]> CyberLeo.Net >> Repos - FreeBSD/releng/9.2.git/blob - sys/cddl/dev/dtrace/i386/dtrace_subr.c
- Copy stable/9 to releng/9.2 as part of the 9.2-RELEASE cycle.
[FreeBSD/releng/9.2.git] / sys / cddl / dev / dtrace / i386 / dtrace_subr.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/cpuset.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/kmem.h>
41 #include <sys/smp.h>
42 #include <sys/dtrace_impl.h>
43 #include <sys/dtrace_bsd.h>
44 #include <machine/clock.h>
45 #include <machine/frame.h>
46 #include <vm/pmap.h>
47
48 extern uintptr_t        kernelbase;
49 extern uintptr_t        dtrace_in_probe_addr;
50 extern int              dtrace_in_probe;
51
52 extern void dtrace_getnanotime(struct timespec *tsp);
53
54 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
55
56 typedef struct dtrace_invop_hdlr {
57         int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
58         struct dtrace_invop_hdlr *dtih_next;
59 } dtrace_invop_hdlr_t;
60
61 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
62
63 int
64 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
65 {
66         dtrace_invop_hdlr_t *hdlr;
67         int rval;
68
69         for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
70                 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
71                         return (rval);
72
73         return (0);
74 }
75
76 void
77 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
78 {
79         dtrace_invop_hdlr_t *hdlr;
80
81         hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
82         hdlr->dtih_func = func;
83         hdlr->dtih_next = dtrace_invop_hdlr;
84         dtrace_invop_hdlr = hdlr;
85 }
86
87 void
88 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
89 {
90         dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
91
92         for (;;) {
93                 if (hdlr == NULL)
94                         panic("attempt to remove non-existent invop handler");
95
96                 if (hdlr->dtih_func == func)
97                         break;
98
99                 prev = hdlr;
100                 hdlr = hdlr->dtih_next;
101         }
102
103         if (prev == NULL) {
104                 ASSERT(dtrace_invop_hdlr == hdlr);
105                 dtrace_invop_hdlr = hdlr->dtih_next;
106         } else {
107                 ASSERT(dtrace_invop_hdlr != hdlr);
108                 prev->dtih_next = hdlr->dtih_next;
109         }
110
111         kmem_free(hdlr, 0);
112 }
113
114 void
115 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
116 {
117         (*func)(0, kernelbase);
118 }
119
120 void
121 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
122 {
123         cpuset_t cpus;
124
125         if (cpu == DTRACE_CPUALL)
126                 cpus = all_cpus;
127         else
128                 CPU_SETOF(cpu, &cpus);
129
130         smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func,
131             smp_no_rendevous_barrier, arg);
132 }
133
134 static void
135 dtrace_sync_func(void)
136 {
137 }
138
139 void
140 dtrace_sync(void)
141 {
142         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
143 }
144
145 #ifdef notyet
146 int (*dtrace_fasttrap_probe_ptr)(struct regs *);
147 int (*dtrace_pid_probe_ptr)(struct regs *);
148 int (*dtrace_return_probe_ptr)(struct regs *);
149
150 void
151 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
152 {
153         krwlock_t *rwp;
154         proc_t *p = curproc;
155         extern void trap(struct regs *, caddr_t, processorid_t);
156
157         if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
158                 if (curthread->t_cred != p->p_cred) {
159                         cred_t *oldcred = curthread->t_cred;
160                         /*
161                          * DTrace accesses t_cred in probe context.  t_cred
162                          * must always be either NULL, or point to a valid,
163                          * allocated cred structure.
164                          */
165                         curthread->t_cred = crgetcred();
166                         crfree(oldcred);
167                 }
168         }
169
170         if (rp->r_trapno == T_DTRACE_RET) {
171                 uint8_t step = curthread->t_dtrace_step;
172                 uint8_t ret = curthread->t_dtrace_ret;
173                 uintptr_t npc = curthread->t_dtrace_npc;
174
175                 if (curthread->t_dtrace_ast) {
176                         aston(curthread);
177                         curthread->t_sig_check = 1;
178                 }
179
180                 /*
181                  * Clear all user tracing flags.
182                  */
183                 curthread->t_dtrace_ft = 0;
184
185                 /*
186                  * If we weren't expecting to take a return probe trap, kill
187                  * the process as though it had just executed an unassigned
188                  * trap instruction.
189                  */
190                 if (step == 0) {
191                         tsignal(curthread, SIGILL);
192                         return;
193                 }
194
195                 /*
196                  * If we hit this trap unrelated to a return probe, we're
197                  * just here to reset the AST flag since we deferred a signal
198                  * until after we logically single-stepped the instruction we
199                  * copied out.
200                  */
201                 if (ret == 0) {
202                         rp->r_pc = npc;
203                         return;
204                 }
205
206                 /*
207                  * We need to wait until after we've called the
208                  * dtrace_return_probe_ptr function pointer to set %pc.
