]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zap_leaf.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / zap_leaf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25
26 /*
27  * The 512-byte leaf is broken into 32 16-byte chunks.
28  * chunk number n means l_chunk[n], even though the header precedes it.
29  * the names are stored null-terminated.
30  */
31
32 #include <sys/zio.h>
33 #include <sys/spa.h>
34 #include <sys/dmu.h>
35 #include <sys/zfs_context.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zap.h>
38 #include <sys/zap_impl.h>
39 #include <sys/zap_leaf.h>
40 #include <sys/arc.h>
41
42 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
43
44 #define CHAIN_END 0xffff /* end of the chunk chain */
45
46 /* half the (current) minimum block size */
47 #define MAX_ARRAY_BYTES (8<<10)
48
49 #define LEAF_HASH(l, h) \
50         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51         ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len)))
52
53 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
54
55
56 static void
57 zap_memset(void *a, int c, size_t n)
58 {
59         char *cp = a;
60         char *cpend = cp + n;
61
62         while (cp < cpend)
63                 *cp++ = c;
64 }
65
66 static void
67 stv(int len, void *addr, uint64_t value)
68 {
69         switch (len) {
70         case 1:
71                 *(uint8_t *)addr = value;
72                 return;
73         case 2:
74                 *(uint16_t *)addr = value;
75                 return;
76         case 4:
77                 *(uint32_t *)addr = value;
78                 return;
79         case 8:
80                 *(uint64_t *)addr = value;
81                 return;
82         }
83         ASSERT(!"bad int len");
84 }
85
86 static uint64_t
87 ldv(int len, const void *addr)
88 {
89         switch (len) {
90         case 1:
91                 return (*(uint8_t *)addr);
92         case 2:
93                 return (*(uint16_t *)addr);
94         case 4:
95                 return (*(uint32_t *)addr);
96         case 8:
97                 return (*(uint64_t *)addr);
98         }
99         ASSERT(!"bad int len");
100         return (0xFEEDFACEDEADBEEFULL);
101 }
102
103 void
104 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
105 {
106         int i;
107         zap_leaf_t l;
108         l.l_bs = highbit(size)-1;
109         l.l_phys = buf;
110
111         buf->l_hdr.lh_block_type =      BSWAP_64(buf->l_hdr.lh_block_type);
112         buf->l_hdr.lh_prefix =          BSWAP_64(buf->l_hdr.lh_prefix);
113         buf->l_hdr.lh_magic =           BSWAP_32(buf->l_hdr.lh_magic);
114         buf->l_hdr.lh_nfree =           BSWAP_16(buf->l_hdr.lh_nfree);
115         buf->l_hdr.lh_nentries =        BSWAP_16(buf->l_hdr.lh_nentries);
116         buf->l_hdr.lh_prefix_len =      BSWAP_16(buf->l_hdr.lh_prefix_len);
117         buf->l_hdr.lh_freelist =        BSWAP_16(buf->l_hdr.lh_freelist);
118
119         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
120                 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
121
122         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
123                 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
124                 struct zap_leaf_entry *le;
125
126                 switch (lc->l_free.lf_type) {
127                 case ZAP_CHUNK_ENTRY:
128                         le = &lc->l_entry;
129
130                         le->le_type =           BSWAP_8(le->le_type);
131                         le->le_value_intlen =   BSWAP_8(le->le_value_intlen);
132                         le->le_next =           BSWAP_16(le->le_next);
133                         le->le_name_chunk =     BSWAP_16(le->le_name_chunk);
134                         le->le_name_numints =   BSWAP_16(le->le_name_numints);
135                         le->le_value_chunk =    BSWAP_16(le->le_value_chunk);
136                         le->le_value_numints =  BSWAP_16(le->le_value_numints);
137                         le->le_cd =             BSWAP_32(le->le_cd);
138                         le->le_hash =           BSWAP_64(le->le_hash);
139                         break;
140                 case ZAP_CHUNK_FREE:
141                         lc->l_free.lf_type =    BSWAP_8(lc->l_free.lf_type);
142                         lc->l_free.lf_next =    BSWAP_16(lc->l_free.lf_next);
143                         break;
144                 case ZAP_CHUNK_ARRAY:
145                         lc->l_array.la_type =   BSWAP_8(lc->l_array.la_type);
146                         lc->l_array.la_next =   BSWAP_16(lc->l_array.la_next);
147                         /* la_array doesn't need swapping */
148                         break;
149                 default:
150                         ASSERT(!"bad leaf type");
151                 }
152         }
153 }
154
155 void
156 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
157 {
158         int i;
159
160         l->l_bs = highbit(l->l_dbuf->db_size)-1;
161         zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header));
162         zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
163         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
164                 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
165                 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
166         }
167         ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
168         l->l_phys->l_hdr.lh_block_type = ZBT_LEAF;
169         l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
170         l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
171         if (sort)
172                 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
173 }
174
175 /*
176  * Routines which manipulate leaf chunks (l_chunk[]).
