab_init(vd, 0) != 0))
1961                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1962                     VDEV_AUX_CORRUPT_DATA);
1963
1964         /*
1965          * If this is a leaf vdev, load its DTL.
1966          */
1967         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1968                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1969                     VDEV_AUX_CORRUPT_DATA);
1970 }
1971
1972 /*
1973  * The special vdev case is used for hot spares and l2cache devices.  Its
1974  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1975  * we make sure that we can open the underlying device, then try to read the
1976  * label, and make sure that the label is sane and that it hasn't been
1977  * repurposed to another pool.
1978  */
1979 int
1980 vdev_validate_aux(vdev_t *vd)
1981 {
1982         nvlist_t *label;
1983         uint64_t guid, version;
1984         uint64_t state;
1985
1986         if (!vdev_readable(vd))
1987                 return (0);
1988
1989         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1990                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1991                     VDEV_AUX_CORRUPT_DATA);
1992                 return (-1);
1993         }
1994
1995         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1996             !SPA_VERSION_IS_SUPPORTED(version) ||
1997             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1998             guid != vd->vdev_guid ||
1999             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2000                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2001                     VDEV_AUX_CORRUPT_DATA);
2002                 nvlist_free(label);
2003                 return (-1);
2004         }
2005
2006         /*
2007          * We don't actually check the pool state here.  If it's in fact in
2008          * use by another pool, we update this fact on the fly when requested.
2009          */
2010         nvlist_free(label);
2011         return (0);
2012 }
2013
2014 void
2015 vdev_remove(vdev_t *vd, uint64_t txg)
2016 {
2017         spa_t *spa = vd->vdev_spa;
2018         objset_t *mos = spa->spa_meta_objset;
2019         dmu_tx_t *tx;
2020
2021         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2022
2023         if (vd->vdev_dtl_smo.smo_object) {
2024                 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2025                 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2026                 vd->vdev_dtl_smo.smo_object = 0;
2027         }
2028
2029         if (vd->vdev_ms != NULL) {
2030                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2031                         metaslab_t *msp = vd->vdev_ms[m];
2032
2033                         if (msp == NULL || msp->ms_smo.smo_object == 0)
2034                                 continue;
2035
2036                         ASSERT0(msp->ms_smo.smo_alloc);
2037                         (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2038                         msp->ms_smo.smo_object = 0;
2039                 }
2040         }
2041
2042         if (vd->vdev_ms_array) {
2043                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2044                 vd->vdev_ms_array = 0;
2045                 vd->vdev_ms_shift = 0;
2046         }
2047         dmu_tx_commit(tx);
2048 }
2049
2050 void
2051 vdev_sync_done(vdev_t *vd, uint64_t txg)
2052 {
2053         metaslab_t *msp;
2054         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2055
2056         ASSERT(!vd->vdev_ishole);
2057
2058         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2059                 metaslab_sync_done(msp, txg);
2060
2061         if (reassess)
2062                 metaslab_sync_reassess(vd->vdev_mg);
2063 }
2064
2065 void
2066 vdev_sync(vdev_t *vd, uint64_t txg)
2067 {
2068         spa_t *spa = vd->vdev_spa;
2069         vdev_t *lvd;
2070         metaslab_t *msp;
2071         dmu_tx_t *tx;
2072
2073         ASSERT(!vd->vdev_ishole);
2074
2075         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2076                 ASSERT(vd == vd->vdev_top);
2077                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2078                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2079                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2080                 ASSERT(vd->vdev_ms_array != 0);
2081                 vdev_config_dirty(vd);
2082                 dmu_tx_commit(tx);
2083         }
2084
2085         /*
2086          * Remove the metadata associated with this vdev once it's empty.
2087          */
2088         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2089                 vdev_remove(vd, txg);
2090
2091         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2092                 metaslab_sync(msp, txg);
2093                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2094         }
2095
2096         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2097                 vdev_dtl_sync(lvd, txg);
2098
2099         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2100 }
2101
2102 uint64_t
2103 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2104 {
2105         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2106 }
2107
2108 /*
2109  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2110  * not be opened, and no I/O is attempted.
2111  */
2112 int
2113 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2114 {
2115         vdev_t *vd, *tvd;
2116
2117         spa_vdev_state_enter(spa, SCL_NONE);
2118
2119         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2120                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2121
2122         if (!vd->vdev_ops->vdev_op_leaf)
2123                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2124
2125         tvd = vd->vdev_top;
2126
2127         /*
2128          * We don't directly use the aux state here, but if we do a
2129          * vdev_reopen(), we need this value to be present to remember why we
2130          * were faulted.
2131          */
2132         vd->vdev_label_aux = aux;
2133
2134         /*
2135          * Faulted state takes precedence over degraded.
2136          */
2137         vd->vdev_delayed_close = B_FALSE;
2138         vd->vdev_faulted = 1ULL;
2139         vd->vdev_degraded = 0ULL;
2140         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2141
2142         /*
2143          * If this device has the only valid copy of the data, then
2144          * back off and simply mark the vdev as degraded instead.