209                  */
210                 rwp = &CPU->cpu_ft_lock;
211                 rw_enter(rwp, RW_READER);
212                 if (dtrace_return_probe_ptr != NULL)
213                         (void) (*dtrace_return_probe_ptr)(rp);
214                 rw_exit(rwp);
215                 rp->r_pc = npc;
216
217         } else if (rp->r_trapno == T_DTRACE_PROBE) {
218                 rwp = &CPU->cpu_ft_lock;
219                 rw_enter(rwp, RW_READER);
220                 if (dtrace_fasttrap_probe_ptr != NULL)
221                         (void) (*dtrace_fasttrap_probe_ptr)(rp);
222                 rw_exit(rwp);
223
224         } else if (rp->r_trapno == T_BPTFLT) {
225                 uint8_t instr;
226                 rwp = &CPU->cpu_ft_lock;
227
228                 /*
229                  * The DTrace fasttrap provider uses the breakpoint trap
230                  * (int 3). We let DTrace take the first crack at handling
231                  * this trap; if it's not a probe that DTrace knowns about,
232                  * we call into the trap() routine to handle it like a
233                  * breakpoint placed by a conventional debugger.
234                  */
235                 rw_enter(rwp, RW_READER);
236                 if (dtrace_pid_probe_ptr != NULL &&
237                     (*dtrace_pid_probe_ptr)(rp) == 0) {
238                         rw_exit(rwp);
239                         return;
240                 }
241                 rw_exit(rwp);
242
243                 /*
244                  * If the instruction that caused the breakpoint trap doesn't
245                  * look like an int 3 anymore, it may be that this tracepoint
246                  * was removed just after the user thread executed it. In
247                  * that case, return to user land to retry the instuction.
248                  */
249                 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 &&
250                     instr != FASTTRAP_INSTR) {
251                         rp->r_pc--;
252                         return;
253                 }
254
255                 trap(rp, addr, cpuid);
256
257         } else {
258                 trap(rp, addr, cpuid);
259         }
260 }
261
262 void
263 dtrace_safe_synchronous_signal(void)
264 {
265         kthread_t *t = curthread;
266         struct regs *rp = lwptoregs(ttolwp(t));
267         size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
268
269         ASSERT(t->t_dtrace_on);
270
271         /*
272          * If we're not in the range of scratch addresses, we're not actually
273          * tracing user instructions so turn off the flags. If the instruction
274          * we copied out caused a synchonous trap, reset the pc back to its
275          * original value and turn off the flags.
276          */
277         if (rp->r_pc < t->t_dtrace_scrpc ||
278             rp->r_pc > t->t_dtrace_astpc + isz) {
279                 t->t_dtrace_ft = 0;
280         } else if (rp->r_pc == t->t_dtrace_scrpc ||
281             rp->r_pc == t->t_dtrace_astpc) {
282                 rp->r_pc = t->t_dtrace_pc;
283                 t->t_dtrace_ft = 0;
284         }
285 }
286
287 int
288 dtrace_safe_defer_signal(void)
289 {
290         kthread_t *t = curthread;
291         struct regs *rp = lwptoregs(ttolwp(t));
292         size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
293
294         ASSERT(t->t_dtrace_on);
295
296         /*
297          * If we're not in the range of scratch addresses, we're not actually
298          * tracing user instructions so turn off the flags.
299          */
300         if (rp->r_pc < t->t_dtrace_scrpc ||
301             rp->r_pc > t->t_dtrace_astpc + isz) {
302                 t->t_dtrace_ft = 0;
303                 return (0);
304         }
305
306         /*
307          * If we have executed the original instruction, but we have performed
308          * neither the jmp back to t->t_dtrace_npc nor the clean up of any
309          * registers used to emulate %rip-relative instructions in 64-bit mode,
310          * we'll save ourselves some effort by doing that here and taking the
311          * signal right away.  We detect this condition by seeing if the program
312          * counter is the range [scrpc + isz, astpc).
313          */
314         if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
315             rp->r_pc < t->t_dtrace_astpc) {
316 #ifdef __amd64
317                 /*
318                  * If there is a scratch register and we're on the
319                  * instruction immediately after the modified instruction,
320                  * restore the value of that scratch register.
321                  */
322                 if (t->t_dtrace_reg != 0 &&
323                     rp->r_pc == t->t_dtrace_scrpc + isz) {
324                         switch (t->t_dtrace_reg) {
325                         case REG_RAX:
326                                 rp->r_rax = t->t_dtrace_regv;
327                                 break;
328                         case REG_RCX:
329                                 rp->r_rcx = t->t_dtrace_regv;
330                                 break;
331                         case REG_R8:
332                                 rp->r_r8 = t->t_dtrace_regv;
333                                 break;
334                         case REG_R9:
335                                 rp->r_r9 = t->t_dtrace_regv;
336                                 break;
337                         }
338                 }
339 #endif
340                 rp->r_pc = t->t_dtrace_npc;
341                 t->t_dtrace_ft = 0;
342                 return (0);
343         }
344
345         /*
346          * Otherwise, make sure we'll return to the kernel after executing
347          * the copied out instruction and defer the signal.