177  */
178
179 static uint16_t
180 zap_leaf_chunk_alloc(zap_leaf_t *l)
181 {
182         int chunk;
183
184         ASSERT(l->l_phys->l_hdr.lh_nfree > 0);
185
186         chunk = l->l_phys->l_hdr.lh_freelist;
187         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
188         ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
189
190         l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
191
192         l->l_phys->l_hdr.lh_nfree--;
193
194         return (chunk);
195 }
196
197 static void
198 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
199 {
200         struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
201         ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
202         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
203         ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
204
205         zlf->lf_type = ZAP_CHUNK_FREE;
206         zlf->lf_next = l->l_phys->l_hdr.lh_freelist;
207         bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
208         l->l_phys->l_hdr.lh_freelist = chunk;
209
210         l->l_phys->l_hdr.lh_nfree++;
211 }
212
213 /*
214  * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
215  */
216
217 static uint16_t
218 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
219     int integer_size, int num_integers)
220 {
221         uint16_t chunk_head;
222         uint16_t *chunkp = &chunk_head;
223         int byten = 0;
224         uint64_t value = 0;
225         int shift = (integer_size-1)*8;
226         int len = num_integers;
227
228         ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
229
230         while (len > 0) {
231                 uint16_t chunk = zap_leaf_chunk_alloc(l);
232                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
233                 int i;
234
235                 la->la_type = ZAP_CHUNK_ARRAY;
236                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
237                         if (byten == 0)
238                                 value = ldv(integer_size, buf);
239                         la->la_array[i] = value >> shift;
240                         value <<= 8;
241                         if (++byten == integer_size) {
242                                 byten = 0;
243                                 buf += integer_size;
244                                 if (--len == 0)
245                                         break;
246                         }
247                 }
248
249                 *chunkp = chunk;
250                 chunkp = &la->la_next;
251         }
252         *chunkp = CHAIN_END;
253
254         return (chunk_head);
255 }
256
257 static void
258 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
259 {
260         uint16_t chunk = *chunkp;
261
262         *chunkp = CHAIN_END;
263
264         while (chunk != CHAIN_END) {
265                 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
266                 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
267                     ZAP_CHUNK_ARRAY);
268                 zap_leaf_chunk_free(l, chunk);
269                 chunk = nextchunk;
270         }
271 }
272
273 /* array_len and buf_len are in integers, not bytes */
274 static void
275 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
276     int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
277     void *buf)
278 {
279         int len = MIN(array_len, buf_len);
280         int byten = 0;
281         uint64_t value = 0;
282         char *p = buf;
283
284         ASSERT3U(array_int_len, <=, buf_int_len);
285
286         /* Fast path for one 8-byte integer */
287         if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
288                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
289                 uint8_t *ip = la->la_array;
290                 uint64_t *buf64 = buf;
291
292                 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
293                     (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
294                     (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
295                     (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
296                 return;
297         }
298
299         /* Fast path for an array of 1-byte integers (eg. the entry name) */
300         if (array_int_len == 1 && buf_int_len == 1 &&
301             buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
302                 while (chunk != CHAIN_END) {
303                         struct zap_leaf_array *la =
304                             &ZAP_LEAF_CHUNK(l, chunk).l_array;
305                         bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
306                         p += ZAP_LEAF_ARRAY_BYTES;
307                         chunk = la->la_next;
308                 }
309                 return;
310         }
311
312         while (len > 0) {