2145          */
2146         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2147                 vd->vdev_degraded = 1ULL;
2148                 vd->vdev_faulted = 0ULL;
2149
2150                 /*
2151                  * If we reopen the device and it's not dead, only then do we
2152                  * mark it degraded.
2153                  */
2154                 vdev_reopen(tvd);
2155
2156                 if (vdev_readable(vd))
2157                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2158         }
2159
2160         return (spa_vdev_state_exit(spa, vd, 0));
2161 }
2162
2163 /*
2164  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2165  * user that something is wrong.  The vdev continues to operate as normal as far
2166  * as I/O is concerned.
2167  */
2168 int
2169 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2170 {
2171         vdev_t *vd;
2172
2173         spa_vdev_state_enter(spa, SCL_NONE);
2174
2175         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2176                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2177
2178         if (!vd->vdev_ops->vdev_op_leaf)
2179                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2180
2181         /*
2182          * If the vdev is already faulted, then don't do anything.
2183          */
2184         if (vd->vdev_faulted || vd->vdev_degraded)
2185                 return (spa_vdev_state_exit(spa, NULL, 0));
2186
2187         vd->vdev_degraded = 1ULL;
2188         if (!vdev_is_dead(vd))
2189                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2190                     aux);
2191
2192         return (spa_vdev_state_exit(spa, vd, 0));
2193 }
2194
2195 /*
2196  * Online the given vdev.
2197  *
2198  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2199  * spare device should be detached when the device finishes resilvering.
2200  * Second, the online should be treated like a 'test' online case, so no FMA
2201  * events are generated if the device fails to open.
2202  */
2203 int
2204 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2205 {
2206         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2207
2208         spa_vdev_state_enter(spa, SCL_NONE);
2209
2210         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2211                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2212
2213         if (!vd->vdev_ops->vdev_op_leaf)
2214                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2215
2216         tvd = vd->vdev_top;
2217         vd->vdev_offline = B_FALSE;
2218         vd->vdev_tmpoffline = B_FALSE;
2219         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2220         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2221
2222         /* XXX - L2ARC 1.0 does not support expansion */
2223         if (!vd->vdev_aux) {
2224                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2225                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2226         }
2227
2228         vdev_reopen(tvd);
2229         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2230
2231         if (!vd->vdev_aux) {
2232                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2233                         pvd->vdev_expanding = B_FALSE;
2234         }
2235
2236         if (newstate)
2237                 *newstate = vd->vdev_state;
2238         if ((flags & ZFS_ONLINE_UNSPARE) &&
2239             !vdev_is_dead(vd) && vd->vdev_parent &&
2240             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2241             vd->vdev_parent->vdev_child[0] == vd)
2242                 vd->vdev_unspare = B_TRUE;
2243
2244         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2245
2246                 /* XXX - L2ARC 1.0 does not support expansion */
2247                 if (vd->vdev_aux)
2248                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2249                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2250         }
2251         return (spa_vdev_state_exit(spa, vd, 0));
2252 }
2253
2254 static int
2255 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2256 {
2257         vdev_t *vd, *tvd;
2258         int error = 0;
2259         uint64_t generation;
2260         metaslab_group_t *mg;
2261
2262 top:
2263         spa_vdev_state_enter(spa, SCL_ALLOC);
2264
2265         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2266                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2267
2268         if (!vd->vdev_ops->vdev_op_leaf)
2269                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2270
2271         tvd = vd->vdev_top;
2272         mg = tvd->vdev_mg;
2273         generation = spa->spa_config_generation + 1;
2274
2275         /*
2276          * If the device isn't already offline, try to offline it.
2277          */
2278         if (!vd->vdev_offline) {
2279                 /*
2280                  * If this device has the only valid copy of some data,
2281                  * don't allow it to be offlined. Log devices are always
2282                  * expendable.
2283                  */
2284                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2285                     vdev_dtl_required(vd))
2286                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2287
2288                 /*
2289                  * If the top-level is a slog and it has had allocations
2290                  * then proceed.  We check that the vdev's metaslab group
2291                  * is not NULL since it's possible that we may have just
2292                  * added this vdev but not yet initialized its metaslabs.
2293                  */
2294                 if (tvd->vdev_islog && mg != NULL) {
2295                         /*
2296                          * Prevent any future allocations.
2297                          */
2298                         metaslab_group_passivate(mg);
2299                         (void) spa_vdev_state_exit(spa, vd, 0);
2300
2301                         error = spa_offline_log(spa);
2302
2303                         spa_vdev_state_enter(spa, SCL_ALLOC);
2304
2305                         /*
2306                          * Check to see if the config has changed.
2307                          */
2308                         if (error || generation != spa->spa_config_generation) {
2309                                 metaslab_group_activate(mg);
2310                                 if (error)
2311                                         return (spa_vdev_state_exit(spa,
2312                                             vd, error));
2313                                 (void) spa_vdev_state_exit(spa, vd, 0);
2314                                 goto top;
2315                         }
2316                         ASSERT0(tvd->vdev_stat.vs_alloc);
2317                 }
2318
2319                 /*
2320                  * Offline this device and reopen its top-level vdev.