348          */
349         if (!t->t_dtrace_step) {
350                 ASSERT(rp->r_pc < t->t_dtrace_astpc);
351                 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
352                 t->t_dtrace_step = 1;
353         }
354
355         t->t_dtrace_ast = 1;
356
357         return (1);
358 }
359 #endif
360
361 static int64_t  tgt_cpu_tsc;
362 static int64_t  hst_cpu_tsc;
363 static int64_t  tsc_skew[MAXCPU];
364 static uint64_t nsec_scale;
365
366 /* See below for the explanation of this macro. */
367 #define SCALE_SHIFT     28
368
369 static void
370 dtrace_gethrtime_init_cpu(void *arg)
371 {
372         uintptr_t cpu = (uintptr_t) arg;
373
374         if (cpu == curcpu)
375                 tgt_cpu_tsc = rdtsc();
376         else
377                 hst_cpu_tsc = rdtsc();
378 }
379
380 static void
381 dtrace_gethrtime_init(void *arg)
382 {
383         cpuset_t map;
384         struct pcpu *pc;
385         uint64_t tsc_f;
386         int i;
387
388         /*
389          * Get TSC frequency known at this moment.
390          * This should be constant if TSC is invariant.
391          * Otherwise tick->time conversion will be inaccurate, but
392          * will preserve monotonic property of TSC.
393          */
394         tsc_f = atomic_load_acq_64(&tsc_freq);
395
396         /*
397          * The following line checks that nsec_scale calculated below
398          * doesn't overflow 32-bit unsigned integer, so that it can multiply
399          * another 32-bit integer without overflowing 64-bit.
400          * Thus minimum supported TSC frequency is 62.5MHz.
401          */
402         KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low"));
403
404         /*
405          * We scale up NANOSEC/tsc_f ratio to preserve as much precision
406          * as possible.
407          * 2^28 factor was chosen quite arbitrarily from practical
408          * considerations:
409          * - it supports TSC frequencies as low as 62.5MHz (see above);
410          * - it provides quite good precision (e < 0.01%) up to THz
411          *   (terahertz) values;
412          */
413         nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
414
415         /* The current CPU is the reference one. */
416         sched_pin();
417         tsc_skew[curcpu] = 0;
418         CPU_FOREACH(i) {
419                 if (i == curcpu)
420                         continue;
421
422                 pc = pcpu_find(i);
423                 CPU_SETOF(PCPU_GET(cpuid), &map);
424                 CPU_SET(pc->pc_cpuid, &map);
425
426                 smp_rendezvous_cpus(map, NULL,
427                     dtrace_gethrtime_init_cpu,
428                     smp_no_rendevous_barrier, (void *)(uintptr_t) i);
429
430                 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
431         }
432         sched_unpin();
433 }
434
435 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL);
436
437 /*
438  * DTrace needs a high resolution time function which can
439  * be called from a probe context and guaranteed not to have
440  * instrumented with probes itself.
441  *
442  * Returns nanoseconds since boot.
443  */
444 uint64_t
445 dtrace_gethrtime()
446 {
447         uint64_t tsc;
448         uint32_t lo;
449         uint32_t hi;
450
451         /*
452          * We split TSC value into lower and higher 32-bit halves and separately
453          * scale them with nsec_scale, then we scale them down by 2^28
454          * (see nsec_scale calculations) taking into account 32-bit shift of
455          * the higher half and finally add.
456          */
457         tsc = rdtsc() + tsc_skew[curcpu];
458         lo = tsc;
459         hi = tsc >> 32;
460         return (((lo * nsec_scale) >> SCALE_SHIFT) +
461             ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
462 }
463
464 uint64_t
465 dtrace_gethrestime(void)
466 {
467         struct timespec current_time;
468
469         dtrace_getnanotime(&current_time);
470
471         return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
472 }
473
474 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */
475 int
476 dtrace_trap(struct trapframe *frame, u_int type)
477 {
478         /*
479          * A trap can occur while DTrace executes a probe. Before
480          * executing the probe, DTrace blocks re-scheduling and sets
481          * a flag in it's per-cpu flags to indicate that it doesn't
482          * want to fault. On returning from the probe, the no-fault
483          * flag is cleared and finally re-scheduling is enabled.
484          *
485          * Check if DTrace has enabled 'no-fault' mode:
486          *
487          */
488         if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
489                 /*
490                  * There are only a couple of trap types that are expected.
491                  * All the rest will be handled in the usual way.
492                  */
493                 switch (type) {
494                 /* General protection fault. */
495                 case T_PROTFLT:
496                         /* Flag an illegal operation. */
497                         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
498
499                         /*
500                          * Offset the instruction pointer to the instruction
501                          * following the one causing the fault.
502                          */
503                         frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
504                         return (1);
505                 /* Page fault. */
506                 case T_PAGEFLT:
507                         /* Flag a bad address. */
508                         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
509                         cpu_core[curcpu].cpuc_dtrace_illval = rcr2();
510
511                         /*
512                          * Offset the instruction pointer to the instruction
513                          * following the one causing the fault.
514                          */
515                         frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
516                         return (1);
517                 default:
518                         /* Handle all other traps in the usual way. */
519                         break;
520                 }
521         }
522
523         /* Handle the trap in the usual way. */
524         return (0);
525 }