313                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
314                 int i;
315
316                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
317                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
318                         value = (value << 8) | la->la_array[i];
319                         byten++;
320                         if (byten == array_int_len) {
321                                 stv(buf_int_len, p, value);
322                                 byten = 0;
323                                 len--;
324                                 if (len == 0)
325                                         return;
326                                 p += buf_int_len;
327                         }
328                 }
329                 chunk = la->la_next;
330         }
331 }
332
333 static boolean_t
334 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
335     int chunk, int array_numints)
336 {
337         int bseen = 0;
338
339         if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
340                 uint64_t *thiskey;
341                 boolean_t match;
342
343                 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
344                 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
345                     KM_SLEEP);
346
347                 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
348                     sizeof (*thiskey), array_numints, thiskey);
349                 match = bcmp(thiskey, zn->zn_key_orig,
350                     array_numints * sizeof (*thiskey)) == 0;
351                 kmem_free(thiskey, array_numints * sizeof (*thiskey));
352                 return (match);
353         }
354
355         ASSERT(zn->zn_key_intlen == 1);
356         if (zn->zn_matchtype == MT_FIRST) {
357                 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
358                 boolean_t match;
359
360                 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
361                     sizeof (char), array_numints, thisname);
362                 match = zap_match(zn, thisname);
363                 kmem_free(thisname, array_numints);
364                 return (match);
365         }
366
367         /*
368          * Fast path for exact matching.
369          * First check that the lengths match, so that we don't read
370          * past the end of the zn_key_orig array.
371          */
372         if (array_numints != zn->zn_key_orig_numints)
373                 return (B_FALSE);
374         while (bseen < array_numints) {
375                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
376                 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
377                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
378                 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
379                         break;
380                 chunk = la->la_next;
381                 bseen += toread;
382         }
383         return (bseen == array_numints);
384 }
385
386 /*
387  * Routines which manipulate leaf entries.
388  */
389
390 int
391 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
392 {
393         uint16_t *chunkp;
394         struct zap_leaf_entry *le;
395
396         ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
397
398 again:
399         for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
400             *chunkp != CHAIN_END; chunkp = &le->le_next) {
401                 uint16_t chunk = *chunkp;
402                 le = ZAP_LEAF_ENTRY(l, chunk);
403
404                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
405                 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
406
407                 if (le->le_hash != zn->zn_hash)
408                         continue;
409
410                 /*
411                  * NB: the entry chain is always sorted by cd on
412                  * normalized zap objects, so this will find the
413                  * lowest-cd match for MT_FIRST.
414                  */
415                 ASSERT(zn->zn_matchtype == MT_EXACT ||
416                     (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
417                 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
418                     le->le_name_numints)) {
419                         zeh->zeh_num_integers = le->le_value_numints;
420                         zeh->zeh_integer_size = le->le_value_intlen;
421                         zeh->zeh_cd = le->le_cd;
422                         zeh->zeh_hash = le->le_hash;
423                         zeh->zeh_chunkp = chunkp;
424                         zeh->zeh_leaf = l;
425                         return (0);
426                 }
427         }
428
429         /*
430          * NB: we could of course do this in one pass, but that would be
431          * a pain.  We'll see if MT_BEST is even used much.