2321                  * If the top-level vdev is a log device then just offline
2322                  * it. Otherwise, if this action results in the top-level
2323                  * vdev becoming unusable, undo it and fail the request.
2324                  */
2325                 vd->vdev_offline = B_TRUE;
2326                 vdev_reopen(tvd);
2327
2328                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2329                     vdev_is_dead(tvd)) {
2330                         vd->vdev_offline = B_FALSE;
2331                         vdev_reopen(tvd);
2332                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2333                 }
2334
2335                 /*
2336                  * Add the device back into the metaslab rotor so that
2337                  * once we online the device it's open for business.
2338                  */
2339                 if (tvd->vdev_islog && mg != NULL)
2340                         metaslab_group_activate(mg);
2341         }
2342
2343         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2344
2345         return (spa_vdev_state_exit(spa, vd, 0));
2346 }
2347
2348 int
2349 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2350 {
2351         int error;
2352
2353         mutex_enter(&spa->spa_vdev_top_lock);
2354         error = vdev_offline_locked(spa, guid, flags);
2355         mutex_exit(&spa->spa_vdev_top_lock);
2356
2357         return (error);
2358 }
2359
2360 /*
2361  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2362  * vdev_offline(), we assume the spa config is locked.  We also clear all
2363  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2364  */
2365 void
2366 vdev_clear(spa_t *spa, vdev_t *vd)
2367 {
2368         vdev_t *rvd = spa->spa_root_vdev;
2369
2370         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2371
2372         if (vd == NULL)
2373                 vd = rvd;
2374
2375         vd->vdev_stat.vs_read_errors = 0;
2376         vd->vdev_stat.vs_write_errors = 0;
2377         vd->vdev_stat.vs_checksum_errors = 0;
2378
2379         for (int c = 0; c < vd->vdev_children; c++)
2380                 vdev_clear(spa, vd->vdev_child[c]);
2381
2382         /*
2383          * If we're in the FAULTED state or have experienced failed I/O, then
2384          * clear the persistent state and attempt to reopen the device.  We
2385          * also mark the vdev config dirty, so that the new faulted state is
2386          * written out to disk.
2387          */
2388         if (vd->vdev_faulted || vd->vdev_degraded ||
2389             !vdev_readable(vd) || !vdev_writeable(vd)) {
2390
2391                 /*
2392                  * When reopening in reponse to a clear event, it may be due to
2393                  * a fmadm repair request.  In this case, if the device is
2394                  * still broken, we want to still post the ereport again.
2395                  */
2396                 vd->vdev_forcefault = B_TRUE;
2397
2398                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2399                 vd->vdev_cant_read = B_FALSE;
2400                 vd->vdev_cant_write = B_FALSE;
2401
2402                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2403
2404                 vd->vdev_forcefault = B_FALSE;
2405
2406                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2407                         vdev_state_dirty(vd->vdev_top);
2408
2409                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2410                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2411
2412                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2413         }
2414
2415         /*
2416          * When clearing a FMA-diagnosed fault, we always want to
2417          * unspare the device, as we assume that the original spare was
2418          * done in response to the FMA fault.
2419          */
2420         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2421             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2422             vd->vdev_parent->vdev_child[0] == vd)
2423                 vd->vdev_unspare = B_TRUE;
2424 }
2425
2426 boolean_t
2427 vdev_is_dead(vdev_t *vd)
2428 {
2429         /*
2430          * Holes and missing devices are always considered "dead".
2431          * This simplifies the code since we don't have to check for
2432          * these types of devices in the various code paths.
2433          * Instead we rely on the fact that we skip over dead devices
2434          * before issuing I/O to them.
2435          */
2436         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2437             vd->vdev_ops == &vdev_missing_ops);
2438 }
2439
2440 boolean_t
2441 vdev_readable(vdev_t *vd)
2442 {
2443         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2444 }
2445
2446 boolean_t
2447 vdev_writeable(vdev_t *vd)
2448 {
2449         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2450 }
2451
2452 boolean_t
2453 vdev_allocatable(vdev_t *vd)
2454 {
2455         uint64_t state = vd->vdev_state;
2456
2457         /*
2458          * We currently allow allocations from vdevs which may be in the
2459          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2460          * fails to reopen then we'll catch it later when we're holding
2461          * the proper locks.  Note that we have to get the vdev state
2462          * in a local variable because although it changes atomically,
2463          * we're asking two separate questions about it.
2464          */
2465         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2466             !vd->vdev_cant_write && !vd->vdev_ishole);
2467 }
2468
2469 boolean_t
2470 vdev_accessible(vdev_t *vd, zio_t *zio)
2471 {
2472         ASSERT(zio->io_vd == vd);
2473
2474         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2475                 return (B_FALSE);
2476
2477         if (zio->io_type == ZIO_TYPE_READ)
2478                 return (!vd->vdev_cant_read);
2479
2480         if (zio->io_type == ZIO_TYPE_WRITE)
2481                 return (!vd->vdev_cant_write);
2482
2483         return (B_TRUE);
2484 }
2485
2486 /*
2487  * Get statistics for the given vdev.
2488  */
2489 void
2490 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2491 {
2492         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2493
2494         mutex_enter(&vd->vdev_stat_lock);
2495         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2496         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2497         vs->vs_state = vd->vdev_state;
2498         vs->vs_rsize = vdev_get_min_asize(vd);
2499         if (vd->vdev_ops->vdev_op_leaf)
2500                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2501         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2502         mutex_exit(&vd->vdev_stat_lock);
2503
2504         /*
2505          * If we're getting stats on the root vdev, aggregate the I/O counts
2506          * over all top-level vdevs (i.e. the direct children of the root).
2507          */
2508         if (vd == rvd) {
2509                 for (int c = 0; c < rvd->vdev_children; c++) {
2510                         vdev_t *cvd = rvd->vdev_child[c];
2511                         vdev_stat_t *cvs = &cvd->vdev_stat;
2512
2513                         mutex_enter(&vd->vdev_stat_lock);
2514                         for (int t = 0; t < ZIO_TYPES; t++) {
2515                                 vs->vs_ops[t] += cvs->vs_ops[t];
2516                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2517                         }
2518                         cvs->vs_scan_removing = cvd->vdev_removing;
2519                         mutex_exit(&vd->vdev_stat_lock);
2520                 }
2521         }
2522 }
2523
2524 void
2525 vdev_clear_stats(vdev_t *vd)
2526 {
2527         mutex_enter(&vd->vdev_stat_lock);
2528         vd->vdev_stat.vs_space = 0;
2529         vd->vdev_stat.vs_dspace = 0;
2530         vd->vdev_stat.vs_alloc = 0;
2531         mutex_exit(&vd->vdev_stat_lock);
2532 }
2533
2534 void
2535 vdev_scan_stat_init(vdev_t *vd)
2536 {
2537         vdev_stat_t *vs = &vd->vdev_stat;
2538
2539         for (int c = 0; c < vd->vdev_children; c++)
2540                 vdev_scan_stat_init(vd->vdev_child[c]);
2541
2542         mutex_enter(&vd->vdev_stat_lock);
2543         vs->vs_scan_processed = 0;
2544         mutex_exit(&vd->vdev_stat_lock);
2545 }
2546
2547 void
2548 vdev_stat_update(zio_t *zio, uint64_t psize)
2549 {
2550         spa_t *spa = zio->io_spa;
2551         vdev_t *rvd = spa->spa_root_vdev;
2552         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2553         vdev_t *pvd;
2554         uint64_t txg = zio->io_txg;
2555         vdev_stat_t *vs = &vd->vdev_stat;
2556         zio_type_t type = zio->io_type;
2557         int flags = zio->io_flags;
2558
2559         /*
2560          * If this i/o is a gang leader, it didn't do any actual work.
2561          */
2562         if (zio->io_gang_tree)
2563                 return;
2564
2565         if (zio->io_error == 0) {
2566                 /*
2567                  * If this is a root i/o, don't count it -- we've already
2568                  * counted the top-level vdevs, and vdev_get_stats() will
2569                  * aggregate them when asked.  This reduces contention on
2570                  * the root vdev_stat_lock and implicitly handles blocks
2571                  * that compress away to holes, for which there is no i/o.
2572                  * (Holes never create vdev children, so all the counters
2573                  * remain zero, which is what we want.)
2574                  *
2575                  * Note: this only applies to successful i/o (io_error == 0)
2576                  * because unlike i/o counts, errors are not additive.
2577                  * When reading a ditto block, for example, failure of
2578                  * one top-level vdev does not imply a root-level error.
2579                  */
2580                 if (vd == rvd)
2581                         return;
2582
2583                 ASSERT(vd == zio->io_vd);
2584
2585                 if (flags & ZIO_FLAG_IO_BYPASS)
2586                         return;
2587
2588                 mutex_enter(&vd->vdev_stat_lock);
2589
2590                 if (flags & ZIO_FLAG_IO_REPAIR) {
2591                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2592                                 dsl_scan_phys_t *scn_phys =
2593                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2594                                 uint64_t *processed = &scn_phys->scn_processed;
2595
2596                                 /* XXX cleanup? */
2597                                 if (vd->vdev_ops->vdev_op_leaf)
2598                                         atomic_add_64(processed, psize);
2599                                 vs->vs_scan_processed += psize;
2600                         }
2601
2602                         if (flags & ZIO_FLAG_SELF_HEAL)
2603                                 vs->vs_self_healed += psize;
2604                 }
2605
2606                 vs->vs_ops[type]++;
2607                 vs->vs_bytes[type] += psize;
2608
2609                 mutex_exit(&vd->vdev_stat_lock);
2610                 return;
2611         }
2612
2613         if (flags & ZIO_FLAG_SPECULATIVE)
2614                 return;
2615
2616         /*
2617          * If this is an I/O error that is going to be retried, then ignore the
2618          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2619          * hard errors, when in reality they can happen for any number of
2620          * innocuous reasons (bus resets, MPxIO link failure, etc).