432          */
433         if (zn->zn_matchtype == MT_BEST) {
434                 zn->zn_matchtype = MT_FIRST;
435                 goto again;
436         }
437
438         return (SET_ERROR(ENOENT));
439 }
440
441 /* Return (h1,cd1 >= h2,cd2) */
442 #define HCD_GTEQ(h1, cd1, h2, cd2) \
443         ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
444
445 int
446 zap_leaf_lookup_closest(zap_leaf_t *l,
447     uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
448 {
449         uint16_t chunk;
450         uint64_t besth = -1ULL;
451         uint32_t bestcd = -1U;
452         uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
453         uint16_t lh;
454         struct zap_leaf_entry *le;
455
456         ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
457
458         for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
459                 for (chunk = l->l_phys->l_hash[lh];
460                     chunk != CHAIN_END; chunk = le->le_next) {
461                         le = ZAP_LEAF_ENTRY(l, chunk);
462
463                         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
464                         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
465
466                         if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
467                             HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
468                                 ASSERT3U(bestlh, >=, lh);
469                                 bestlh = lh;
470                                 besth = le->le_hash;
471                                 bestcd = le->le_cd;
472
473                                 zeh->zeh_num_integers = le->le_value_numints;
474                                 zeh->zeh_integer_size = le->le_value_intlen;
475                                 zeh->zeh_cd = le->le_cd;
476                                 zeh->zeh_hash = le->le_hash;
477                                 zeh->zeh_fakechunk = chunk;
478                                 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
479                                 zeh->zeh_leaf = l;
480                         }
481                 }
482         }
483
484         return (bestcd == -1U ? ENOENT : 0);
485 }
486
487 int
488 zap_entry_read(const zap_entry_handle_t *zeh,
489     uint8_t integer_size, uint64_t num_integers, void *buf)
490 {
491         struct zap_leaf_entry *le =
492             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
493         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
494
495         if (le->le_value_intlen > integer_size)
496                 return (SET_ERROR(EINVAL));
497
498         zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
499             le->le_value_intlen, le->le_value_numints,
500             integer_size, num_integers, buf);
501
502         if (zeh->zeh_num_integers > num_integers)
503                 return (SET_ERROR(EOVERFLOW));
504         return (0);
505
506 }
507
508 int
509 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
510     char *buf)
511 {
512         struct zap_leaf_entry *le =
513             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
514         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
515
516         if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
517                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
518                     le->le_name_numints, 8, buflen / 8, buf);
519         } else {
520                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
521                     le->le_name_numints, 1, buflen, buf);
522         }
523         if (le->le_name_numints > buflen)
524                 return (SET_ERROR(EOVERFLOW));
525         return (0);
526 }
527
528 int
529 zap_entry_update(zap_entry_handle_t *zeh,
530         uint8_t integer_size, uint64_t num_integers, const void *buf)
531 {
532         int delta_chunks;
533         zap_leaf_t *l = zeh->zeh_leaf;
534         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
535
536         delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
537             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
538
539         if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks)
540                 return (SET_ERROR(EAGAIN));
541
542         zap_leaf_array_free(l, &le->le_value_chunk);
543         le->le_value_chunk =
544             zap_leaf_array_create(l, buf, integer_size, num_integers);
545         le->le_value_numints = num_integers;
546         le->le_value_intlen = integer_size;
547         return (0);
548 }
549
550 void
551 zap_entry_remove(zap_entry_handle_t *zeh)
552 {
553         uint16_t entry_chunk;
554         struct zap_leaf_entry *le;
555         zap_leaf_t *l = zeh->zeh_leaf;
556
557         ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
558
559         entry_chunk = *zeh->zeh_chunkp;
560         le = ZAP_LEAF_ENTRY(l, entry_chunk);
561         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
562
563         zap_leaf_array_free(l, &le->le_name_chunk);
564         zap_leaf_array_free(l, &le->le_value_chunk);
565
566         *zeh->zeh_chunkp = le->le_next;
567         zap_leaf_chunk_free(l, entry_chunk);
568
569         l->l_phys->l_hdr.lh_nentries--;
570 }
571
572 int
573 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
574     uint8_t integer_size, uint64_t num_integers, const void *buf,
575     zap_entry_handle_t *zeh)
576 {
577         uint16_t chunk;
578         uint16_t *chunkp;
579         struct zap_leaf_entry *le;
580         uint64_t valuelen;
581         int numchunks;
582         uint64_t h = zn->zn_hash;
583
584         valuelen = integer_size * num_integers;
585
586         numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
587             zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
588         if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
589                 return (E2BIG);
590
591         if (cd == ZAP_NEED_CD) {
592                 /* find the lowest unused cd */
593                 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
594                         cd = 0;
595
596                         for (chunk = *LEAF_HASH_ENTPTR(l, h);
597                             chunk != CHAIN_END; chunk = le->le_next) {
598                                 le = ZAP_LEAF_ENTRY(l, chunk);
599                                 if (le->le_cd > cd)
600                                         break;
601                                 if (le->le_hash == h) {
602                                         ASSERT3U(cd, ==, le->le_cd);
603                                         cd++;
604                                 }
605                         }
606                 } else {
607                         /* old unsorted format; do it the O(n^2) way */
608                         for (cd = 0; ; cd++) {
609                                 for (chunk = *LEAF_HASH_ENTPTR(l, h);
610                                     chunk != CHAIN_END; chunk = le->le_next) {
611                                         le = ZAP_LEAF_ENTRY(l, chunk);
612                                         if (le->le_hash == h &&
613                                             le->le_cd == cd) {
614                                                 break;
615                                         }
616                                 }
617                                 /* If this cd is not in use, we are good. */
618                                 if (chunk == CHAIN_END)
619                                         break;
620                         }
621                 }
622                 /*
623                  * We would run out of space in a block before we could
624                  * store enough entries to run out of CD values.