2621          */
2622         if (zio->io_error == EIO &&
2623             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2624                 return;
2625
2626         /*
2627          * Intent logs writes won't propagate their error to the root
2628          * I/O so don't mark these types of failures as pool-level
2629          * errors.
2630          */
2631         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2632                 return;
2633
2634         mutex_enter(&vd->vdev_stat_lock);
2635         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2636                 if (zio->io_error == ECKSUM)
2637                         vs->vs_checksum_errors++;
2638                 else
2639                         vs->vs_read_errors++;
2640         }
2641         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2642                 vs->vs_write_errors++;
2643         mutex_exit(&vd->vdev_stat_lock);
2644
2645         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2646             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2647             (flags & ZIO_FLAG_SCAN_THREAD) ||
2648             spa->spa_claiming)) {
2649                 /*
2650                  * This is either a normal write (not a repair), or it's
2651                  * a repair induced by the scrub thread, or it's a repair
2652                  * made by zil_claim() during spa_load() in the first txg.
2653                  * In the normal case, we commit the DTL change in the same
2654                  * txg as the block was born.  In the scrub-induced repair
2655                  * case, we know that scrubs run in first-pass syncing context,
2656                  * so we commit the DTL change in spa_syncing_txg(spa).
2657                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2658                  *
2659                  * We currently do not make DTL entries for failed spontaneous
2660                  * self-healing writes triggered by normal (non-scrubbing)
2661                  * reads, because we have no transactional context in which to
2662                  * do so -- and it's not clear that it'd be desirable anyway.
2663                  */
2664                 if (vd->vdev_ops->vdev_op_leaf) {
2665                         uint64_t commit_txg = txg;
2666                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2667                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2668                                 ASSERT(spa_sync_pass(spa) == 1);
2669                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2670                                 commit_txg = spa_syncing_txg(spa);
2671                         } else if (spa->spa_claiming) {
2672                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2673                                 commit_txg = spa_first_txg(spa);
2674                         }
2675                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2676                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2677                                 return;
2678                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2679                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2680                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2681                 }
2682                 if (vd != rvd)
2683                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2684         }
2685 }
2686
2687 /*
2688  * Update the in-core space usage stats for this vdev, its metaslab class,
2689  * and the root vdev.
2690  */
2691 void
2692 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2693     int64_t space_delta)
2694 {
2695         int64_t dspace_delta = space_delta;
2696         spa_t *spa = vd->vdev_spa;
2697         vdev_t *rvd = spa->spa_root_vdev;
2698         metaslab_group_t *mg = vd->vdev_mg;
2699         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2700
2701         ASSERT(vd == vd->vdev_top);
2702
2703         /*
2704          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2705          * factor.  We must calculate this here and not at the root vdev
2706          * because the root vdev's psize-to-asize is simply the max of its
2707          * childrens', thus not accurate enough for us.
2708          */
2709         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2710         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2711         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2712             vd->vdev_deflate_ratio;
2713
2714         mutex_enter(&vd->vdev_stat_lock);
2715         vd->vdev_stat.vs_alloc += alloc_delta;
2716         vd->vdev_stat.vs_space += space_delta;
2717         vd->vdev_stat.vs_dspace += dspace_delta;
2718         mutex_exit(&vd->vdev_stat_lock);
2719
2720         if (mc == spa_normal_class(spa)) {
2721                 mutex_enter(&rvd->vdev_stat_lock);
2722                 rvd->vdev_stat.vs_alloc += alloc_delta;
2723                 rvd->vdev_stat.vs_space += space_delta;
2724                 rvd->vdev_stat.vs_dspace += dspace_delta;
2725                 mutex_exit(&rvd->vdev_stat_lock);
2726         }
2727
2728         if (mc != NULL) {
2729                 ASSERT(rvd == vd->vdev_parent);
2730                 ASSERT(vd->vdev_ms_count != 0);
2731
2732                 metaslab_class_space_update(mc,
2733                     alloc_delta, defer_delta, space_delta, dspace_delta);
2734         }
2735 }
2736
2737 /*
2738  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2739  * so that it will be written out next time the vdev configuration is synced.
2740  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2741  */
2742 void
2743 vdev_config_dirty(vdev_t *vd)
2744 {
2745         spa_t *spa = vd->vdev_spa;
2746         vdev_t *rvd = spa->spa_root_vdev;
2747         int c;
2748
2749         ASSERT(spa_writeable(spa));
2750
2751         /*
2752          * If this is an aux vdev (as with l2cache and spare devices), then we
2753          * update the vdev config manually and set the sync flag.
2754          */
2755         if (vd->vdev_aux != NULL) {
2756                 spa_aux_vdev_t *sav = vd->vdev_aux;
2757                 nvlist_t **aux;
2758                 uint_t naux;
2759
2760                 for (c = 0; c < sav->sav_count; c++) {
2761                         if (sav->sav_vdevs[c] == vd)
2762                                 break;
2763                 }
2764
2765                 if (c == sav->sav_count) {
2766                         /*
2767                          * We're being removed.  There's nothing more to do.