625                  */
626                 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
627         }
628
629         if (l->l_phys->l_hdr.lh_nfree < numchunks)
630                 return (SET_ERROR(EAGAIN));
631
632         /* make the entry */
633         chunk = zap_leaf_chunk_alloc(l);
634         le = ZAP_LEAF_ENTRY(l, chunk);
635         le->le_type = ZAP_CHUNK_ENTRY;
636         le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
637             zn->zn_key_intlen, zn->zn_key_orig_numints);
638         le->le_name_numints = zn->zn_key_orig_numints;
639         le->le_value_chunk =
640             zap_leaf_array_create(l, buf, integer_size, num_integers);
641         le->le_value_numints = num_integers;
642         le->le_value_intlen = integer_size;
643         le->le_hash = h;
644         le->le_cd = cd;
645
646         /* link it into the hash chain */
647         /* XXX if we did the search above, we could just use that */
648         chunkp = zap_leaf_rehash_entry(l, chunk);
649
650         l->l_phys->l_hdr.lh_nentries++;
651
652         zeh->zeh_leaf = l;
653         zeh->zeh_num_integers = num_integers;
654         zeh->zeh_integer_size = le->le_value_intlen;
655         zeh->zeh_cd = le->le_cd;
656         zeh->zeh_hash = le->le_hash;
657         zeh->zeh_chunkp = chunkp;
658
659         return (0);
660 }
661
662 /*
663  * Determine if there is another entry with the same normalized form.
664  * For performance purposes, either zn or name must be provided (the
665  * other can be NULL).  Note, there usually won't be any hash
666  * conflicts, in which case we don't need the concatenated/normalized
667  * form of the name.  But all callers have one of these on hand anyway,
668  * so might as well take advantage.  A cleaner but slower interface
669  * would accept neither argument, and compute the normalized name as
670  * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
671  */
672 boolean_t
673 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
674     const char *name, zap_t *zap)
675 {
676         uint64_t chunk;
677         struct zap_leaf_entry *le;
678         boolean_t allocdzn = B_FALSE;
679
680         if (zap->zap_normflags == 0)
681                 return (B_FALSE);
682
683         for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
684             chunk != CHAIN_END; chunk = le->le_next) {
685                 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
686                 if (le->le_hash != zeh->zeh_hash)
687                         continue;
688                 if (le->le_cd == zeh->zeh_cd)
689                         continue;
690
691                 if (zn == NULL) {
692                         zn = zap_name_alloc(zap, name, MT_FIRST);
693                         allocdzn = B_TRUE;
694                 }
695                 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
696                     le->le_name_chunk, le->le_name_numints)) {
697                         if (allocdzn)
698                                 zap_name_free(zn);
699                         return (B_TRUE);
700                 }
701         }
702         if (allocdzn)
703                 zap_name_free(zn);
704         return (B_FALSE);
705 }
706
707 /*
708  * Routines for transferring entries between leafs.
709  */
710
711 static uint16_t *
712 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
713 {
714         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
715         struct zap_leaf_entry *le2;
716         uint16_t *chunkp;
717
718         /*
719          * keep the entry chain sorted by cd
720          * NB: this will not cause problems for unsorted leafs, though
721          * it is unnecessary there.
722          */
723         for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
724             *chunkp != CHAIN_END; chunkp = &le2->le_next) {
725                 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
726                 if (le2->le_cd > le->le_cd)
727                         break;
728         }
729
730         le->le_next = *chunkp;
731         *chunkp = entry;
732         return (chunkp);
733 }
734
735 static uint16_t
736 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
737 {
738         uint16_t new_chunk;
739         uint16_t *nchunkp = &new_chunk;
740
741         while (chunk != CHAIN_END) {
742                 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
743                 struct zap_leaf_array *nla =
744                     &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
745                 struct zap_leaf_array *la =
746                     &ZAP_LEAF_CHUNK(l, chunk).l_array;
747                 int nextchunk = la->la_next;
748
749                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
750                 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
751
752                 *nla = *la; /* structure assignment */
753
754                 zap_leaf_chunk_free(l, chunk);
755                 chunk = nextchunk;
756                 *nchunkp = nchunk;
757                 nchunkp = &nla->la_next;
758         }
759         *nchunkp = CHAIN_END;
760         return (new_chunk);
761 }
762
763 static void
764 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
765 {
766         struct zap_leaf_entry *le, *nle;
767         uint16_t chunk;
768
769         le = ZAP_LEAF_ENTRY(l, entry);
770         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
771
772         chunk = zap_leaf_chunk_alloc(nl);
773         nle = ZAP_LEAF_ENTRY(nl, chunk);
774         *nle = *le; /* structure assignment */
775
776         (void) zap_leaf_rehash_entry(nl, chunk);
777
778         nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
779         nle->le_value_chunk =
780             zap_leaf_transfer_array(l, le->le_value_chunk, nl);
781
782         zap_leaf_chunk_free(l, entry);
783
784         l->l_phys->l_hdr.lh_nentries--;
785         nl->l_phys->l_hdr.lh_nentries++;
786 }
787
788 /*
789  * Transfer the entries whose hash prefix ends in 1 to the new leaf.
790  */
791 void
792 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
793 {
794         int i;
795         int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len;
796
797         /* set new prefix and prefix_len */
798         l->l_phys->l_hdr.lh_prefix <<= 1;
799         l->l_phys->l_hdr.lh_prefix_len++;
800         nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1;
801         nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len;
802
803         /* break existing hash chains */
804         zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
805
806         if (sort)
807                 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
808
809         /*
810          * Transfer entries whose hash bit 'bit' is set to nl; rehash
811          * the remaining entries
812          *
813          * NB: We could find entries via the hashtable instead. That
814          * would be O(hashents+numents) rather than O(numblks+numents),
815          * but this accesses memory more sequentially, and when we're
816          * called, the block is usually pretty full.
817          */
818         for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
819                 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
820                 if (le->le_type != ZAP_CHUNK_ENTRY)
821                         continue;
822
823                 if (le->le_hash & (1ULL << bit))
824                         zap_leaf_transfer_entry(l, i, nl);
825                 else
826                         (void) zap_leaf_rehash_entry(l, i);
827         }
828 }
829
830 void
831 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
832 {
833         int i, n;
834
835         n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift -
836             l->l_phys->l_hdr.lh_prefix_len;
837         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
838         zs->zs_leafs_with_2n_pointers[n]++;
839
840
841         n = l->l_phys->l_hdr.lh_nentries/5;
842         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
843         zs->zs_blocks_with_n5_entries[n]++;
844
845         n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
846             l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
847             (1<<FZAP_BLOCK_SHIFT(zap));
848         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
849         zs->zs_blocks_n_tenths_full[n]++;
850
851         for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
852                 int nentries = 0;
853                 int chunk = l->l_phys->l_hash[i];
854
855                 while (chunk != CHAIN_END) {
856                         struct zap_leaf_entry *le =
857                             ZAP_LEAF_ENTRY(l, chunk);
858
859                         n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
860                             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
861                             le->le_value_intlen);
862                         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
863                         zs->zs_entries_using_n_chunks[n]++;
864
865                         chunk = le->le_next;
866                         nentries++;
867                 }
868
869                 n = nentries;
870                 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
871                 zs->zs_buckets_with_n_entries[n]++;
872         }
873 }