2768                          */
2769                         ASSERT(sav->sav_sync == B_TRUE);
2770                         return;
2771                 }
2772
2773                 sav->sav_sync = B_TRUE;
2774
2775                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2776                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2777                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2778                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2779                 }
2780
2781                 ASSERT(c < naux);
2782
2783                 /*
2784                  * Setting the nvlist in the middle if the array is a little
2785                  * sketchy, but it will work.
2786                  */
2787                 nvlist_free(aux[c]);
2788                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2789
2790                 return;
2791         }
2792
2793         /*
2794          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2795          * must either hold SCL_CONFIG as writer, or must be the sync thread
2796          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2797          * so this is sufficient to ensure mutual exclusion.
2798          */
2799         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2800             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2801             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2802
2803         if (vd == rvd) {
2804                 for (c = 0; c < rvd->vdev_children; c++)
2805                         vdev_config_dirty(rvd->vdev_child[c]);
2806         } else {
2807                 ASSERT(vd == vd->vdev_top);
2808
2809                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2810                     !vd->vdev_ishole)
2811                         list_insert_head(&spa->spa_config_dirty_list, vd);
2812         }
2813 }
2814
2815 void
2816 vdev_config_clean(vdev_t *vd)
2817 {
2818         spa_t *spa = vd->vdev_spa;
2819
2820         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2821             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2822             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2823
2824         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2825         list_remove(&spa->spa_config_dirty_list, vd);
2826 }
2827
2828 /*
2829  * Mark a top-level vdev's state as dirty, so that the next pass of
2830  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2831  * the state changes from larger config changes because they require
2832  * much less locking, and are often needed for administrative actions.
2833  */
2834 void
2835 vdev_state_dirty(vdev_t *vd)
2836 {
2837         spa_t *spa = vd->vdev_spa;
2838
2839         ASSERT(spa_writeable(spa));
2840         ASSERT(vd == vd->vdev_top);
2841
2842         /*
2843          * The state list is protected by the SCL_STATE lock.  The caller
2844          * must either hold SCL_STATE as writer, or must be the sync thread
2845          * (which holds SCL_STATE as reader).  There's only one sync thread,
2846          * so this is sufficient to ensure mutual exclusion.
2847          */
2848         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2849             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2850             spa_config_held(spa, SCL_STATE, RW_READER)));
2851
2852         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2853                 list_insert_head(&spa->spa_state_dirty_list, vd);
2854 }
2855
2856 void
2857 vdev_state_clean(vdev_t *vd)
2858 {
2859         spa_t *spa = vd->vdev_spa;
2860
2861         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2862             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2863             spa_config_held(spa, SCL_STATE, RW_READER)));
2864
2865         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2866         list_remove(&spa->spa_state_dirty_list, vd);
2867 }
2868
2869 /*
2870  * Propagate vdev state up from children to parent.
2871  */
2872 void
2873 vdev_propagate_state(vdev_t *vd)
2874 {
2875         spa_t *spa = vd->vdev_spa;
2876         vdev_t *rvd = spa->spa_root_vdev;
2877         int degraded = 0, faulted = 0;
2878         int corrupted = 0;
2879         vdev_t *child;
2880
2881         if (vd->vdev_children > 0) {
2882                 for (int c = 0; c < vd->vdev_children; c++) {
2883                         child = vd->vdev_child[c];
2884
2885                         /*
2886                          * Don't factor holes into the decision.
2887                          */
2888                         if (child->vdev_ishole)
2889                                 continue;
2890
2891                         if (!vdev_readable(child) ||
2892                             (!vdev_writeable(child) && spa_writeable(spa))) {
2893                                 /*
2894                                  * Root special: if there is a top-level log
2895                                  * device, treat the root vdev as if it were
2896                                  * degraded.
2897                                  */
2898                                 if (child->vdev_islog && vd == rvd)
2899                                         degraded++;
2900                                 else
2901                                         faulted++;
2902                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2903                                 degraded++;
2904                         }
2905
2906                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2907                                 corrupted++;
2908                 }
2909
2910                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2911
2912                 /*
2913                  * Root special: if there is a top-level vdev that cannot be
2914                  * opened due to corrupted metadata, then propagate the root
2915                  * vdev's aux state as 'corrupt' rather than 'insufficient
2916                  * replicas'.
2917                  */
2918                 if (corrupted && vd == rvd &&
2919                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2920                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2921                             VDEV_AUX_CORRUPT_DATA);
2922         }
2923
2924         if (vd->vdev_parent)
2925                 vdev_propagate_state(vd->vdev_parent);
2926 }
2927
2928 /*
2929  * Set a vdev's state.  If this is during an open, we don't update the parent
2930  * state, because we're in the process of opening children depth-first.
2931  * Otherwise, we propagate the change to the parent.
2932  *
2933  * If this routine places a device in a faulted state, an appropriate ereport is
2934  * generated.
2935  */
2936 void
2937 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2938 {
2939         uint64_t save_state;
2940         spa_t *spa = vd->vdev_spa;
2941
2942         if (state == vd->vdev_state) {
2943                 vd->vdev_stat.vs_aux = aux;
2944                 return;
2945         }
2946
2947         save_state = vd->vdev_state;
2948
2949         vd->vdev_state = state;
2950         vd->vdev_stat.vs_aux = aux;
2951
2952         /*
2953          * If we are setting the vdev state to anything but an open state, then
2954          * always close the underlying device unless the device has requested
2955          * a delayed close (i.e. we're about to remove or fault the device).
2956          * Otherwise, we keep accessible but invalid devices open forever.
2957          * We don't call vdev_close() itself, because that implies some extra
2958          * checks (offline, etc) that we don't want here.  This is limited to
2959          * leaf devices, because otherwise closing the device will affect other
2960          * children.
2961          */
2962         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2963             vd->vdev_ops->vdev_op_leaf)
2964                 vd->vdev_ops->vdev_op_close(vd);
2965
2966         /*
2967          * If we have brought this vdev back into service, we need
2968          * to notify fmd so that it can gracefully repair any outstanding
2969          * cases due to a missing device.  We do this in all cases, even those
2970          * that probably don't correlate to a repaired fault.  This is sure to
2971          * catch all cases, and we let the zfs-retire agent sort it out.  If
2972          * this is a transient state it's OK, as the retire agent will
2973          * double-check the state of the vdev before repairing it.
2974          */
2975         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2976             vd->vdev_prevstate != state)
2977                 zfs_post_state_change(spa, vd);
2978
2979         if (vd->vdev_removed &&
2980             state == VDEV_STATE_CANT_OPEN &&
2981             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2982                 /*
2983                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2984                  * device was previously marked removed and someone attempted to
2985                  * reopen it.  If this failed due to a nonexistent device, then
2986                  * keep the device in the REMOVED state.  We also let this be if
2987                  * it is one of our special test online cases, which is only
2988                  * attempting to online the device and shouldn't generate an FMA
2989                  * fault.
2990                  */
2991                 vd->vdev_state = VDEV_STATE_REMOVED;
2992                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2993         } else if (state == VDEV_STATE_REMOVED) {
2994                 vd->vdev_removed = B_TRUE;
2995         } else if (state == VDEV_STATE_CANT_OPEN) {
2996                 /*
2997                  * If we fail to open a vdev during an import or recovery, we
2998                  * mark it as "not available", which signifies that it was
2999                  * never there to begin with.  Failure to open such a device
3000                  * is not considered an error.
3001                  */
3002                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3003                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3004                     vd->vdev_ops->vdev_op_leaf)
3005                         vd->vdev_not_present = 1;
3006
3007                 /*
3008                  * Post the appropriate ereport.  If the 'prevstate' field is
3009                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3010                  * that this is part of a vdev_reopen().  In this case, we don't
3011                  * want to post the ereport if the device was already in the
3012                  * CANT_OPEN state beforehand.
3013                  *
3014                  * If the 'checkremove' flag is set, then this is an attempt to
3015                  * online the device in response to an insertion event.  If we
3016                  * hit this case, then we have detected an insertion event for a
3017                  * faulted or offline device that wasn't in the removed state.
3018                  * In this scenario, we don't post an ereport because we are
3019                  * about to replace the device, or attempt an online with
3020                  * vdev_forcefault, which will generate the fault for us.
3021                  */
3022                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3023                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3024                     vd != spa->spa_root_vdev) {
3025                         const char *class;
3026
3027                         switch (aux) {
3028                         case VDEV_AUX_OPEN_FAILED:
3029                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3030                                 break;
3031                         case VDEV_AUX_CORRUPT_DATA:
3032                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3033                                 break;
3034                         case VDEV_AUX_NO_REPLICAS:
3035                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3036                                 break;
3037                         case VDEV_AUX_BAD_GUID_SUM:
3038                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3039                                 break;
3040                         case VDEV_AUX_TOO_SMALL:
3041                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3042                                 break;
3043                         case VDEV_AUX_BAD_LABEL:
3044                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3045                                 break;
3046                         default:
3047                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3048                         }
3049
3050                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3051                 }
3052
3053                 /* Erase any notion of persistent removed state */
3054                 vd->vdev_removed = B_FALSE;
3055         } else {
3056                 vd->vdev_removed = B_FALSE;
3057         }
3058
3059         if (!isopen && vd->vdev_parent)
3060                 vdev_propagate_state(vd->vdev_parent);
3061 }
3062
3063 /*
3064  * Check the vdev configuration to ensure that it's capable of supporting
3065  * a root pool.
3066  *
3067  * On Solaris, we do not support RAID-Z or partial configuration.  In
3068  * addition, only a single top-level vdev is allowed and none of the
3069  * leaves can be wholedisks.
3070  *
3071  * For FreeBSD, we can boot from any configuration. There is a
3072  * limitation that the boot filesystem must be either uncompressed or
3073  * compresses with lzjb compression but I'm not sure how to enforce
3074  * that here.
3075  */
3076 boolean_t
3077 vdev_is_bootable(vdev_t *vd)
3078 {
3079 #ifdef sun
3080         if (!vd->vdev_ops->vdev_op_leaf) {
3081                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3082
3083                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3084                     vd->vdev_children > 1) {
3085                         return (B_FALSE);
3086                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3087                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3088                         return (B_FALSE);
3089                 }
3090         } else if (vd->vdev_wholedisk == 1) {
3091                 return (B_FALSE);
3092         }
3093
3094         for (int c = 0; c < vd->vdev_children; c++) {
3095                 if (!vdev_is_bootable(vd->vdev_child[c]))
3096                         return (B_FALSE);
3097         }
3098 #endif  /* sun */
3099         return (B_TRUE);
3100 }
3101
3102 /*
3103  * Load the state from the original vdev tree (ovd) which
3104  * we've retrieved from the MOS config object. If the original
3105  * vdev was offline or faulted then we transfer that state to the
3106  * device in the current vdev tree (nvd).
3107  */
3108 void
3109 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3110 {
3111         spa_t *spa = nvd->vdev_spa;
3112
3113         ASSERT(nvd->vdev_top->vdev_islog);
3114         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3115         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3116
3117         for (int c = 0; c < nvd->vdev_children; c++)
3118                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3119
3120         if (nvd->vdev_ops->vdev_op_leaf) {
3121                 /*
3122                  * Restore the persistent vdev state
3123                  */
3124                 nvd->vdev_offline = ovd->vdev_offline;
3125                 nvd->vdev_faulted = ovd->vdev_faulted;
3126                 nvd->vdev_degraded = ovd->vdev_degraded;
3127                 nvd->vdev_removed = ovd->vdev_removed;
3128         }
3129 }
3130
3131 /*
3132  * Determine if a log device has valid content.  If the vdev was
3133  * removed or faulted in the MOS config then we know that
3134  * the content on the log device has already been written to the pool.
3135  */
3136 boolean_t
3137 vdev_log_state_valid(vdev_t *vd)
3138 {
3139         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3140             !vd->vdev_removed)
3141                 return (B_TRUE);
3142
3143         for (int c = 0; c < vd->vdev_children; c++)
3144                 if (vdev_log_state_valid(vd->vdev_child[c]))
3145                         return (B_TRUE);
3146
3147         return (B_FALSE);
3148 }
3149
3150 /*
3151  * Expand a vdev if possible.
3152  */
3153 void
3154 vdev_expand(vdev_t *vd, uint64_t txg)
3155 {
3156         ASSERT(vd->vdev_top == vd);
3157         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3158
3159         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3160                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3161                 vdev_config_dirty(vd);
3162         }
3163 }
3164
3165 /*
3166  * Split a vdev.
3167  */
3168 void
3169 vdev_split(vdev_t *vd)
3170 {
3171         vdev_t *cvd, *pvd = vd->vdev_parent;
3172
3173         vdev_remove_child(pvd, vd);
3174         vdev_compact_children(pvd);
3175
3176         cvd = pvd->vdev_child[0];
3177         if (pvd->vdev_children == 1) {
3178                 vdev_remove_parent(cvd);
3179                 cvd->vdev_splitting = B_TRUE;
3180         }
3181         vdev_propagate_state(cvd);
3182 }
3183
3184 void
3185 vdev_deadman(vdev_t *vd)
3186 {
3187         for (int c = 0; c < vd->vdev_children; c++) {
3188                 vdev_t *cvd = vd->vdev_child[c];
3189
3190                 vdev_deadman(cvd);
3191         }
3192
3193         if (vd->vdev_ops->vdev_op_leaf) {
3194                 vdev_queue_t *vq = &vd->vdev_queue;
3195
3196                 mutex_enter(&vq->vq_lock);
3197                 if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3198                         spa_t *spa = vd->vdev_spa;
3199                         zio_t *fio;
3200                         uint64_t delta;
3201
3202                         /*
3203                          * Look at the head of all the pending queues,
3204                          * if any I/O has been outstanding for longer than
3205                          * the spa_deadman_synctime we panic the system.
3206                          */
3207                         fio = avl_first(&vq->vq_pending_tree);
3208                         delta = gethrtime() - fio->io_timestamp;
3209                         if (delta > spa_deadman_synctime(spa)) {
3210                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3211                                     "delta %lluns, last io %lluns",
3212                                     fio->io_timestamp, delta,
3213                                     vq->vq_io_complete_ts);
3214                                 fm_panic("I/O to pool '%s' appears to be "
3215                                     "hung on vdev guid %llu at '%s'.",
3216                                     spa_name(spa),
3217                                     (long long unsigned int) vd->vdev_guid,
3218                                     vd->vdev_path);
3219                         }
3220                 }
3221                 mutex_exit(&vq->vq_lock);
3222         }
3223 }